JP5094217B2 - Heat pump water heater - Google Patents

Heat pump water heater Download PDF

Info

Publication number
JP5094217B2
JP5094217B2 JP2007146405A JP2007146405A JP5094217B2 JP 5094217 B2 JP5094217 B2 JP 5094217B2 JP 2007146405 A JP2007146405 A JP 2007146405A JP 2007146405 A JP2007146405 A JP 2007146405A JP 5094217 B2 JP5094217 B2 JP 5094217B2
Authority
JP
Japan
Prior art keywords
hot water
temperature
water
storage tank
heat pump
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007146405A
Other languages
Japanese (ja)
Other versions
JP2008298386A (en
Inventor
和広 遠藤
豊 榎津
純一 高木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Appliances Inc
Original Assignee
Hitachi Appliances Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Appliances Inc filed Critical Hitachi Appliances Inc
Priority to JP2007146405A priority Critical patent/JP5094217B2/en
Publication of JP2008298386A publication Critical patent/JP2008298386A/en
Application granted granted Critical
Publication of JP5094217B2 publication Critical patent/JP5094217B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Heat-Pump Type And Storage Water Heaters (AREA)

Description

本発明は、ヒートポンプ式の給湯装置に関する。   The present invention relates to a heat pump hot water supply apparatus.

ヒートポンプ給湯装置を大別すると、特許文献1のような貯湯式ヒートポンプ給湯装置と特許文献2のような瞬間式ヒートポンプ給湯装置に分かれる。   The heat pump hot water supply apparatus is roughly classified into a hot water storage type heat pump hot water supply apparatus as in Patent Document 1 and an instantaneous heat pump hot water supply apparatus as in Patent Document 2.

貯湯式ヒートポンプ給湯装置では、加熱能力が4.5〜6.0kWあり、深夜時間帯に安価な夜間電力を利用して65〜90℃の高温湯に沸き上げ、貯湯タンクに300〜480Lの湯を貯える。日中の給湯時には、貯湯タンクに貯えた高温湯に水を混合して使用する。   The hot water storage type heat pump hot water supply device has a heating capacity of 4.5 to 6.0 kW, is heated to 65 to 90 ° C. hot water using cheap nighttime power at midnight, and 300 to 480 L of hot water is stored in the hot water storage tank. Store. During hot water supply during the day, water is mixed with high-temperature hot water stored in a hot water storage tank.

一方、瞬間式ヒートポンプ給湯装置では、給水管から導入された水を水熱交換器で昇温してそのまま使用端末に給湯し、大型の貯湯タンクを不要としている。そして、ヒートポンプ回路の運転開始直後の圧力条件が安定するまでは、水を温めるのに十分な凝縮熱を発生させることができないので、立ち上がりの短時間だけ小型の給湯タンクに貯蔵した湯に水熱交換器からの水を混合して給湯している。   On the other hand, in the instantaneous heat pump hot water supply device, the temperature of the water introduced from the water supply pipe is raised by the water heat exchanger and hot water is supplied to the use terminal as it is, thus eliminating the need for a large hot water storage tank. Until the pressure condition immediately after the start of operation of the heat pump circuit is stabilized, sufficient heat of condensation cannot be generated to warm the water. Hot water is mixed with water from the exchanger.

特開2005−134070号公報JP 2005-134070 A 特開2003−279133号公報JP 2003-279133 A

特許文献1に記載の貯湯式ヒートポンプ給湯装置では、貯湯タンクに貯えた高温湯に水を混合して使用するため、所望の温度である給湯設定温度より温度の低い貯湯タンク内の湯は、有効に利用することができない。例えば、貯湯タンクを沸き上げた後、放熱等によって給湯設定温度より温度の低下した貯湯タンク内の湯には、大きな熱量が残っているにもかかわらず、必要な温度の湯を供給することができない(このように、給湯設定温度より温度が低いが、大きな熱量を持っている貯湯タンク内の湯を中温残湯と称することとする)。   In the hot water storage type heat pump hot water supply device described in Patent Document 1, since hot water stored in the hot water storage tank is mixed with water, the hot water in the hot water storage tank having a temperature lower than the desired hot water supply set temperature is effective. It cannot be used. For example, after boiling the hot water storage tank, hot water at the required temperature can be supplied to the hot water in the hot water storage tank whose temperature has dropped below the hot water supply set temperature due to heat dissipation, etc., even though a large amount of heat remains. Cannot be done (in this way, hot water in a hot water storage tank having a large amount of heat, although the temperature is lower than the hot water supply set temperature) will be referred to as intermediate hot water.

このため、再度の沸き上げが必要である。沸き上げ時の効率を考えると、ヒートポンプ給湯装置への入水温度が高いほど、ヒートポンプの消費電力に対する水加熱能力の割合であるCOP、いわゆるエネルギー効率は低くなる。つまり、水道管から給水された水のように温度の低い水を沸き上げるよりも、中温残湯部分のように温度の高い湯を沸き上げる方が、エネルギー効率が低いことになる。また、中温残湯量が多いほど沸き上げ時のエネルギー効率が低下する。   For this reason, reheating is necessary. Considering the efficiency at the time of boiling, the higher the incoming water temperature to the heat pump water heater, the lower the COP, which is the ratio of the water heating capacity to the power consumption of the heat pump, so-called energy efficiency. In other words, it is less energy efficient to boil hot water having a high temperature such as an intermediate hot water portion than to boil water having a low temperature such as water supplied from a water pipe. Moreover, the energy efficiency at the time of boiling falls, so that there is much amount of intermediate temperature hot water.

また、特許文献2に記載の瞬間式ヒートポンプ給湯装置では、運転開始後、瞬間回路が立ち上がるまでの短時間だけ、水熱交換器からの湯水に、小型の給湯タンクに貯蔵した湯を混合して所望の温度の湯を給湯している。このため、給湯設定温度より温度の低い給湯タンク内の湯は、使用することができない。立ち上がりに長時間を要する等して有効な湯の貯湯量が少なくなってくると、給湯タンク内の湯の温度が給湯設定温度より低くなる場合が生じる。そうなると、大きな熱量を持っている中温残湯を含む給湯タンクを再度沸き上げる必要がある。この沸き上げは給湯停止後に行われる。沸き上げ時の効率については前述の通りである。   Moreover, in the instantaneous heat pump hot water supply apparatus described in Patent Document 2, hot water stored in a small hot water supply tank is mixed with hot water from the water heat exchanger for a short time from the start of operation until the instantaneous circuit starts up. Hot water at a desired temperature is supplied. For this reason, the hot water in the hot water supply tank whose temperature is lower than the hot water supply set temperature cannot be used. If the effective hot water storage amount decreases due to a long time required for starting up, the temperature of the hot water in the hot water supply tank may be lower than the preset hot water supply temperature. Then, it is necessary to boil again the hot water supply tank containing the middle temperature remaining hot water which has a big calorie | heat amount. This boiling is performed after the hot water supply is stopped. The efficiency at the time of boiling is as described above.

また、貯湯式ヒートポンプ給湯装置の貯湯タンクと同様に、例えば、給湯タンクを沸き上げた後、放熱等によって給湯設定温度より温度の低下した貯湯タンク内の中温残湯は、大きな熱量が残っているにもかかわらず、必要な温度の湯を供給することができない。このため、再度の沸き上げが必要である。沸き上げ時の効率については前述の通りである。   In addition, as with the hot water storage tank of the hot water storage type heat pump hot water supply device, for example, after boiling the hot water tank, the intermediate temperature hot water in the hot water storage tank whose temperature is lower than the set hot water temperature due to heat dissipation or the like has a large amount of heat remaining. Nevertheless, hot water at the required temperature cannot be supplied. For this reason, reheating is necessary. The efficiency at the time of boiling is as described above.

本発明は上記従来技術に鑑みなされたものであり、その目的は、ヒートポンプ給湯装置において、中温残湯量を低減することにある。   This invention is made | formed in view of the said prior art, The objective is to reduce the amount of middle temperature remaining hot water in a heat pump hot-water supply apparatus.

本発明は、圧縮機と、水と冷媒との熱交換を行う水冷媒熱交換器と、該水冷媒熱交換器からの冷媒を減圧する減圧装置と、空気と冷媒との熱交換を行う空気冷媒熱交換器とを接続したヒートポンプ冷媒回路と、前記水冷媒熱交換器と、該水冷媒熱交換器で熱交換した水を貯める貯湯タンクと、該貯湯タンクの水を循環させる循環ポンプとを有する貯湯回路と、前記貯湯タンク内の貯湯水を給湯端末から給湯するタンク給湯回路と、ヒートポンプ給湯機の運転を制御する運転制御手段とを備えたヒートポンプ給湯機において、前記運転制御手段は、給湯時に、時間帯に応じて前記ヒートポンプ冷媒回路の運転の有無を決定することを特徴とする The present invention relates to a compressor, a water-refrigerant heat exchanger that performs heat exchange between water and a refrigerant, a decompression device that depressurizes refrigerant from the water-refrigerant heat exchanger, and air that performs heat exchange between air and the refrigerant. A heat pump refrigerant circuit connected to a refrigerant heat exchanger, the water refrigerant heat exchanger, a hot water storage tank for storing water heat-exchanged in the water refrigerant heat exchanger, and a circulation pump for circulating water in the hot water storage tank A heat pump water heater comprising a hot water storage circuit, a tank hot water circuit for supplying hot water in the hot water storage tank from a hot water supply terminal, and an operation control means for controlling the operation of the heat pump water heater. Sometimes, the presence or absence of operation of the heat pump refrigerant circuit is determined according to a time zone .

また、上記においては、前記ヒートポンプ冷媒回路で発生した湯と前記貯湯タンクから出湯した湯とを混合して給湯設定温度で前記給湯端末に供給している状態から、前記貯湯タンク内の湯の温度が、前記給湯設定温度以下になった場合、前記圧縮機の回転数を増加させる制御装置を有し、前記ヒートポンプ冷媒回路で発生した湯を前記貯湯タンクから出湯した湯でぬるめて前記給湯端末に供給することが好ましい

In the above , the temperature of the hot water in the hot water storage tank from the state where hot water generated in the heat pump refrigerant circuit and hot water discharged from the hot water storage tank are mixed and supplied to the hot water supply terminal at a hot water supply set temperature. However, when the temperature is lower than the set temperature of the hot water supply, it has a control device for increasing the number of revolutions of the compressor, and the hot water generated in the heat pump refrigerant circuit is diluted with the hot water discharged from the hot water storage tank to the hot water supply terminal. It is preferable to supply.

本発明によれば、タンク内の中温残湯量を低減することができる。   According to the present invention, it is possible to reduce the amount of intermediate temperature hot water in the tank.

以下、本発明に係るヒートポンプ給湯装置の一実施例を、図面に基づいて説明する。図1〜図3に、ヒートポンプ給湯装置100の系統図を示す。ヒートポンプ給湯装置100は、大別してヒートポンプ冷媒回路90および給水回路91,給湯回路92,風呂湯張り回路93,風呂追焚き加熱回路94,風呂追焚き吸熱回路95,タンク沸き戻し回路96を有している。   Hereinafter, an embodiment of a heat pump hot water supply apparatus according to the present invention will be described with reference to the drawings. The system diagram of the heat pump hot water supply apparatus 100 is shown in FIGS. The heat pump hot water supply apparatus 100 is roughly divided into a heat pump refrigerant circuit 90 and a water supply circuit 91, a hot water supply circuit 92, a bath hot water filling circuit 93, a bath reheating heating circuit 94, a bath reheating heat absorption circuit 95, and a tank boiling back circuit 96. Yes.

次に各回路ごとにその構成を、以下に説明する。   Next, the configuration of each circuit will be described below.

本実施形態におけるヒートポンプ冷媒回路90(図1,図2(a))は、瞬間給湯能力をより高めるために二つの冷媒回路を備えている。給湯装置として適切な出湯量を維持できる熱量が得られるならば一つの冷媒回路でも構わない。ヒートポンプ冷媒回路90の冷媒を二酸化炭素として、高温の湯を供給可能にしている。   The heat pump refrigerant circuit 90 (FIGS. 1 and 2A) in the present embodiment includes two refrigerant circuits in order to further increase the instantaneous hot water supply capacity. A single refrigerant circuit may be used as long as the amount of heat that can maintain an appropriate amount of hot water as a hot water supply device is obtained. The refrigerant of the heat pump refrigerant circuit 90 is carbon dioxide, so that hot water can be supplied.

第1のヒートポンプ冷媒回路90aは、冷媒を圧縮して高温の冷媒とする圧縮機1a、この圧縮機1aで圧縮され高温となった冷媒と給湯のために供給された水(給水)とが熱交換する水冷媒熱交換器2、この水冷媒熱交換器2を出た冷媒を減圧する膨張弁3a,この膨張弁3aを出た低温低圧の冷媒を蒸発させる蒸発器4aを冷媒管路で接続して構成されている。   In the first heat pump refrigerant circuit 90a, the compressor 1a that compresses the refrigerant into a high-temperature refrigerant, the refrigerant that has been compressed by the compressor 1a to a high temperature, and the water (water supply) supplied for hot water supply are heated. A water refrigerant heat exchanger 2 to be exchanged, an expansion valve 3a for depressurizing the refrigerant exiting the water refrigerant heat exchanger 2, and an evaporator 4a for evaporating the low-temperature and low-pressure refrigerant exiting the expansion valve 3a are connected by a refrigerant line. Configured.

また、第2のヒートポンプ冷媒回路90bも、第1の冷媒回路90aと同様に、冷媒を圧縮して高温の冷媒とする圧縮機1b、この圧縮機1bで圧縮され高温となった冷媒と給湯のために供給された水(給水)とが熱交換する水冷媒熱交換器2、この水冷媒熱交換器2を出た冷媒を減圧する膨張弁3b,この膨張弁3bを出た低温低圧の冷媒を蒸発させる蒸発器4bを冷媒管路で接続して構成されている。   Similarly to the first refrigerant circuit 90a, the second heat pump refrigerant circuit 90b also compresses the refrigerant into a high-temperature refrigerant, the compressor 1b that is compressed by the compressor 1b, and the high-temperature refrigerant and hot water supply. A water refrigerant heat exchanger 2 that exchanges heat with water (water supply) supplied for the purpose, an expansion valve 3b that depressurizes the refrigerant that exits the water refrigerant heat exchanger 2, and a low-temperature and low-pressure refrigerant that exits the expansion valve 3b The evaporator 4b for evaporating the water is connected by a refrigerant pipe.

圧縮機1a,1bは、インバータ制御により容量制御が可能になっており、低速(例えば1000rpm)から高速(例えば6000rpm)まで回転速度が可変である。蒸発器4a,4bは空気冷媒熱交換器であり、室外ファン5a,5bにより室外の大量の空気と減圧された冷媒とを熱交換させる。   The compressors 1a and 1b can be controlled in capacity by inverter control, and the rotation speed is variable from a low speed (for example, 1000 rpm) to a high speed (for example, 6000 rpm). The evaporators 4a and 4b are air refrigerant heat exchangers, and exchange heat between a large amount of outdoor air and the decompressed refrigerant by the outdoor fans 5a and 5b.

水冷媒熱交換器2は、冷媒側伝熱管2a,2bと水側伝熱管2c,2dとを有しており、冷媒側伝熱管2a,2bの冷媒の流れと水側伝熱管2c,2dの水の流れとは対向流になっている。そして、高温高圧の冷媒と低温の水とが熱交換する。即ち、水冷媒熱交換器2の入口(図中では水冷媒熱交換器2の下側)で低温であった水が水側伝熱管2c,2dを通過する際に徐々に加熱され、水冷媒熱交換器2の出口(図中では水冷媒熱交換器2の上側)で、後述する制御装置120により設定された所定の温度に昇温される。   The water-refrigerant heat exchanger 2 includes refrigerant-side heat transfer tubes 2a, 2b and water-side heat transfer tubes 2c, 2d. The refrigerant flow in the refrigerant-side heat transfer tubes 2a, 2b and the water-side heat transfer tubes 2c, 2d It is opposite to the water flow. Then, the high-temperature and high-pressure refrigerant and the low-temperature water exchange heat. That is, when the water having a low temperature passes through the water-side heat transfer tubes 2c and 2d at the inlet of the water-refrigerant heat exchanger 2 (the lower side of the water-refrigerant heat exchanger 2 in the drawing), the water-refrigerant is gradually heated. The temperature is raised to a predetermined temperature set by the control device 120 described later at the outlet of the heat exchanger 2 (upper side of the water-refrigerant heat exchanger 2 in the drawing).

給水回路91(図1,図2(b))は、外部から上水を取り込むための給水金具11,取り込んだ上水を適正な水圧に調整する減圧弁12,給水流量を測定する給水流量センサ13,給水がどれだけ水冷媒熱交換器2に流れているかを測定する水冷媒熱交換器流量センサ15,水冷媒熱交換器2側から給水金具11側へ水が逆流するのを防止するための逆止弁14を有する。給水金具11から水冷媒熱交換器2の水側伝熱管2c,2dまでが水配管で接続されており、これらの部材がこの水配管に設けられている。   A water supply circuit 91 (FIGS. 1 and 2B) includes a water supply fitting 11 for taking in clean water from the outside, a pressure reducing valve 12 for adjusting the fetched clean water to an appropriate water pressure, and a feed water flow sensor for measuring the feed water flow rate. 13. Water refrigerant heat exchanger flow rate sensor 15 for measuring how much water supply flows to the water refrigerant heat exchanger 2, in order to prevent water from flowing back from the water refrigerant heat exchanger 2 side to the water supply fitting 11 side The check valve 14 is provided. From the water supply fitting 11 to the water-side heat transfer tubes 2c, 2d of the water refrigerant heat exchanger 2 are connected by a water pipe, and these members are provided in the water pipe.

給湯回路92(図1,図2(c))は、水冷媒熱交換器2の水側伝熱管2c,2dから装置外部の給湯配管に接続される給湯金具19までの水管路と各部材とを含む。水冷媒熱交換器2から給湯金具19の間には、水側伝熱管2c,2dで加熱された湯水と貯湯タンク21に貯められた湯水とを混合するのに用いる第1湯水混合弁16と、第1湯水混合弁16を通過した湯水に給水回路91から給水された水を混合するのに用いる第2湯水混合弁17と、第2湯水混合弁17を通過した湯水の流量を調整する流量調整弁18とが配置されている。   The hot water supply circuit 92 (FIGS. 1 and 2 (c)) includes water pipes from the water side heat transfer pipes 2c and 2d of the water / refrigerant heat exchanger 2 to the hot water supply fitting 19 connected to the hot water supply pipe outside the apparatus, members, including. Between the water-refrigerant heat exchanger 2 and the hot-water supply fitting 19, a first hot-water mixing valve 16 used for mixing hot water heated by the water-side heat transfer tubes 2c, 2d and hot water stored in the hot-water storage tank 21; The second hot water mixing valve 17 used for mixing the water supplied from the water supply circuit 91 with the hot water passing through the first hot water mixing valve 16 and the flow rate for adjusting the flow rate of the hot water passing through the second hot water mixing valve 17 A regulating valve 18 is arranged.

なお、貯湯タンク21から給湯回路92の一部を通って給湯金具19に至る回路をタンク給湯回路92Tと称することとする。タンク給湯回路92Tにより給湯するときは、貯湯タンク21から出湯する量と同じ量の水を貯湯タンク21の下部21cから流入させなければならない。   A circuit from the hot water storage tank 21 through a part of the hot water supply circuit 92 to the hot water supply fitting 19 is referred to as a tank hot water supply circuit 92T. When hot water is supplied by the tank hot water supply circuit 92 </ b> T, the same amount of water that is discharged from the hot water storage tank 21 must flow from the lower portion 21 c of the hot water storage tank 21.

第1湯水混合弁16の一方の流入口は、貯湯タンク21の上部21aに接続されている。また、貯湯タンク21の下部21cは、点AAで給水回路91と接続されている。貯湯タンク21は、タンク沸き戻し回路96(図1,図3(c))の水冷媒熱交換器2が予め加熱した約60〜90℃の高温の湯を貯えるのに使用される。第1湯水混合弁16は、制御装置120の指令により、貯湯タンク21に蓄えられた湯水を、水冷媒熱交換器2から供給された湯水と混合するのに用いられる。具体的には、第1湯水混合弁16からは、水冷媒熱交換器2で加熱された湯水が所望の温度に昇温されるまで、貯湯タンク21に蓄えられた高温の湯を混合することにより、制御装置120で設定された所定の温度の湯水が流出される。このとき給水金具11から給水された水(の全部または一部)は、点AAで分流して貯湯タンク21と水冷媒熱交換器2とに向かう。水冷媒熱交換器2の湯水と貯湯タンク21からの湯は、第1湯水混合弁16でまた合流する。また、第1湯水混合弁16からは、後述するように温度の低くなった貯湯タンク21内の湯水と、水冷媒熱交換器2で加熱された温度の高い湯を混合し、制御装置120で設定された所定の温度の湯水が流出される。   One inlet of the first hot water mixing valve 16 is connected to the upper part 21 a of the hot water storage tank 21. Further, the lower part 21c of the hot water storage tank 21 is connected to the water supply circuit 91 at a point AA. The hot water storage tank 21 is used to store hot water of about 60 to 90 ° C. preheated by the water / refrigerant heat exchanger 2 of the tank boiling back circuit 96 (FIGS. 1 and 3C). The first hot water / mixing valve 16 is used to mix hot water stored in the hot water storage tank 21 with hot water supplied from the water / refrigerant heat exchanger 2 according to a command from the control device 120. Specifically, the hot water stored in the hot water storage tank 21 is mixed from the first hot water / water mixing valve 16 until the hot water heated by the water / refrigerant heat exchanger 2 is heated to a desired temperature. As a result, hot water of a predetermined temperature set by the control device 120 flows out. At this time, the water supplied from the water supply fitting 11 (all or a part thereof) is diverted at the point AA to the hot water storage tank 21 and the water refrigerant heat exchanger 2. Hot water from the water-refrigerant heat exchanger 2 and hot water from the hot water storage tank 21 are joined together by the first hot water / water mixing valve 16. Further, from the first hot water / water mixing valve 16, hot water in the hot water storage tank 21 having a low temperature and hot water heated by the water / refrigerant heat exchanger 2 are mixed as described later, and the controller 120 Hot water of a predetermined temperature set is discharged.

第2湯水混合弁17の一方の流入口は水管路に接続されている。この水管路は、給水回路91から分岐している(図2(b)(c)の「C」辺り)。つまり、給水金具11から給水された水の一部が流れることができるようになっている。第2湯水混合弁17では、制御装置120の指令により第1湯水混合弁16で混合された湯水と給水回路91から分岐して供給される水が混合され得る。この第2湯水混合弁17は給湯直前の温度の微調整のための弁であるともいえる。制御装置120は、設定した所定の給湯温度(約35〜60℃程度)の湯を給湯金具19を経て出湯端末へ出湯するために、第1湯水混合弁16と第2湯水混合弁17の開閉を制御する。   One inlet of the second hot water / mixing valve 17 is connected to a water pipe. This water pipe is branched from the water supply circuit 91 (around “C” in FIGS. 2B and 2C). That is, a part of the water supplied from the water supply fitting 11 can flow. In the second hot water / mixing valve 17, the hot water mixed by the first hot / water mixing valve 16 and the water branched from the water supply circuit 91 can be mixed in accordance with a command from the control device 120. It can be said that the second hot water / water mixing valve 17 is a valve for fine adjustment of the temperature just before the hot water supply. The control device 120 opens and closes the first hot water mixing valve 16 and the second hot water mixing valve 17 in order to discharge hot water having a predetermined hot water supply temperature (about 35 to 60 ° C.) to the hot water terminal via the hot water supply fitting 19. To control.

風呂湯張り回路93(図1,図3(a))は、給湯回路92の流量調整弁18と給湯金具19を接続する管路19aから分岐している。風呂湯張り回路93は、分岐部19aから浴槽36に湯水を供給するための入出湯金具35までを含んでいる。風呂湯張り回路93の配管中には、注湯電磁弁31およびフロースイッチ32,風呂循環ポンプ33,水位センサ34,入出湯金具35が、順次配置されている。   The bath hot water filling circuit 93 (FIGS. 1 and 3A) branches from a pipe line 19 a that connects the flow rate adjusting valve 18 of the hot water supply circuit 92 and the hot water supply fitting 19. The bath hot water filling circuit 93 includes up to a metal fitting 35 for supplying hot water from the branch portion 19a to the bathtub 36. In the piping of the bath hot water filling circuit 93, a pouring solenoid valve 31 and a flow switch 32, a bath circulation pump 33, a water level sensor 34, and a hot water inlet / outlet fitting 35 are sequentially arranged.

注湯電磁弁31は、分岐部19aから浴槽36側に湯を導くのに用いられる。フロースイッチ32は、風呂湯張り回路93中の湯の流れを検出する。風呂循環ポンプ33は、風呂追焚き時に浴槽36の湯水を、風呂追焚き熱交換器29に給水するのに用いられる。水位センサ34は、浴槽36に注湯された湯水の水位を検出する。入出湯金具35と浴槽36に取り付けた風呂循環アダプタ36aとは、水管路で接続される。   The hot water solenoid valve 31 is used to guide hot water from the branch portion 19a to the bathtub 36 side. The flow switch 32 detects the flow of hot water in the bath hot water filling circuit 93. The bath circulation pump 33 is used to supply hot water from the bathtub 36 to the bath chase heat exchanger 29 during bath chase. The water level sensor 34 detects the water level of the hot water poured into the bathtub 36. The bath metal fitting 35 and the bath circulation adapter 36a attached to the bathtub 36 are connected by a water pipeline.

風呂追焚き加熱回路94(図1,図3(b))は、浴槽36の湯水を再加熱するための回路であり、風呂追焚き熱交換器29を有している。風呂追焚き熱交換器29の2次冷媒側伝熱管29aの出口側に接続された機内循環ポンプ23が、水冷媒熱交換器2の水側伝熱管2c,2dに水を供給する。水側伝熱管2c,2dでは、水を加熱する。加熱されて温度上昇した水(高温水)は、給湯回路92から分岐した配管中に設けた追焚き電磁弁27と逆止弁28を通過する。ここで、風呂追焚き加熱回路94が動作中は、追焚き電磁弁27は開状態になっている。   The bath reheating heating circuit 94 (FIG. 1 and FIG. 3B) is a circuit for reheating the hot water in the bathtub 36 and has a bath reheating heat exchanger 29. The in-machine circulation pump 23 connected to the outlet side of the secondary refrigerant side heat transfer tube 29 a of the bath reheating heat exchanger 29 supplies water to the water side heat transfer tubes 2 c and 2 d of the water refrigerant heat exchanger 2. The water-side heat transfer tubes 2c and 2d heat water. Heated and heated water (high temperature water) passes through a follow-up electromagnetic valve 27 and a check valve 28 provided in a pipe branched from the hot water supply circuit 92. Here, while the bath reheating heating circuit 94 is in operation, the reheating electromagnetic valve 27 is in an open state.

逆止弁28を経た高温水は、風呂追焚き熱交換器29の2次冷媒側伝熱管29aに流入する。風呂追焚き熱交換器29では、2次冷媒側伝熱管29a内の高温水の流れと浴槽水側伝熱管29b内の湯水の流れとが対向流を形成している。浴槽水側伝熱管29b内の湯水と熱交換した高温水は温度低下して低温水になり、機内循環ポンプ23に流入する。その後、低温水は、給水回路91の逆止弁14の下流側に接続された水管路から水冷媒熱交換器2に戻される。以後、風呂追焚き運転を継続している間中、この風呂追焚き加熱回路94を水が循環する。   The high-temperature water that has passed through the check valve 28 flows into the secondary refrigerant side heat transfer tube 29 a of the bath reheating heat exchanger 29. In the bath reheating heat exchanger 29, the flow of high temperature water in the secondary refrigerant side heat transfer tube 29a and the flow of hot water in the bathtub water side heat transfer tube 29b form a counter flow. The high-temperature water that has exchanged heat with the hot water in the bathtub water-side heat transfer tube 29 b is lowered in temperature to become low-temperature water, and flows into the in-machine circulation pump 23. Thereafter, the low-temperature water is returned to the water / refrigerant heat exchanger 2 from the water pipe connected to the downstream side of the check valve 14 of the water supply circuit 91. Thereafter, water continues to circulate through the bath reheating heating circuit 94 while the bath renewal operation is continued.

風呂追焚き吸熱回路95(図1,図3(b))は、浴槽36内の湯水を加温する回路であり、浴槽36に設けた風呂循環アダプタ36aから浴槽水を、入出湯金具35を通じて風呂追焚き熱交換器29に導く。浴槽36から取り出された浴槽水は、水位センサ34を経て、風呂循環ポンプ33に導かれる。風呂循環ポンプ33は、浴槽水を加圧してフロースイッチ32を介して風呂追焚き熱交換器29に供給する。このとき、風呂湯張り回路93に設けた注湯電磁弁31を閉状態にして、浴槽水を風呂追焚き熱交換器29に導く。浴槽水は、風呂追焚き熱交換器29の浴槽水側伝熱管29bを流通する際に加熱され、入出湯金具37を介して風呂循環アダプタ36aに戻される。   The bath reheating endothermic circuit 95 (FIGS. 1 and 3B) is a circuit for heating hot water in the bathtub 36. The bath water is supplied from the bath circulation adapter 36a provided in the bathtub 36 through the metal fitting 35. Lead to the bath heat exchanger 29. The bathtub water taken out from the bathtub 36 is guided to the bath circulation pump 33 through the water level sensor 34. The bath circulation pump 33 pressurizes the bath water and supplies it to the bath reheating heat exchanger 29 via the flow switch 32. At this time, the pouring solenoid valve 31 provided in the bath hot water filling circuit 93 is closed to guide the bath water to the bath reheating heat exchanger 29. The bath water is heated when flowing through the bath water side heat transfer tube 29 b of the bath reheating heat exchanger 29, and is returned to the bath circulation adapter 36 a via the hot water inlet / outlet fitting 37.

タンク沸き戻し回路96(図1,図3(c))は、水冷媒熱交換器2で加熱した湯を貯湯タンク21に導く回路である。タンク沸き戻し回路96は、貯湯タンク21とこの貯湯タンクに送湯するための機内循環ポンプ23と、第1湯水混合弁16とを含む。タンク沸き戻し回路96を動作させるときは、風呂追焚き加熱回路94が有する追焚き電磁弁27を閉にする。第1湯水混合弁16では、水冷媒熱交換器2側と貯湯タンク21とを連通させる。第2湯水混合弁17では、第1湯水混合弁16と給水側とを遮断する。この状態で、機内循環ポンプ23を運転して、貯湯タンク21内の水を貯湯タンク21の下部21cから水冷媒熱交換器2に供給する。水冷媒熱交換器2で、貯湯タンク21に貯えられた湯水を約60〜90℃に加熱し、第1湯水混合弁16を経て貯湯タンク21の上部21aに戻す。   The tank boiling back circuit 96 (FIGS. 1 and 3C) is a circuit that guides the hot water heated by the water / refrigerant heat exchanger 2 to the hot water storage tank 21. The tank boiling back circuit 96 includes a hot water storage tank 21, an in-machine circulation pump 23 for feeding hot water to the hot water storage tank, and a first hot water mixing valve 16. When the tank boiling back circuit 96 is operated, the reheating electromagnetic valve 27 of the bath reheating heating circuit 94 is closed. The first hot water / water mixing valve 16 allows the water / refrigerant heat exchanger 2 side and the hot water storage tank 21 to communicate with each other. The second hot water / mixing valve 17 shuts off the first hot water / mixing valve 16 and the water supply side. In this state, the in-machine circulation pump 23 is operated to supply the water in the hot water storage tank 21 from the lower part 21 c of the hot water storage tank 21 to the water refrigerant heat exchanger 2. The hot water stored in the hot water storage tank 21 is heated to about 60 to 90 ° C. by the water / refrigerant heat exchanger 2, and returned to the upper portion 21 a of the hot water storage tank 21 through the first hot water / water mixing valve 16.

すると高温の湯が貯湯タンク21上部に貯まることとなり、下部から高温ではない低温の湯が押し出される。貯湯タンク21内の貯湯状態は層分離状態として知られている通りであり、上部から高温,中温,低温と連続的な温度分布となっている。この中温の湯の一部が熱量は十分に残っているが給湯設定温度より温度が低い中温残湯となる。沸き戻し終了は水冷媒熱交換器水出口温度センサ62が所定温度に達したときである。すると中温湯が貯湯タンク21の下部から押し出され、高温の湯が押し出されて沸き戻し終了となる。低温水が押し出された段階では水冷媒熱交換器2内での温度差が大きく、つまり熱交換の効率が良い状態で沸き戻すことができるが、中温湯,高温湯と押し出されるに従って徐々に効率は低下する。   Then, hot water is stored in the upper part of the hot water storage tank 21, and low temperature hot water that is not hot is pushed out from the lower part. The hot water storage state in the hot water storage tank 21 is known as a layer separation state, and has a continuous temperature distribution from the top to high temperature, medium temperature, and low temperature. A part of the medium temperature hot water remains as a medium temperature hot water having a sufficient amount of heat but having a temperature lower than the hot water supply set temperature. The end of the boil-back is when the water refrigerant heat exchanger water outlet temperature sensor 62 reaches a predetermined temperature. Then, the medium hot water is pushed out from the lower part of the hot water storage tank 21 and the hot water is pushed out to complete the reboiling. The temperature difference in the water-refrigerant heat exchanger 2 is large at the stage where the low-temperature water is pushed out, that is, it can be boiled back in a state where the heat exchange efficiency is good. Will decline.

設定温度が60℃(または90℃)沸き戻しにあたっては、例えば、タンク内の殆どが60℃(または90℃)の湯になれば良いので、水冷媒熱交換器水入口温度センサ61で50℃(または60℃)が検出されたら沸き戻し終了とするということが行われる。   When the set temperature is boiled back at 60 ° C. (or 90 ° C.), for example, most of the tank only needs to be hot water of 60 ° C. (or 90 ° C.), so the water refrigerant heat exchanger water inlet temperature sensor 61 When (or 60 ° C.) is detected, the boil-back is finished.

なお、ヒートポンプ冷媒回路90を立ち上げる時などは、ヒートポンプ冷媒回路90の加熱能力が十分でない。そこで、水冷媒熱交換器2が所定の温度で水を加熱できるようになるまで、風呂追焚き加熱回路94を用いて、予熱運転する。具体的には、追焚き電磁弁27を開とし、第1湯水混合弁16の水冷媒熱交換器2側と貯湯タンク21とを遮断する。第2湯水混合弁17の第1湯水混合弁16側と給水側も遮断する。この状態で、機内循環ポンプ23を運転し、水冷媒熱交換器2と風呂追焚き熱交換器29との間を水が循環するようにする。   In addition, when starting up the heat pump refrigerant circuit 90, the heating capability of the heat pump refrigerant circuit 90 is not sufficient. Therefore, a preheating operation is performed using the bath reheating heating circuit 94 until the water refrigerant heat exchanger 2 can heat water at a predetermined temperature. Specifically, the reheating electromagnetic valve 27 is opened, and the water / refrigerant heat exchanger 2 side of the first hot water / mixing valve 16 and the hot water storage tank 21 are shut off. The first hot water mixing valve 16 side and the water supply side of the second hot water mixing valve 17 are also shut off. In this state, the in-machine circulation pump 23 is operated so that water circulates between the water refrigerant heat exchanger 2 and the bath-heating heat exchanger 29.

上記回路を運転する制御装置120の具体的な動作について、以下に説明する。制御装置120は、ヒートポンプ冷媒回路90を運転/停止する。また、圧縮機1a,1bの回転速度や膨張弁3a,3bの開度を制御する。さらに、給湯回路92の湯水混合弁16,17,流量調整弁18等の水関係機器も制御する。   A specific operation of the control device 120 that operates the circuit will be described below. The control device 120 operates / stops the heat pump refrigerant circuit 90. Moreover, the rotational speed of compressor 1a, 1b and the opening degree of expansion valve 3a, 3b are controlled. Further, water-related devices such as the hot and cold mixing valves 16 and 17 and the flow rate adjusting valve 18 of the hot water supply circuit 92 are also controlled.

本実施例に示すヒートポンプ給湯装置100は、ヒートポンプ冷媒回路90の圧縮機1a,1bの吐出側に、圧縮機吐出圧力センサ51a,51bを設けている。さらにヒートポンプ給湯装置100は図示しないものも含めて多数の温度センサを有しており、これらは制御装置120に接続されている。   The heat pump hot water supply apparatus 100 shown in the present embodiment is provided with compressor discharge pressure sensors 51a and 51b on the discharge side of the compressors 1a and 1b of the heat pump refrigerant circuit 90. Furthermore, the heat pump hot water supply device 100 includes a number of temperature sensors including those not shown, and these are connected to the control device 120.

ヒートポンプ冷媒回路90では、圧縮機1a,1bの吐出側に圧縮機吐出温度センサ50a,50bが、蒸発器4a,4bの冷媒入口側には蒸発器冷媒入口温度センサ52a,52bが、冷媒出口側には蒸発器冷媒出口温度センサ53a,53bが、蒸発器4(又はその近傍)には外気温度センサ54a,54bが、それぞれ設けられている。給水回路91では、給水金具11の近傍に給水温度センサ60が、水冷媒熱交換器2の水入口側よりも上流に水冷媒熱交換器水入口温度センサ61がそれぞれ設けられている。給湯回路92では、水冷媒熱交換器2の水出口側よりも下流に水冷媒熱交換器水出口温度センサ62が、第1湯水混合弁16と第2湯水混合弁17との間に混合温度センサ63が、第2湯水混合弁17の下流の給湯ラインに給湯温度センサ64が、貯湯タンク21の側壁には高さ方向に位置を変えて上部から順に複数のタンク温度センサ65a,65b,65cがそれぞれ設けられている。後述するように、タンク温度センサ65aは、沸き戻し運転を行うのに前提となる温度を検出する役目を担う。   In the heat pump refrigerant circuit 90, compressor discharge temperature sensors 50a and 50b are provided on the discharge side of the compressors 1a and 1b, evaporator refrigerant inlet temperature sensors 52a and 52b are provided on the refrigerant inlet side of the evaporators 4a and 4b, and refrigerant outlet side is provided. Are provided with evaporator refrigerant outlet temperature sensors 53a and 53b, and the evaporator 4 (or the vicinity thereof) is provided with outside air temperature sensors 54a and 54b. In the water supply circuit 91, a water supply temperature sensor 60 is provided in the vicinity of the water supply fitting 11, and a water refrigerant heat exchanger water inlet temperature sensor 61 is provided upstream of the water inlet side of the water refrigerant heat exchanger 2. In the hot water supply circuit 92, a water refrigerant heat exchanger water outlet temperature sensor 62 is provided downstream of the water outlet side of the water refrigerant heat exchanger 2, and a mixing temperature between the first hot water mixing valve 16 and the second hot water mixing valve 17. A sensor 63 has a hot water supply temperature sensor 64 in the hot water supply line downstream of the second hot water / water mixing valve 17, and a plurality of tank temperature sensors 65 a, 65 b, 65 c in order from the top, changing the position on the side wall of the hot water storage tank 21. Are provided. As will be described later, the tank temperature sensor 65a serves to detect a temperature that is a prerequisite for performing the boil-back operation.

このように各種センサを配置したヒートポンプ給湯装置100においては、宅内に配置した図示しないリモコンを使用者が使用して所望の給湯温度Twsを設定すると、制御装置120が所望の温度の湯を給湯設備から給湯できるように各弁等を制御する。つまり、制御装置120は第2湯水混合弁17の下流に設けた給湯温度センサ64の目標温度Twbを、設定給湯温度よりα1だけ高い温度(Tws+α1)に設定する。第1湯水混合弁16と第2湯水混合弁17との間に設けた混合温度センサ63の目標温度Twkをこの温度よりもさらにα2だけ高い(Tws+α1+α2)に設定する。水冷媒熱交換器水出口温度センサ62の目標温度Twhはさらに(α3+α4)だけ高い温度(Tws+α1+α2+α3+α4)に設定される。α4については後述する。   In heat pump hot water supply apparatus 100 in which various sensors are arranged in this way, when a user sets a desired hot water supply temperature Tws using a remote controller (not shown) disposed in the house, controller 120 supplies hot water at a desired temperature. Each valve is controlled so that hot water can be supplied. That is, the control device 120 sets the target temperature Twb of the hot water supply temperature sensor 64 provided downstream of the second hot water / water mixing valve 17 to a temperature (Tws + α1) higher by α1 than the set hot water supply temperature. The target temperature Twk of the mixing temperature sensor 63 provided between the first hot water mixing valve 16 and the second hot water mixing valve 17 is set to (Tws + α1 + α2) higher by α2 than this temperature. The target temperature Twh of the water refrigerant heat exchanger water outlet temperature sensor 62 is set to a higher temperature (Tws + α1 + α2 + α3 + α4) by (α3 + α4). α4 will be described later.

ここで、α1〜α3は、以下の理由で設定されている。本実施例では水管路での放熱を考慮して、給湯回路92の上流になればなるほど、水冷媒熱交換器2に近ければ近いほど目標温度を高く設定している。また、外乱等により、水冷媒熱交換器2の水側伝熱管2c,2dの出口温度や、第1湯水混合弁16から流出した湯水の混合温度が多少変動しても、所望の給湯温度より若干高めに温度設定したので、第2湯水混合弁17に流入する湯に混合する水の量を制御することにより、所望の温度に調整できる。その結果、温度変動の少ない給湯を実現できる。   Here, α1 to α3 are set for the following reason. In this embodiment, in consideration of heat radiation in the water pipeline, the target temperature is set higher as the upstream side of the hot water supply circuit 92 becomes closer to the water refrigerant heat exchanger 2. Even if the outlet temperature of the water-side heat transfer tubes 2c, 2d of the water-refrigerant heat exchanger 2 or the mixing temperature of the hot water flowing out of the first hot / cold water mixing valve 16 fluctuates somewhat due to disturbance or the like, the desired hot water supply temperature is exceeded. Since the temperature is set slightly higher, it can be adjusted to a desired temperature by controlling the amount of water mixed with the hot water flowing into the second hot water mixing valve 17. As a result, hot water supply with little temperature fluctuation can be realized.

上記のα4は、貯湯タンク21内の湯水の温度が、混合温度センサ63の目標値より低くなった場合、すなわち、熱量は十分に残っているが温度の低い、利用しにくい貯湯タンク21内の湯を有効に使うため、制御装置120により、以下の条件に基づいて設定される。   The above α4 is when the temperature of the hot water in the hot water storage tank 21 becomes lower than the target value of the mixing temperature sensor 63, that is, the amount of heat remaining in the hot water storage tank 21 is low but the temperature is low. In order to use hot water effectively, it is set by the control device 120 based on the following conditions.

図4のフローチャートを用いて説明する。貯湯タンク21上部に設けられたタンク温度センサ65aの温度Twuが、給水温度センサ60の温度Twi+補正値β以下の場合(130Y)、すなわち、貯湯タンク21内に利用できる熱量が残っていないと判断する場合、
α4=0 …(式1)
と設定する(131)。ここで、補正値βは、貯湯タンク21内の熱量の有無判定のための補正値である。
This will be described with reference to the flowchart of FIG. When the temperature Twu of the tank temperature sensor 65a provided in the upper part of the hot water storage tank 21 is equal to or lower than the temperature Twi of the feed water temperature sensor 60 + the correction value β (130Y), that is, it is determined that there is no heat quantity available in the hot water storage tank 21. If you want to
α4 = 0 (Formula 1)
Is set (131). Here, the correction value β is a correction value for determining the presence or absence of the amount of heat in the hot water storage tank 21.

一方、タンク温度センサ65aの温度Twuが、給水温度センサ60の温度Twi+補正値βより高い場合(130N)、すなわち、貯湯タンク21内に必要な熱量が残っている場合は、以下の条件で、α4が設定される。貯湯タンク21のタンク温度センサ65aの温度Twuが混合温度センサ63の目標値Twkより高い場合(132Y)、すなわち、貯湯タンク21内に十分高い温度の湯水がある場合、
α4=0 …(式2)
と設定する(133)。
On the other hand, when the temperature Twu of the tank temperature sensor 65a is higher than the temperature Twi of the feed water temperature sensor 60 + the correction value β (130N), that is, when the necessary amount of heat remains in the hot water storage tank 21, the following conditions are satisfied. α4 is set. When the temperature Twu of the tank temperature sensor 65a of the hot water storage tank 21 is higher than the target value Twk of the mixing temperature sensor 63 (132Y), that is, when there is hot water at a sufficiently high temperature in the hot water storage tank 21,
α4 = 0 (Formula 2)
Is set (133).

他方、タンク温度センサ65aの温度Twuが混合温度センサ63の目標値Twk以下の場合(132N)、すなわち、貯湯タンク21内に温度は十分高くないが、必要な熱量が残っている場合、
α4=(Twk−Twu)×k …(式3)
と設定する(134)。
On the other hand, when the temperature Twu of the tank temperature sensor 65a is equal to or lower than the target value Twk of the mixed temperature sensor 63 (132N), that is, the temperature is not sufficiently high in the hot water storage tank 21, but the necessary amount of heat remains.
α4 = (Twk−Twu) × k (Formula 3)
Is set (134).

ここで、係数kは、水冷媒熱交換器2からの湯水と貯湯タンク21からの湯水との混合比率を設定するための係数である。例えば、k=0.25 とすると、水冷媒熱交換器水出口温度センサ62の目標温度Twhを、α4=0の通常の場合に比べて、混合温度センサ63の目標値Twkとタンク温度センサ65aの温度Twuとの温度差の4分の1、高く設定することになる。   Here, the coefficient k is a coefficient for setting the mixing ratio of the hot water from the water-refrigerant heat exchanger 2 and the hot water from the hot water storage tank 21. For example, when k = 0.25, the target temperature Twh of the water / refrigerant heat exchanger water outlet temperature sensor 62 is set to the target value Twk of the mixed temperature sensor 63 and the tank temperature sensor 65a as compared with the normal case of α4 = 0. The temperature difference from the temperature Twu is set to a quarter of the temperature difference.

このとき、水冷媒熱交換器水出口温度センサ62の温度が目標温度Twhとなっている場合、α3は微小量のため無視すると、図6に示した温度の関係である式(100)〜(300)が成り立つ。先ず、水冷媒熱交換器2からの湯水(温度Twh)と、貯湯タンク21からの湯(温度Twu)とを混合して、混合湯(温度Twk)を得るには式(100)が成り立つ。また、前述したように式(200)が前提となる。これらから式(300)が得られ、水冷媒熱交換器2からの湯水と貯湯タンク21からの湯水の混合比率は、k=0.25のとき、4対1となる。なお、図中xは水冷媒熱交換器2からの流量比率を表している。   At this time, when the temperature of the water-refrigerant heat exchanger water outlet temperature sensor 62 is the target temperature Twh, if α3 is neglected because it is a minute amount, the equations (100) to (100) to (100) to ( 300) holds. First, the hot water (temperature Twh) from the water-refrigerant heat exchanger 2 and the hot water (temperature Twu) from the hot water storage tank 21 are mixed to obtain mixed hot water (temperature Twk). Further, as described above, the formula (200) is assumed. From these, equation (300) is obtained, and the mixing ratio of hot water from the water-refrigerant heat exchanger 2 and hot water from the hot water storage tank 21 is 4 to 1 when k = 0.25. In the figure, x represents the flow rate ratio from the water-refrigerant heat exchanger 2.

このように水冷媒熱交換器2からの湯水の方が、貯湯タンク21からの湯水よりも多くなるように係数kを設定するので、給湯中、タンク温度センサ65aの温度Twuが、給水温度センサ60の温度Twi+補正値β以下になった場合、すなわち、貯湯タンク21内に必要な熱量がなくなり、貯湯タンク21からの湯水の供給がなくなった場合でも、一時的な給湯湯量の低減を最小限に抑えることができる。   In this way, the coefficient k is set so that the amount of hot water from the water-refrigerant heat exchanger 2 is greater than the amount of hot water from the hot water storage tank 21, so that during the hot water supply, the temperature Twu of the tank temperature sensor 65a is the water temperature sensor. Even when the temperature Twi of 60 is equal to or less than the correction value β, that is, when there is no necessary amount of heat in the hot water storage tank 21 and no hot water is supplied from the hot water storage tank 21, a temporary reduction in the amount of hot water is minimized. Can be suppressed.

図4は水冷媒熱交換器の水出口温度目標値への加算値α4を設定するフローチャートで、図5は第1湯水混合弁の開度Ftを設定するフローチャートである。α4とFtはそれぞれ所定の温度から独立に設定される。   FIG. 4 is a flowchart for setting the addition value α4 to the water outlet temperature target value of the water / refrigerant heat exchanger, and FIG. 5 is a flowchart for setting the opening degree Ft of the first hot / cold water mixing valve. α4 and Ft are set independently from a predetermined temperature.

次に、第1湯水混合弁16の開度制御の詳細について説明する。図5のフローチャートを用いて説明する。第1湯水混合弁16の開度Ftは、第1湯水混合弁16の全流量に対する水冷媒熱交換器2側の流量の比率(%)で表す。0%が貯湯タンク21側の開度全開、100%が水冷媒熱交換器2側の開度全開を示す。まず、タンク温度センサ65aの温度Twuが(給水温度センサ60の温度Twi+補正値β)以下になった場合(138Y)、すなわち、貯湯タンク21内に必要な熱量がなくなった場合、第1湯水混合弁16の開度Ftを
Ft=100 …(式4)
と設定し(139)、貯湯タンク21内の湯水の供給をやめる。
Next, the details of the opening degree control of the first hot water mixing valve 16 will be described. This will be described with reference to the flowchart of FIG. The opening degree Ft of the first hot / cold water mixing valve 16 is expressed as a ratio (%) of the flow rate on the water refrigerant heat exchanger 2 side to the total flow rate of the first hot / cold water mixing valve 16. 0% indicates the fully open degree on the hot water storage tank 21 side, and 100% indicates the fully open degree on the water refrigerant heat exchanger 2 side. First, when the temperature Twu of the tank temperature sensor 65a is equal to or lower than (temperature Twi of the feed water temperature sensor 60 + correction value β) (138Y), that is, when the necessary amount of heat is exhausted in the hot water storage tank 21, the first hot water mixing is performed. The opening degree Ft of the valve 16 is Ft = 100 (Equation 4)
(139), and the hot water supply in the hot water storage tank 21 is stopped.

タンク温度センサ65aの温度Twuが、給水温度センサ60の温度Twi+補正値βより高い場合(138N)、すなわち、貯湯タンク21内に必要な熱量がある場合について以下に説明する。水冷媒熱交換器2の水出口温度センサ62の温度Twoが貯湯タンク21の上部のタンク温度センサ65aの温度Twu以上の場合(140Y)、以下の条件ごとに第1湯水混合弁16の開度Ftを設定する。   A case where the temperature Twu of the tank temperature sensor 65a is higher than the temperature Twi + correction value β of the feed water temperature sensor 60 (138N), that is, a case where there is a necessary amount of heat in the hot water storage tank 21 will be described below. When the temperature Two of the water outlet temperature sensor 62 of the water-refrigerant heat exchanger 2 is equal to or higher than the temperature Twu of the tank temperature sensor 65a at the upper part of the hot water storage tank 21 (140Y), the opening degree of the first hot water / water mixing valve 16 for each of the following conditions: Set Ft.

タンク温度センサ65aの温度Twuが混合温度センサ63の目標値Twk以上の場合(141Y)、すなわち、Two≧Twu≧Twkの場合、
Ft=100 …(式5)
と設定する(142)。このとき、水冷媒熱交換器2からの湯水の温度、および、貯湯タンク21内の湯水の温度が混合温度の目標値以上のため、貯湯タンク21内の湯水は使わず、水冷媒熱交換器2からの湯水のみ使用し、この目標値より温度が高い分は、下流の第2湯水混合弁17で水を混合することにより、所望の温度の湯水を給湯口から供給する。つまり、貯湯タンク21内の湯を利用するまでもない場合である。
When the temperature Twu of the tank temperature sensor 65a is equal to or higher than the target value Twk of the mixed temperature sensor 63 (141Y), that is, when Two ≧ Twu ≧ Twk,
Ft = 100 (Formula 5)
Is set (142). At this time, since the temperature of the hot water from the water refrigerant heat exchanger 2 and the temperature of the hot water in the hot water storage tank 21 are equal to or higher than the target value of the mixing temperature, the hot water in the hot water storage tank 21 is not used and the water refrigerant heat exchanger is used. Only hot water from 2 is used, and when the temperature is higher than this target value, hot water at a desired temperature is supplied from the hot water supply port by mixing the water with the second hot water mixing valve 17 downstream. That is, there is no need to use hot water in the hot water storage tank 21.

次に、混合温度センサ63の目標値Twkが水冷媒熱交換器水出口温度センサ62の温度Two以上の場合(143Y)、すなわち、Twk≧Two≧Twuの場合、
Ft=100 …(式6)
と設定する(144)。このとき、水冷媒熱交換器2からの湯水の温度、および、貯湯タンク21内の湯水の温度ともに、混合温度の目標値以下であるが、水冷媒熱交換器2からの湯水の温度が貯湯タンク21内の湯水の温度以上あるため、水冷媒熱交換器2からの湯水のみ使用する。つまり、貯湯タンク21内の湯水は利用できないし、利用してもしょうがない場合である。
Next, when the target value Twk of the mixed temperature sensor 63 is equal to or higher than the temperature Two of the water refrigerant heat exchanger water outlet temperature sensor 62 (143Y), that is, when Twk ≧ Two ≧ Twu,
Ft = 100 (Formula 6)
Is set (144). At this time, the temperature of the hot water from the water-refrigerant heat exchanger 2 and the temperature of the hot water in the hot water storage tank 21 are both equal to or lower than the target value of the mixing temperature. Since the temperature is higher than the temperature of hot water in the tank 21, only hot water from the water-refrigerant heat exchanger 2 is used. That is, the hot water in the hot water storage tank 21 cannot be used and cannot be used.

次に、混合温度センサ63の目標値Twkが水冷媒熱交換器水出口温度センサ62の温度Two未満の場合(143N)、すなわち、Two>Twk>Twuの場合、
Ft=(Twu−Twk)/(Twu−Two)×100 …(式7)
と設定する(145)。このとき、混合温度の目標値より温度の高い水冷媒熱交換器2からの湯水と、混合温度の目標値より温度の低い貯湯タンク21内の湯水とを混合する。つまり、水の代わりに貯湯タンク21の湯でぬるめて調温するという使い方をする。これは、前述した水冷媒熱交換器水出口温度センサ62の目標温度Twhを通常より高く設定する場合(図4のステップ134)と一緒になって、実行される。これにより、熱量は十分に残っているが温度の低い、利用しにくい貯湯タンク21内の湯を有効に使うことができる。
Next, when the target value Twk of the mixed temperature sensor 63 is lower than the temperature Two of the water refrigerant heat exchanger water outlet temperature sensor 62 (143N), that is, when Two>Twk> Twu,
Ft = (Twu−Twk) / (Twu−Two) × 100 (Expression 7)
Is set (145). At this time, hot water from the water-refrigerant heat exchanger 2 whose temperature is higher than the target value of the mixing temperature and hot water in the hot water storage tank 21 whose temperature is lower than the target value of the mixing temperature are mixed. That is, the temperature is adjusted by simmering with hot water in the hot water storage tank 21 instead of water. This is executed together with the case where the target temperature Twh of the water refrigerant heat exchanger water outlet temperature sensor 62 is set higher than usual (step 134 in FIG. 4). As a result, the hot water in the hot water storage tank 21 that has a sufficient amount of heat but has a low temperature and is difficult to use can be used effectively.

一方、水冷媒熱交換器2の水出口温度センサ62の温度Twoが貯湯タンク21の上部のタンク温度センサ65aの温度Twu未満の場合(140N)、以下の条件ごとに第1湯水混合弁16の開度Ftを設定する。混合温度センサ63の目標値Twkがタンク温度センサ65aの温度Twu以上の場合(146Y)、すなわち、Twk≧Twu>Twoの場合であり、
Ft=10 …(式8)
と設定する。このとき、貯湯タンク21内の湯水の温度が混合温度の目標値以下であるが、水冷媒熱交換器2からの湯水の温度より高いため、貯湯タンク21内の湯水を優先して使う。つまり、貯湯タンク21の湯の温度が低くても、水冷媒熱交換器2が立ち上がるまでは貯湯タンク21の湯で我慢するという使い方である。ここで、水冷媒熱交換器2からの湯水より温度の高い貯湯タンク21側の湯水を全流量流す(Ft=0%)のではなく、水冷媒熱交換器2側の湯水を小流量(10%)流すようにした理由は、ヒートポンプ冷媒回路90に小流量でも常に給湯負荷を与えることにより、ヒートポンプ冷媒回路90の運転の安定化を図るためである。Ft=0%として、水冷媒熱交換器2内の水を止めてしまうと、ヒートポンプ冷媒回路90で発生した熱を除去する負荷がなくなってしまい、水冷媒熱交換器2の冷媒側が想定以上の高温高圧になるという不具合が生じる虞があるからである。従って、小流量とは不具合が生じない量であって、貯湯タンクから出湯する湯の量以下であれば良く、ここではFt≦20%であれば良いものとする。
On the other hand, when the temperature Two of the water outlet temperature sensor 62 of the water-refrigerant heat exchanger 2 is lower than the temperature Twu of the tank temperature sensor 65a in the upper part of the hot water storage tank 21 (140N), the first hot water mixing valve 16 is turned on for each of the following conditions. The opening degree Ft is set. When the target value Twk of the mixed temperature sensor 63 is equal to or higher than the temperature Twu of the tank temperature sensor 65a (146Y), that is, when Twk ≧ Twu> Two,
Ft = 10 (Formula 8)
And set. At this time, the temperature of the hot water in the hot water storage tank 21 is equal to or lower than the target value of the mixing temperature, but is higher than the temperature of the hot water from the water-refrigerant heat exchanger 2, so the hot water in the hot water storage tank 21 is used preferentially. That is, even if the temperature of the hot water in the hot water storage tank 21 is low, the hot water in the hot water storage tank 21 is used until the water refrigerant heat exchanger 2 starts up. Here, the hot water on the hot water storage tank 21 side having a higher temperature than the hot water from the water refrigerant heat exchanger 2 is not flowed at all (Ft = 0%), but the hot water on the water refrigerant heat exchanger 2 side is flowed at a small flow rate (10 %) The reason for flowing is to stabilize the operation of the heat pump refrigerant circuit 90 by constantly applying a hot water supply load to the heat pump refrigerant circuit 90 even at a small flow rate. If Ft = 0% and the water in the water refrigerant heat exchanger 2 is stopped, the load for removing the heat generated in the heat pump refrigerant circuit 90 is lost, and the refrigerant side of the water refrigerant heat exchanger 2 is more than expected. This is because there is a risk that a high temperature and high pressure may occur. Therefore, the small flow rate is an amount that does not cause a problem and may be equal to or less than the amount of hot water discharged from the hot water storage tank, and here, Ft ≦ 20%.

次に、水冷媒熱交換器水出口温度センサ62の温度Twoが混合温度センサ63の目標値Twk以上の場合(148Y)、すなわち、Twu>Two≧Twkの場合、
Ft=100 …(式9)
と設定する(149)。このとき、前述のステップ141Y,142と同様に、水冷媒熱交換器2からの湯水の温度、および、貯湯タンク21内の湯水の温度が混合温度の目標値以上のため、貯湯タンク21内の湯水は使わず、水冷媒熱交換器2からの湯水のみ使用し、この目標値より温度が高い分は、下流の第2湯水混合弁17で水を混合することにより、所望の温度の湯水を供給する。
Next, when the temperature Two of the water refrigerant heat exchanger water outlet temperature sensor 62 is equal to or higher than the target value Twk of the mixing temperature sensor 63 (148Y), that is, when Twu> Two ≧ Twk,
Ft = 100 (Formula 9)
Is set (149). At this time, similarly to the above-described steps 141Y and 142, the temperature of the hot water from the water / refrigerant heat exchanger 2 and the temperature of the hot water in the hot water storage tank 21 are equal to or higher than the target value of the mixing temperature. Hot water is not used, only hot water from the water-refrigerant heat exchanger 2 is used. When the temperature is higher than this target value, water is mixed by the second hot water mixing valve 17 downstream, so that hot water having a desired temperature is mixed. Supply.

最後に、水冷媒熱交換器水出口温度センサ62の温度Twoが混合温度センサ63の目標値Twk未満の場合(148N)、すなわち、Twu>Twk>Twoの場合、
Ft=(Twu−Twk)/(Twu−Two)×100 …(式10)
と設定する(150)。このとき、混合温度の目標値より温度の高い貯湯タンク21湯水と、混合温度の目標値より温度の低い水冷媒熱交換器2からの湯水とを混合する。例えば、ヒートポンプ冷媒回路90の立ち上がり時に、貯湯タンク21内の湯水の温度が十分高く、水冷媒熱交換器2からの湯水が、制御装置120が設定した所定の目標温度Twhに達していない場合に実行される。つまり、水冷媒熱交換器2が立ち上がるまで貯湯タンク21を用いて応答性を改善するという使い方である。また、別の見方をすれば、貯湯タンク21からの出湯を水冷媒熱交換器2からの湯水でぬるめるという使い方である。
Finally, when the temperature Two of the water refrigerant heat exchanger water outlet temperature sensor 62 is lower than the target value Twk of the mixing temperature sensor 63 (148N), that is, when Twu>Twk> Two,
Ft = (Twu−Twk) / (Twu−Two) × 100 (Equation 10)
Is set (150). At this time, the hot water storage tank 21 hot water having a temperature higher than the target value of the mixing temperature and the hot water from the water-refrigerant heat exchanger 2 having a temperature lower than the target value of the mixing temperature are mixed. For example, when the heat pump refrigerant circuit 90 starts up, the temperature of the hot water in the hot water storage tank 21 is sufficiently high, and the hot water from the water refrigerant heat exchanger 2 has not reached the predetermined target temperature Twh set by the control device 120. Executed. That is, the responsiveness is improved by using the hot water storage tank 21 until the water refrigerant heat exchanger 2 is started up. From another point of view, the hot water from the hot water storage tank 21 is warmed with hot water from the water-refrigerant heat exchanger 2.

ヒートポンプ冷媒回路90を動作させるときは、制御装置120が圧縮機1a,1bを回転速度制御する。水冷媒熱交換器2を含む冷媒循環系の熱容量が大きいので、圧縮機1a,1bの回転速度を変化させても、水冷媒熱交換器2の水出口温度はすぐには変化せず、この水出口温度の応答速度が遅い。そこで、水冷媒熱交換器2の水出口温度と関係する特性であって、応答速度の速い圧縮機1a,1bの吐出圧力を制御目標に定める。瞬間式ヒートポンプ給湯装置ではヒートポンプ冷媒回路90の立ち上がりが遅いと、貯湯タンクからの湯水の供給量が増えるという課題がある。そこで以下のようにして、立ち上がり特性を改善する。   When operating the heat pump refrigerant circuit 90, the control device 120 controls the rotational speed of the compressors 1a and 1b. Since the heat capacity of the refrigerant circulation system including the water-refrigerant heat exchanger 2 is large, the water outlet temperature of the water-refrigerant heat exchanger 2 does not change immediately even if the rotation speed of the compressors 1a, 1b is changed. The response speed of the water outlet temperature is slow. Therefore, the discharge pressures of the compressors 1a and 1b, which are characteristics related to the water outlet temperature of the water-refrigerant heat exchanger 2 and have a fast response speed, are determined as control targets. In the instantaneous heat pump hot water supply device, there is a problem that if the heat pump refrigerant circuit 90 rises slowly, the amount of hot water supplied from the hot water storage tank increases. Therefore, the rise characteristic is improved as follows.

圧縮機1a,1bの吐出圧力は、水冷媒熱交換器2の水出口温度が高いほど、高い。目標吐出圧力Pd0は、水冷媒熱交換器2の水出口温度目標値Twh(=Tws+α1+α2+α3+α4)の関数で(式11)のように表される。   The discharge pressure of the compressors 1a and 1b is higher as the water outlet temperature of the water-refrigerant heat exchanger 2 is higher. The target discharge pressure Pd0 is expressed as (Equation 11) as a function of a water outlet temperature target value Twh (= Tws + α1 + α2 + α3 + α4) of the water-refrigerant heat exchanger 2.

Pd0=f(Twh) …(式11)
目標吐出圧力Pd0と実際の吐出圧力Pdとの偏差ΔEpd(=Pd0−Pd)が0となるように、圧縮機1a,1bの回転速度を制御する。その際、例えば、偏差ΔEpdおよび(偏差ΔEpd−前回偏差ΔEpd)の関数として、圧縮機1a,1bの回転速度を増減する。
Pd0 = f (Twh) (Formula 11)
The rotational speeds of the compressors 1a and 1b are controlled so that the deviation ΔEpd (= Pd0−Pd) between the target discharge pressure Pd0 and the actual discharge pressure Pd becomes zero. At this time, for example, the rotational speeds of the compressors 1a and 1b are increased or decreased as a function of the deviation ΔEpd and (deviation ΔEpd−previous deviation ΔEpd).

ヒートポンプ冷媒回路90を流れる水流量の影響により、実際の吐出圧力Pdが目標吐出圧力Pd0に到達していても、水冷媒熱交換器2の水出口温度が目標値からずれていることも予想されるので、水冷媒熱交換器2の水出口温度が目標値Twhに近づくように、目標吐出圧力Pd0を随時補正する。   Even if the actual discharge pressure Pd has reached the target discharge pressure Pd0 due to the influence of the flow rate of water flowing through the heat pump refrigerant circuit 90, the water outlet temperature of the water refrigerant heat exchanger 2 is also expected to deviate from the target value. Therefore, the target discharge pressure Pd0 is corrected as needed so that the water outlet temperature of the water-refrigerant heat exchanger 2 approaches the target value Twh.

すなわち、制御装置120は、圧縮機1a,1bを回転速度制御するときは、使用者の蛇口等の開度で決定される流量に基づいて、水冷媒熱交換器2の水出口温度が、目標値Twhになるように制御する。なお、目標値Twhは、リモコンで設定される給湯温度Twsに基づいて設定される。また、第1のヒートポンプ冷媒回路90aの冷凍サイクルが過熱度制御されるように、膨張弁3aの開度を制御する。具体的には、蒸発器4aの冷媒出口温度と冷媒入口温度の温度差である過熱度が、所定値となるように膨張弁3aの開度を制御する。第2のヒートポンプ冷媒回路90bの冷凍サイクルについても同様である。   That is, when the control device 120 controls the rotation speed of the compressors 1a and 1b, the water outlet temperature of the water-refrigerant heat exchanger 2 is determined based on the flow rate determined by the opening of the user's faucet or the like. Control is performed so as to have the value Twh. Target value Twh is set based on hot water supply temperature Tws set by the remote controller. Further, the opening degree of the expansion valve 3a is controlled so that the degree of superheat of the refrigeration cycle of the first heat pump refrigerant circuit 90a is controlled. Specifically, the opening degree of the expansion valve 3a is controlled so that the degree of superheat that is the temperature difference between the refrigerant outlet temperature and the refrigerant inlet temperature of the evaporator 4a becomes a predetermined value. The same applies to the refrigeration cycle of the second heat pump refrigerant circuit 90b.

ヒートポンプ冷媒回路90a,90bの過熱度を変更することにより、冷凍サイクルの状態を変更することができる。したがって、所定の過熱度になるように膨張弁の開度を制御することにより、エネルギー効率の高い冷凍サイクル状態を維持することができる。   The state of the refrigeration cycle can be changed by changing the degree of superheat of the heat pump refrigerant circuits 90a and 90b. Therefore, the refrigeration cycle state with high energy efficiency can be maintained by controlling the opening degree of the expansion valve so as to achieve a predetermined degree of superheat.

以下、ヒートポンプ給湯装置100の動作について、典型的な3つの例について説明する。   Hereinafter, three typical examples of the operation of the heat pump water heater 100 will be described.

1番目の例は、例えば、タンク沸き戻し運転後、比較的早い段階(高温湯がたっぷりある段階)での給湯に関するものであり、立ち上がり時と立ち上がり後ともに、貯湯タンク21内に十分に温度の高い湯水がある場合である。   The first example relates to hot water supply at a relatively early stage (stage where there is plenty of high-temperature hot water) after the tank boiling-back operation, for example. This is when there is high hot water.

2番目の例は、例えば、タンク沸き戻し運転後、給湯を数回行い、貯湯タンク21内の高温の湯が少なくなってきた場合に発生するものであり、立ち上がり時、貯湯タンク21内に温度の高い湯水があったが、立ち上がり後、貯湯タンク21内に熱量は十分残っているが給湯設定温度よりも温度の低い湯水(中温残湯)になってしまった場合である。   The second example occurs, for example, when hot water is supplied several times after the tank boiling-back operation, and the hot water in the hot water storage tank 21 becomes low. This is a case where, after rising, hot water has remained in the hot water storage tank 21 after starting up, but has become hot water (intermediate hot water) whose temperature is lower than the set hot water temperature.

3番目の例は、例えば、タンク沸き戻し運転後、時間の経過により放熱し、貯湯タンク21内の湯の温度が低くなったとき、つまり中温残湯になってしまった場合に発生するものであり、立ち上がり時、貯湯タンク21内に高温湯が無く中温残湯がある場合である。   The third example occurs, for example, when the heat is radiated over time after the tank boil-back operation and the temperature of the hot water in the hot water storage tank 21 is lowered, that is, when the hot water is in the middle temperature. There is no hot water in the hot water storage tank 21 at the time of start-up, and there is intermediate hot water.

先ず、1番目の例である、立ち上がり時と立ち上がり後ともに、貯湯タンク21内に十分に温度の高い湯水がある場合について前出の図1〜図5を用いて説明する。   First, a case where hot water having a sufficiently high temperature is present in the hot water storage tank 21 both at the time of rising and after the rising will be described with reference to FIGS.

図示しないリモコンで使用者の所望の給湯温度Twsが設定され、給湯金具19に接続された図示しない蛇口が開栓されると、水道圧により給水金具11から流入した上水が、減圧弁12および給水流量センサ13,逆止弁14,水冷媒熱交換器流量センサ15,水冷媒熱交換器2,第1湯水混合弁16,第2湯水混合弁17,流量調整弁18,給湯金具19を順次経て、蛇口から流出する。この回路を瞬間回路と称する。その際、制御装置120は、瞬間回路に設けた給水流量センサ13で水流を検出し、ヒートポンプ冷媒回路90の圧縮機1a,1bを起動する。   When a user-desired hot water supply temperature Tws is set by a remote controller (not shown) and a faucet (not shown) connected to the hot water fitting 19 is opened, the water flowing in from the water fitting 11 by the water pressure is supplied to the pressure reducing valve 12 and Water supply flow sensor 13, check valve 14, water refrigerant heat exchanger flow sensor 15, water refrigerant heat exchanger 2, first hot / cold water mixing valve 16, second hot / cold water mixing valve 17, flow rate adjusting valve 18, and hot water supply fitting 19 are sequentially provided. After that, it flows out of the faucet. This circuit is called an instantaneous circuit. In that case, the control apparatus 120 detects a water flow with the feed water flow sensor 13 provided in the instantaneous circuit, and starts the compressors 1a and 1b of the heat pump refrigerant circuit 90.

このとき、水冷媒熱交換器2の水出口温度目標値Twhを設定するためのα4は、α4=0と設定する。つまり、図4のフローチャートにおいて、貯湯タンク21内に十分高い温度の湯水がある場合、すなわち、貯湯タンク21のタンク温度センサ65aの温度Twuが混合温度センサ63の目標値Twkより高い場合であるので(132Y)、α4=0(131)に設定され、水冷媒熱交換器2の水出口温度目標値Twhは、給湯設定温度Twsに各配管での放熱量等を考慮した温度上昇量α1〜α3のみが加算される。   At this time, α4 for setting the water outlet temperature target value Twh of the water-refrigerant heat exchanger 2 is set to α4 = 0. That is, in the flowchart of FIG. 4, there is a case where there is hot water having a sufficiently high temperature in the hot water storage tank 21, that is, a case where the temperature Twu of the tank temperature sensor 65 a of the hot water storage tank 21 is higher than the target value Twk of the mixed temperature sensor 63. (132Y), α4 = 0 (131) is set, and the water outlet temperature target value Twh of the water-refrigerant heat exchanger 2 is a temperature rise amount α1 to α3 in consideration of the heat dissipation amount in each pipe with respect to the hot water supply set temperature Tws. Only is added.

圧縮機1a,1bの起動後、ヒートポンプ冷媒回路90が立ち上がるまでは、水冷媒熱交換器2からの湯水の温度Twoは、制御装置120が設定した目標値Twhに達していない。そこで、図5のフローチャートにおいて、(タンク温度センサ65aの温度Twu>混合温度センサ63の目標値Twk>水出口温度センサ62の温度Two)の場合であるので(148N)、制御装置120は、混合温度センサ63の温度が目標温度Twk(=Tws+α1+α2)になるように第1湯水混合弁16の開度Ftを(式10)(ステップ150)に設定,調整する。さらに、下流の給湯温度センサ64の温度が目標温度Twb(=Tws+α1)になるように、第2湯水混合弁17で混合させる水量を、制御装置120が制御する。これにより、蛇口には適温の湯が供給される。   The temperature Two of hot water from the water / refrigerant heat exchanger 2 does not reach the target value Twh set by the control device 120 until the heat pump refrigerant circuit 90 starts up after the compressors 1a and 1b are started. Therefore, in the flowchart of FIG. 5, since (temperature Twu of the tank temperature sensor 65a> target value Twk of the mixing temperature sensor 63> temperature Two of the water outlet temperature sensor 62) (148N), the control device 120 performs mixing. The opening Ft of the first hot water / water mixing valve 16 is set and adjusted to (Equation 10) (step 150) so that the temperature of the temperature sensor 63 becomes the target temperature Twk (= Tws + α1 + α2). Furthermore, the control device 120 controls the amount of water mixed by the second hot water / water mixing valve 17 so that the temperature of the downstream hot water supply temperature sensor 64 becomes the target temperature Twb (= Tws + α1). Thereby, hot water of appropriate temperature is supplied to the faucet.

圧縮機1a,1b起動後、時間が経過するにつれてヒートポンプ冷媒回路90の加熱能力が徐々に増加し、水冷媒熱交換器2の水出口温度センサ62の温度Twoが上昇する。このとき、制御装置120は、第1湯水混合弁16の開度Ftを(式10)に基づいて設定するので、開度Ftは増加する。何故なら、貯湯タンク21内に十分に温度の高い湯水があるため、Twuは一定と考えることができ、目標温度Twkも一定と考えることができるからであって、分子は一定であり、Twoが増えれば、(式10)の分母が小さくなるからである。   As the time elapses after the compressors 1a and 1b are started, the heating capacity of the heat pump refrigerant circuit 90 gradually increases, and the temperature Two of the water outlet temperature sensor 62 of the water refrigerant heat exchanger 2 increases. At this time, since the control device 120 sets the opening degree Ft of the first hot water / water mixing valve 16 based on (Equation 10), the opening degree Ft increases. This is because the hot water in the hot water storage tank 21 has a sufficiently high temperature so that Twu can be considered constant and the target temperature Twk can also be considered constant. The numerator is constant, and Two is This is because the denominator of (Equation 10) decreases as the number increases.

その結果、第1湯水混合弁16では水冷媒熱交換器2側の流量が徐々に増加し、貯湯タンク21側の流量が徐々に減少する。水冷媒熱交換器2の水出口温度センサ62の温度Twoが目標値Twhに達すると、混合温度センサ63の検出値がTwkになったと考えることができ(図5の148Y)、第1湯水混合弁16の開度Ftを100%とし(149)、貯湯タンク21側からの湯水の供給を止める。このとき、貯湯タンク21内には十分に温度の高い湯水が残っていて、ヒートポンプ冷媒回路90側からだけ連続給湯する。   As a result, in the first hot water / water mixing valve 16, the flow rate on the water / refrigerant heat exchanger 2 side gradually increases, and the flow rate on the hot water storage tank 21 side gradually decreases. When the temperature Two of the water outlet temperature sensor 62 of the water-refrigerant heat exchanger 2 reaches the target value Twh, it can be considered that the detected value of the mixing temperature sensor 63 becomes Twk (148Y in FIG. 5), and the first hot water mixing The opening degree Ft of the valve 16 is set to 100% (149), and the supply of hot water from the hot water storage tank 21 side is stopped. At this time, hot water with a sufficiently high temperature remains in the hot water storage tank 21, and the hot water is continuously supplied only from the heat pump refrigerant circuit 90 side.

給湯端末が閉じられたことを給水流量センサ13が検出した場合、貯湯タンク21の温度センサ65aの温度から、貯湯タンク21内には十分に温度の高い湯水が残っていると判断して、タンク沸き戻し運転を行わず、圧縮機1a,1bを停止する。   When the hot water supply flow rate sensor 13 detects that the hot water supply terminal is closed, it is determined from the temperature of the temperature sensor 65a of the hot water storage tank 21 that hot water with a sufficiently high temperature remains in the hot water storage tank 21, and the tank The compressors 1a and 1b are stopped without performing the boil-back operation.

次に、2番目の例である、立ち上がり時、貯湯タンク21内に温度の高い湯水があったが、立ち上がり後、貯湯タンク21内に熱量は十分残っているが温度の低い湯水になってしまった場合について説明する。この場合、前述の立ち上がり時と立ち上がり後ともに、貯湯タンク21内に十分に温度の高い湯水がある1番目の例の場合と、立ち上がり時の動作は同じであるので、立ち上がり時の動作についての説明は省略する。   Next, in the second example, hot water was hot in the hot water storage tank 21 at the time of start-up, but after heat up, a sufficient amount of heat remained in the hot water storage tank 21, but it became hot water with low temperature. The case will be described. In this case, since the operation at the time of rising is the same as that in the first example in which hot water having a sufficiently high temperature is present in the hot water storage tank 21 both at the time of rising and after the rising, the operation at the time of rising will be described. Is omitted.

ヒートポンプ冷媒回路90が立ち上がり、加熱能力が徐々に増加し、水冷媒熱交換器2の水出口温度センサ62の検出値が目標値Twhに達すると、混合温度センサ63の検出値がTwkになったと考えることができ、貯湯タンク21側からの湯水の供給を一旦止める。このとき、制御装置120は、貯湯タンク21の上部のタンク温度センサ65aの温度Twuが、混合温度センサ63の目標値Twk以下になった場合(図4の132N)、水冷媒熱交換器2の水出口温度目標値Twhを設定するためのα4を(式3)に基づいて設定する(134)。これにより、水出口温度目標値Twhは、(式3)で表される値α4だけ高く設定され、これに伴い、(式11)で表される圧縮機1a,1bの目標吐出圧力Pd0も高くされるため、実際の吐出圧力Pdが目標吐出圧力Pd0となるように、圧縮機1a,1bの回転速度が増速され、水冷媒熱交換器2の水出口温度Twoも上昇する。   When the heat pump refrigerant circuit 90 starts up, the heating capacity gradually increases, and the detection value of the water outlet temperature sensor 62 of the water refrigerant heat exchanger 2 reaches the target value Twh, the detection value of the mixed temperature sensor 63 becomes Twk. The supply of hot water from the hot water storage tank 21 side is temporarily stopped. At this time, when the temperature Twu of the tank temperature sensor 65a in the upper part of the hot water storage tank 21 becomes equal to or lower than the target value Twk of the mixed temperature sensor 63 (132N in FIG. 4), the control device 120 of the water refrigerant heat exchanger 2 Α4 for setting the water outlet temperature target value Twh is set based on (Equation 3) (134). Thereby, the water outlet temperature target value Twh is set higher by the value α4 expressed by (Expression 3), and accordingly, the target discharge pressure Pd0 of the compressors 1a and 1b expressed by (Expression 11) is also increased. Therefore, the rotational speeds of the compressors 1a and 1b are increased so that the actual discharge pressure Pd becomes the target discharge pressure Pd0, and the water outlet temperature Two of the water-refrigerant heat exchanger 2 also increases.

このとき、(水冷媒熱交換器2の水出口温度センサ62の温度Two>混合温度センサ63の目標値Twk>タンク温度センサ65aの温度Twu)であるので、第1湯水混合弁16の開度Ftを、(式7)に設定する(図5の145)。これにより、混合温度の目標値Twkより温度の高い水冷媒熱交換器2からの湯水と、混合温度の目標値Twkより温度の低い貯湯タンク21内の湯水とを混合して、水冷媒熱交換器2から来る高温の湯をぬるめて適温を得ることができる。これにより、熱量は十分に残っているが温度の低い、利用しにくい貯湯タンク21内の湯水を有効に使うことができる。   At this time, since (temperature Two of the water outlet temperature sensor 62 of the water refrigerant heat exchanger 2> target value Twk of the mixing temperature sensor 63> temperature Twu of the tank temperature sensor 65a), the opening degree of the first hot water / mixing valve 16 Ft is set to (Expression 7) (145 in FIG. 5). Thereby, hot water from the water refrigerant heat exchanger 2 having a temperature higher than the target value Twk of the mixing temperature and hot water in the hot water storage tank 21 having a temperature lower than the target value Twk of the mixing temperature are mixed, and water refrigerant heat exchange is performed. The hot water coming from the vessel 2 can be squeezed to obtain an appropriate temperature. As a result, the hot water in the hot water storage tank 21 that has a sufficient amount of heat but has a low temperature and is difficult to use can be used effectively.

時間の経過とともに、貯湯タンク21内の残湯量が減少し、タンク温度センサ65aの温度Twuも低下するが、その都度、α4は(式3)、Ftは(式7)に基づいて設定され、温度の低い貯湯タンク21内の湯水と温度目標値を高く設定した水冷媒熱交換器2からの湯水とが、第1湯水混合弁において、適切に混合される。   As time passes, the amount of hot water in the hot water storage tank 21 decreases, and the temperature Twu of the tank temperature sensor 65a also decreases. Each time, α4 is set based on (Expression 3) and Ft is set based on (Expression 7). Hot water in the hot water storage tank 21 having a low temperature and hot water from the water-refrigerant heat exchanger 2 set at a high temperature target value are appropriately mixed in the first hot water / water mixing valve.

貯湯タンク21内に利用できる熱量が無くなると(図4の130Y,図5の138Y)、α4を0に戻すとともに(131)、Ftを100%とし(139)、貯湯タンク21側からの湯水の供給を止める。この貯湯タンク21側からの湯水の供給停止直後での、第1湯水混合弁16での混合温度の目標値より高い分は、下流の第2湯水混合弁17で水を混合することにより、所望の温度の湯水を供給する。α4が0になることにより、(式11)で表される圧縮機1a,1bの目標吐出圧力Pd0も低くなるため、実際の吐出圧力Pdが目標吐出圧力Pd0となるように、圧縮機1a,1bの回転速度が減速され、水冷媒熱交換器2の水出口温度Twoも下降し、新たに設定された目標値Twhに近づきながら、ヒートポンプ冷媒回路90側からだけ連続給湯する。   When there is no more heat available in the hot water storage tank 21 (130Y in FIG. 4, 138Y in FIG. 5), α4 is returned to 0 (131), Ft is set to 100% (139), and hot water from the hot water storage tank 21 side is returned. Stop supplying. Immediately after the hot water supply from the hot water storage tank 21 is stopped, the amount higher than the target value of the mixing temperature at the first hot water mixing valve 16 is mixed with water at the downstream second hot water mixing valve 17 to obtain a desired value. Supply hot water at a temperature of. Since α4 becomes 0, the target discharge pressure Pd0 of the compressors 1a and 1b represented by (Equation 11) also decreases, so that the actual discharge pressure Pd becomes the target discharge pressure Pd0. The rotational speed of 1b is decelerated, the water outlet temperature Two of the water refrigerant heat exchanger 2 is also lowered, and hot water is continuously supplied only from the heat pump refrigerant circuit 90 side while approaching the newly set target value Twh.

給湯端末が閉じられたことを給水流量センサ13が検出した場合、貯湯タンク21の温度センサ65aの温度から、貯湯タンク21内に必要な熱量が無いと判断して、タンク沸き戻し運転を行う。タンク沸き戻し運転開始の条件である温度センサ65aの温度は、給湯設定温度よりも低い所定値とする。給湯設定温度が42℃であれば、例えば35℃とする。貯湯タンク21内の湯が予め定められた所定位置に達したら、圧縮機1a,1bを停止する。上記のように、水の代わりに貯湯タンク21内の湯で水冷媒熱交換器2から来る高温の湯をぬるめるため、タンク内の給湯設定温度より温度の低い中温残湯を有効に利用し、貯湯タンク21内の中温残湯量を低減することができる。従って、ヒートポンプ給湯装置のタンク沸き戻し時の高いエネルギー効率を維持できる。   When the water supply flow rate sensor 13 detects that the hot water supply terminal is closed, it is determined from the temperature of the temperature sensor 65a of the hot water storage tank 21 that there is no necessary amount of heat in the hot water storage tank 21, and the tank boiling back operation is performed. The temperature of the temperature sensor 65a, which is a condition for starting the tank boiling back operation, is set to a predetermined value lower than the hot water supply set temperature. If the hot water supply set temperature is 42 ° C, for example, it is set to 35 ° C. When the hot water in the hot water storage tank 21 reaches a predetermined position, the compressors 1a and 1b are stopped. As described above, hot water coming from the water / refrigerant heat exchanger 2 is squeezed by hot water in the hot water storage tank 21 instead of water, so that the intermediate hot water having a temperature lower than the set hot water temperature in the tank is effectively used. The amount of remaining hot hot water in the hot water storage tank 21 can be reduced. Therefore, it is possible to maintain high energy efficiency when the tank of the heat pump water heater is boiled back.

次に、3番目の例である、立ち上がり時、貯湯タンク21内に熱量は十分残っているが温度の低い湯水がある場合について説明する。ヒートポンプ冷媒回路90の立ち上がり時の、水冷媒熱交換器2の水出口温度目標値Twhを設定するためのα4の設定は、以下のように行われる。制御装置120は、貯湯タンク21の上部のタンク温度センサ65aの温度Twuが、混合温度センサ63の目標値Twk以下であるため(図4の132N)、α4を(式3)に基づいて設定する(134)。これにより、水出口温度目標値Twhは、(式3)で表されるα4高い値に設定され、水冷媒熱交換器2からの湯水の温度Twoが、この目標値Twhになるように、ヒートポンプ冷媒回路90の圧縮機1a,1bが回転速度制御される。   Next, a case where there is hot water having a low temperature but a sufficient amount of heat remaining in the hot water storage tank 21 at the time of start-up will be described as a third example. The setting of α4 for setting the water outlet temperature target value Twh of the water refrigerant heat exchanger 2 when the heat pump refrigerant circuit 90 starts up is performed as follows. Since the temperature Twu of the tank temperature sensor 65a in the upper part of the hot water storage tank 21 is equal to or lower than the target value Twk of the mixed temperature sensor 63 (132N in FIG. 4), the control device 120 sets α4 based on (Equation 3). (134). Accordingly, the water outlet temperature target value Twh is set to a value higher by α4 expressed by (Equation 3), and the heat pump is set so that the temperature Two of hot water from the water-refrigerant heat exchanger 2 becomes the target value Twh. The rotation speed of the compressors 1a and 1b of the refrigerant circuit 90 is controlled.

圧縮機1a,1bの起動後、ヒートポンプ冷媒回路90が立ち上がるまでは、水冷媒熱交換器2からの湯水の温度Twoは、制御装置120が設定した目標値Twhに達していない。例えば、圧縮機1a,1bの起動後の短時間、(混合温度センサ63の目標値Twk≧タンク温度センサ65aの温度Twu>水冷媒熱交換器水出口温度センサ62の温度Two)の場合(図5の146Y)、第1湯水混合弁16の開度Ftを10%に設定し(147)、貯湯タンク21内の湯水を優先して使う。つまり、水冷媒熱交換器2が立ち上がるまでは、貯湯タンク21内の湯の温度が低くても、その湯を我慢して使うという考えである。   The temperature Two of hot water from the water / refrigerant heat exchanger 2 does not reach the target value Twh set by the control device 120 until the heat pump refrigerant circuit 90 starts up after the compressors 1a and 1b are started. For example, in the case of a short time after the start of the compressors 1a and 1b (target value Twk of mixing temperature sensor 63 ≧ temperature Twu of tank temperature sensor 65a> temperature Two of water refrigerant heat exchanger water outlet temperature sensor 62) (FIG. 146Y), the opening degree Ft of the first hot water mixing valve 16 is set to 10% (147), and hot water in the hot water storage tank 21 is used with priority. That is, until the water-refrigerant heat exchanger 2 starts up, even if the temperature of the hot water in the hot water storage tank 21 is low, the idea is to endure and use the hot water.

ヒートポンプ冷媒回路90の加熱能力が次第に増加し、水冷媒熱交換器2からの湯水の温度Twoが、貯湯タンク21内の湯水の温度Twu以上になると(143Y)、第1湯水混合弁16の開度Ftを100%に設定し(144)、水冷媒熱交換器2からの湯水のみ使用する。このとき、第1湯水混合弁16の開度Ftを10%から100%に急激に変化させると、水冷媒熱交換器2側の水流量が急増大し、圧縮機1a,1bの回転速度増加によるヒートポンプ冷媒回路90の加熱能力の増加が間に合わず、水冷媒熱交換器2からの湯水の温度Twoが低下する恐れがあるので、低下しないように(或いは所定割合以上低下しないように)Ftをゆっくり変化させる。   When the heating capacity of the heat pump refrigerant circuit 90 gradually increases and the temperature Two of the hot water from the water refrigerant heat exchanger 2 becomes equal to or higher than the temperature Twu of the hot water in the hot water storage tank 21 (143Y), the first hot water mixing valve 16 is opened. The degree Ft is set to 100% (144), and only hot water from the water-refrigerant heat exchanger 2 is used. At this time, if the opening degree Ft of the first hot / cold water mixing valve 16 is suddenly changed from 10% to 100%, the water flow rate on the water / refrigerant heat exchanger 2 side rapidly increases, and the rotational speeds of the compressors 1a and 1b increase. Since the heating capacity of the heat pump refrigerant circuit 90 due to the above does not keep up and the temperature Two of the hot water from the water refrigerant heat exchanger 2 may decrease, Ft should not be decreased (or not decreased more than a predetermined ratio). Change slowly.

さらに、時間の経過とともに、水冷媒熱交換器2からの湯水の温度Twoが、混合温度の目標値より高くなると(143N)、第1湯水混合弁16の開度Ftを(式7)に設定する(145)。つまり、水の代わりにタンク湯でぬるめる。これにより、混合温度の目標値より温度の高い水冷媒熱交換器2からの湯水と、混合温度の目標値より温度の低い貯湯タンク21内の湯水とを混合することができる。これにより、熱量は十分に残っているが温度の低い、利用しにくい貯湯タンク21内の湯水を有効に使うことができる。   Furthermore, when the temperature Two of the hot water from the water / refrigerant heat exchanger 2 becomes higher than the target value of the mixing temperature with the passage of time (143N), the opening degree Ft of the first hot water / mixing valve 16 is set to (Equation 7). (145). In other words, lukewarm with tank water instead of water. Thereby, the hot water from the water refrigerant | coolant heat exchanger 2 whose temperature is higher than the target value of mixing temperature, and the hot water in the hot water storage tank 21 whose temperature is lower than the target value of mixing temperature can be mixed. As a result, the hot water in the hot water storage tank 21 that has a sufficient amount of heat but has a low temperature and is difficult to use can be used effectively.

時間の経過とともに、貯湯タンク21内の残湯量が減少し、タンク温度センサ65aの温度Twuも低下するが、その都度、α4は(式3)、Ftは(式7)に基づいて設定され、温度の低い貯湯タンク21内の湯水と温度目標値を高く設定した水冷媒熱交換器2からの湯水とが、第1湯水混合弁において、適切に混合される。   As time passes, the amount of hot water in the hot water storage tank 21 decreases, and the temperature Twu of the tank temperature sensor 65a also decreases. Each time, α4 is set based on (Expression 3) and Ft is set based on (Expression 7). Hot water in the hot water storage tank 21 having a low temperature and hot water from the water-refrigerant heat exchanger 2 set at a high temperature target value are appropriately mixed in the first hot water / water mixing valve.

貯湯タンク21内に必要な熱量が無くなると(図4の130Y,図5の138Y)、α4を0に戻すとともに(131)、Ftを100%とし(139)、貯湯タンク21側からの湯水の供給を止める。この貯湯タンク21側からの湯水の供給停止直後での、第1湯水混合弁16での混合温度の目標値より高い分は、下流の第2湯水混合弁17で水を混合することにより、所望の温度の湯水を給湯口に供給する。α4が0になることにより、(式11)で表される圧縮機1a,1bの目標吐出圧力Pd0も低くされるため、実際の吐出圧力Pdが目標吐出圧力Pd0となるように、圧縮機1a,1bの回転速度が減速され、水冷媒熱交換器2の水出口温度Twoも下降し、新たに設定された目標値Twhに近づきながら、ヒートポンプ冷媒回路90側からだけ連続給湯する。   When the necessary amount of heat in the hot water storage tank 21 is lost (130Y in FIG. 4, 138Y in FIG. 5), α4 is returned to 0 (131), Ft is set to 100% (139), and hot water from the hot water storage tank 21 side is returned. Stop supplying. Immediately after the hot water supply from the hot water storage tank 21 is stopped, the amount higher than the target value of the mixing temperature at the first hot water mixing valve 16 is mixed with water at the downstream second hot water mixing valve 17 to obtain a desired value. Supply hot water at the temperature of the hot water outlet. Since α4 becomes 0, the target discharge pressure Pd0 of the compressors 1a and 1b represented by (Equation 11) is also lowered, so that the actual discharge pressure Pd becomes the target discharge pressure Pd0. The rotational speed of 1b is decelerated, the water outlet temperature Two of the water refrigerant heat exchanger 2 is also lowered, and hot water is continuously supplied only from the heat pump refrigerant circuit 90 side while approaching the newly set target value Twh.

給湯端末が閉じられたことを給水流量センサ13が検出した場合、貯湯タンク21の温度センサ65aの温度から、貯湯タンク21内に必要な熱量が無いと判断して、タンク沸き戻し運転を行う。貯湯タンク21内の湯が予め定められた所定位置に達したら、圧縮機1a,1bを停止する。上記のように水の代わりに貯湯タンク21内の湯でぬるめたり、タンク湯が低くても水冷媒熱交換器2が立ち上がるまでタンク湯で我慢することで、タンク内の給湯設定温度より温度の低い中温残湯を有効に利用し、貯湯タンク21内の中温残湯量を低減することができる。従って、ヒートポンプ給湯装置のタンク沸き戻し時の高いエネルギー効率を維持できる。   When the water supply flow rate sensor 13 detects that the hot water supply terminal is closed, it is determined from the temperature of the temperature sensor 65a of the hot water storage tank 21 that there is no necessary amount of heat in the hot water storage tank 21, and the tank boiling back operation is performed. When the hot water in the hot water storage tank 21 reaches a predetermined position, the compressors 1a and 1b are stopped. As described above, it is possible to simmer with hot water in the hot water storage tank 21 instead of water, or to endure with the hot water until the water refrigerant heat exchanger 2 starts up even if the hot water is low. The low intermediate temperature remaining hot water can be used effectively, and the amount of intermediate temperature remaining hot water in the hot water storage tank 21 can be reduced. Therefore, it is possible to maintain high energy efficiency when the tank of the heat pump water heater is boiled back.

以上の実施例では、瞬間式ヒートポンプ給湯機を例として説明を行った。瞬間式ヒートポンプ給湯機は、通常、ヒートポンプ冷媒回路の加熱能力が安定すると、ヒートポンプ冷媒回路で発生した湯のみを給湯端末に供給するものである。一方、貯湯式ヒートポンプ給湯機は、貯湯タンクに貯えた湯に水を混合して給湯端末に供給するものである。また、瞬間式ヒートポンプ給湯機のヒートポンプ冷媒回路の加熱能力を小さくするとともに、貯湯タンクを大きくして、給湯時、常にヒートポンプ冷媒回路で発生した湯と貯湯タンクに貯えた湯を混合して給湯端末に供給するものがあり、これをセミ瞬間式またはセミ貯湯式ヒートポンプ給湯機を呼ぶ(以後、ここではセミ瞬間式を呼ぶ)。本発明は、セミ瞬間式ヒートポンプ給湯機にも適用可能である。すなわち、セミ瞬間式ヒートポンプ給湯機で、給湯設定温度より温度の低くなった貯湯タンク内の湯水と、制御装置で温度目標値を高く設定したヒートポンプ冷媒回路からの湯水を混合することにより、給湯端末へ適温の湯が供給される。従って、タンク内の給湯設定温度より温度の低い中温残湯を有効に利用し、貯湯タンク21内の中温残湯量を低減したので、ヒートポンプ給湯機のタンク沸き戻し時の高いエネルギー効率を維持できる。最低限必要なことは、中温残湯を、給湯のために貯湯タンクから出湯することである。本実施例では、貯湯タンク上部から中温残湯を出湯している。   In the above embodiment, the instantaneous heat pump water heater has been described as an example. The instantaneous heat pump water heater normally supplies only hot water generated in the heat pump refrigerant circuit to the hot water supply terminal when the heating capacity of the heat pump refrigerant circuit is stabilized. On the other hand, a hot water storage type heat pump water heater mixes water with hot water stored in a hot water storage tank and supplies it to a hot water supply terminal. In addition, the heating capacity of the heat pump refrigerant circuit of the instantaneous heat pump water heater is reduced, and the hot water storage tank is enlarged to always mix the hot water generated in the heat pump refrigerant circuit with the hot water stored in the hot water storage tank during hot water supply. This is called a semi-instantaneous or semi-hot water storage heat pump water heater (hereinafter referred to as a semi-instantaneous method). The present invention is also applicable to a semi-instantaneous heat pump water heater. That is, in a semi-instantaneous heat pump water heater, hot water in the hot water storage tank whose temperature is lower than the hot water set temperature is mixed with hot water from the heat pump refrigerant circuit in which the temperature target value is set high by the control device. Hot water is supplied to the proper temperature. Therefore, the middle temperature remaining hot water having a temperature lower than the set temperature of hot water supply in the tank is effectively used, and the amount of remaining middle temperature hot water in the hot water storage tank 21 is reduced, so that high energy efficiency can be maintained when the tank of the heat pump water heater is boiled back. The minimum requirement is to drain the hot intermediate hot water from the hot water storage tank for hot water supply. In the present embodiment, the middle temperature remaining hot water is discharged from the upper part of the hot water storage tank.

以上、本実施例によれば、中温残湯を有効に利用することで、沸き戻し対象の中温残湯量を低減することができ、更に、タンク沸き戻し時のエネルギー効率を改良することができる。   As described above, according to the present embodiment, by effectively using the intermediate temperature remaining hot water, the amount of the intermediate temperature remaining hot water to be boiled back can be reduced, and the energy efficiency at the time of tank boiling back can be improved.

本発明に係るヒートポンプ給湯装置の一実施例の回路図である。It is a circuit diagram of one Example of the heat pump hot-water supply apparatus which concerns on this invention. 本発明に係るヒートポンプ給湯装置の一実施例の回路図である。It is a circuit diagram of one Example of the heat pump hot-water supply apparatus which concerns on this invention. 本発明に係るヒートポンプ給湯装置の一実施例の回路図である。It is a circuit diagram of one Example of the heat pump hot-water supply apparatus which concerns on this invention. 本発明に係る水冷媒熱交換器の水出口温度目標値への加算値を設定するフローチャート図である。It is a flowchart figure which sets the addition value to the water outlet temperature target value of the water refrigerant heat exchanger which concerns on this invention. 本発明に係る第1湯水混合弁の開度を設定するフローチャート図である。It is a flowchart figure which sets the opening degree of the 1st hot water mixing valve which concerns on this invention. 温度の関係を示す図である。It is a figure which shows the relationship of temperature.

符号の説明Explanation of symbols

1a,1b 圧縮機
2 水冷媒熱交換器
3a,3b 膨張弁
4a,4b 蒸発器
13 給水流量センサ
16 第1湯水混合弁
17 第2湯水混合弁
18 流量調整弁
21 貯湯タンク
31 注湯電磁弁
36 浴槽
51a,51b 吐出圧力センサ
60 給水温度センサ
62 水冷媒熱交換器水出口温度センサ
63 混合温度センサ
64 給湯温度センサ
100 ヒートポンプ給湯装置
120 制御装置
DESCRIPTION OF SYMBOLS 1a, 1b Compressor 2 Water refrigerant | coolant heat exchanger 3a, 3b Expansion valve 4a, 4b Evaporator 13 Feed water flow rate sensor 16 1st hot water mixing valve 17 2nd hot water mixing valve 18 Flow rate adjustment valve 21 Hot water storage tank 31 Pouring solenoid valve 36 Bathtub 51a, 51b Discharge pressure sensor 60 Water supply temperature sensor 62 Water refrigerant heat exchanger water outlet temperature sensor 63 Mixed temperature sensor 64 Hot water supply temperature sensor 100 Heat pump hot water supply device 120 Control device

Claims (7)

ヒートポンプ冷媒回路と、前記ヒートポンプ冷媒回路で加熱された水を貯湯する貯湯タンクとを備え、前記ヒートポンプ冷媒回路で発生した湯と前記貯湯タンクに貯えた湯とを給湯端末に供給可能なヒートポンプ給湯装置において、
前記貯湯タンクに貯えた湯であって、給湯設定温度より温度が低い湯と、前記ヒートポンプ冷媒回路で発生した前記給湯設定温度より高い湯であって、前記貯湯タンクに貯えた湯の温度より高い湯とを混合して前記給湯端末に給湯し、
前記貯湯タンクに貯えた湯の温度と給湯設定温度との温度差に基づいて、前記ヒートポンプ冷媒回路で加熱される水の温度の目標値を設定する制御装置を設けたことを特徴とするヒートポンプ給湯装置。
A heat pump hot water supply device comprising a heat pump refrigerant circuit and a hot water storage tank for storing hot water heated by the heat pump refrigerant circuit, and capable of supplying hot water generated in the heat pump refrigerant circuit and hot water stored in the hot water storage tank to a hot water supply terminal In
Hot water stored in the hot water storage tank and having a temperature lower than the hot water supply set temperature and hot water higher than the hot water supply set temperature generated in the heat pump refrigerant circuit and higher than the temperature of the hot water stored in the hot water storage tank Mix hot water and supply hot water to the hot water supply terminal ,
A heat pump hot water supply comprising a control device for setting a target value of the temperature of water heated by the heat pump refrigerant circuit based on a temperature difference between the temperature of hot water stored in the hot water storage tank and a hot water supply set temperature. apparatus.
請求項1において、
前記貯湯タンクに貯えた湯の温度が、給湯設定温度より低くなった場合でも前記貯湯タンクへの沸き戻し運転を行わず、前記給湯設定温度よりも低い所定値以下になった後に沸き戻し運転を行うことを特徴とするヒートポンプ給湯装置。
In claim 1,
Even if the temperature of the hot water stored in the hot water storage tank becomes lower than the hot water supply set temperature, the boil-back operation to the hot water storage tank is not performed, and the boil-back operation is performed after the temperature falls below a predetermined value lower than the hot water supply set temperature. A heat pump hot water supply apparatus characterized by performing.
請求項2において、In claim 2,
前記沸き戻し運転は、前記貯湯タンクの側壁に複数配設された温度センサのうち、一番上に配設された温度センサの温度が、前記給湯設定温度よりも低い所定値以下になった後に行われることを特徴とするヒートポンプ給湯装置。The boil-back operation is performed after the temperature sensor disposed at the top of the plurality of temperature sensors disposed on the side wall of the hot water storage tank has reached a predetermined value lower than the hot water supply set temperature. A heat pump hot-water supply device that is performed.
請求項1において、In claim 1,
前記ヒートポンプ冷媒回路で発生した湯は、給湯設定温度より低く、Hot water generated in the heat pump refrigerant circuit is lower than the hot water supply set temperature,
前記貯湯タンクに貯えた湯も、前記給湯設定温度より温度が低い、The hot water stored in the hot water storage tank is also lower in temperature than the hot water supply set temperature,
ことを特徴とするヒートポンプ給湯装置。A heat pump hot water supply apparatus characterized by that.
請求項4において、In claim 4,
前記貯湯タンクから出湯した湯と、その量よりも少ない前記ヒートポンプ冷媒回路で発生した湯を混合することを特徴とするヒートポンプ給湯装置。A heat pump hot water supply apparatus, wherein hot water discharged from the hot water storage tank and hot water generated in the heat pump refrigerant circuit less than the amount of hot water are mixed.
請求項1において、In claim 1,
前記ヒートポンプ冷媒回路で発生した湯と前記貯湯タンクから出湯した湯とを混合して給湯設定温度で前記給湯端末に供給している状態から、前記貯湯タンク内の湯の温度が、前記給湯設定温度以下になった場合、前記ヒートポンプ冷媒回路の圧縮機の回転数を増加させる制御装置を有し、From the state where hot water generated in the heat pump refrigerant circuit and hot water discharged from the hot water storage tank are mixed and supplied to the hot water supply terminal at a hot water supply set temperature, the temperature of the hot water in the hot water storage tank is the hot water supply set temperature. When it becomes below, it has a control device that increases the rotation speed of the compressor of the heat pump refrigerant circuit,
前記ヒートポンプ冷媒回路で発生した湯を前記貯湯タンクから出湯した湯でぬるめて前記給湯端末に供給するヒートポンプ給湯装置。A heat pump hot water supply apparatus for supplying hot water generated in the heat pump refrigerant circuit with the hot water discharged from the hot water storage tank to the hot water supply terminal.
請求項6において、In claim 6,
給湯停止後、前記貯湯タンクの沸き戻し運転を行うことを特徴とするヒートポンプ給湯装置。A heat pump hot water supply apparatus, wherein after the hot water supply is stopped, the hot water storage tank is boiled back.
JP2007146405A 2007-06-01 2007-06-01 Heat pump water heater Expired - Fee Related JP5094217B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007146405A JP5094217B2 (en) 2007-06-01 2007-06-01 Heat pump water heater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007146405A JP5094217B2 (en) 2007-06-01 2007-06-01 Heat pump water heater

Publications (2)

Publication Number Publication Date
JP2008298386A JP2008298386A (en) 2008-12-11
JP5094217B2 true JP5094217B2 (en) 2012-12-12

Family

ID=40172060

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007146405A Expired - Fee Related JP5094217B2 (en) 2007-06-01 2007-06-01 Heat pump water heater

Country Status (1)

Country Link
JP (1) JP5094217B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012191910A (en) * 2011-03-17 2012-10-11 Tokyo Electric Power Co Inc:The Sterilization system

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3849518B2 (en) * 2001-12-14 2006-11-22 株式会社デンソー Heat pump type water heater
JP3742356B2 (en) * 2002-03-20 2006-02-01 株式会社日立製作所 Heat pump water heater
JP2005106416A (en) * 2003-10-01 2005-04-21 Hitachi Home & Life Solutions Inc Heat pump type hot water supply device
JP3915767B2 (en) * 2003-10-16 2007-05-16 松下電器産業株式会社 Heat pump water heater
JP3915770B2 (en) * 2003-10-31 2007-05-16 松下電器産業株式会社 Heat pump water heater
JP4295241B2 (en) * 2005-04-25 2009-07-15 リンナイ株式会社 Water heater

Also Published As

Publication number Publication date
JP2008298386A (en) 2008-12-11

Similar Documents

Publication Publication Date Title
JP5073970B2 (en) Heat pump hot water floor heater
KR100640137B1 (en) Heat pumped water heating and heating apparaturs
JP4958460B2 (en) Heat pump water heater
JP4839141B2 (en) Heat pump water heater
KR100923373B1 (en) Heat pump type hot water supply and floor heating device
JP4875970B2 (en) Heat pump water heater
JP3887781B2 (en) Heat pump water heater
JP2004340461A (en) Hot water storage type water heater
JP2006234314A (en) Heat pump water heater
JP5575049B2 (en) Heat pump water heater
JP2007003057A (en) Storage water heater
JP2006125722A (en) Heat pump hot water supply heating system
JP4277836B2 (en) Heat pump water heater
JP5094217B2 (en) Heat pump water heater
JP2007198637A (en) Heat pump type water heater
JP2010054145A (en) Heat pump water heater
JP2009002599A (en) Heat pump type water heater
JP2006266592A (en) Heat pump water heater
JP4284291B2 (en) Heat pump water heater
JP4148909B2 (en) Heat pump water heater / heater
JP2019215158A (en) Heat pump type hot water supply device
JP5142653B2 (en) Heat pump water heater
JP7149763B2 (en) water heater
JP2006125837A (en) Heat pump hot water supplier
JP2005016759A (en) Heat pump type water heater

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100305

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100305

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120323

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120403

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120531

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120821

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120918

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150928

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees