JP2007263517A - Heat pump water heater - Google Patents

Heat pump water heater Download PDF

Info

Publication number
JP2007263517A
JP2007263517A JP2006091541A JP2006091541A JP2007263517A JP 2007263517 A JP2007263517 A JP 2007263517A JP 2006091541 A JP2006091541 A JP 2006091541A JP 2006091541 A JP2006091541 A JP 2006091541A JP 2007263517 A JP2007263517 A JP 2007263517A
Authority
JP
Japan
Prior art keywords
hot water
water storage
refrigerant
heat pump
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006091541A
Other languages
Japanese (ja)
Other versions
JP4958460B2 (en
Inventor
Yutaka Enokitsu
豊 榎津
Yoshihiko Kenmori
仁彦 権守
Junichi Takagi
純一 高木
Koichi Sakamoto
浩一 坂本
Katsuya Morimoto
勝也 森本
Mari Miyata
真理 宮田
Tadashi Masuda
正 増田
Keiichi Mizutani
圭一 水谷
Kazutaka Hotta
和孝 堀田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kansai Electric Power Co Inc
Chubu Electric Power Co Inc
Hitachi Appliances Inc
Original Assignee
Kansai Electric Power Co Inc
Chubu Electric Power Co Inc
Hitachi Appliances Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kansai Electric Power Co Inc, Chubu Electric Power Co Inc, Hitachi Appliances Inc filed Critical Kansai Electric Power Co Inc
Priority to JP2006091541A priority Critical patent/JP4958460B2/en
Priority to KR1020070030073A priority patent/KR100847619B1/en
Priority to CN200710091587A priority patent/CN100575810C/en
Publication of JP2007263517A publication Critical patent/JP2007263517A/en
Application granted granted Critical
Publication of JP4958460B2 publication Critical patent/JP4958460B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H4/00Fluid heaters characterised by the use of heat pumps
    • F24H4/02Water heaters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D17/00Domestic hot-water supply systems
    • F24D17/02Domestic hot-water supply systems using heat pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H1/00Water heaters, e.g. boilers, continuous-flow heaters or water-storage heaters
    • F24H1/48Water heaters for central heating incorporating heaters for domestic water
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H9/00Details
    • F24H9/20Arrangement or mounting of control or safety devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B30/00Heat pumps
    • F25B30/02Heat pumps of the compression type
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/12Hot water central heating systems using heat pumps
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/62Absorption based systems

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Heat-Pump Type And Storage Water Heaters (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a heat pump water heater capable of shortening a stabilizing time of a supply hot water temperature and a hot water storage time even when hot water is used during hot water storage operation. <P>SOLUTION: The heat pump water heater is provided with a coolant circuit, a hot water storage circuit, a hot water supply circuit, and an operation control means. The hot water supply circuit has a direct hot water supply circuit carrying out supply of hot water heated by a water-coolant heat exchanger directly from a tapping fitting, and in the operation control means, if there is use of hot water during hot water storage operation, the hot water storage operation is interrupted to give priority to the use of hot water, a heat pump continues operation while maintaining maintaining a heating temperature of the hot water storage operation, and water is added to the hot water heated by the water-coolant heat exchanger to carry out hot water supply. By this, since the heat pump can continue operation while maintaining the hot water storage heating temperature, the hot water supply temperature stabilizing time at starting of hot water supply operation, and the hot water storage time after using hot water can be shortened. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、ヒートポンプ給湯機に関し、特に、ヒートポンプ運転により加熱した温水を直接水使用端末へ給湯する直接給湯回路を有する瞬間式ヒートポンプ給湯機の改善に関する。   The present invention relates to a heat pump water heater, and more particularly, to an improvement in an instantaneous heat pump water heater having a direct hot water supply circuit for directly supplying hot water heated by a heat pump operation to a terminal using water.

従来のヒートポンプ給湯機は、電気温水器と同様に大容量の貯湯タンクを設け、夜間の安価な割引電力を使って夜中にヒートポンプ冷媒回路で湯を沸き上げて貯湯タンクに貯蔵しておき、この貯蔵した湯を日中に使う貯湯方式のものが一般的である。   A conventional heat pump water heater has a large-capacity hot water storage tank similar to an electric water heater, and uses hot discount refrigerant at night to boil hot water in the heat pump refrigerant circuit and store it in the hot water storage tank. A hot water storage system that uses stored hot water during the day is common.

これに対し、近年、ヒートポンプ運転で加熱した温水を直接給湯することにより、貯湯タンクの大幅な小形化を図った瞬間式ヒートポンプ給湯機が開発されている。   On the other hand, in recent years, an instantaneous heat pump water heater has been developed in which hot water heated by a heat pump operation is directly supplied, thereby greatly reducing the size of the hot water storage tank.

このような瞬間式ヒートポンプ給湯機の例として、予め貯湯運転を行なって小形の貯湯タンクに高温の湯を貯湯しておき、湯水使用時には、ヒートポンプの加熱温度が適温に到達しない運転当初は貯湯タンクの湯に水を混ぜて適温として給湯し、ヒートポンプ運転による加熱温度が適温に達すると、貯湯タンクからの給湯を止めて、ヒートポンプ運転で加熱した温水を直接給湯して使用するものがある(例えば、特許文献1参照)。   As an example of such an instantaneous heat pump water heater, a hot water storage operation is performed in advance to store hot water in a small hot water storage tank, and when the hot water is used, the heat pump heating temperature does not reach an appropriate temperature. There are some that use hot water heated by the heat pump operation and then directly supply hot water when the heating temperature by the heat pump operation reaches an appropriate temperature by mixing the water with the hot water. , See Patent Document 1).

なお、ヒートポンプ運転の運転効率、すなわち成績係数(一般にCOPという)は、加熱温度が高いほど圧縮機の回転数が多くなり機械損失も大きく、加熱温度が低いほど成績係数が向上し省電力を図れる。   The operating efficiency of heat pump operation, that is, the coefficient of performance (generally referred to as COP), the higher the heating temperature, the greater the number of rotations of the compressor and the greater the mechanical loss. The lower the heating temperature, the higher the coefficient of performance and the power can be saved. .

ここで、貯湯タンクの貯湯温度は、夏期、中間期等の通常は一般に約60〜65℃としているが、冬期低温時はヒートポンプの加熱立ち上がり時間が長くなり貯湯タンクからの給湯熱量が多くなることを考慮して約90℃としている。   Here, the hot water storage temperature of the hot water storage tank is generally about 60 to 65 ° C. in summer and intermediate periods, etc., but the heat rise time of the heat pump becomes longer and the amount of hot water supplied from the hot water storage tank increases at low temperatures in winter. Is about 90 ° C.

また、貯湯運転中に湯水使用が行なわれると、貯湯運転を中止して給湯運転に変更し、ヒートポンプは加熱温度を貯湯温度から給湯温度に下げて給湯し、湯水使用が終了すると、加熱温度を給湯温度から貯湯温度に上げて、再び給湯運転から貯湯運転に変更し、貯湯運転終了後ヒートポンプ運転を停止させる。   In addition, if hot water is used during hot water storage operation, the hot water storage operation is stopped and changed to hot water supply operation, and the heat pump lowers the heating temperature from the hot water temperature to the hot water supply temperature. The hot water supply temperature is raised to the hot water storage temperature, the hot water supply operation is changed to the hot water storage operation again, and the heat pump operation is stopped after the hot water storage operation is completed.

特開2005−9724号公報Japanese Patent Laid-Open No. 2005-9724

前記従来のヒートポンプ給湯機においては、貯湯運転中に湯水使用が行われると、ヒートポンプの加熱温度を貯湯温度から給湯温度に下げ、更に、給湯終了後は加熱温度を給湯温度から貯湯温度に上げて貯湯運転を行っていたため、2度の加熱温度切り換えが必要であった。   In the conventional heat pump water heater, when hot water is used during hot water storage operation, the heat temperature of the heat pump is lowered from the hot water temperature to the hot water temperature, and after the hot water is finished, the heating temperature is raised from the hot water temperature to the hot water temperature. Since the hot water storage operation was performed, it was necessary to switch the heating temperature twice.

従って、貯湯運転開始直後に湯水使用があった場合、貯湯温度及び貯湯量が過渡状態にあり、かつ、タンクのヒートポンプ加熱運転が給湯温度に達して安定するまでには多少の時間が掛かるため、給湯温度の安定時間がやや長くなる恐れがあった。   Therefore, if hot water is used immediately after the start of the hot water storage operation, the hot water storage temperature and the amount of hot water are in a transient state, and it takes some time until the heat pump heating operation of the tank reaches the hot water supply temperature and stabilizes. There was a risk that the stabilization time of the hot water supply temperature would be slightly longer.

また、給湯運転から再び貯湯運転に戻る時においては、ヒートポンプ運転が給湯温度から貯湯温度に上がるまでの間貯湯できないため、貯湯時間が幾分長く掛かった。   Further, when returning from the hot water supply operation to the hot water storage operation again, the hot water storage time is somewhat longer because the hot pump cannot be stored until the heat pump operation rises from the hot water supply temperature to the hot water storage temperature.

前記2つの課題は、通常の貯湯温度(約60〜65℃)の場合は支障が少ないが、冬期低温時における高温貯湯(約90℃)の時は、貯湯温度(約90℃)と給湯温度(約42℃)との温度差が大きく、且つ、周囲が低温であることもあって、ヒートポンプが給湯温度(約42℃)運転から貯湯温度(約90℃)運転に達するのに、例えば、数十分掛かり、貯湯運転中に頻繁に湯水使用する場合においては使い勝手の面において改善の余地がある。   The two problems are that there are few problems at normal hot water storage temperature (about 60 to 65 ° C), but hot water storage temperature (about 90 ° C) at low temperatures in winter is hot water storage temperature (about 90 ° C) and hot water supply temperature. Since the temperature difference from (about 42 ° C.) is large and the surroundings are low in temperature, the heat pump reaches the hot water storage temperature (about 90 ° C.) operation from the hot water supply temperature (about 42 ° C.) operation. It takes several tens of minutes, and there is room for improvement in terms of usability when hot water is frequently used during hot water storage operation.

本発明は、前記従来の課題を解決するためのもので、貯湯運転中に湯水使用が行われた場合における給湯温度の安定時間及び貯湯時間の短縮を図ったヒートポンプ給湯機を提供するものである。   The present invention is intended to solve the above-described conventional problems, and provides a heat pump water heater that aims to stabilize the hot water supply temperature and shorten the hot water storage time when hot water is used during hot water storage operation. .

本発明は、前記従来のヒートポンプ給湯機の課題を解決するための手段として、貯湯運転中に湯水使用が行われた場合は、ヒートポンプの加熱温度を給湯温度に下げず、貯湯温度のまま継続運転することにより、給湯温度の安定時間及び貯湯時間の短縮を図るものである。   As a means for solving the problems of the conventional heat pump water heater, the present invention does not lower the heating temperature of the heat pump to the hot water supply temperature when hot water is used during the hot water storage operation, and continues the hot water storage temperature. By doing so, the hot water temperature stabilization time and hot water storage time are shortened.

請求項1に関わる発明は、圧縮機、水と冷媒との熱交換を行なう水冷媒熱交換器、減圧装置、空気と冷媒との熱交換を行なう蒸発器を、冷媒配管を介して順次接続したヒートポンプ冷媒回路と、前記水冷媒熱交換器、水冷媒熱交換器で加熱した温水を貯めておくための貯湯タンク、給湯混合弁、機内循環ポンプ、及びこれらの部品間を接続する水配管からなる貯湯回路と、前記水冷媒熱交換器、貯湯タンク、給湯混合弁、湯水混合弁、流量調整弁、出湯金具、及びこれらの部品間を接続する水配管からなる給湯回路と、前記圧縮機、減圧装置、機内循環ポンプ、給湯混合弁、湯水混合弁、流量調整弁、等の動作を制御する運転制御手段とを備え、前記給湯回路は、水冷媒熱交換器で加熱した温水を直接出湯金具から給湯する直接給湯回路を有し、前記運転制御手段は、貯湯運転中に湯水使用があった場合、貯湯運転を中断して湯水使用を優先し、ヒートポンプは、前記貯湯運転時の加熱温度で継続運転し水冷媒熱交換器で加熱した温水に水を加えて給湯する貯湯中断給湯運転を行なうことを特徴とするものである。   In the invention according to claim 1, a compressor, a water-refrigerant heat exchanger that performs heat exchange between water and a refrigerant, a decompression device, and an evaporator that performs heat exchange between air and a refrigerant are sequentially connected via a refrigerant pipe. It comprises a heat pump refrigerant circuit, the water refrigerant heat exchanger, a hot water storage tank for storing hot water heated by the water refrigerant heat exchanger, a hot water mixing valve, an in-machine circulation pump, and a water pipe connecting these components. A hot water storage circuit, a water refrigerant heat exchanger, a hot water storage tank, a hot water mixing valve, a hot water mixing valve, a flow rate adjusting valve, a hot metal fitting, and a water pipe connecting these components, and the compressor, decompression Operation control means for controlling the operation of an apparatus, an in-machine circulation pump, a hot water supply mixing valve, a hot water mixing valve, a flow rate adjustment valve, etc., and the hot water supply circuit directly supplies hot water heated by a water refrigerant heat exchanger from a hot metal fitting Has direct hot water supply circuit for hot water supply When the hot water is used during the hot water storage operation, the operation control means interrupts the hot water storage operation to give priority to the hot water use, and the heat pump continuously operates at the heating temperature during the hot water storage operation, A hot water storage interrupted hot water supply operation is performed in which hot water is added to hot water to supply hot water.

すなわち、貯湯運転中に湯水使用があった場合、ヒートポンプ運転は貯湯運転時の加熱温度で継続運転し、水冷媒熱交換器で加熱した温水に水を加えて給湯する。これにより、ヒートポンプ運転による加熱温度が安定しているので給湯温度は直ちに適温給湯ができ、且つ、ヒートポンプ運転による加熱温度が貯湯温度のままとなっているので、湯水使用終了後は直ちに貯湯運転に戻ることができる。よって、貯湯運転中の給湯運転における給湯温度の安定時間及び貯湯時間の短縮を図ることができる。   That is, when hot water is used during the hot water storage operation, the heat pump operation is continuously operated at the heating temperature during the hot water storage operation, and water is added to the hot water heated by the water-refrigerant heat exchanger to supply hot water. As a result, since the heating temperature by the heat pump operation is stable, the hot water supply temperature can be immediately supplied at an appropriate temperature, and the heating temperature by the heat pump operation remains at the hot water storage temperature. You can go back. Therefore, it is possible to shorten the hot water temperature stabilization time and hot water storage time in the hot water supply operation during the hot water storage operation.

また、請求項2に関わる発明は、請求項1に加え、前記運転制御手段は、貯湯運転中に湯水使用があった場合、貯湯中断給湯運転を行った後貯湯運転を再開し、貯湯運転が完了してからヒートポンプ運転を停止することを特徴とするものである。これによれば、貯湯運転を中断し給湯運転に変わってもヒートポンプは連続運転しているので、湯水使用後の貯湯運転再開が速やかに行なえ、使い勝手の向上を図ることができる。   In addition to claim 1, the invention according to claim 2 is characterized in that, when hot water is used during hot water storage operation, the operation control means restarts hot water storage operation after hot water storage interrupted hot water supply operation, The heat pump operation is stopped after completion. According to this, even if the hot water storage operation is interrupted and changed to the hot water supply operation, the heat pump is continuously operated. Therefore, the hot water storage operation can be resumed immediately after the hot water is used, and the usability can be improved.

また、請求項3に関わる発明は、請求項1に加え、前記運転制御手段は、貯湯運転中に湯水使用があった場合、高温貯湯運転時は前記貯湯運転時の加熱温度で継続運転し、通常温度貯湯運転時は給湯温度に見合った加熱温度に下げて貯湯中断給湯運転を行なうことを特徴とするものである。すなわち、高温貯湯運転時と通常温度貯湯運転時とで、加熱温度の制御を変え、貯湯温度と給湯温度との温度差が大きい高温貯湯運転時はそのまま高温の加熱温度で継続運転することで、給湯温度の安定時間及び貯湯時間の短縮を図ることができる。一方、給湯温度の安定時間及び貯湯時間が余り実用上支障とならない通常温度貯湯運転時は加熱温度を給湯温度に合わせて下げることによりヒートポンプ運転の成績係数(COP)を向上して省電力を図ることができる。   The invention according to claim 3 is the invention according to claim 1, in addition to claim 1, wherein when the hot water is used during the hot water storage operation, the operation control means continuously operates at the heating temperature during the hot water storage operation, During the normal temperature hot water storage operation, the hot water storage operation is performed while the hot water storage is interrupted at a heating temperature corresponding to the hot water supply temperature. In other words, the control of the heating temperature is changed between the high temperature hot water storage operation and the normal temperature hot water storage operation, and during the high temperature hot water storage operation where the temperature difference between the hot water storage temperature and the hot water supply temperature is large, the continuous operation is performed at the high temperature. It is possible to shorten the hot water temperature stabilization time and hot water storage time. On the other hand, during normal temperature hot water storage operation where the hot water supply temperature stabilization time and hot water storage time do not hinder practical use, the coefficient of performance (COP) of the heat pump operation is improved by reducing the heating temperature in accordance with the hot water supply temperature to save power. be able to.

また、請求項4に関わる発明は、請求項1に加え、前記運転制御手段は、貯湯運転中に湯水使用があった場合、高温貯湯運転時はヒートポンプの加熱温度を通常貯湯運転時の加熱温度以上で且つ高温貯湯運転時の加熱温度より低い所定温度に下げて継続運転することを特徴とするものである。すなわち、高温貯湯運転中に湯水使用があった場合は、高温貯湯温度(例えば、約90℃)と通常貯湯温度(例えば、約60〜65℃)間の所定温度で加熱給湯することにより、給湯温度の安定時間、貯湯時間については実用上支障を感じない程度までの短縮できるとともに、ヒートポンプ運転の成績係数(COP)の向上を図ることができ、使い勝手の向上と省電力化のバランスを取った温度制御ができる。   The invention according to claim 4 is the invention according to claim 1, in addition to claim 1, wherein when the hot water is used during hot water storage operation, the operation control means sets the heating temperature of the heat pump during high temperature hot water storage operation to the heating temperature during normal hot water storage operation. As described above, the continuous operation is performed by lowering the temperature to a predetermined temperature lower than the heating temperature during the high-temperature hot water storage operation. That is, when hot water is used during high temperature hot water storage operation, hot water is supplied by heating at a predetermined temperature between the high temperature hot water storage temperature (for example, about 90 ° C.) and the normal hot water storage temperature (for example, about 60 to 65 ° C.). The temperature stabilization time and hot water storage time can be shortened to such an extent that there is no practical problem, and the coefficient of performance (COP) of the heat pump operation can be improved. Temperature control is possible.

また、請求項5に関わる発明は、圧縮機、水と冷媒との熱交換を行なう水冷媒熱交換器、減圧装置、空気と冷媒との熱交換を行なう蒸発器を、冷媒配管を介して順次接続したヒートポンプ冷媒回路と、前記水冷媒熱交換器、水冷媒熱交換器で加熱した温水を貯めておくための貯湯タンク、給湯混合弁、機内循環ポンプ、及びこれらの部品間を接続する水配管からなる貯湯回路と、前記水冷媒熱交換器、貯湯タンク、給湯混合弁、湯水混合弁、流量調整弁、出湯金具、及びこれらの部品間を接続する水配管からなる給湯回路と、前記圧縮機、減圧装置、機内循環ポンプ、給湯混合弁、湯水混合弁、流量調整弁、等の動作を制御する運転制御手段とを備え、前記給湯回路は、水冷媒熱交換器で加熱した温水を直接出湯金具から給湯する直接給湯回路を有し、前記運転制御手段は、貯湯運転中に湯水使用があった場合、ヒートポンプはそのまま継続運転し、給湯混合弁は、水冷媒熱交換器側と貯湯タンク側を閉じ、水冷媒熱交換器側と湯水混合弁側を開き、水冷媒熱交換器で加熱した高温水に水を加えて給湯することを特徴とするものである。   In the invention according to claim 5, a compressor, a water-refrigerant heat exchanger that performs heat exchange between water and a refrigerant, a decompression device, and an evaporator that performs heat exchange between air and a refrigerant are sequentially provided via a refrigerant pipe. A connected heat pump refrigerant circuit, the water refrigerant heat exchanger, a hot water storage tank for storing hot water heated by the water refrigerant heat exchanger, a hot water supply mixing valve, an in-machine circulation pump, and a water pipe connecting these components A hot water storage circuit comprising: a water refrigerant heat exchanger, a hot water storage tank, a hot water mixing valve, a hot water mixing valve, a flow rate adjusting valve, a hot metal fitting, and a water piping connecting these components; and the compressor An operation control means for controlling the operation of a decompression device, an in-machine circulation pump, a hot water mixing valve, a hot water mixing valve, a flow rate adjusting valve, etc., and the hot water supply circuit directly discharges hot water heated by a water refrigerant heat exchanger. Direct hot water supply from the metal fittings When the hot water is used during the hot water storage operation, the operation control means continues to operate the heat pump as it is, and the hot water mixing valve closes the water refrigerant heat exchanger side and the hot water storage tank side to perform water refrigerant heat exchange. The hot water / water mixing valve side is opened, and hot water is added to hot water heated by a water / refrigerant heat exchanger to supply hot water.

すなわち、高温貯湯運転中に湯水使用があった場合、貯湯運転を継続し、給湯混合弁を作動させて給湯するので、運転モードを変更しないで済み、貯湯から給湯、給湯から貯湯への切り換えが容易になり、貯湯運転中の給湯運転における給湯温度の安定時間及び貯湯時間の短縮を図ることができる。   That is, if hot water is used during high-temperature hot water storage operation, the hot water storage operation is continued and the hot water mixing valve is operated to supply hot water, so there is no need to change the operation mode, and switching from hot water to hot water and from hot water to hot water storage is possible. It becomes easy, and it is possible to shorten the hot water temperature stabilization time and hot water storage time in the hot water supply operation during the hot water storage operation.

また、請求項6に関わる発明は、請求項5に加え、前記運転制御手段は、貯湯運転中に湯水使用があった場合、湯水使用終了後、給湯混合弁は、水冷媒熱交換器側と湯水混合弁側を閉じ、水冷媒熱交換器側と貯湯タンク側を開いて運転を継続し、貯湯が完了してからヒートポンプ運転を停止することを特徴とするものである。   Further, the invention according to claim 6 is the invention according to claim 5, in addition to claim 5, when the operation control means uses hot water during hot water storage operation, the hot water supply mixing valve is connected to the water refrigerant heat exchanger side after the use of hot water. The hot water / mixing valve side is closed, the water / refrigerant heat exchanger side and the hot water storage tank side are opened, the operation is continued, and the heat pump operation is stopped after the hot water storage is completed.

また、請求項7に関わる発明は、請求項5に加え、前記運転制御手段は、貯湯運転中に湯水使用があった場合、高温貯湯運転時は前記高温貯湯運転時の加熱温度で継続運転し、通常温度貯湯運転時は給湯温度に見合った加熱温度に下げて運転を行なうことを特徴とするものである。   Further, the invention according to claim 7 is the invention according to claim 5, in addition to claim 5, wherein when the hot water is used during the hot water storage operation, the operation control means continuously operates at the heating temperature during the high temperature hot water storage operation. In the normal temperature hot water storage operation, the operation is performed by lowering the heating temperature corresponding to the hot water supply temperature.

また、請求項8に関わる発明は、請求項5に加え、前記運転制御手段は、貯湯運転中に湯水使用があった場合、高温貯湯運転時はヒートポンプの加熱温度を通常貯湯運転時の加熱温度以上で且つ高温貯湯運転時の加熱温度より低い所定温度に下げて継続運転することを特徴とするものである。   Further, the invention according to claim 8 is the invention according to claim 5, in addition to claim 5, wherein when the hot water is used during hot water storage operation, the operation control means sets the heating temperature of the heat pump during high temperature hot water storage operation to the heating temperature during normal hot water storage operation. As described above, the continuous operation is performed by lowering the temperature to a predetermined temperature lower than the heating temperature during the high-temperature hot water storage operation.

この請求項6〜8の発明によれば、請求項2〜4の発明と同様の効果を得ることができる。   According to the inventions of claims 6 to 8, the same effects as those of the inventions of claims 2 to 4 can be obtained.

本発明のヒートポンプ給湯機によれば、貯湯運転中に湯水使用が行われた場合における給湯温度の安定時間及び貯湯時間の短縮を図ることができる。   According to the heat pump water heater of the present invention, it is possible to shorten the hot water temperature stabilization time and hot water storage time when hot water is used during hot water storage operation.

(第1の実施例)以下、本発明の一実施例について図1を用いて説明する。   (First Embodiment) An embodiment of the present invention will be described below with reference to FIG.

ヒートポンプ給湯機は、ヒートポンプ冷媒回路30、給湯回路40、および運転制御手段50を備えて構成されている。   The heat pump water heater includes a heat pump refrigerant circuit 30, a hot water supply circuit 40, and an operation control means 50.

ヒートポンプ冷媒回路30は各部品を2個ずつ有する2サイクル方式であり、圧縮機1a、1b、水冷媒熱交換器2に配置される冷媒側伝熱管2a、2b、減圧装置3a、3b、蒸発器4a、4bを、それぞれ冷媒配管を介して順次接続して構成されており、その中に冷媒が封入されている。   The heat pump refrigerant circuit 30 is a two-cycle system having two parts each, and includes refrigerant-side heat transfer tubes 2a and 2b, decompression devices 3a and 3b, and evaporators disposed in the compressors 1a and 1b and the water-refrigerant heat exchanger 2. 4a and 4b are sequentially connected via a refrigerant pipe, and a refrigerant is sealed therein.

圧縮機1a、1bは容量制御が可能で、多量の給湯を行なう場合には大きな容量で運転される。ここで、圧縮機1a、1bはPWM制御、電圧制御(例えばPAM制御)及びこれらの組合せ制御により、低速(例えば700回転/分)から高速(例えば7000回転/分)まで回転数制御されるようになっている。   The compressors 1a and 1b can be controlled in capacity, and are operated with a large capacity when supplying a large amount of hot water. Here, the compressors 1a and 1b are controlled in rotation speed from a low speed (for example, 700 rpm) to a high speed (for example, 7000 rpm) by PWM control, voltage control (for example, PAM control) and a combination control thereof. It has become.

水冷媒熱交換器2は冷媒側伝熱管2a、2b及び給水側伝熱管2c、2dを備えており、冷媒側伝熱管2a、2bと給水側伝熱管2c、2dとの間で熱交換を行なうように構成されている。   The water refrigerant heat exchanger 2 includes refrigerant side heat transfer tubes 2a and 2b and water supply side heat transfer tubes 2c and 2d, and performs heat exchange between the refrigerant side heat transfer tubes 2a and 2b and the water supply side heat transfer tubes 2c and 2d. It is configured as follows.

減圧装置3a、3bとしては一般に電動膨張弁等が使用され、水冷媒熱交換器2を経て送られてくる中温高圧冷媒を減圧し、蒸発し易い低圧冷媒として蒸発器4a、4bへ送る。また、減圧装置3a、3bは冷媒通路の絞り量を変えてヒートポンプ冷媒回路内の冷媒循環量を調節する働きや、前記絞り量を全開にして中温冷媒を蒸発器4a、4bに多量に送って霜を溶かす除霜装置の役目も行なう。   In general, an electric expansion valve or the like is used as the decompression devices 3a and 3b, and the medium temperature and high pressure refrigerant sent through the water refrigerant heat exchanger 2 is decompressed and sent to the evaporators 4a and 4b as a low-pressure refrigerant that easily evaporates. Further, the decompression devices 3a and 3b function to adjust the refrigerant circulation amount in the heat pump refrigerant circuit by changing the throttle amount of the refrigerant passage, or send the medium temperature refrigerant to the evaporators 4a and 4b in a large amount by fully opening the throttle amount. It also serves as a defroster that melts frost.

また、蒸発器4a、4bは空気と冷媒との熱交換を行なう空気冷媒熱交換器として構成されている。
給湯回路40は貯湯、直接給湯、タンク給湯、風呂湯張り、風呂追焚きを行なうための水循環回路を備えて構成されている。
The evaporators 4a and 4b are configured as air refrigerant heat exchangers that perform heat exchange between air and refrigerant.
The hot water supply circuit 40 includes a water circulation circuit for performing hot water storage, direct hot water supply, tank hot water supply, bath hot water filling, and bath reheating.

貯湯回路は貯湯タンク8に温水をためるための水回路で、貯湯タンク8、機内循環ポンプ9、水熱交流量センサ11、給水側伝熱管2c、2d、給湯混合弁12、貯湯タンク8が水配管を介して順次接続され構成されている。   The hot water storage circuit is a water circuit for accumulating hot water in the hot water storage tank 8. The hot water storage tank 8, the in-machine circulation pump 9, the hydrothermal AC amount sensor 11, the water supply side heat transfer pipes 2 c and 2 d, the hot water supply mixing valve 12, and the hot water storage tank 8 are water. Sequentially connected via a pipe.

直接給湯回路は、給水金具5、減圧弁6、給水水量センサ7、給水逆止弁10、水熱交流量センサ11、給水側伝熱管2c、2d、給湯混合弁12、湯水混合弁13、流量調整弁14、台所出湯金具15が水配管を介して順次接続され構成されている。   The direct hot water supply circuit includes a water supply fitting 5, a pressure reducing valve 6, a water supply water amount sensor 7, a water supply check valve 10, a water heat AC amount sensor 11, water supply side heat transfer tubes 2c and 2d, a hot water supply mixing valve 12, a hot water mixing valve 13, and a flow rate. An adjustment valve 14 and a kitchen tapping metal fitting 15 are sequentially connected via a water pipe.

なお、給水金具5は水道などの給水源に接続され、台所出湯金具15は台所蛇口16などに接続されている。   The water supply fitting 5 is connected to a water supply source such as a water supply, and the kitchen tap fitting 15 is connected to a kitchen faucet 16 or the like.

タンク給湯回路は、給水金具5、減圧弁6、給水水量センサ7、貯湯タンク8、給湯混合弁12、湯水混合弁13、流量調整弁14、台所出湯金具15が水配管を介して順次接続され構成されている。   In the tank hot water supply circuit, a water supply fitting 5, a pressure reducing valve 6, a supply water amount sensor 7, a hot water storage tank 8, a hot water supply mixing valve 12, a hot water mixing valve 13, a flow rate adjusting valve 14, and a kitchen tapping metal fitting 15 are sequentially connected through a water pipe. It is configured.

風呂湯張り回路は、給水金具5、減圧弁6、給水水量センサ7、給水逆止弁10、水熱交流量センサ11、給水側伝熱管2c、2d、給湯混合弁12、湯水混合弁13、流量調整弁14、風呂注湯弁17、フロースイッチ18、風呂循環ポンプ19、水位センサ20、風呂入出湯金具21、風呂循環アダプター22、浴槽23が水配管を介して順次接続され構成されている。また、風呂入出湯金具21からは浴槽23と共に風呂蛇口27やシャワー(図示せず)にも給湯できるよう接続されている。   The bath hot water filling circuit includes a water supply fitting 5, a pressure reducing valve 6, a water supply water amount sensor 7, a water supply check valve 10, a hydrothermal AC amount sensor 11, water supply side heat transfer tubes 2 c and 2 d, a hot water supply mixing valve 12, a hot water mixing valve 13, A flow rate adjustment valve 14, a bath pouring valve 17, a flow switch 18, a bath circulation pump 19, a water level sensor 20, a bath inlet / outlet fitting 21, a bath circulation adapter 22, and a bathtub 23 are sequentially connected via a water pipe. . Moreover, it connects so that it can supply hot water to the bath faucet 27 and the shower (not shown) from the bath entry / exit metal fitting 21 with the bathtub 23.

なお、風呂湯張り時には、風呂湯張り回路による直接給湯と共に、貯湯タンク8内の湯量が最低必要量以下にならない範囲において貯湯タンク8から浴槽23へのタンク給湯も行なう。   During bath hot water filling, hot water supply from the hot water storage tank 8 to the bathtub 23 is performed in a range where the amount of hot water in the hot water storage tank 8 does not fall below the minimum required amount as well as direct hot water supply by the bath hot water filling circuit.

風呂追焚回路は、浴槽23、風呂循環アダプター22、風呂入出湯金具21、水位センサ20、風呂循環ポンプ19、フロースイッチ18、風呂水伝熱管25b、風呂出湯金具26、風呂循環アダプター22、浴槽23が水配管を介して順次接続され構成されている。   The bath memorial circuit includes a bathtub 23, a bath circulation adapter 22, a bath inlet / outlet fitting 21, a water level sensor 20, a bath circulation pump 19, a flow switch 18, a bath water heat transfer tube 25b, a bath outlet fitting 26, a bath circulation adapter 22, and a bathtub. 23 are sequentially connected via a water pipe.

なお、風呂追焚き時には、風呂追焚回路による浴槽水の水循環と共に、ヒートポンプ運転及び機内循環ポンプ9を運転し、水冷媒熱交換器2で加熱された温水を風呂用熱交換器25に設けられた温水伝熱管25aに循環させ、該温水伝熱管25aと風呂水伝熱管25bとの間で熱交換し、風呂追焚きを行なう。   At the time of bathing, the bath water circulation is performed by the bath chasing circuit, the heat pump operation and the in-machine circulation pump 9 are operated, and hot water heated by the water refrigerant heat exchanger 2 is provided in the bath heat exchanger 25. The hot water heat transfer tube 25a is circulated, heat exchange is performed between the hot water heat transfer tube 25a and the bath water heat transfer tube 25b, and the bath is reheated.

次に、運転制御手段50は、台所リモコン51及び風呂リモコン52の操作設定により、ヒートポンプ冷媒回路30の運転・停止並びに圧縮機1a、1bの回転数制御を行なうと共に、減圧装置3a、3bの冷媒絞り量調整、機内循環ポンプ9、風呂循環ポンプ19の運転・停止及び給湯混合弁12、湯水混合弁13、流量調整弁14、風呂注湯弁17、温水開閉弁24を制御することにより、貯湯運転、直接給湯運転、タンク給湯運転、風呂湯張り運転、風呂追焚運転を行なうものである。   Next, the operation control means 50 operates / stops the heat pump refrigerant circuit 30 and controls the rotation speeds of the compressors 1a and 1b according to the operation settings of the kitchen remote controller 51 and the bath remote controller 52, and the refrigerant of the decompression devices 3a and 3b. By adjusting the throttle amount, operating / stopping the in-machine circulation pump 9 and the bath circulation pump 19, and controlling the hot water mixing valve 12, the hot water mixing valve 13, the flow rate adjusting valve 14, the bath pouring valve 17, and the hot water on / off valve 24, Operation, direct hot water supply operation, tank hot water supply operation, bath hot water operation, and bath memorial operation are performed.

また、運転制御手段50は、圧縮機1a、1bの回転数を制御し、運転開始直後には加熱立上げ時間を早めるため所定の高速回転数で運転し、比較的熱負荷の軽い風呂追焚運転等の時は加熱温度に見合った低速回転数で運転するよう制御する。   The operation control means 50 controls the rotation speed of the compressors 1a and 1b, and immediately after the start of operation, the operation control means 50 operates at a predetermined high speed rotation speed in order to shorten the heating start-up time. At the time of operation, etc., control is performed so as to operate at a low speed corresponding to the heating temperature.

また、水使用端末における湯水使用後は、運転制御手段50の貯湯指令により、貯湯温度及び貯湯量の判定を行い、規定内であればそのまま停止し、貯湯水が使用されて規定以下に減っていれば貯湯運転を行ってから停止するよう制御されており、瞬間式ヒートポンプ給湯機は従来の貯湯式に較べて貯湯運転の頻度が多く、貯湯運転中に給湯使用される場合もある。   In addition, after using hot water at the water-use terminal, the hot water storage temperature and the amount of hot water are determined according to the hot water storage command of the operation control means 50, and if it is within the regulations, the hot water is stopped and the stored hot water is used and reduced below the regulation. Therefore, the instantaneous heat pump water heater is more frequently operated than the conventional hot water storage type and may be used during hot water storage operation.

更に、ヒートポンプ給湯機には、給水温度を検知する給水サーミスタ7a、水冷媒熱交換器2前後の水温を検知する熱交水入口サーミスタ2e、熱交水出口サーミスタ2f、貯湯タンク8の貯湯温度及び貯湯量を検知するタンクサーミスタ8a、8b、8c、水冷媒熱交換器2及び貯湯タンク8からの混合水の温度を検知して給湯混合弁12の開度を調整するための給湯混合水サーミスタ12a、給湯温度を検知して湯水混合弁13を調整するための給湯サーミスタ13a、浴槽23に循環する水温を検知する風呂サーミスタ18a、及び圧縮機1a、1bの吐出圧力を検知する圧力センサ(図示せず)、浴槽23内の水位を検出する水位センサ20等が設けられ、各検出信号は運転制御手段50に入力されるように構成されている。運転制御手段50はこれらの信号に基づいて各機器を制御するものである。   Further, the heat pump water heater includes a water supply thermistor 7a for detecting the water supply temperature, a heat exchange water inlet thermistor 2e for detecting the water temperature around the water refrigerant heat exchanger 2, a heat exchange water outlet thermistor 2f, the hot water storage temperature of the hot water storage tank 8 and Tank thermistors 8a, 8b, 8c for detecting the amount of hot water storage, the hot water mixed water thermistor 12a for detecting the temperature of the mixed water from the water / refrigerant heat exchanger 2 and the hot water storage tank 8 and adjusting the opening of the hot water mixing valve 12 , A hot water thermistor 13a for detecting the hot water temperature and adjusting the hot water mixing valve 13, a bath thermistor 18a for detecting the water temperature circulating in the bathtub 23, and a pressure sensor for detecting the discharge pressure of the compressors 1a, 1b (not shown) 1), a water level sensor 20 for detecting the water level in the bathtub 23 is provided, and each detection signal is input to the operation control means 50. The operation control means 50 controls each device based on these signals.

なお、給湯混合弁12は、給湯運転開始当初においては水冷媒熱交換器2側と湯水混合弁13側間及び貯湯タンク8側と湯水混合弁13側間が共に開となって、水冷媒熱交換器2及び貯湯タンク8の両方から給湯し、ヒートポンプによる水冷媒熱交換器2での加熱温度が給湯温度(約42℃)以上になると、貯湯タンク8側と湯水混合弁13側間を閉じて、水冷媒熱交換器2からのみ給湯する。   In the hot water supply mixing valve 12, at the beginning of the hot water supply operation, the water refrigerant heat exchanger 2 side and the hot water mixing valve 13 side and the hot water storage tank 8 side and the hot water mixing valve 13 side are both open, so that the water refrigerant heat When hot water is supplied from both the exchanger 2 and the hot water storage tank 8 and the heating temperature in the water / refrigerant heat exchanger 2 by the heat pump becomes higher than the hot water supply temperature (about 42 ° C.), the hot water storage tank 8 side and the hot water mixing valve 13 side are closed. Thus, hot water is supplied only from the water / refrigerant heat exchanger 2.

また、温水開閉弁24は、水冷媒熱交換器2と風呂用熱交換器25の間に設けられ、風呂追焚き時は開いて風呂追い焚き運転を行ない、それ以外の時は水回路を閉じて水冷媒熱交換器2から風呂用熱交換器25への熱の漏洩を防ぐためのものである。   The hot water on / off valve 24 is provided between the water-refrigerant heat exchanger 2 and the bath heat exchanger 25. The hot water on / off valve 24 is opened when the bath is replenished to perform the bath retreat operation, and at other times the water circuit is closed. Thus, heat leakage from the water refrigerant heat exchanger 2 to the bath heat exchanger 25 is prevented.

また、給水逆止弁10は、一方向にのみに水を流し、逆流を防止するものであり、逃がし弁28は、貯湯タンク8内の温水圧力が所定以上になった場合に作動して水回路部品の圧力保護の働きをするものである。   The water supply check valve 10 allows water to flow only in one direction to prevent backflow, and the relief valve 28 operates when the hot water pressure in the hot water storage tank 8 exceeds a predetermined level. It serves to protect the pressure of circuit components.

次に、本実施例のヒートポンプ給湯機の運転動作について、図1のヒートポンプ冷媒回路30及び給湯回路40を参照にしながら図2〜図4のフローチャートに基づいて説明する。   Next, the operation of the heat pump water heater of this embodiment will be described based on the flowcharts of FIGS. 2 to 4 with reference to the heat pump refrigerant circuit 30 and the hot water supply circuit 40 of FIG.

図2は、貯湯タンク8内の水を沸き上げる貯湯運転動作を示すフローチャートの一実施例である。   FIG. 2 is an example of a flowchart showing a hot water storage operation for boiling water in the hot water storage tank 8.

運転制御手段50の制御により貯湯運転の指令が出る(ステップ71)と、タンクサーミスタ8a〜8cにより貯湯温度及び貯湯量の判定が行なわれ(ステップ72)、規定内であればそのまま運転せず、貯湯水が使用されて規定以下に減っていれば貯湯運転が開始される(ステップ73)。   When a hot water storage operation command is issued under the control of the operation control means 50 (step 71), the tank thermistors 8a to 8c determine the hot water temperature and the hot water storage amount (step 72). If the stored hot water is used and reduced below the specified value, the hot water storage operation is started (step 73).

この貯湯運転(ステップ73)では、圧縮機1a、1bの運転が開始され、圧縮機1a、1b内のガス状冷媒が圧縮加熱され高温高圧の冷媒となって水冷媒熱交換器2に送り込まれる。これによって、水冷媒熱交換器2では、冷媒側伝熱管2a、2b内を流れる高温冷媒と給水側伝熱管2c、2d内を流れる水とが熱交換し、冷媒は放熱し、水は加熱される。放熱された冷媒は減圧装置3a、3bで減圧され、更に蒸発器4a、4bで膨脹蒸発してガス状となり再び圧縮機1a、1bに戻る。このヒートポンプ運転を続けることにより、水冷媒熱交換器2内を通過する水が加熱される。   In this hot water storage operation (step 73), the operation of the compressors 1a and 1b is started, and the gaseous refrigerant in the compressors 1a and 1b is compressed and heated to become a high-temperature and high-pressure refrigerant and sent to the water refrigerant heat exchanger 2. . As a result, in the water refrigerant heat exchanger 2, the high-temperature refrigerant flowing in the refrigerant side heat transfer tubes 2a and 2b and the water flowing in the water supply side heat transfer tubes 2c and 2d exchange heat, the refrigerant dissipates heat, and the water is heated. The The radiated refrigerant is decompressed by the decompression devices 3a and 3b, and further expanded and evaporated by the evaporators 4a and 4b to become a gaseous state and return to the compressors 1a and 1b again. By continuing this heat pump operation, the water passing through the water-refrigerant heat exchanger 2 is heated.

上記ヒートポンプ運転において、圧縮機1a、1bの回転数を上げ、減圧装置3a、3bの冷媒絞り量を大きくすると加熱能力は増すが、機械ロスや熱ロスが増えて運転効率は下がる。逆に圧縮機1a、1bの回転数を下げ、減圧装置3a、3bの冷媒絞り量を少なくすることにより、加熱能力は落ちるが、機械ロスや熱ロスが減少し、相対的に運転効率は向上する。すなわち、ヒートポンプによる加熱運転においては、低い温度で時間をかけて加熱することが加熱効率の向上になると言える。   In the heat pump operation, when the rotation speed of the compressors 1a and 1b is increased and the refrigerant throttle amount of the decompression devices 3a and 3b is increased, the heating capacity is increased, but the mechanical loss and the heat loss are increased and the operation efficiency is decreased. Conversely, by reducing the number of rotations of the compressors 1a and 1b and reducing the refrigerant throttle amount of the decompression devices 3a and 3b, the heating capacity is reduced, but the mechanical loss and heat loss are reduced, and the operation efficiency is relatively improved. To do. That is, in the heating operation by the heat pump, it can be said that heating efficiency is improved by heating at a low temperature over time.

そのため、前記貯湯運転(ステップ73)においては、ヒートポンプ運転と共に、貯湯回路において給湯混合弁12は水冷媒熱交換器2側と湯水混合弁13側間及び貯湯タンク8側と湯水混合弁13側間を共に開とすることによって、水冷媒熱交換器2と貯湯タンク8側を連通し開状態とする。(ステップ73a)。機内循環ポンプ9の運転が開始されると、貯湯タンク8の下部の通水口から、機内循環ポンプ9、水熱交流量センサ11、水冷媒熱交換器2、給湯混合弁12、貯湯タンク8へ水が循環する。これにより、水冷媒熱交換器2で加熱された温水が貯湯タンク8の上部より貯湯されてゆき、貯湯温度及び貯湯量の判定を行ない(ステップ76)、貯湯タンク8内の湯水全体が沸き上がった状態に達すると運転を停止する(ステップ77)。   Therefore, in the hot water storage operation (step 73), together with the heat pump operation, in the hot water storage circuit, the hot water supply mixing valve 12 is between the water / refrigerant heat exchanger 2 side and the hot water mixing valve 13 side, and between the hot water storage tank 8 side and the hot water mixing valve 13 side. Are opened, the water-refrigerant heat exchanger 2 and the hot water storage tank 8 side communicate with each other and are opened. (Step 73a). When the operation of the in-machine circulation pump 9 is started, the water circulation port 9, the hydrothermal AC quantity sensor 11, the water / refrigerant heat exchanger 2, the hot water supply mixing valve 12, and the hot water storage tank 8 are passed from the water inlet at the bottom of the hot water storage tank 8. Water circulates. As a result, the hot water heated by the water-refrigerant heat exchanger 2 is stored from the upper part of the hot water storage tank 8, and the hot water storage temperature and the amount of hot water are determined (step 76), and the entire hot water in the hot water storage tank 8 is boiled. When the state is reached, the operation is stopped (step 77).

その間、水冷媒熱交換器2から出湯する加熱水の温度が適切であるか否かを判定する出湯温度判定(ステップ74)は、熱交水出口サーミスタ2fにより行なわれ、出湯温度が規定内の場合は貯湯運転をそのまま継続(ステップ75)し、規定外の場合は圧縮機1a、1bの回転数制御、減圧装置3a、3bの絞り量調整、機内循環ポンプ9の回転数制御による流量調整により出湯温度の調整を行なう(ステップ74a)。   Meanwhile, the hot water temperature determination (step 74) for determining whether or not the temperature of the heated water discharged from the water-refrigerant heat exchanger 2 is appropriate is performed by the heat exchanger outlet thermistor 2f, and the hot water temperature is within the specified range. In such a case, the hot water storage operation is continued as it is (step 75), and when it is not specified, the rotation speed control of the compressors 1a and 1b, the throttle amount adjustment of the decompression devices 3a and 3b, and the flow rate adjustment by the rotation speed control of the in-machine circulation pump 9 The tapping temperature is adjusted (step 74a).

貯湯温度及び貯湯量の判定は、タンクサーミスタ8a〜8cによって行なわれ、タンクサーミスタ8a〜8cの全てが規定温度内に達すれば貯湯完了と判断し、運転停止し、貯湯は終了する(ステップ77)。   The determination of the hot water storage temperature and the amount of hot water storage is performed by the tank thermistors 8a to 8c. If all of the tank thermistors 8a to 8c reach the specified temperature, it is determined that the hot water storage is complete, the operation is stopped, and the hot water storage is finished (step 77). .

図3は、台所蛇口16を開けて湯水使用する場合の給湯運転時の動作を示すフローチャートの一実施例である。   FIG. 3 is an example of a flowchart showing the operation during hot water supply operation when the kitchen faucet 16 is opened and hot water is used.

台所蛇口16を開けて湯水使用が始まる(ステップ80)と、制御手段50は、圧縮機1a、1bを始動させヒートポンプ冷媒回路30の運転を開始するとともに、給水金具5、減圧弁6、給水水量センサ7、給水逆止弁10、水熱交流量センサ11、給水側伝熱管2c、2d、給湯混合弁12、湯水混合弁13、流量調整弁14、台所出湯金具15、台所蛇口16の直接給湯回路により直接給湯運転を行なう(ステップ81)。同時に、給水金具5、減圧弁6、給水水量センサ7、貯湯タンク8、給湯混合弁12、湯水混合弁13、流量調整弁14、台所出湯金具15、台所蛇口16のタンク給湯回路によりタンク給湯運転を行なう(ステップ82)。   When the kitchen faucet 16 is opened and the use of hot water begins (step 80), the control means 50 starts the compressors 1a and 1b and starts the operation of the heat pump refrigerant circuit 30, and the water supply fitting 5, the pressure reducing valve 6, and the amount of water supply Sensor 7, water supply check valve 10, hydrothermal AC sensor 11, water supply side heat transfer pipes 2 c and 2 d, hot water mixing valve 12, hot water mixing valve 13, flow rate adjustment valve 14, kitchen tap metal 15, kitchen faucet 16 direct hot water supply A hot water supply operation is performed directly by the circuit (step 81). At the same time, the tank hot water supply operation is performed by the tank hot water supply circuit of the water supply fitting 5, the pressure reducing valve 6, the water supply water amount sensor 7, the hot water storage tank 8, the hot water supply mixing valve 12, the hot water mixing valve 13, the flow rate adjusting valve 14, the kitchen outlet fitting 15, and the kitchen faucet 16. (Step 82).

ここで、ヒートポンプ冷媒回路30は、圧縮機1a、1bで圧縮された高温高圧冷媒を水冷媒熱交換器2の冷媒側伝熱管2a、2bに送り込み、給水側伝熱管2c、2dに流入する水を加熱するが、運転直後の立上がり時は水冷媒熱交換器2に送り込まれてくる冷媒が充分に高温高圧となり切らず温度が低く、かつ水冷媒熱交換器2全体が冷えているため、水を加熱する加熱能力が充分でない。時間の経過と共に冷媒は高温高圧となり、それに従って、発生する冷媒からの放熱量が増加し、水への加熱能力が増してゆく。   Here, the heat pump refrigerant circuit 30 sends the high-temperature and high-pressure refrigerant compressed by the compressors 1a and 1b to the refrigerant side heat transfer tubes 2a and 2b of the water refrigerant heat exchanger 2 and flows into the water supply side heat transfer tubes 2c and 2d. However, at the time of start-up immediately after operation, the refrigerant sent to the water-refrigerant heat exchanger 2 is not sufficiently hot and high in pressure, the temperature is low, and the entire water-refrigerant heat exchanger 2 is cooled. The heating capacity to heat the is not sufficient. As the time elapses, the refrigerant becomes high temperature and pressure, and accordingly, the amount of heat released from the generated refrigerant increases, and the ability to heat water increases.

また、ヒートポンプ運転の加熱能力が適温安定状態に達するまでには通常約5〜6分掛かるため、運転制御手段50は、運転開始直後の適温安定状態に達するまでの間は、圧縮機の回転数を通常より高速回転にすると共に、貯湯タンクから湯を供給するタンク給湯運転(ステップ82)を並行して行なう。   In addition, since it usually takes about 5 to 6 minutes for the heating capacity of the heat pump operation to reach the optimum temperature stable state, the operation control means 50 is operated at the rotational speed of the compressor until the optimum temperature stable state is reached immediately after the operation is started. Is rotated at a higher speed than usual, and a tank hot water supply operation for supplying hot water from the hot water storage tank (step 82) is performed in parallel.

さらに、給湯サーミスタ13a、給水水量センサ7により給湯温度及び給湯流量の判定(ステップ83)を行ない、規定外であれば温度、流量を調整(ステップ84a)し、規定内であれば更に直接給湯温度の判定(ステップ84)を行なう。   Further, the hot water supply thermistor 13a and the hot water supply amount sensor 7 determine the hot water supply temperature and the hot water supply flow rate (step 83). If not, the temperature and flow rate are adjusted (step 84a). (Step 84).

直接給湯温度の判定(ステップ84)において、水冷媒熱交換器2における加熱温度が不十分で、直接給湯温度が規定温度に達しない状態ではヒートポンプ運転の温度流量調整(ステップ84a)を継続し、タンク給湯運転(ステップ82)と併用する。また、水冷媒熱交換器2における加熱温度が給湯温度に充分なまでに高まり、直接給湯温度が規定内に達すればタンク給湯運転を停止(ステップ84b)し、直接給湯運転(ステップ81)単独にて給湯を継続する(ステップ85)。   In the determination of the direct hot water supply temperature (step 84), in the state where the heating temperature in the water refrigerant heat exchanger 2 is insufficient and the direct hot water supply temperature does not reach the specified temperature, the temperature flow rate adjustment (step 84a) of the heat pump operation is continued. Combined with the tank hot water supply operation (step 82). If the heating temperature in the water-refrigerant heat exchanger 2 rises sufficiently to the hot water supply temperature and the direct hot water supply temperature falls within the specified range, the tank hot water supply operation is stopped (step 84b), and the direct hot water supply operation (step 81) alone. The hot water supply is continued (step 85).

従って、貯湯タンク8の役割は、ヒートポンプ運転の加熱能力が、給湯温度(約42℃)に充分な温度に達するまでの立上がり時の補助的なものであり、ヒートポンプ冷媒回路30の能力、特に圧縮機1a、1bの出力が大きいほど、立上げ時間を短くでき、貯湯タンク8を小さくできる。   Therefore, the role of the hot water storage tank 8 is an auxiliary one at the time of starting up until the heating capacity of the heat pump operation reaches a temperature sufficient for the hot water supply temperature (about 42 ° C.), and the capacity of the heat pump refrigerant circuit 30, particularly the compression. The larger the output of the machines 1a and 1b, the shorter the startup time and the smaller the hot water storage tank 8.

また、台所給湯と同時に風呂湯張りを行なう等のように複数箇所の同時使用に直接給湯のみで対応するには、圧縮機1a、1bの容量は、従来の貯湯式で一般に用いられている5kW程度に対し20kW程度まで大きくすることが望ましいが、新規圧縮機の開発が必要であるばかりでなく、ヒートポンプ冷媒回路30の各部品共新規検討が必要となり、極めて困難である。そこで、本発明の実施例においては、従来圧縮機の2倍程度の圧縮機を2個使用した2サイクルヒートポンプ方式30a、30bとし、従来技術の活用と、実績による信頼性を確保したものであり、圧縮機の容量が充分であれば、1サイクルヒートポンプ方式においても本発明の適用・効果は変わらない。   Moreover, in order to cope with simultaneous use of a plurality of places by direct hot water supply such as performing hot water bathing at the same time as kitchen hot water supply, the capacity of the compressors 1a and 1b is 5 kW generally used in the conventional hot water storage system. Although it is desirable to increase it to about 20 kW, the development of a new compressor is necessary, and each part of the heat pump refrigerant circuit 30 needs to be newly studied, which is extremely difficult. Therefore, in the embodiment of the present invention, the two-cycle heat pump systems 30a and 30b using two compressors that are about twice as large as the conventional compressors are used, and the reliability of the conventional technology and the results are ensured. If the capacity of the compressor is sufficient, the application / effect of the present invention is not changed even in the one-cycle heat pump system.

次に、蛇口が閉じられて湯水使用が終了する(ステップ86)と、タンク給湯運転が停止され直接給湯運転のみの場合であれば直接給湯運転を停止し、湯水使用直後でタンク給湯運転と直接給湯運転が併用されている場合は、直接給湯運転及びタンク給湯運転の両方を停止する。(ステップ87)
更に、運転制御手段50は、タンク給湯運転及び直接給湯運転を共に停止(ステップ87)した後、貯湯運転(ステップ88)を開始し、タンクサーミスタ8a〜8cによって貯湯温度、貯湯量を検知し、貯湯温度、貯湯量の規定値に対する判定(ステップ89)を行ない、規定に達していない場合は貯湯運転(ステップ88)を継続し、規定値内に達していればヒートポンプ運転を停止し、貯湯運転は終了する(ステップ90)。
Next, when the faucet is closed and the use of hot water is finished (step 86), if the tank hot water supply operation is stopped and only the direct hot water supply operation is performed, the direct hot water supply operation is stopped. When the hot water supply operation is used together, both the direct hot water supply operation and the tank hot water supply operation are stopped. (Step 87)
Furthermore, after stopping both the tank hot water supply operation and the direct hot water supply operation (step 87), the operation control means 50 starts the hot water storage operation (step 88), detects the hot water storage temperature and the hot water storage amount by the tank thermistors 8a to 8c, The hot water storage temperature and the hot water storage amount are determined with respect to the specified values (step 89). If the specified values are not reached, the hot water storage operation (step 88) is continued. If the specified values are reached, the heat pump operation is stopped and the hot water storage operation is performed. Ends (step 90).

但し、タンクサーミスタ8a〜8cによる貯湯状態の検知は、常時行われており、極めて短時間使用のため給湯運転停止後でも貯湯タンク8に湯温、湯量共に所定値以上残っている場合は、貯湯量が充分と判断され貯湯運転(ステップ88)は省略される。   However, the detection of the hot water storage state by the tank thermistors 8a to 8c is always performed. If the hot water temperature and the amount of hot water remain in the hot water storage tank 8 beyond a predetermined value even after the hot water supply operation is stopped for extremely short time use, It is determined that the amount is sufficient, and the hot water storage operation (step 88) is omitted.

以上のように、運転制御手段50は、長時間放置して貯湯タンク8内の湯温が低下した場合、及びあらゆる給湯運転において目的とする運転を終了した後に、必ず所定の貯湯温度、貯湯量を確保するよう貯湯運転(ステップ88)を行なう毎回貯湯運転機能を有しているので、貯湯タンク8には常に所定温度の湯が所定量以上貯まっており、運転立上がり時の湯温低下や使用途中の湯切れの心配を解消できる。   As described above, the operation control means 50 is always left at a predetermined hot water storage temperature and hot water storage amount when the hot water temperature in the hot water storage tank 8 is lowered after being left for a long time and after the target operation is completed in all hot water supply operations. The hot water storage operation (step 88) is performed every time so that the hot water storage operation is ensured. Therefore, the hot water storage tank 8 always stores a predetermined amount or more of hot water at a predetermined temperature. The worry about running out of hot water can be eliminated.

図4は、貯湯運転中に湯水使用が行われた場合の動作を示すフローチャートの一実施例である。なお、貯湯運転及び湯水使用時の詳細動作については、前記図2、図3において説明しているので、各動作内容については省略する。   FIG. 4 is an example of a flowchart showing the operation when hot water is used during hot water storage operation. In addition, since the detailed operation | movement at the time of hot water storage operation and use of hot water is demonstrated in the said FIG. 2, FIG. 3, about each operation | movement content, it abbreviate | omits.

運転制御手段50の制御により貯湯運転の指令が出る(ステップ91)と、貯湯温度及び貯湯量の判定が行なわれ(ステップ92)、規定内であれば貯湯運転を行なわず、貯湯温水が規定以下に減っていれば貯湯運転が開始される(ステップ93)。   When a hot water storage operation command is issued under the control of the operation control means 50 (step 91), the hot water storage temperature and the amount of hot water storage are determined (step 92). If it has decreased, the hot water storage operation is started (step 93).

前記貯湯運転(ステップ93)中に台所蛇口16等の湯水使用により貯湯中断給湯運転指令が出る(ステップ94)と、貯湯運転は一時中断し(ステップ95)、貯湯中断給湯運転を優先的に開始する(ステップ96)。   During the hot water storage operation (step 93), when a hot water storage interrupted hot water supply operation command is issued by using hot water from the kitchen faucet 16 or the like (step 94), the hot water storage operation is temporarily interrupted (step 95), and the hot water storage interrupted hot water supply operation is preferentially started. (Step 96).

ここで、湯水使用時の一般的適温は約42℃であり、ヒートポンプの給湯運転は湯水使用端末で42℃になるよう加熱運転するが、貯湯中断給湯運転はこれより高い貯湯温度(冬期低温時は約90℃)で加熱運転し、水を混ぜて湯水使用時の適温(約42℃)に合わせて給湯する。   Here, the general optimum temperature when using hot water is about 42 ° C., and the hot water supply operation of the heat pump is performed by heating so as to reach 42 ° C. at the hot water use terminal. Is heated at about 90 ° C), water is mixed, and hot water is supplied at an appropriate temperature (about 42 ° C) when using hot water.

このときの貯湯中断給湯運転(ステップ96)は、ヒートポンプの加熱温度を前記貯湯運転(ステップ93)時の加熱温度のまま継続する。例えば、冬期低温時において貯湯温度が約90℃で運転していた場合は、貯湯中断給湯運転も約90℃出湯で運転し、湯水混合弁13からの給水量によって給湯温度(約42℃)に合わせてから台所蛇口16等の使用端末に給湯する。   The hot water storage interrupted hot water supply operation (step 96) at this time continues the heating temperature of the heat pump at the heating temperature in the hot water storage operation (step 93). For example, when the hot water storage temperature is operated at about 90 ° C. at low temperatures in winter, the hot water storage hot water supply operation is also operated at about 90 ° C. hot water, and the hot water supply temperature (about 42 ° C.) is set according to the amount of water supplied from the hot water mixing valve 13. After matching, hot water is supplied to the use terminal such as the kitchen faucet 16.

次に、湯水使用が終了して貯湯中断給湯運転が停止する(ステップ97)と、貯湯運転を再開する(ステップ97)。その後貯湯タンク8内の貯湯温度及び貯湯量を判定し(ステップ99)、貯湯温度及び貯湯量共に規定値内に達すればヒートポンプ運転を停止し貯湯運転は終了する(ステップ100)。   Next, when the use of hot water is completed and the hot water storage interrupted hot water supply operation is stopped (step 97), the hot water storage operation is resumed (step 97). Thereafter, the hot water storage temperature and the hot water storage amount in the hot water storage tank 8 are determined (step 99). If both the hot water storage temperature and the hot water storage amount reach the specified values, the heat pump operation is stopped and the hot water storage operation is ended (step 100).

図4のフローチャートにおいて、台所使用、洗面使用、シャワー使用等の一般的給湯温度は季節に関係なく約42℃が適当であるが、貯湯温度は、夏期、中間期等の通常貯湯温度は約60〜65℃とし、給水温度が低く貯湯タンク8内の貯湯の使用量が多い冬期低温時には約90℃に上げることにより、給湯温度(約42℃)との差を大きくし、貯湯熱容量を大きくしている。   In the flowchart of FIG. 4, the general hot water supply temperature for kitchen use, wash-use use, shower use, etc. is appropriate to be about 42 ° C. regardless of the season, but the hot water storage temperature is about 60 for normal hot water storage in the summer and intermediate periods. It is set to ~ 65 ° C, and the temperature of the hot water storage tank 8 is low and the amount of hot water used in the hot water storage tank 8 is high. In winter, the temperature is raised to about 90 ° C, thereby increasing the difference from the hot water temperature (about 42 ° C) and increasing the heat storage heat capacity. ing.

前記のごとく本発明は、例えば、冬期低温時において貯湯運転中に湯水使用が行なわれた場合、貯湯中断給湯運転に切り換え、ヒートポンプは安定状態になった貯湯加熱温度(約90℃)のまま継続運転し、湯水混合弁13からの給水量によって給湯温度を調整するので、給湯温度(約42℃)の安定時間が短縮できると共に、給湯終了後再貯湯運転に入った場合においてもヒートポンプが貯湯加熱温度(約90℃)のまま継続運転しているので、湯水混合弁13からの給水を止めるだけで直ちに貯湯を開始することができ、貯湯時間の短縮を図ることができる。   As described above, for example, when hot water is used during a hot water storage operation at low temperatures in winter, the present invention switches to a hot water storage hot water supply operation, and the heat pump continues at a stable hot water heating temperature (about 90 ° C.). Since the hot water temperature is adjusted according to the amount of water supplied from the hot water mixing valve 13, the stabilization time of the hot water temperature (about 42 ° C.) can be shortened, and the heat pump heats the hot water even when the hot water storage operation is started after the hot water is finished. Since the operation is continued at the temperature (about 90 ° C.), the hot water storage can be started immediately by stopping the water supply from the hot water mixing valve 13 and the hot water storage time can be shortened.

また、本発明の別案は、図4のフローチャートにおいて、ヒートポンプを貯湯加熱温度のまま継続運転する制御を冬期低温時の高温貯湯温度(約90℃)のときのみに適用し、夏期、中間期等通常貯湯温度(約60〜65℃)のときは加熱温度を貯湯温度から給湯温度(約42℃)に下げて給湯運転を行なうものであり、冬期低温時は給湯温度の安定時間及び貯湯時間の短縮を図り、その他の夏期、中間期等には給湯加熱温度を給湯温度に合わせて下げることによりヒートポンプ運転の成績係数(COP)を向上して省電力を図ることができる。   Further, in another flowchart of the present invention, in the flowchart of FIG. 4, the control for continuously operating the heat pump at the hot water storage heating temperature is applied only at the high temperature hot water storage temperature (about 90 ° C.) during the winter low temperature. The normal hot water storage temperature (about 60-65 ° C.) is used to reduce the heating temperature from the hot water storage temperature to the hot water supply temperature (about 42 ° C.), and the hot water operation is performed at low temperatures in winter. In other summer and intermediate periods, the hot water supply heating temperature is lowered to match the hot water supply temperature, thereby improving the coefficient of performance (COP) of the heat pump operation and saving power.

さらに、本発明の別案は、図4のフローチャートにおいて、貯湯運転中に湯水使用があった場合における貯湯中断給湯運転時のヒートポンプの加熱温度を、高温貯湯運転時は通常貯湯温度(約60〜65℃)以上で、且つ、高温貯湯温度(約90℃)より低い所定温度とし、通常貯湯運転時は貯湯温度(約60〜65℃)から給湯温度(約42℃)に合わせて貯湯中断給湯運転を行なうものであり、給湯温度の安定時間及び貯湯時間の短縮とヒートポンプ運転の成績係数向上による省電力のバランスした効果を得ることができる。   Further, according to another flowchart of the present invention, in the flowchart of FIG. 4, when the hot water is used during the hot water storage operation, the heating temperature of the heat pump during the hot water storage hot water supply operation is changed. 65 ° C) or higher and a predetermined temperature lower than the high temperature hot water storage temperature (about 90 ° C). During normal hot water storage operation, hot water storage hot water supply is interrupted according to the hot water temperature (about 60 ° C to 65 ° C) to the hot water supply temperature (about 42 ° C). The operation is performed, and it is possible to obtain a balanced effect of power saving by shortening the hot water temperature stabilization time and hot water storage time and improving the coefficient of performance of the heat pump operation.

(第2の実施例)以下、本発明の第2の実施例について説明する。なお、部品構成及び貯湯運転、給湯運転は、前記図1〜図3で説明した第一の実施例と同等であるため説明を省略する。   (Second Embodiment) The second embodiment of the present invention will be described below. The component configuration, hot water storage operation, and hot water supply operation are the same as those in the first embodiment described with reference to FIGS.

図5は、本実施例における、貯湯運転中に湯水使用が行われた場合の動作を示すフローチャートであり、以下、図1の部品構成と合わせて説明する。   FIG. 5 is a flowchart showing the operation when hot water is used during the hot water storage operation in this embodiment, and will be described below together with the component configuration of FIG.

運転制御手段50の制御により貯湯運転の指令が出る(ステップ101)と、貯湯温度及び貯湯量の判定が行なわれ(ステップ102)、規定内であれば貯湯運転を行なわず、貯湯温水が規定以下に減っていれば給湯混合弁12は、水冷媒熱交換器2側と湯水混合弁13側間、及び貯湯タンク8側と水冷媒熱交換器2側を共に開とすることにより水冷媒熱交換器2側と貯湯タンク8側間を開となるように作動し(ステップ103a)、貯湯運転が開始される(ステップ103)。なお、この時、台所蛇口16等が閉じているため湯水混合弁13側への湯水の流れは生じない。   When a hot water storage operation command is issued under the control of the operation control means 50 (step 101), the hot water storage temperature and the amount of hot water storage are determined (step 102). The hot water supply mixing valve 12 is configured to open water refrigerant heat exchange by opening both the water refrigerant heat exchanger 2 side and the hot water mixing valve 13 side, and the hot water storage tank 8 side and the water refrigerant heat exchanger 2 side. The hot water storage operation is started (step 103) by opening the heater 2 and the hot water storage tank 8 (step 103a). At this time, since the kitchen faucet 16 and the like are closed, no hot water flows to the hot water mixing valve 13 side.

貯湯運転(ステップ103)中に台所蛇口16等の湯水使用により湯水使用開始指令が出る(ステップ104)と、ヒートポンプは給湯温度(約42℃)よりも高い貯湯運転時の加熱温度のまま運転を続け、給湯混合弁12は水冷媒熱交換器2側の出湯温度が給湯温度より充分高いので、貯湯タンク8側と湯水混合弁13側間を閉じ、水冷媒熱交換器2側と湯水混合弁13側間を開放するように作動する(ステップ104a)。従って、ヒートポンプ運転により水冷媒熱交換器2で加熱された温水の出湯は貯湯タンク8側から湯水混合弁13側に切り換わる。同時に湯水混合弁12は給湯サーミスタ13aによる給湯温度検知により、給湯温度が適温(約42℃)になるよう、前記水冷媒熱交換器2で加熱され給湯混合弁12を経て流入する温水に水を混ぜて調整する(ステップ104b)。   When a hot water use start command is issued by using hot water from the kitchen faucet 16 or the like during the hot water storage operation (step 103) (step 104), the heat pump operates at the heating temperature during the hot water storage operation higher than the hot water supply temperature (about 42 ° C.). Subsequently, since the hot water temperature on the water / refrigerant heat exchanger 2 side of the hot water supply mixing valve 12 is sufficiently higher than the hot water supply temperature, the hot water storage tank 8 side and the hot water mixing valve 13 side are closed, and the water / refrigerant heat exchanger 2 side and hot water mixing valve are closed. It operates to open the 13 side (step 104a). Therefore, the hot water discharged from the hot water refrigerant heat exchanger 2 by the heat pump operation is switched from the hot water storage tank 8 side to the hot water mixing valve 13 side. At the same time, the hot-water mixing valve 12 is heated by the water-refrigerant heat exchanger 2 so that the hot-water supply temperature reaches an appropriate temperature (about 42 ° C.) by detecting the hot-water supply temperature by the hot-water supply thermistor 13a. Mix and adjust (step 104b).

次に台所蛇口16等の湯水使用が終了し、湯水使用終了指令が出る(ステップ105)と、給湯混合弁12は貯湯タンク8側と湯水混合弁13間を開くことによって水冷媒熱交換器2側と貯湯タンク8側間を連通するように作動し(ステップ105a)、貯湯運転が継続される(ステップ103)。   Next, when the use of hot water in the kitchen faucet 16 or the like is finished and a hot water use end command is issued (step 105), the hot water mixing valve 12 opens the hot water tank 8 and the hot water mixing valve 13 to open the water refrigerant heat exchanger 2. The hot water storage operation is continued (step 103).

その後貯湯タンク8内の貯湯温度及び貯湯量を判定し(ステップ106)、貯湯温度及び貯湯量共に規定内に達すればヒートポンプ運転を停止し貯湯運転は終了する(ステップ107)。   Thereafter, the hot water storage temperature and the amount of hot water stored in the hot water storage tank 8 are determined (step 106). If both the hot water storage temperature and the amount of hot water reach the specified values, the heat pump operation is stopped and the hot water storage operation is terminated (step 107).

前記のごとく本発明は、貯湯運転中に湯水使用が行なわれた場合、運転モードを変えず貯湯運転を継続したまま、給湯混合弁12の切り換え作動及び湯水混合弁13の給水調整を行なうことによって、湯水使用に対応し、湯水使用終了後はそのまま貯湯運転を継続して貯湯時間の短縮を図ることができる
また、貯湯運転中に湯水使用が行なわれた場合、実施例一と同様にヒートポンプの加熱温度を変化させることにより、実施例一と同様の効果を得ることができる。
As described above, when hot water is used during hot water storage operation, the present invention performs the switching operation of the hot water mixing valve 12 and the water supply adjustment of the hot water mixing valve 13 while continuing the hot water storage operation without changing the operation mode. In response to the use of hot water, the hot water storage operation can be continued as it is after the use of hot water, so that the hot water storage time can be shortened. By changing the heating temperature, the same effect as in the first embodiment can be obtained.

なお、本発明において、貯湯温度、給湯温度は所定値として説明したが、例えば、台所蛇口16からの給湯温度を42℃とする場合、水冷媒熱交換器2出口温度は水配管の熱損失を考慮して45℃とする等、冷媒回路部品、給水回路部品および各配管における熱損失を考慮した各部の温度設定は本発明の効果を損なうものではなく、本発明はこれらの温度調整を包含するものである。   In the present invention, the hot water storage temperature and the hot water supply temperature have been described as predetermined values. For example, when the hot water supply temperature from the kitchen faucet 16 is set to 42 ° C., the water refrigerant heat exchanger 2 outlet temperature represents the heat loss of the water pipe. The temperature setting of each part in consideration of heat loss in the refrigerant circuit component, the water supply circuit component and each pipe, such as 45 ° C., does not impair the effect of the present invention, and the present invention includes these temperature adjustments. Is.

また、給湯開閉弁12は水冷媒熱交換器2及び貯湯タンク8からの給湯を1個の弁で切換えるものであるが、本発明を限定するものではなく、同様の働きをするものであれば別の切換え方式であっても、あるいは2個の弁を使用しても本発明の効果に影響はない。   The hot water supply on / off valve 12 switches hot water from the water / refrigerant heat exchanger 2 and the hot water storage tank 8 with a single valve. However, the present invention is not limited to this, and any hot water can be used. Even if another switching system is used or two valves are used, the effect of the present invention is not affected.

本発明のヒートポンプ給湯機におけるヒートポンプ冷媒回路、給湯回路、運転制御手段、及び部品の概略構成の一実施例を示す模式図である。It is a schematic diagram which shows one Example of schematic structure of the heat pump refrigerant circuit, the hot water supply circuit, the operation control means, and components in the heat pump water heater of this invention. 本発明のヒートポンプ給湯機における貯湯運転時の動作を示すフローチャートである。It is a flowchart which shows the operation | movement at the time of the hot water storage driving | operation in the heat pump water heater of this invention. 本発明のヒートポンプ給湯機における給湯運転時の動作を示すフローチャートである。It is a flowchart which shows the operation | movement at the time of the hot water supply driving | operation in the heat pump water heater of this invention. 本発明の第1の実施例におけるヒートポンプ給湯機の貯湯運転時に湯水使用が行なわれた場合の温度制御を示すフローチャートである。It is a flowchart which shows temperature control at the time of hot water use being performed at the time of the hot water storage driving | operation of the heat pump water heater in 1st Example of this invention. 本発明の第2の実施例におけるヒートポンプ給湯機の貯湯運転時に湯水使用が行なわれた場合の温度制御を示すフローチャートである。It is a flowchart which shows temperature control at the time of hot water use being performed at the time of the hot water storage operation of the heat pump water heater in the 2nd Example of this invention.

符号の説明Explanation of symbols

1a,1b 圧縮機
2 水冷媒熱交換器
2a,2b 冷媒側伝熱管
2c,2d 給水側伝熱管
2e 熱交水入口サーミスタ
2f 熱交水出口サーミスタ
3a,3b 減圧装置
4a,4b 蒸発器
5 給水金具
6 減圧弁
7 給水水量センサ
7a 給水サーミスタ
8 貯湯タンク
8a〜8c タンクサーミスタ
9 機内循環ポンプ
10 給水逆止弁
11 水熱交流量センサ
12 給湯混合弁
12a 給湯混合水サーミスタ
13 湯水混合弁
13a 給湯サーミスタ
14 流量調整弁
15 台所出湯金具
16 台所蛇口
19 風呂循環ポンプ
23 浴槽
25 風呂用熱交換器
27 風呂蛇口
30 ヒートポンプ冷媒回路
40 給湯回路
50 運転制御手段
51 台所リモコン
52 風呂リモコン
1a, 1b Compressor 2 Water refrigerant heat exchanger 2a, 2b Refrigerant side heat transfer pipe 2c, 2d Water supply side heat transfer pipe 2e Heat exchange water inlet thermistor 2f Heat exchange water outlet thermistor 3a, 3b Decompression device 4a, 4b Evaporator 5 Water supply fitting 6 Pressure reducing valve 7 Water supply amount sensor 7a Water supply thermistor 8 Hot water storage tank 8a-8c Tank thermistor 9 Circulation pump 10 Water supply check valve 11 Hydrothermal AC sensor 12 Hot water mixing valve 12a Hot water mixing water thermistor 13 Hot water mixing thermistor 14 Flow adjustment valve 15 Kitchen outlet metal fittings 16 Kitchen faucet 19 Bath circulation pump 23 Bath 25 Bath heat exchanger 27 Bath faucet 30 Heat pump refrigerant circuit 40 Hot water supply circuit 50 Operation control means 51 Kitchen remote control 52 Bath remote control

Claims (8)

圧縮機、水と冷媒との熱交換を行なう水冷媒熱交換器、減圧装置、空気と冷媒との熱交換を行なう蒸発器を、冷媒配管を介して順次接続したヒートポンプ冷媒回路と、
前記水冷媒熱交換器、水冷媒熱交換器で加熱した温水を貯めておくための貯湯タンク、給湯混合弁、機内循環ポンプ、及びこれらの部品間を接続する水配管からなる貯湯回路と、
前記水冷媒熱交換器、貯湯タンク、給湯混合弁、湯水混合弁、流量調整弁、出湯金具、及びこれらの部品間を接続する水配管からなる給湯回路と、
前記圧縮機、減圧装置、機内循環ポンプ、給湯混合弁、湯水混合弁、流量調整弁、等の動作を制御する運転制御手段とを備え、
前記給湯回路は、水冷媒熱交換器で加熱した温水を直接出湯金具から給湯する直接給湯回路を有し、
前記運転制御手段は、貯湯運転中に湯水使用があった場合、貯湯運転を中断して湯水使用を優先し、ヒートポンプは、前記貯湯運転時の加熱温度で継続運転し水冷媒熱交換器で加熱した温水に水を加えて給湯する貯湯中断給湯運転を行なうヒートポンプ給湯機。
A heat pump refrigerant circuit in which a compressor, a water refrigerant heat exchanger that performs heat exchange between water and refrigerant, a decompression device, and an evaporator that performs heat exchange between air and refrigerant are sequentially connected via a refrigerant pipe;
A hot water storage circuit comprising the water refrigerant heat exchanger, a hot water storage tank for storing hot water heated by the water refrigerant heat exchanger, a hot water supply mixing valve, an in-machine circulation pump, and water piping connecting these components;
A hot water supply circuit comprising a water refrigerant heat exchanger, a hot water storage tank, a hot water mixing valve, a hot and cold water mixing valve, a flow rate adjusting valve, a hot metal fitting, and a water pipe connecting these components;
Operation control means for controlling the operation of the compressor, the pressure reducing device, the in-machine circulation pump, the hot water supply mixing valve, the hot water mixing valve, the flow rate adjustment valve, and the like,
The hot water supply circuit has a direct hot water supply circuit for supplying hot water heated by a water-refrigerant heat exchanger directly from a hot water outlet fitting,
When the hot water is used during hot water storage operation, the operation control means interrupts the hot water storage operation to give priority to hot water use, and the heat pump is continuously operated at the heating temperature during the hot water storage operation and heated by the water refrigerant heat exchanger. Heat pump water heater that performs hot water storage interrupted hot water operation that adds hot water to hot water.
前記運転制御手段は、貯湯運転中に湯水使用があった場合、貯湯中断給湯運転を行った後貯湯運転を再開し、貯湯運転が完了してからヒートポンプ運転を停止する請求項1記載のヒートポンプ給湯機。 2. The heat pump hot water supply according to claim 1, wherein, when hot water is used during the hot water storage operation, the operation control means restarts the hot water storage operation after performing the hot water storage interrupted hot water supply operation, and stops the heat pump operation after the hot water storage operation is completed. Machine. 前記運転制御手段は、貯湯運転中に湯水使用があった場合、高温貯湯運転時は前記貯湯運転時の加熱温度で継続運転し、通常温度貯湯運転時は給湯温度に見合った加熱温度に下げて貯湯中断給湯運転を行なう請求項1記載のヒートポンプ給湯機。 When hot water is used during hot water storage operation, the operation control means continuously operates at the heating temperature during the hot water storage operation and lowers the heating temperature to match the hot water temperature during normal temperature hot water storage operation. The heat pump water heater according to claim 1, wherein the hot water storage is interrupted. 前記運転制御手段は、貯湯運転中に湯水使用があった場合、高温貯湯運転時はヒートポンプの加熱温度を通常貯湯運転時の加熱温度以上で且つ高温貯湯運転時の加熱温度より低い所定温度に下げて継続運転する請求項1記載のヒートポンプ給湯機。 When hot water is used during hot water storage operation, the operation control means lowers the heating temperature of the heat pump to a predetermined temperature that is higher than the heating temperature during normal hot water storage operation and lower than the heating temperature during high temperature hot water storage operation. The heat pump water heater according to claim 1, which is continuously operated. 圧縮機、水と冷媒との熱交換を行なう水冷媒熱交換器、減圧装置、空気と冷媒との熱交換を行なう蒸発器を、冷媒配管を介して順次接続したヒートポンプ冷媒回路と、
前記水冷媒熱交換器、水冷媒熱交換器で加熱した温水を貯めておくための貯湯タンク、給湯混合弁、機内循環ポンプ、及びこれらの部品間を接続する水配管からなる貯湯回路と、
前記水冷媒熱交換器、貯湯タンク、給湯混合弁、湯水混合弁、流量調整弁、出湯金具、及びこれらの部品間を接続する水配管からなる給湯回路と、
前記圧縮機、減圧装置、機内循環ポンプ、給湯混合弁、湯水混合弁、流量調整弁、等の動作を制御する運転制御手段とを備え、
前記給湯回路は、水冷媒熱交換器で加熱した温水を直接出湯金具から給湯する直接給湯回路を有し、
前記運転制御手段は、貯湯運転中に湯水使用があった場合、ヒートポンプはそのまま継続運転し、給湯混合弁は、水冷媒熱交換器側と貯湯タンク側を閉じ、水冷媒熱交換器側と湯水混合弁側を開き、水冷媒熱交換器で加熱した高温水に水を加えて給湯するヒートポンプ給湯機
A heat pump refrigerant circuit in which a compressor, a water refrigerant heat exchanger that performs heat exchange between water and refrigerant, a decompression device, and an evaporator that performs heat exchange between air and refrigerant are sequentially connected via a refrigerant pipe;
A hot water storage circuit comprising the water refrigerant heat exchanger, a hot water storage tank for storing hot water heated by the water refrigerant heat exchanger, a hot water supply mixing valve, an in-machine circulation pump, and water piping connecting these components;
A hot water supply circuit comprising a water refrigerant heat exchanger, a hot water storage tank, a hot water mixing valve, a hot and cold water mixing valve, a flow rate adjusting valve, a hot metal fitting, and a water pipe connecting these components;
Operation control means for controlling the operation of the compressor, the pressure reducing device, the in-machine circulation pump, the hot water supply mixing valve, the hot water mixing valve, the flow rate adjustment valve, and the like,
The hot water supply circuit has a direct hot water supply circuit for supplying hot water heated by a water-refrigerant heat exchanger directly from a hot water outlet fitting,
When the hot water is used during the hot water storage operation, the operation control means continuously operates the heat pump, and the hot water mixing valve closes the water refrigerant heat exchanger side and the hot water storage tank side, the water refrigerant heat exchanger side and the hot water water. Heat pump water heater that opens the mixing valve and adds hot water to hot water heated by a water-refrigerant heat exchanger to supply hot water
前記運転制御手段は、貯湯運転中に湯水使用があった場合、湯水使用終了後、給湯混合弁は、水冷媒熱交換器側と湯水混合弁側を閉じ、水冷媒熱交換器側と貯湯タンク側を開いて運転を継続し、貯湯が完了してからヒートポンプ運転を停止する請求項5記載のヒートポンプ給湯機。 The hot water mixing valve closes the water refrigerant heat exchanger side and the hot water mixing valve side when the hot water is used during hot water storage operation, and the hot water mixing valve closes the water refrigerant heat exchanger side and the hot water mixing valve side. 6. The heat pump water heater according to claim 5, wherein the operation is continued by opening the side, and the heat pump operation is stopped after the hot water storage is completed. 前記運転制御手段は、貯湯運転中に湯水使用があった場合、高温貯湯運転時は前記高温貯湯運転時の加熱温度で継続運転し、通常温度貯湯運転時は給湯温度に見合った加熱温度に下げて運転を行なう請求項5記載のヒートポンプ給湯機。 When hot water is used during the hot water storage operation, the operation control means continuously operates at the heating temperature during the high temperature hot water storage operation and decreases to a heating temperature corresponding to the hot water temperature during the normal temperature hot water storage operation. The heat pump water heater according to claim 5, wherein the operation is performed. 前記運転制御手段は、貯湯運転中に湯水使用があった場合、高温貯湯運転時はヒートポンプの加熱温度を通常貯湯運転時の加熱温度以上で且つ高温貯湯運転時の加熱温度より低い所定温度に下げて継続運転する請求項5記載のヒートポンプ給湯機。
When hot water is used during hot water storage operation, the operation control means lowers the heating temperature of the heat pump to a predetermined temperature that is higher than the heating temperature during normal hot water storage operation and lower than the heating temperature during high temperature hot water storage operation. The heat pump water heater according to claim 5, which is continuously operated.
JP2006091541A 2006-03-29 2006-03-29 Heat pump water heater Expired - Fee Related JP4958460B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2006091541A JP4958460B2 (en) 2006-03-29 2006-03-29 Heat pump water heater
KR1020070030073A KR100847619B1 (en) 2006-03-29 2007-03-28 Heat pump water heater
CN200710091587A CN100575810C (en) 2006-03-29 2007-03-28 Heat-pump hot water supply apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006091541A JP4958460B2 (en) 2006-03-29 2006-03-29 Heat pump water heater

Publications (2)

Publication Number Publication Date
JP2007263517A true JP2007263517A (en) 2007-10-11
JP4958460B2 JP4958460B2 (en) 2012-06-20

Family

ID=38636673

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006091541A Expired - Fee Related JP4958460B2 (en) 2006-03-29 2006-03-29 Heat pump water heater

Country Status (3)

Country Link
JP (1) JP4958460B2 (en)
KR (1) KR100847619B1 (en)
CN (1) CN100575810C (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010054145A (en) * 2008-08-29 2010-03-11 Hitachi Appliances Inc Heat pump water heater
JP2012225567A (en) * 2011-04-20 2012-11-15 Mitsubishi Electric Corp Heat pump water heater
CN103528188A (en) * 2013-11-04 2014-01-22 Tcl空调器(中山)有限公司 Air source hot water machine system and control method thereof
JP2017207229A (en) * 2016-05-17 2017-11-24 三菱電機株式会社 Hot water storage type hot water supply system
CN107687707A (en) * 2017-11-24 2018-02-13 戴曜 A kind of hot-water heating system and its control method using air-source

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101164717B1 (en) * 2009-09-28 2012-07-12 주식회사 경동나비엔 Hot-water supply heat exchanger having mixing valve and adapter integrated with mixing valve
JP5478521B2 (en) * 2011-01-14 2014-04-23 日立アプライアンス株式会社 Liquid supply device
CN105465868B (en) * 2015-12-01 2018-08-14 张久明 Steam power plant's afterheat energy-saving heating system
CN106386388A (en) * 2016-08-26 2017-02-15 中冶集团武汉勘察研究院有限公司 System for improving runoff velocity and heat exchange property of soil underground water and construction method
JP7110730B2 (en) * 2018-05-29 2022-08-02 株式会社ノーリツ Hot water storage water heater
CN111561733B (en) * 2020-05-18 2021-11-12 瑞纳智能设备股份有限公司 Heating household valve adjusting method, system and equipment based on GBDT
CN114963528B (en) * 2021-06-29 2023-08-18 青岛海尔新能源电器有限公司 Refrigerant detection method, device, equipment and storage medium

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003279133A (en) * 2002-03-20 2003-10-02 Hitachi Ltd Heat pump water heater
JP2005016759A (en) * 2003-06-24 2005-01-20 Hitachi Home & Life Solutions Inc Heat pump type water heater
JP2005098568A (en) * 2003-09-24 2005-04-14 Matsushita Electric Ind Co Ltd Water heater

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3887781B2 (en) 2003-11-12 2007-02-28 日立アプライアンス株式会社 Heat pump water heater
JP4048378B2 (en) 2004-08-27 2008-02-20 三菱電機株式会社 Hot water storage hot water supply system
JP4134969B2 (en) 2004-09-01 2008-08-20 株式会社デンソー Hot water storage type heat pump water heater
JP3906857B2 (en) 2004-09-08 2007-04-18 松下電器産業株式会社 Heat pump water heater
JP4215735B2 (en) 2005-03-24 2009-01-28 日立アプライアンス株式会社 Heat pump water heater

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003279133A (en) * 2002-03-20 2003-10-02 Hitachi Ltd Heat pump water heater
JP2005016759A (en) * 2003-06-24 2005-01-20 Hitachi Home & Life Solutions Inc Heat pump type water heater
JP2005098568A (en) * 2003-09-24 2005-04-14 Matsushita Electric Ind Co Ltd Water heater

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010054145A (en) * 2008-08-29 2010-03-11 Hitachi Appliances Inc Heat pump water heater
JP2012225567A (en) * 2011-04-20 2012-11-15 Mitsubishi Electric Corp Heat pump water heater
CN103528188A (en) * 2013-11-04 2014-01-22 Tcl空调器(中山)有限公司 Air source hot water machine system and control method thereof
CN103528188B (en) * 2013-11-04 2016-09-21 Tcl空调器(中山)有限公司 air source hot water machine system and control method thereof
JP2017207229A (en) * 2016-05-17 2017-11-24 三菱電機株式会社 Hot water storage type hot water supply system
CN107687707A (en) * 2017-11-24 2018-02-13 戴曜 A kind of hot-water heating system and its control method using air-source
CN107687707B (en) * 2017-11-24 2023-07-21 合肥荣事达太阳能有限公司 Water heating system adopting air source and control method thereof

Also Published As

Publication number Publication date
CN100575810C (en) 2009-12-30
KR100847619B1 (en) 2008-07-21
CN101046326A (en) 2007-10-03
JP4958460B2 (en) 2012-06-20
KR20070098584A (en) 2007-10-05

Similar Documents

Publication Publication Date Title
JP4958460B2 (en) Heat pump water heater
JP4284290B2 (en) Heat pump water heater
JP5073970B2 (en) Heat pump hot water floor heater
JP4215735B2 (en) Heat pump water heater
JP4975067B2 (en) Heat pump water heater
JP2008275271A (en) Heat pump hot water supply floor heating device
JP4726573B2 (en) Heat pump hot water floor heater
JP4231863B2 (en) Heat pump water heater bathroom heating dryer
JP3887781B2 (en) Heat pump water heater
JP5095488B2 (en) Heat pump water heater
JP2006234314A (en) Heat pump water heater
JP2005016757A (en) Heat pump water heater
JP2006125722A (en) Heat pump hot water supply heating system
JP2009097826A (en) Heat pump hot water supply device
JP2010054145A (en) Heat pump water heater
JP4277836B2 (en) Heat pump water heater
JP5021385B2 (en) Heat pump water heater and operating method thereof
JP3896378B2 (en) Heat pump water heater
JP5159857B2 (en) Heat pump water heater
JP2009257717A (en) Heat pump water heater
JP4988521B2 (en) Heat pump water heater
JP3890322B2 (en) Heat pump water heater
JP5094217B2 (en) Heat pump water heater
JP5741256B2 (en) Hot water storage water heater
JP2004150796A (en) Heat pump water heater

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090218

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110802

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110816

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111017

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120228

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120319

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150330

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees