JP4839141B2 - Heat pump water heater - Google Patents

Heat pump water heater Download PDF

Info

Publication number
JP4839141B2
JP4839141B2 JP2006174716A JP2006174716A JP4839141B2 JP 4839141 B2 JP4839141 B2 JP 4839141B2 JP 2006174716 A JP2006174716 A JP 2006174716A JP 2006174716 A JP2006174716 A JP 2006174716A JP 4839141 B2 JP4839141 B2 JP 4839141B2
Authority
JP
Japan
Prior art keywords
hot water
refrigerant
water supply
heat pump
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006174716A
Other languages
Japanese (ja)
Other versions
JP2008002776A5 (en
JP2008002776A (en
Inventor
和広 遠藤
寛 楠本
太一 店網
仁彦 権守
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Appliances Inc
Original Assignee
Hitachi Appliances Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Appliances Inc filed Critical Hitachi Appliances Inc
Priority to JP2006174716A priority Critical patent/JP4839141B2/en
Publication of JP2008002776A publication Critical patent/JP2008002776A/en
Publication of JP2008002776A5 publication Critical patent/JP2008002776A5/ja
Application granted granted Critical
Publication of JP4839141B2 publication Critical patent/JP4839141B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Heat-Pump Type And Storage Water Heaters (AREA)

Description

本発明は、ヒートポンプ式の給湯装置に関する。   The present invention relates to a heat pump hot water supply apparatus.

ヒートポンプ給湯装置を大別すると、貯湯式ヒートポンプ給湯装置と瞬間式ヒートポンプ給湯装置になる。この中の貯湯式ヒートポンプ給湯装置の従来例では、加熱能力が4.5〜6kWあり、深夜時間帯に安価な夜間電力を利用して65〜90℃の高温湯に沸上げ、貯湯タンクに300〜480Lの湯を貯える。日中の給湯時には、貯湯タンクに貯えた高温湯に水を混合して使用する。このような貯湯式ヒートポンプ給湯装置の例が、特許文献1に記載されている。   The heat pump hot water supply apparatus is roughly classified into a hot water storage type heat pump hot water supply apparatus and an instantaneous heat pump hot water supply apparatus. In the conventional example of the hot water storage type heat pump water heater among them, the heating capacity is 4.5 to 6 kW, and it is heated to 65 to 90 ° C. hot water using cheap nighttime power in the midnight hours, and 300 to 480 L in the hot water storage tank. Store hot water. During hot water supply during the day, water is mixed with high-temperature hot water stored in a hot water storage tank. An example of such a hot water storage type heat pump hot water supply apparatus is described in Patent Document 1.

瞬間式ヒートポンプ給湯装置の例が、特許文献2に記載されている。この公報に記載のヒートポンプ給湯装置では、給水管から導入された水を水熱交換器で昇温してそのまま使用端末に給湯し、大型の貯湯タンクを不要としている。そして、ヒートポンプ回路の運転開始直後の圧力条件が安定するまでは、水を温めるのに十分な凝縮熱を発生させることができないので、立上がりの短時間だけ小型の給湯タンクに貯蔵した湯に水熱交換器からの水を混合して給湯している。   An example of an instantaneous heat pump water heater is described in Patent Document 2. In the heat pump hot water supply apparatus described in this publication, the temperature of water introduced from a water supply pipe is raised by a water heat exchanger and hot water is supplied to a use terminal as it is, and a large hot water storage tank is not required. Until the pressure condition immediately after the start of operation of the heat pump circuit is stabilized, sufficient heat of condensation cannot be generated to warm the water, so the hot water stored in the small hot water supply tank can be Hot water is mixed with water from the exchanger.

従来の瞬間式ヒートポンプ給湯装置の他の例が、特許文献3に記載されている。この公報に記載のヒートポンプ給湯装置は、応答性と安定性とを両立した給湯を可能とするため、ヒートポンプサイクルの放熱器の冷媒流路と熱交換する水流路を備えた熱交換器での所要加熱量を設定する負荷設定手段と、この負荷設定手段の設定値に応じて熱交換器の加熱量を制御する加熱制御手段を有する。   Another example of a conventional instantaneous heat pump water heater is described in Patent Document 3. The heat pump hot water supply apparatus described in this publication is required in a heat exchanger having a water flow path for exchanging heat with a refrigerant flow path of a heat radiator of a heat pump cycle in order to enable hot water supply having both responsiveness and stability. Load setting means for setting the heating amount and heating control means for controlling the heating amount of the heat exchanger according to the set value of the load setting means.

特開2005−147608号公報Japanese Patent Laying-Open No. 2005-147608 特開2003−279133号公報JP 2003-279133 A 特開2003−240344号公報JP 2003-240344 A

上記特許文献1に記載の貯湯式ヒートポンプ給湯装置では、予め加熱して貯湯した高温湯を使用するので、同一量の湯を消費するのであれば、給湯パターンによってエネルギー効率は変化しない。これは、エネルギー効率と給湯パターンが独立の関係にあるからである。その結果、手洗いのような細切れの給湯パターンでも、風呂湯張りのような連続給湯が長い給湯パターンでも、給湯のエネルギー効率は同じになる。貯湯タンクに貯えた高温湯を使い切る場合には、給湯開始から給湯停止までの時間の長さによらない、エネルギー効率を一定にする使い方が可能である。しかしながら、貯湯タンクの湯を使い切ると、加熱能力が小さいので、すぐには沸き上げることができず、湯切れという不具合が発生する。   In the hot water storage type heat pump hot water supply device described in Patent Document 1, high-temperature hot water that has been heated and stored in advance is used. Therefore, if the same amount of hot water is consumed, the energy efficiency does not change depending on the hot water supply pattern. This is because energy efficiency and the hot water supply pattern are independent of each other. As a result, the energy efficiency of hot water supply is the same regardless of whether it is a hot water supply pattern such as hand-washing or a hot water supply pattern with a long continuous hot water supply such as a hot water bath. When the hot water stored in the hot water storage tank is used up, it is possible to use the energy efficiency constant regardless of the length of time from the start of hot water supply to the stop of hot water supply. However, when the hot water in the hot water storage tank is used up, the heating capacity is small, so that it cannot be heated up immediately and a problem of running out of hot water occurs.

これに対して特許文献2に記載の瞬間式ヒートポンプ装置では、例えば、貯湯式の約5倍の加熱能力を有するようにして、湯を使いたい時に必要な分だけ沸かすことが可能であり、さらに大形の貯湯タンクを必要とせずに小形省スペース化が可能になっている。しかも、ヒートポンプによる水加熱が設定温度に達したら、給湯タンクからの出湯を停止して、ヒートポンプだけから給湯しているので、連続して給湯が可能で、湯切れの心配がない。   On the other hand, in the instantaneous heat pump device described in Patent Document 2, for example, it has a heating capacity about 5 times that of a hot water storage type, and when it is desired to use hot water, it can be boiled as much as necessary. Small size and space saving is possible without the need for a large hot water storage tank. In addition, when the water heating by the heat pump reaches the set temperature, the hot water from the hot water supply tank is stopped and the hot water is supplied only from the heat pump, so that hot water can be continuously supplied and there is no fear of running out of hot water.

しかしながら、この特許文献2に記載の瞬間式ヒートポンプ給湯装置では、ヒートポンプの立上り時に、圧縮機で加圧加熱された冷媒ガスが、圧縮機や水冷媒熱交換器を暖めるのにも費やされ、本来必要な給湯水への加熱量が減少する。その結果、ヒートポンプの消費電力に対する水加熱能力の割合であるCOP、いわゆるエネルギー効率が低くなる。ヒートポンプの立上り状態で運転を停止する細切れの給湯パターンでは、エネルギー効率が低下する。   However, in the instantaneous heat pump hot water supply device described in Patent Document 2, the refrigerant gas pressurized and heated by the compressor at the start of the heat pump is also consumed to warm the compressor and the water refrigerant heat exchanger, The amount of heating to the hot water that is originally required is reduced. As a result, the COP, which is the ratio of the water heating capacity to the power consumption of the heat pump, so-called energy efficiency is lowered. In a hot water supply pattern in which the operation is stopped when the heat pump starts up, energy efficiency decreases.

また、特許文献3に記載の瞬間湯沸し型のヒートポンプ給湯装置においても、給湯開始直後は、圧縮機で圧縮され高温になった冷媒の熱が、圧縮機や水冷媒熱交換器にも伝熱して、圧縮機や水冷媒熱交換器を加温するのに費やされる。その結果、給湯開始直後のヒートポンプ給湯装置のCOPが低下し、使用者が望む温度の湯を望む量だけ給湯することが困難になるおそれがある。   Also, in the instantaneous water heater type heat pump water heater described in Patent Document 3, immediately after the start of hot water supply, the heat of the refrigerant compressed to a high temperature by the compressor is transferred to the compressor and the water refrigerant heat exchanger. It is spent heating the compressor and water refrigerant heat exchanger. As a result, the COP of the heat pump hot water supply apparatus immediately after the start of hot water supply is lowered, and it may be difficult to supply hot water at a temperature desired by the user in an amount desired.

本発明は上記従来技術の不具合に鑑みなされたものであり、その目的は、ヒートポンプ給湯装置において、湯切れを防止するとともに湯の使用パターンに関係なく高いエネルギー効率を維持することにある。   The present invention has been made in view of the above problems of the prior art, and an object of the present invention is to prevent hot water shortage and maintain high energy efficiency regardless of the usage pattern of hot water in a heat pump hot water supply apparatus.

本発明は、ヒートポンプ冷媒回路と、このヒートポンプ冷媒回路で加熱された水を貯湯する貯湯タンクとを備えたヒートポンプ給湯装置において、ヒートポンプ冷媒回路は冷媒と水とが熱交換する2個の水冷媒熱交換器を有し、この2個の水冷媒熱交換器の水流路および冷媒流路の直列接続と並列接続を切り替え可能にする複数の開閉弁とこの開閉弁をヒートポンプ冷媒回路での加熱の目標温度に応じて制御する制御装置とを有し、高い目標温度で給湯するときには、2個の水冷媒熱交換器を直列接続し、低い目標温度で給湯するときは、2個の水冷媒熱交換器を並列接続することを特徴とする。 The present invention relates to a heat pump water heater having a heat pump refrigerant circuit and a hot water storage tank for storing hot water heated by the heat pump refrigerant circuit, wherein the heat pump refrigerant circuit has two water refrigerant heats for heat exchange between the refrigerant and water. A plurality of on-off valves having an exchanger, and capable of switching between a serial connection and a parallel connection of the water flow paths and the refrigerant flow paths of the two water-refrigerant heat exchangers, and a heating target in the heat pump refrigerant circuit. A control device that controls according to temperature, two hot water refrigerant heat exchangers are connected in series when hot water is supplied at a high target temperature, and two hot water refrigerant heat exchanges when hot water is supplied at a low target temperature The devices are connected in parallel.

また、制御装置は、ヒートポンプ冷媒回路を運転して貯湯タンクに給湯するときは、2個の水冷媒熱交換器を直列接続し、ヒートポンプ冷媒回路を運転して給湯端末に給湯するときは、2個の水冷媒熱交換器を並列接続することが望ましい。また、ヒートポンプ給湯装置に接続される給湯端末での給湯使用を検出する流量検出手段を有し、制御装置はヒートポンプ冷媒回路を制御可能であるとともに、流量検出手段が給湯端末の給湯使用を検出してから所定時間経過するまでは、貯湯タンクからだけ給湯するようにヒートポンプ冷媒回路を制御するのが望ましい。さらに、制御装置は、給湯端末が浴槽に接続されて浴槽に湯張りするときは、流量検出手段が給湯を検出したらすぐにヒートポンプ冷媒回路を起動するように制御することが望ましい。また、制御装置は、ヒートポンプ冷媒回路を運転する前に複数の開閉弁を制御して2個の水冷媒熱交換器を並列接続することが望ましい。 In addition, when the control device operates the heat pump refrigerant circuit to supply hot water to the hot water storage tank, two water refrigerant heat exchangers are connected in series, and when the heat pump refrigerant circuit operates to supply hot water to the hot water supply terminal, 2 It is desirable to connect the water refrigerant heat exchangers in parallel. In addition , it has a flow rate detection means for detecting the use of hot water at a hot water supply terminal connected to the heat pump hot water supply device, the control device can control the heat pump refrigerant circuit, and the flow rate detection means detects the use of hot water at the hot water supply terminal. It is desirable to control the heat pump refrigerant circuit so that hot water is supplied only from the hot water storage tank until a predetermined time elapses. Furthermore, it is desirable that when the hot water supply terminal is connected to the bathtub and fills the bathtub, the control device controls to start the heat pump refrigerant circuit as soon as the flow rate detecting means detects the hot water supply. Also, the control device includes a Turkey to paralleling control a plurality of the on-off valve two coolant-refrigerant heat exchanger before operating the heat pump refrigerant circuit is desirable.

或いは、本発明は、圧縮機が圧縮した冷媒と水とを熱交換する水冷媒熱交換器を有するヒートポンプ冷媒回路と、水冷媒熱交換器で加熱された湯を貯える貯湯タンクと、水冷媒熱交換器と貯湯タンクへ水を供給する給水手段と、水冷媒熱交換器と貯湯タンクから送られた湯水を供給する給湯手段とを備えたヒートポンプ給湯装置において、水冷媒熱交換器の少なくとも冷媒流路は、複数形成されており、この複数形成された冷媒流路の並列接続および直列接続をヒートポンプ冷媒回路での加熱の目標温度に応じて切替可能とし、高い目標温度で給湯するときには、冷媒流路を直列接続とし、低い目標温度で給湯するときは、冷媒流路を並列接続とすることを特徴とする。 Alternatively, the present invention provides a heat pump refrigerant circuit having a water refrigerant heat exchanger that exchanges heat between refrigerant compressed by a compressor and water, a hot water storage tank that stores hot water heated by the water refrigerant heat exchanger, and water refrigerant heat. a water supply means for supplying water to the exchanger and the hot water storage tank, the heat pump water heater with a hot water supply means for supplying hot water sent from the water-refrigerant heat exchanger and the hot water storage tank, the less water-refrigerant heat exchanger also refrigerant flow path are formed in plural, when the parallel connection and the series connection of the plurality forming refrigerant flow path and can be switched in accordance with a target temperature of the heating in the heat pump refrigerant circuit and hot water at a high target temperature When the refrigerant flow paths are connected in series and hot water is supplied at a low target temperature, the refrigerant flow paths are connected in parallel.

また、貯湯タンクに加熱された湯を貯える場合は、水冷媒熱交換器の複数形成された冷媒流路を直列接続し、ヒートポンプ冷媒回路を運転して給湯端末に給湯するときは、冷媒流路を並列接続することが望ましい。また、給湯を開始してから所定時間経過した後に、圧縮機を起動させる制御手段を備えることが望ましい。また、給湯手段を複数有し、一方の給湯手段は風呂に接続されるものであり、他方の給湯手段は風呂以外のもに接続されるものであり、風呂に接続される給湯手段から給湯するときと風呂以外に接続される給湯手段から給湯するときとで、制御手段は圧縮機を起動させる時間を変更可能であることが望ましい。 Also, when the store hot water that is heated in the hot water storage tank, refrigerant flow path formed a plurality of coolant-refrigerant heat exchanger connected in series, when the hot water in the hot-water supply terminal by operating a heat pump refrigerant circuit, refrigerant it is desirable to parallel connection of the flow path. Moreover, it is desirable to provide a control means for starting the compressor after a predetermined time has elapsed since the hot water supply was started. Also, there are a plurality of hot water supply means, one hot water supply means is connected to the bath, and the other hot water supply means is connected to other than the bath, and hot water is supplied from the hot water supply means connected to the bath. It is desirable that the control means can change the time for starting the compressor depending on the time and when hot water is supplied from a hot water supply means connected to other than the bath.

或いは、本発明は、ヒートポンプ冷媒回路と、このヒートポンプ冷媒回路で加熱された水を貯湯する貯湯タンクとを備えたヒートポンプ給湯装置において、ヒートポンプ冷媒回路は冷媒と水とが熱交換する2個の水冷媒熱交換器を有し、この2個の水冷媒熱交換器の直列接続と並列接続を切り替え可能にする複数の開閉弁とこの開閉弁をヒートポンプ冷媒回路での加熱の目標温度に応じて制御する制御装置とを有し、高い目標温度で給湯するときには、2個の水冷媒熱交換器を直列接続し、低い目標温度で給湯するときは、2個の水冷媒熱交換器を並列接続するヒートポンプ給湯装置であって、このヒートポンプ給湯装置に接続される給湯端末での給湯使用を検出する流量検出手段を有し、制御装置はヒートポンプ冷媒回路を制御可能であるとともに、流量検出手段が給湯端末の給湯使用を検出してから所定時間経過するまでは、貯湯タンクからだけ給湯するようにヒートポンプ冷媒回路を制御する一方、制御装置は、給湯端末が浴槽に接続されてこの浴槽に湯張りするときは、流量検出手段が給湯を検出したらすぐにヒートポンプ冷媒回路を起動するように制御することを特徴とする。Alternatively, the present invention provides a heat pump water heater having a heat pump refrigerant circuit and a hot water storage tank for storing hot water heated by the heat pump refrigerant circuit, wherein the heat pump refrigerant circuit includes two waters for heat exchange between the refrigerant and water. A plurality of on-off valves that have a refrigerant heat exchanger and that can switch between series connection and parallel connection of the two water refrigerant heat exchangers and control the on-off valves according to the target temperature of heating in the heat pump refrigerant circuit When the hot water is supplied at a high target temperature, two water refrigerant heat exchangers are connected in series, and when the hot water is supplied at a low target temperature, the two water refrigerant heat exchangers are connected in parallel. A heat pump hot water supply device having flow rate detecting means for detecting use of hot water at a hot water supply terminal connected to the heat pump hot water supply device, and the control device can control the heat pump refrigerant circuit. Both control the heat pump refrigerant circuit to supply hot water only from the hot water storage tank until a predetermined time has elapsed after the flow rate detecting means detects use of the hot water supply at the hot water supply terminal, while the control device connects the hot water supply terminal to the bathtub. When the hot water is filled in the lever, the heat pump refrigerant circuit is controlled to start as soon as the flow rate detecting means detects hot water supply.

或いは、本発明は、圧縮機が圧縮した冷媒と水とを熱交換する水冷媒熱交換器を有するヒートポンプ冷媒回路と、水冷媒熱交換器で加熱された湯を貯える貯湯タンクと、水冷媒熱交換器と貯湯タンクへ水を供給する給水手段と、水冷媒熱交換器と貯湯タンクから送られた湯水を供給する給湯手段とを備えたヒートポンプ給湯装置において、水冷媒熱交換器の少なくとも水流路と冷媒流路のいずれか一方は、複数形成されており、この複数形成された流路の並列接続および直列接続をヒートポンプ冷媒回路での加熱の目標温度に応じて切替可能とし、高い目標温度で給湯するときには、流路を直列接続とし、低い目標温度で給湯するときは、流路を並列接続とするヒートポンプ給湯装置であって、給湯を開始してから所定時間経過した後に、圧縮機を起動させる制御手段を備え、給湯手段を複数有し、一方の給湯手段は風呂に接続されるものであり、他方の給湯手段は風呂以外のものに接続されるものであり、風呂に接続される給湯手段から給湯するときと風呂以外に接続される給湯手段から給湯するときとで、制御手段は圧縮機を起動させる時間を変更可能であることを特徴とする。Alternatively, the present invention provides a heat pump refrigerant circuit having a water refrigerant heat exchanger that exchanges heat between refrigerant compressed by a compressor and water, a hot water storage tank that stores hot water heated by the water refrigerant heat exchanger, and water refrigerant heat. In a heat pump water heater comprising a water supply means for supplying water to the exchanger and the hot water storage tank, and a hot water supply means for supplying hot water sent from the water refrigerant heat exchanger and the hot water storage tank, at least the water flow path of the water refrigerant heat exchanger And a plurality of the refrigerant flow paths are formed, and the parallel connection and series connection of the plurality of formed flow paths can be switched according to the target temperature of heating in the heat pump refrigerant circuit, and at a high target temperature. When supplying hot water, the flow path is connected in series, and when supplying hot water at a low target temperature, the heat pump hot water supply apparatus is connected in parallel with the flow path. It has a control means for starting the machine, has a plurality of hot water supply means, one hot water supply means is connected to the bath, and the other hot water supply means is connected to something other than the bath, connected to the bath The control means can change the time for starting the compressor depending on whether the hot water is supplied from the hot water supply means or the hot water supply means connected to other than the bath.

本発明によれば、ヒートポンプ給湯装置が備える圧縮機の起動タイミングを調整したので、ヒートポンプ給湯装置の湯切れを防止できるとともに、湯の使用パターンに関係なくヒートポンプ給湯装置が高いエネルギー効率を維持できる。   According to the present invention, since the start timing of the compressor included in the heat pump hot water supply apparatus is adjusted, the heat pump hot water supply apparatus can be prevented from running out of hot water, and the heat pump hot water supply apparatus can maintain high energy efficiency regardless of the hot water usage pattern.

以下、本発明に係るヒートポンプ給湯装置の一実施例を、図面に基づいて説明する。図1および図2に、ヒートポンプ給湯装置100の系統図を示す。ヒートポンプ給湯装置
100は、大別してヒートポンプ冷媒回路90および給水回路91,給湯回路92,風呂湯張り回路93,風呂追焚き加熱回路94,風呂追焚き吸熱回路95,タンク沸き戻し回路96を有している。ヒートポンプ冷媒回路90の冷媒を二酸化炭素として、高温の湯を供給可能にしている。
Hereinafter, an embodiment of a heat pump hot water supply apparatus according to the present invention will be described with reference to the drawings. 1 and 2 are system diagrams of the heat pump water heater 100. FIG. The heat pump hot water supply apparatus 100 is roughly divided into a heat pump refrigerant circuit 90 and a water supply circuit 91, a hot water supply circuit 92, a bath hot water filling circuit 93, a bath reheating heating circuit 94, a bath reheating heat absorption circuit 95, and a tank boiling back circuit 96. Yes. The refrigerant of the heat pump refrigerant circuit 90 is carbon dioxide, so that hot water can be supplied.

次に各回路ごとにその構成を、以下に説明する。ヒートポンプ冷媒回路90は、冷媒を圧縮して高温の冷媒とする圧縮機1、この圧縮機1で圧縮され高温となった冷媒と給湯のために供給された水(給水)とが熱交換する第1の水冷媒熱交換器2および第2の水冷媒熱交換器3、これらの水冷媒熱交換器2,3を出た冷媒を減圧する膨張弁4,膨張弁4を出た低温低圧の冷媒を蒸発させる蒸発器5を冷媒管路で接続して構成されている。圧縮機1は、インバータ制御により容量制御が可能になっており、低速(例えば1000rpm)から高速(例えば6000rpm)まで回転速度を可変である。蒸発器5は空気冷媒熱交換器であり、室外ファン6により室外の大量の空気と減圧された冷媒とを熱交換させる。 Next, the configuration of each circuit will be described below. The heat pump refrigerant circuit 90 includes a compressor 1 that compresses the refrigerant into a high-temperature refrigerant, heat exchange between the refrigerant that has been compressed by the compressor 1 and has reached a high temperature and water (water supply) supplied for hot water supply. 1 water refrigerant heat exchanger 2 and second water refrigerant heat exchanger 3, expansion valve 4 for decompressing the refrigerant exiting these water refrigerant heat exchangers 2, 3 and low temperature and low pressure refrigerant exiting expansion valve 4 The evaporator 5 for evaporating the water is connected by a refrigerant pipe. The compressor 1 is capable of capacity control by inverter control, and the rotation speed is variable from a low speed (for example, 1000 rpm) to a high speed (for example, 6000 rpm). The evaporator 5 is an air refrigerant heat exchanger, and exchanges heat between a large amount of outdoor air and the decompressed refrigerant by the outdoor fan 6.

第1の水冷媒熱交換器2と第2の水冷媒熱交換器3は、冷媒側伝熱管2a,3aと水側伝熱管2b,3bとを有しており、冷媒側伝熱管2a,3aの冷媒の流れと水側伝熱管
2b,3bの水の流れとは対向流になっている。そして、高温高圧の冷媒と低温の水とが熱交換する。ここで、第1,第2の水冷媒熱交換器2,3の冷媒側伝熱管2a,3aを直列接続するかまたは並列接続するかを切り替えるために、冷媒回路中であって第2の水冷媒熱交換器3の入口側には第1の冷媒側電磁弁40aが、第1の水冷媒熱交換器2の出口側には冷媒側電磁弁41aが配置されている。また、第1の水冷媒熱交換器のバイパス流路には、冷媒側逆止弁42aが配置されている。
The first water refrigerant heat exchanger 2 and the second water refrigerant heat exchanger 3 have refrigerant side heat transfer tubes 2a, 3a and water side heat transfer tubes 2b, 3b, and the refrigerant side heat transfer tubes 2a, 3a. The refrigerant flow and the water flow in the water-side heat transfer tubes 2b and 3b are opposed to each other. Then, the high-temperature and high-pressure refrigerant and the low-temperature water exchange heat. Here, in order to switch whether the refrigerant side heat transfer tubes 2a and 3a of the first and second water refrigerant heat exchangers 2 and 3 are connected in series or in parallel, the second water is provided in the refrigerant circuit. A first refrigerant side electromagnetic valve 40 a is arranged on the inlet side of the refrigerant heat exchanger 3, and a refrigerant side electromagnetic valve 41 a is arranged on the outlet side of the first water refrigerant heat exchanger 2. Moreover, the refrigerant | coolant side check valve 42a is arrange | positioned at the bypass flow path of the 1st water refrigerant | coolant heat exchanger.

より詳しくは、第1の水冷媒熱交換器2の冷媒側伝熱管2aの入口側は、圧縮機1と冷媒配管で接続されている。さらに冷媒側伝熱管2aの入口側は、第2の水冷媒熱交換器3の冷媒側伝熱管3aの入口側と第1の冷媒側電磁弁40aを介して接続されている。第2の水冷媒熱交換器3の冷媒側伝熱管3aの出口側は、膨張弁4と冷媒配管で接続されている。さらに冷媒側伝熱管3aの出口側は、第1の水冷媒熱交換器2の冷媒側伝熱管2aの出口側と第2の冷媒側電磁弁41aを介して接続されている。第1の水冷媒熱交換器2の冷媒側伝熱管2aの出口側は、第2の水冷媒熱交換器3の冷媒側伝熱管3aの入口側と冷媒側逆止弁42aを介して接続されている。逆止弁42aは、冷媒側伝熱管2aから冷媒側伝熱管3aの方向にだけ冷媒が流れるように作用する。   More specifically, the inlet side of the refrigerant side heat transfer tube 2a of the first water refrigerant heat exchanger 2 is connected to the compressor 1 by a refrigerant pipe. Furthermore, the inlet side of the refrigerant side heat transfer tube 2a is connected to the inlet side of the refrigerant side heat transfer tube 3a of the second water refrigerant heat exchanger 3 via the first refrigerant side electromagnetic valve 40a. The outlet side of the refrigerant-side heat transfer tube 3a of the second water-refrigerant heat exchanger 3 is connected to the expansion valve 4 through a refrigerant pipe. Further, the outlet side of the refrigerant side heat transfer tube 3a is connected to the outlet side of the refrigerant side heat transfer tube 2a of the first water refrigerant heat exchanger 2 via the second refrigerant side electromagnetic valve 41a. The outlet side of the refrigerant side heat transfer tube 2a of the first water refrigerant heat exchanger 2 is connected to the inlet side of the refrigerant side heat transfer tube 3a of the second water refrigerant heat exchanger 3 via the refrigerant side check valve 42a. ing. The check valve 42a acts so that the refrigerant flows only in the direction from the refrigerant side heat transfer tube 2a to the refrigerant side heat transfer tube 3a.

第1,第2の水冷媒熱交換器2,3は水側伝熱管2b,3bを有しており、この水側伝熱管2b,3bを直列接続するのと並列接続するのを切替可能なように、第2の水冷媒熱交換器3の水側伝熱管3bの出口側には水側電磁弁40bが配置されており、第1の水冷媒熱交換器2の水側伝熱管2bの入口側には第2の水側電磁弁41bが配置されている。第2の水冷媒熱交換器2のバイパス流路には、逆止弁42bが配置されている。   The first and second water refrigerant heat exchangers 2 and 3 have water-side heat transfer tubes 2b and 3b, and the water-side heat transfer tubes 2b and 3b can be switched between being connected in series and being connected in parallel. Thus, the water side solenoid valve 40b is arrange | positioned at the exit side of the water side heat exchanger tube 3b of the 2nd water refrigerant heat exchanger 3, and the water side heat exchanger tube 2b of the 1st water refrigerant heat exchanger 2 is arrange | positioned. A second water side electromagnetic valve 41b is arranged on the inlet side. A check valve 42 b is disposed in the bypass flow path of the second water refrigerant heat exchanger 2.

より詳細には、第2の水冷媒熱交換器3の水側伝熱管3bの入口側は、給水回路91と水配管で接続されている。さらに水側伝熱管3bの入口側は、第1の水冷媒熱交換器2の水側伝熱管2bの入口側と第2の水側電磁弁41bを介して接続されている。第1の水冷媒熱交換器2の水側伝熱管2bの出口側は、給湯回路92と水配管で接続されている。さらに水側伝熱管2bの出口側は、第2の水冷媒熱交換器3の水側伝熱管3bの出口側と第1の水側電磁弁40bを介して接続されている。第2の水冷媒熱交換器3の水側伝熱管
3bの出口側は、第1の水冷媒熱交換器2の水側伝熱管2bの入口側と水側逆止弁42bを介して接続されている。逆止弁42bは、水側伝熱管3bから水側伝熱管2bの方向にだけ水が流れるように作用する。
More specifically, the inlet side of the water side heat transfer tube 3b of the second water refrigerant heat exchanger 3 is connected to the water supply circuit 91 by a water pipe. Furthermore, the inlet side of the water side heat transfer tube 3b is connected to the inlet side of the water side heat transfer tube 2b of the first water refrigerant heat exchanger 2 via the second water side electromagnetic valve 41b. The outlet side of the water side heat transfer tube 2b of the first water refrigerant heat exchanger 2 is connected to the hot water supply circuit 92 by a water pipe. Further, the outlet side of the water side heat transfer tube 2b is connected to the outlet side of the water side heat transfer tube 3b of the second water refrigerant heat exchanger 3 via the first water side electromagnetic valve 40b. The outlet side of the water side heat transfer tube 3b of the second water refrigerant heat exchanger 3 is connected to the inlet side of the water side heat transfer tube 2b of the first water refrigerant heat exchanger 2 via the water side check valve 42b. ing. The check valve 42b acts so that water flows only in the direction from the water side heat transfer tube 3b to the water side heat transfer tube 2b.

水冷媒熱交換器2,3を並列接続した場合には、水冷媒熱交換器2,3の入口で低温であった水が、水側伝熱管2b,3bを通過する際に徐々に加熱され、水冷媒熱交換器2,3の出口で、後述する運転制御手段により設定された所定の温度に昇温される。水冷媒熱交換器2,3を直列接続した場合には、水冷媒熱交換器3の入口で低温であった水が水側伝熱管3b,2bを通過する際に徐々に加熱され、水冷媒熱交換器2の出口で、運転制御手段により設定された所定の温度に昇温される。 When the water refrigerant heat exchangers 2 and 3 are connected in parallel, the low temperature water at the inlets of the water refrigerant heat exchangers 2 and 3 is gradually heated when passing through the water side heat transfer tubes 2b and 3b. At the outlets of the water-refrigerant heat exchangers 2 and 3, the temperature is raised to a predetermined temperature set by the operation control means described later. When the water refrigerant heat exchangers 2 and 3 are connected in series, the low temperature water at the inlet of the water refrigerant heat exchanger 3 is gradually heated when passing through the water side heat transfer tubes 3b and 2b , At the outlet of the heat exchanger 2, the temperature is raised to a predetermined temperature set by the operation control means.

給水回路91は、外部から上水を取り込むための給水金具11,取り込んだ上水を適正な水圧に調整する減圧弁12,給水量を測定する給水流量センサ13,給水がどれだけ水冷媒熱交換器2,3に流れているかを測定する水冷媒熱交換器流量センサ15,水冷媒熱交換器2,3側から給水金具11側へ水が逆流するのを防止するための逆止弁14を有する。給水金具11から水冷媒熱交換器2,3の水側伝熱管2b,3bまでが水配管で接続されており、これらの部材がこの水配管に設けられている。   The water supply circuit 91 includes a water supply fitting 11 for taking in clean water from the outside, a pressure reducing valve 12 for adjusting the picked-up clean water to an appropriate water pressure, a feed water flow rate sensor 13 for measuring the amount of feed water, and how much the feed water is water-refrigerant heat exchange A water refrigerant heat exchanger flow sensor 15 for measuring whether the water is flowing in the water heaters 2 and 3, and a check valve 14 for preventing the water from flowing back from the water refrigerant heat exchangers 2 and 3 to the water supply fitting 11 side. Have. From the water supply fitting 11 to the water side heat transfer pipes 2b and 3b of the water refrigerant heat exchangers 2 and 3 are connected by a water pipe, and these members are provided in the water pipe.

給湯回路92は、水冷媒熱交換器2,3の水側伝熱管2b,3bから装置外部の給湯配管に接続される給湯金具19までの水管路と各部材とを含む。水冷媒熱交換器2,3から給湯金具19の間には、水側伝熱管2b,3bで加熱された湯水を貯える貯湯タンク21と、水側伝熱管2b,3bで加熱された湯水と貯湯タンク21に溜められた湯水とを混合するのに用いる第1湯水混合弁16と、第1湯水混合弁16を通過した湯水に給水回路
91から給水された水を混合するのに用いる第2湯水混合弁17と、第2湯水混合弁17を通過した湯水の流量を調整する流量調整弁18とが配置されている。
The hot water supply circuit 92 includes a water pipe from the water side heat transfer pipes 2b and 3b of the water refrigerant heat exchangers 2 and 3 to the hot water supply fitting 19 connected to the hot water supply pipe outside the apparatus, and each member. Between the water refrigerant heat exchangers 2 and 3 and the hot water supply fitting 19, a hot water storage tank 21 for storing hot water heated by the water side heat transfer tubes 2b and 3b, and hot water and hot water heated by the water side heat transfer tubes 2b and 3b are stored. The first hot water mixing valve 16 used for mixing the hot water stored in the tank 21 and the second hot water used for mixing the water supplied from the water supply circuit 91 with the hot water passing through the first hot water mixing valve 16. A mixing valve 17 and a flow rate adjusting valve 18 that adjusts the flow rate of the hot water passing through the second hot water mixing valve 17 are arranged.

第1湯水混合弁16の一方の流入口は、貯湯タンク21に接続されている。貯湯タンク21は、タンク沸き戻し回路96の水冷媒熱交換器2,3が予め加熱した湯を貯えるのに使用される。第1湯水混合弁16は、運転制御手段の指令により、貯湯タンク21に蓄えられた約60〜90℃の高温の湯を、水冷媒熱交換器2,3から供給された湯水と混合するのに用いられる。具体的には、第1湯水混合弁16からは、水冷媒熱交換器2,3で加熱された湯水が所望の温度に昇温されるまで、運転制御手段で設定された所定の温度の湯水が流出される。   One inlet of the first hot water mixing valve 16 is connected to the hot water storage tank 21. The hot water storage tank 21 is used for storing hot water previously heated by the water refrigerant heat exchangers 2 and 3 of the tank boiling back circuit 96. The first hot / cold water mixing valve 16 mixes hot water of about 60 to 90 ° C. stored in the hot water storage tank 21 with hot water supplied from the water / refrigerant heat exchangers 2 and 3 according to a command from the operation control means. Used for. Specifically, from the first hot water / water mixing valve 16, hot water at a predetermined temperature set by the operation control means until the hot water heated by the water / refrigerant heat exchangers 2 and 3 is heated to a desired temperature. Is leaked.

なお、使用者が望む温度や出湯量(給湯負荷)が、ヒートポンプ冷媒回路90の加熱能力を超えているときには、水冷媒熱交換器2,3から供給される所望の温度に達していない湯水に貯湯タンク21に貯えた高温の湯を常に混合する。そして、運転制御手段で設定された所定の温度の湯水を、使用者に供給する。   When the temperature desired by the user and the amount of hot water (hot water supply load) exceed the heating capacity of the heat pump refrigerant circuit 90, the hot water that has not reached the desired temperature supplied from the water refrigerant heat exchangers 2 and 3 is used. The hot water stored in the hot water storage tank 21 is always mixed. Then, hot water having a predetermined temperature set by the operation control means is supplied to the user.

第2湯水混合弁17の一方の流入口は水管路に接続されている。この水管路は、給水回路91から分岐している。第2湯水混合弁17では、運転制御手段の指令により第1湯水混合弁16で混合された湯水と給水回路91から分岐して供給される水が混合される。運転制御手段は、設定した所定の給湯温度(約35〜60℃程度)の湯を給湯金具19を経て出湯端末へ出湯するために、第1湯水混合弁16と第2湯水混合弁17の開閉を制御する。   One inlet of the second hot water / mixing valve 17 is connected to a water pipe. This water pipe is branched from the water supply circuit 91. In the second hot water mixing valve 17, hot water mixed by the first hot water mixing valve 16 and water branched and supplied from the water supply circuit 91 are mixed according to a command from the operation control means. The operation control means opens and closes the first hot water mixing valve 16 and the second hot water mixing valve 17 in order to discharge hot water having a predetermined hot water supply temperature (about 35 to 60 ° C.) to the hot water terminal through the hot water supply fitting 19. To control.

風呂湯張り回路93は、給湯回路92の流量調整弁18と給湯金具19を接続する管路から分岐しており、この分岐部19aから浴槽36に湯水を供給するための入出湯金具
35までを含んでいる。風呂湯張り回路93の配管中には、注湯電磁弁31およびフロースイッチ32,風呂循環ポンプ33,水位センサ34が、順次配置されている。
The bath hot water filling circuit 93 branches off from a pipe line connecting the flow rate adjusting valve 18 of the hot water supply circuit 92 and the hot water supply fitting 19, and from the branching portion 19 a to the incoming / outgoing hot metal fitting 35 for supplying hot water to the bathtub 36. Contains. In the piping of the bath hot water circuit 93, a hot water solenoid valve 31, a flow switch 32, a bath circulation pump 33, and a water level sensor 34 are sequentially arranged.

注湯電磁弁31は、分岐部19aから浴槽36側に湯を導くのに用いられる。フロースイッチ32は、風呂湯張り回路93中の湯の流れを検出する。風呂循環ポンプ33は、追焚き時に浴槽36の湯水を、水冷媒熱交換器2に給水するのに用られる。水位センサ34は、浴槽36に注湯された湯水の水位を検出する。入出湯金具35と浴槽36に取り付けた風呂循環アダプタ36aとは、水管路で接続される。   The hot water solenoid valve 31 is used to guide hot water from the branch portion 19a to the bathtub 36 side. The flow switch 32 detects the flow of hot water in the bath hot water filling circuit 93. The bath circulation pump 33 is used to supply hot water from the bathtub 36 to the water-refrigerant heat exchanger 2 when reheating. The water level sensor 34 detects the water level of the hot water poured into the bathtub 36. The bath metal fitting 35 and the bath circulation adapter 36a attached to the bathtub 36 are connected by a water pipeline.

風呂追焚き加熱回路94は、浴槽36の湯水を再加熱するための回路であり、風呂追焚き熱交換器29を有している。風呂追焚き熱交換器29の2次冷媒側伝熱管29aの出口側に接続された機内循環ポンプ23が、水管路内の水を加圧して水冷媒熱交換器2,3の水側伝熱管2b,3bに供給する。水側伝熱管2b,3bでは、水を加熱する。加熱されて温度上昇した水(高温水)は、給湯回路92から分岐した配管中に設けた追焚き電磁弁27と逆止弁28を通過する。ここで、風呂追焚き加熱回路94が動作中は、追焚き電磁弁27は開状態になっている。   The bath reheating heating circuit 94 is a circuit for reheating the hot water in the bathtub 36, and has a bath reheating heat exchanger 29. The in-machine circulation pump 23 connected to the outlet side of the secondary refrigerant side heat transfer tube 29a of the bath reheating heat exchanger 29 pressurizes the water in the water pipe line and the water side heat transfer tubes of the water refrigerant heat exchangers 2 and 3. 2b and 3b. Water is heated in the water side heat transfer tubes 2b and 3b. Heated and heated water (high temperature water) passes through a follow-up electromagnetic valve 27 and a check valve 28 provided in a pipe branched from the hot water supply circuit 92. Here, while the bath reheating heating circuit 94 is in operation, the reheating electromagnetic valve 27 is in an open state.

逆止弁を経た後は、高温水は風呂追焚き熱交換器29の2次冷媒側伝熱管29aに流入する。風呂追焚き熱交換器29では、2次冷媒側伝熱管29a内の高温水の流れと浴槽水側伝熱管29b内の湯水の流れとが対向流を形成している。浴槽水側伝熱管29b内の湯水と熱交換した高温水は温度低下して低温水になり、機内循環ポンプ23に流入する。その後低温水は、給水回路91の逆止弁14の下流側に接続された水管路から水冷媒熱交換器2,3に戻される。以後、風呂追焚き運転を継続している間中、この風呂追焚き加熱回路94を水が循環する。   After passing through the check valve, the high-temperature water flows into the secondary refrigerant-side heat transfer tube 29a of the bath chase heat exchanger 29. In the bath reheating heat exchanger 29, the flow of high temperature water in the secondary refrigerant side heat transfer tube 29a and the flow of hot water in the bathtub water side heat transfer tube 29b form a counter flow. The high-temperature water that has exchanged heat with the hot water in the bathtub water-side heat transfer tube 29 b is lowered in temperature to become low-temperature water, and flows into the in-machine circulation pump 23. Thereafter, the low-temperature water is returned to the water-refrigerant heat exchangers 2 and 3 from the water pipe connected to the downstream side of the check valve 14 of the water supply circuit 91. Thereafter, water continues to circulate through the bath reheating heating circuit 94 while the bath renewal operation is continued.

風呂追焚き吸熱回路95は、浴槽36内の湯水を加温する回路であり、浴槽36に設けた風呂循環アダプタ36aから浴槽水を、入出湯金具35を通じて風呂追焚き熱交換器
29に導く。浴槽36から取り出された浴槽水は、水位センサ34を経て、風呂循環ポンプ33に導かれる。風呂循環ポンプ33は、浴槽水を加圧してフロースイッチ32を介して風呂追焚き熱交換器29に供給する。ここで、風呂湯張り回路93に設けた注湯電磁弁31を閉状態にして、浴槽水を風呂追焚き熱交換器29に導いている。浴槽水は、風呂追焚き熱交換器29の浴槽水側伝熱管29bを流通する際に加熱され、入出湯金具37を介して風呂循環アダプタ36aに戻される。
The bath reheating heat absorption circuit 95 is a circuit that heats the hot water in the bathtub 36, and guides the bath water from the bath circulation adapter 36 a provided in the bathtub 36 to the bath reheating heat exchanger 29 through the inlet / outlet hot water fitting 35. The bathtub water taken out from the bathtub 36 is guided to the bath circulation pump 33 through the water level sensor 34. The bath circulation pump 33 pressurizes the bath water and supplies it to the bath reheating heat exchanger 29 via the flow switch 32. Here, the hot water solenoid valve 31 provided in the bath hot water filling circuit 93 is closed, and the bath water is guided to the bath reheating heat exchanger 29. The bath water is heated when flowing through the bath water side heat transfer tube 29 b of the bath reheating heat exchanger 29, and is returned to the bath circulation adapter 36 a via the hot water inlet / outlet fitting 37.

タンク沸き戻し回路96は、水冷媒熱交換器2,3で加熱した湯を貯湯タンク21に導く回路である。タンク沸き戻し回路96は、貯湯タンク21とこの貯湯タンクに送湯するための機内循環ポンプ23と、第1湯水混合弁16とを含む。タンク沸き戻し回路96を動作させるときは、風呂追焚き加熱回路94が有する追焚き電磁弁27を閉にする。第1湯水混合弁16では、水冷媒熱交換器2,3側と貯湯タンク21とを連通させる。第2湯水混合弁17では、第1湯水混合弁16と給水側とを遮断する。この状態で、機内循環ポンプ23を運転して、貯湯タンク21内の水を貯湯タンク21の下部から水冷媒熱交換器2,3に供給する。水冷媒熱交換器2,3で、貯湯タンク21に貯えられた湯を約60〜90℃に加熱し、第1湯水混合弁16を経て貯湯タンク21の上部に戻す。   The tank boiling back circuit 96 is a circuit that guides the hot water heated by the water / refrigerant heat exchangers 2 and 3 to the hot water storage tank 21. The tank boiling back circuit 96 includes a hot water storage tank 21, an in-machine circulation pump 23 for feeding hot water to the hot water storage tank, and a first hot water mixing valve 16. When the tank boiling back circuit 96 is operated, the reheating electromagnetic valve 27 of the bath reheating heating circuit 94 is closed. In the first hot water / water mixing valve 16, the water / refrigerant heat exchangers 2 and 3 and the hot water storage tank 21 are communicated with each other. The second hot water / mixing valve 17 shuts off the first hot water / mixing valve 16 and the water supply side. In this state, the in-machine circulation pump 23 is operated to supply the water in the hot water storage tank 21 from the lower part of the hot water storage tank 21 to the water / refrigerant heat exchangers 2 and 3. The hot water stored in the hot water storage tank 21 is heated to about 60 to 90 ° C. by the water refrigerant heat exchangers 2 and 3, and is returned to the upper part of the hot water storage tank 21 through the first hot water / water mixing valve 16.

なお、ヒートポンプ冷媒回路90を立上げる時などは、ヒートポンプ冷媒回路90の加熱能力が十分でない。そこで、水冷媒熱交換器2,3が所定の温度で水を加熱できるようになるまで、風呂追焚き加熱回路94を用いて、予熱運転する。具体的には、追焚き電磁弁27を開とし、第1湯水混合弁16の水冷媒熱交換器2,3側と貯湯タンク21とを遮断する。第2湯水混合弁17の第1湯水混合弁16と給水側とも遮断する。この状態で、機内循環ポンプ23を運転し、水冷媒熱交換器2,3と風呂追焚き熱交換器29との間を水が循環するようにする。   In addition, when starting up the heat pump refrigerant circuit 90, the heating capability of the heat pump refrigerant circuit 90 is not sufficient. Therefore, a preheating operation is performed using the bath reheating heating circuit 94 until the water refrigerant heat exchangers 2 and 3 can heat water at a predetermined temperature. Specifically, the reheating electromagnetic valve 27 is opened, and the water refrigerant heat exchangers 2 and 3 side of the first hot water mixing valve 16 and the hot water storage tank 21 are shut off. The first hot water mixing valve 16 and the water supply side of the second hot water mixing valve 17 are also shut off. In this state, the in-machine circulation pump 23 is operated so that water circulates between the water-refrigerant heat exchangers 2 and 3 and the bath reheating heat exchanger 29.

上記各回路を動作させるときの、図示しない制御装置を用いた切り替え動作について、以下に説明する。制御装置は、ヒートポンプ冷媒回路90を運転/停止する。また、圧縮機1の回転速度や膨張弁4の開度を制御する。さらに、給湯回路の湯水混合弁16,17,流量調整弁18等の水関係機器も制御する。   A switching operation using a control device (not shown) when operating each circuit will be described below. The control device operates / stops the heat pump refrigerant circuit 90. Moreover, the rotational speed of the compressor 1 and the opening degree of the expansion valve 4 are controlled. Further, it controls water-related equipment such as hot and cold mixing valves 16 and 17 and a flow rate adjusting valve 18 of the hot water supply circuit.

本実施例に示すヒートポンプ給湯装置100は、ヒートポンプ冷媒回路90の圧縮機1の吐出側に、圧縮機吐出圧力センサ51を設けている。さらにヒートポンプ給湯装置100は、多数の温度センサを有している。   The heat pump hot water supply apparatus 100 shown in the present embodiment is provided with a compressor discharge pressure sensor 51 on the discharge side of the compressor 1 of the heat pump refrigerant circuit 90. Furthermore, the heat pump hot water supply apparatus 100 has a large number of temperature sensors.

ヒートポンプ冷媒回路90では、圧縮機1の吐出側に圧縮機吐出温度センサ50が、蒸発器5の冷媒入口側には蒸発器冷媒入口温度センサ52が、冷媒出口側には蒸発器冷媒出口温度センサ53が、蒸発器5の近傍には外気温度センサ54が、それぞれ設けられている。給水回路91では、給水金具11の近傍に給水温度センサ60が、給水ライン中であって水冷媒熱交換器2,3の水入口側よりも上流に水冷媒熱交換器水入口温度センサ61がそれぞれ設けられている。給湯回路92では、水冷媒熱交換器2,3の水出口側よりも下流に水冷媒熱交換器水出口温度センサ62が、第1湯水混合弁16と第2湯水混合弁
17の間の給湯ラインに混合温度センサ63が、第2湯水混合弁17の下流の給湯ラインに給湯温度センサ64が、貯湯タンク21では高さ方向に位置を変えて複数のタンク温度センサ65a,65b,65cがそれぞれ設けられている。
In the heat pump refrigerant circuit 90, the compressor discharge temperature sensor 50 is disposed on the discharge side of the compressor 1, the evaporator refrigerant inlet temperature sensor 52 is disposed on the refrigerant inlet side of the evaporator 5, and the evaporator refrigerant outlet temperature sensor is disposed on the refrigerant outlet side. 53 and an outside air temperature sensor 54 are provided in the vicinity of the evaporator 5. In the water supply circuit 91, a water supply temperature sensor 60 is provided in the vicinity of the water supply fitting 11, and a water refrigerant heat exchanger water inlet temperature sensor 61 is provided in the water supply line and upstream of the water inlet side of the water refrigerant heat exchangers 2 and 3. Each is provided. In the hot water supply circuit 92, the water refrigerant heat exchanger water outlet temperature sensor 62 is provided downstream of the water outlet side of the water refrigerant heat exchangers 2 and 3, and the hot water supply between the first hot water mixing valve 16 and the second hot water mixing valve 17. The mixing temperature sensor 63 in the line, the hot water supply temperature sensor 64 in the hot water supply line downstream of the second hot water mixing valve 17, and the tank temperature sensors 65a, 65b, 65c in the hot water storage tank 21 are changed in the height direction. Is provided.

このように各種センサを配置したヒートポンプ給湯装置100においては、宅内に配置した図示しないリモコンを使用者が使用して所望の給湯温度Twsを設定すると、制御装置が所望の温度の湯を給湯設備から給湯できるように各弁等を制御する。つまり、制御装置は第2湯水混合弁17の下流に設けた給湯温度センサ64の目標温度を、設定給湯温度よりα0だけ高い温度(Tws+α0)に設定する。第1湯水混合弁16と第2湯水混合弁17との間に設けた混合温度センサ63の目標温度をこの温度よりもさらにα1だけ高い温度(Tws+α0+α1)に設定する。水冷媒熱交換器水出口温度センサ62の目標温度はさらにα2だけ高い温度(Tws+α0+α1+α2)に設定される。
In heat pump hot water supply apparatus 100 in which various sensors are arranged in this way, when a user sets a desired hot water supply temperature Tws using a remote controller (not shown) disposed in the house, the control device supplies hot water at a desired temperature from the hot water supply facility. Each valve is controlled so that hot water can be supplied. That is, the control device sets the target temperature of the hot water supply temperature sensor 64 provided downstream of the second hot water / water mixing valve 17 to a temperature (Tws + α0) higher by α0 than the set hot water supply temperature. The target temperature of the mixing temperature sensor 63 provided between the first hot water mixing valve 16 and the second hot water mixing valve 17 is set to a temperature (Tws + α0 + α1) higher by α1 than this temperature. The target temperature of the water-refrigerant heat exchanger water outlet temperature sensor 62 is set to a temperature (Tws + α0 + α1 + α2) that is higher by α2.

本実施例では水管路での放熱を考慮して、給湯回路92の上流になればなるほど、水冷媒熱交換器2,3に近ければ近いほど目標温度を高く設定している。外乱等により、水冷媒熱交換器2,3の水側伝熱管2b,3bの出口温度や、第1湯水混合弁16から流出した湯水の混合温度が多少変動しても、所望の給湯温度より若干高めに温度設定したので、第2湯水混合弁17に流入する湯に混合する水の量を制御することにより、所望の温度に調整できる。その結果、温度変動の少ない給湯を実現できる。   In this embodiment, in consideration of heat radiation in the water pipeline, the target temperature is set higher as the upstream side of the hot water supply circuit 92 becomes closer to the water refrigerant heat exchangers 2 and 3. Even if the outlet temperature of the water-side heat transfer tubes 2b, 3b of the water-refrigerant heat exchangers 2, 3 and the mixing temperature of the hot water flowing out of the first hot water / water mixing valve 16 fluctuate somewhat due to disturbance or the like, the desired hot water supply temperature Since the temperature is set slightly higher, it can be adjusted to a desired temperature by controlling the amount of water mixed with the hot water flowing into the second hot water mixing valve 17. As a result, hot water supply with little temperature fluctuation can be realized.

タンク沸き戻し回路96を動作させる運転では、水冷媒熱交換器水出口温度センサ62の目標温度を、季節や湯の使用量などの条件にあわせて、60〜90℃の温度に設定される。   In the operation for operating the tank boiling back circuit 96, the target temperature of the water / refrigerant heat exchanger water outlet temperature sensor 62 is set to a temperature of 60 to 90 ° C. in accordance with conditions such as the season and the amount of hot water used.

ヒートポンプ冷媒回路90を動作させるときは、圧縮機1を回転速度制御する。水冷媒熱交換器2,3を含む冷媒循環系の熱容量が大きいので、圧縮機1の回転速度を変化させても、水冷媒熱交換器2,3の水出口温度はすぐには変化せず、この水出口温度の応答速度が遅い。そこで、水冷媒熱交換器2,3の水出口温度と関係する特性であって、応答速度の速い圧縮機1の吐出圧力を制御目標に定める。貯湯式ヒートポンプ給湯装置の場合には所望温度の湯を瞬時に供給できるが、瞬間式ヒートポンプ給湯装置ではヒートポンプ冷媒回路90の立上がり特性に供給タイミングが左右される。そこで以下のようにして、立上がり特性を改善する。   When operating the heat pump refrigerant circuit 90, the rotation speed of the compressor 1 is controlled. Since the heat capacity of the refrigerant circulation system including the water refrigerant heat exchangers 2 and 3 is large, even if the rotation speed of the compressor 1 is changed, the water outlet temperature of the water refrigerant heat exchangers 2 and 3 does not change immediately. The response speed of this water outlet temperature is slow. Therefore, the discharge pressure of the compressor 1, which has characteristics related to the water outlet temperature of the water-refrigerant heat exchangers 2 and 3 and has a fast response speed, is determined as a control target. In the case of a hot water storage type heat pump hot water supply apparatus, hot water having a desired temperature can be instantaneously supplied. However, in the instantaneous type heat pump hot water supply apparatus, the supply timing depends on the rising characteristics of the heat pump refrigerant circuit 90. Therefore, the rising characteristics are improved as follows.

圧縮機1の吐出圧力は、水冷媒熱交換器2,3の水出口温度が高ければ高いほど、高い。目標吐出圧力Pd0は、水冷媒熱交換器2,3の水出口温度目標値Twh(=Tws+α0+α1+α2)の関数で(式1)のように表される。
Pd0=f(Twh) …(式1)
目標吐出圧力Pd0と実際の吐出圧力Pdとの偏差ΔEpd(=Pd0−Pd)が0となるように、圧縮機1の回転速度を制御する。その際、例えば、偏差ΔEpdおよび(偏差ΔEpd−前回偏差ΔEpd)の関数として、圧縮機1の回転速度を増減する。
The discharge pressure of the compressor 1 is higher as the water outlet temperature of the water refrigerant heat exchangers 2 and 3 is higher. The target discharge pressure Pd0 is expressed as (Equation 1) as a function of the water outlet temperature target value Twh (= Tws + α0 + α1 + α2) of the water refrigerant heat exchangers 2 and 3.
Pd0 = f (Twh) (Formula 1)
The rotational speed of the compressor 1 is controlled so that the deviation ΔEpd (= Pd0−Pd) between the target discharge pressure Pd0 and the actual discharge pressure Pd becomes zero. At this time, for example, the rotational speed of the compressor 1 is increased or decreased as a function of the deviation ΔEpd and (deviation ΔEpd−previous deviation ΔEpd).

ヒートポンプ冷媒回路90を流れる水流量が変化して、実際の吐出圧力Pdが目標吐出圧力Pd0に到達していても、水冷媒熱交換器2の水出口温度が目標値からずれていることも予想されるので、水冷媒熱交換器2の水出口温度が目標値に近づくように、目標吐出圧力Pd0を随時補正する。   Even if the flow rate of water flowing through the heat pump refrigerant circuit 90 changes and the actual discharge pressure Pd reaches the target discharge pressure Pd0, it is also expected that the water outlet temperature of the water refrigerant heat exchanger 2 is deviated from the target value. Therefore, the target discharge pressure Pd0 is corrected as needed so that the water outlet temperature of the water-refrigerant heat exchanger 2 approaches the target value.

すなわち、圧縮機1を回転速度制御するときは、使用者の蛇口等の開度で所望の流量が決定され、リモコンから所望の給湯温度Twsが設定され、これら設定温度および流量に基づいて水冷媒熱交換器2の水出口温度目標値Twhが実現されるように制御する。膨張弁4の開度を過熱度制御する。すなわち、蒸発器5の冷媒出口温度と冷媒入口温度の温度差である過熱度が、所定値となるように膨張弁4の開度を制御する。   That is, when the rotational speed of the compressor 1 is controlled, a desired flow rate is determined by the opening of a user's faucet, etc., and a desired hot water supply temperature Tws is set from the remote controller, and the water refrigerant is based on these set temperature and flow rate. Control is performed so that the water outlet temperature target value Twh of the heat exchanger 2 is realized. The degree of superheat of the opening degree of the expansion valve 4 is controlled. That is, the opening degree of the expansion valve 4 is controlled so that the degree of superheat that is the temperature difference between the refrigerant outlet temperature and the refrigerant inlet temperature of the evaporator 5 becomes a predetermined value.

給湯回路92を作動させる給湯運転時には、水冷媒熱交換器2,3の弁40a〜42bを、以下のように切り替える。図3に、水冷媒熱交換器2,3を並列接続して給湯運転する様子を示す。冷媒および水の流路を、太線で示す。給湯運転時には、第1冷媒側電磁弁40aおよび第2冷媒側電磁弁41aを開く。これら電磁弁40a,41aが開かれると、冷媒管路内に冷媒の流れが生じ、冷媒の流れによる圧力降下が生じる。その結果、冷媒側逆止弁42aの電磁弁41a側の圧力が、電磁弁40a側の圧力より低くなる。逆止弁42aは閉じた状態であり、水冷媒熱交換器2,3の冷媒側伝熱管2a,3aは、並列接続状態になる。   During the hot water supply operation for operating the hot water supply circuit 92, the valves 40a to 42b of the water-refrigerant heat exchangers 2 and 3 are switched as follows. FIG. 3 shows a hot water supply operation in which the water-refrigerant heat exchangers 2 and 3 are connected in parallel. The refrigerant and water flow paths are indicated by bold lines. During the hot water supply operation, the first refrigerant side electromagnetic valve 40a and the second refrigerant side electromagnetic valve 41a are opened. When these solenoid valves 40a and 41a are opened, a refrigerant flow is generated in the refrigerant pipe, and a pressure drop due to the refrigerant flow occurs. As a result, the pressure on the solenoid valve 41a side of the refrigerant check valve 42a is lower than the pressure on the solenoid valve 40a side. The check valve 42a is in a closed state, and the refrigerant side heat transfer tubes 2a and 3a of the water refrigerant heat exchangers 2 and 3 are in a parallel connection state.

第1水側電磁弁40bおよび第2水側電磁弁41bを開く。これら電磁弁40b,41bを開くと、水側管路内に水の流れが生じ、水の流れによる圧力降下が生じる。その結果、水側逆止弁42bの電磁弁40b側の圧力が電磁弁41b側の圧力より低くなる。逆止弁42bは閉じた状態であり、水冷媒熱交換器2,3の水側伝熱管2b,3bも並列接続状態になる。したがって、水冷媒熱交換器2,3の冷媒流路および水流路はともに、並列接続される。   The first water side solenoid valve 40b and the second water side solenoid valve 41b are opened. When these solenoid valves 40b and 41b are opened, a flow of water is generated in the water-side pipeline, and a pressure drop due to the flow of water occurs. As a result, the pressure on the electromagnetic valve 40b side of the water-side check valve 42b becomes lower than the pressure on the electromagnetic valve 41b side. The check valve 42b is closed, and the water-side heat transfer tubes 2b and 3b of the water refrigerant heat exchangers 2 and 3 are also connected in parallel. Accordingly, both the refrigerant flow path and the water flow path of the water refrigerant heat exchangers 2 and 3 are connected in parallel.

ところで、60℃で貯湯運転するときには、水側流量および冷媒側流量は、42℃で給湯運転するときの約2分の1以下に設定されている。給湯運転後の貯湯運転のように、各電磁弁を動作させずに水冷媒熱交換器2,3の流路を変更していなければ、水側流量および冷媒側流量の低下に伴い、水側伝熱管2b,3bおよび冷媒側伝熱管2a,3a内における水または冷媒の管内流速が低下する。その結果、水側熱伝達率および冷媒側熱伝達率も低下する。   By the way, when the hot water storage operation is performed at 60 ° C., the water-side flow rate and the refrigerant-side flow rate are set to be about one half or less than those when the hot water supply operation is performed at 42 ° C. If the flow paths of the water and refrigerant heat exchangers 2 and 3 are not changed without operating each solenoid valve as in the hot water storage operation after the hot water supply operation, the water side The flow velocity of water or refrigerant in the heat transfer tubes 2b and 3b and the refrigerant side heat transfer tubes 2a and 3a is decreased. As a result, the water side heat transfer coefficient and the refrigerant side heat transfer coefficient also decrease.

この性能低下を回避するため、図4に示すように、貯湯運転時には水冷媒熱交換器2,3を、並列接続から直列接続に変更する。太線で冷媒および水の流路を示す。貯湯運転時、第1の冷媒側電磁弁40a,第2の冷媒側電磁弁41aを閉じると、冷媒の流れによる圧力降下により、冷媒側逆止弁42aの電磁弁40a側の圧力が電磁弁41a側の圧力より低くなり、逆止弁42aは開いた状態となる。その結果、水冷媒熱交換器2,3の冷媒側伝熱管2a,3aは、直列に接続された状態となる。   In order to avoid this performance degradation, the water / refrigerant heat exchangers 2 and 3 are changed from parallel connection to series connection during hot water storage operation as shown in FIG. Thick lines indicate refrigerant and water flow paths. When the first refrigerant side solenoid valve 40a and the second refrigerant side solenoid valve 41a are closed during the hot water storage operation, the pressure on the solenoid valve 40a side of the refrigerant check valve 42a is reduced by the pressure drop due to the refrigerant flow. Therefore, the check valve 42a is opened. As a result, the refrigerant side heat transfer tubes 2a, 3a of the water refrigerant heat exchangers 2, 3 are connected in series.

第1の水側電磁弁40b,第2の水側電磁弁41bを閉じると、水の流れによる圧力降下により、水側逆止弁42bの電磁弁41b側の圧力が電磁弁40b側の圧力より低くなり、逆止弁42bは開いた状態となる。水冷媒熱交換器2,3の水側伝熱管2b,3bは、直列に接続された状態となる。したがって、水冷媒熱交換器2,3は、冷媒および水流路とも直列に構成される。水冷媒熱交換器2,3を直列接続したので、水側伝熱管2b,3bおよび冷媒側伝熱管2a,3aにおける水または冷媒の管内流速が増加して、熱伝達率が向上する。   When the first water-side solenoid valve 40b and the second water-side solenoid valve 41b are closed, the pressure on the solenoid valve 41b side of the water-side check valve 42b is less than the pressure on the solenoid valve 40b side due to the pressure drop due to the flow of water. The check valve 42b is in an open state. The water-side heat transfer tubes 2b and 3b of the water-refrigerant heat exchangers 2 and 3 are connected in series. Therefore, the water refrigerant heat exchangers 2 and 3 are configured in series with the refrigerant and the water flow path. Since the water-refrigerant heat exchangers 2 and 3 are connected in series, the flow velocity of water or refrigerant in the water-side heat transfer tubes 2b and 3b and the refrigerant-side heat transfer tubes 2a and 3a is increased, and the heat transfer coefficient is improved.

図5に、42℃での給湯運転時と60℃での貯湯運転時における、ヒートポンプ給湯装置100の性能計算結果を表で示す。貯湯運転時に、水冷媒熱交換器2,3の流路を並列接続から直列接続に切り替えたので、熱伝達率が向上するとともに冷媒圧力が減少し、
COPが約4%向上している。なお、直列接続すると圧力損失が増加するが、熱伝達率の向上による効果のほうが大きく、ヒートポンプ給湯装置100の効率であるCOPが向上している。
In FIG. 5, the performance calculation result of the heat pump hot water supply apparatus 100 at the time of the hot water supply operation at 42 ° C. and the hot water storage operation at 60 ° C. is shown in a table. During hot water storage operation, the flow path of the water-refrigerant heat exchangers 2 and 3 is switched from parallel connection to series connection, so that the heat transfer rate is improved and the refrigerant pressure is reduced.
COP is improved by about 4%. In addition, although pressure loss will increase if it connects in series, the effect by the improvement of a heat transfer rate is larger, and COP which is the efficiency of the heat pump hot-water supply apparatus 100 is improving.

給湯金具19や注湯電磁弁31,浴槽金具37等に接続された給湯端末からの湯の使用時間が数十秒程度と短い場合には、圧縮機1を起動しない。そして、給湯端末へは、貯湯タンク21から湯を供給する。図6に、給湯端末を開閉したときに、ヒートポンプ冷媒回路90がどのように運転/停止されるかをタイミングチャートで示す。   When the hot water usage time from the hot water supply terminal connected to the hot water supply metal fitting 19, the pouring electromagnetic valve 31, the bathtub metal fitting 37, or the like is as short as several tens of seconds, the compressor 1 is not started. Then, hot water is supplied from the hot water storage tank 21 to the hot water supply terminal. FIG. 6 is a timing chart showing how the heat pump refrigerant circuit 90 is operated / stopped when the hot water supply terminal is opened and closed.

給湯金具19に接続された図示しない蛇口が開栓されると、水道圧により給水金具11から流入した上水が、減圧弁12および給水流量センサ13,逆止弁14,水冷媒熱交換器流量センサ15,水冷媒熱交換器2,3,第1湯水混合弁16,第2湯水混合弁17,流量調整弁18,給湯金具19を順次経て、蛇口から流出する。その際、この給湯ラインに設けた給水流量センサ13が水流を検出してから、例えば30秒間だけはヒートポンプ冷媒回路90の圧縮機1を起動しない。給水流量センサ13の検出時間の長さは、制御装置が備えるタイマで計測される。このタイマを給水流量センサ13に設けてもよいことは言うまでも無い。   When a faucet (not shown) connected to the hot water supply fitting 19 is opened, the clean water flowing in from the water supply fitting 11 due to the water pressure becomes the pressure reducing valve 12, the water supply flow rate sensor 13, the check valve 14, and the water refrigerant heat exchanger flow rate. The water flows out from the faucet through the sensor 15, the water refrigerant heat exchanger 2, 3, the first hot / cold water mixing valve 16, the second hot / cold water mixing valve 17, the flow rate adjusting valve 18, and the hot water supply fitting 19. At that time, the compressor 1 of the heat pump refrigerant circuit 90 is not started, for example, only for 30 seconds after the water supply flow rate sensor 13 provided in the hot water supply line detects the water flow. The length of the detection time of the feed water flow sensor 13 is measured by a timer provided in the control device. It goes without saying that this timer may be provided in the water supply flow rate sensor 13.

また、混合温度センサ63の温度が目標温度(Tws+α0+α1)になるように、図示しない制御装置が第1湯水混合弁16の開度を制御し、第1湯水混合弁16で貯湯タンク21の高温湯と水冷媒熱交換器2,3から流出した加熱されていない水とを混合する。そして、給湯温度センサ64の温度が目標温度(Tws+α0)になるように、下流の第2湯水混合弁17で混合させる水量を、制御装置が制御する。第2湯水混合弁17で湯水の混合量を調整されて、蛇口には適温の湯が供給される。   Further, a controller (not shown) controls the opening degree of the first hot water mixing valve 16 so that the temperature of the mixed temperature sensor 63 becomes the target temperature (Tws + α0 + α1), and the hot water in the hot water storage tank 21 is controlled by the first hot water mixing valve 16. And unheated water flowing out of the water refrigerant heat exchangers 2 and 3 are mixed. Then, the control device controls the amount of water to be mixed by the downstream second hot water / water mixing valve 17 so that the temperature of the hot water supply temperature sensor 64 becomes the target temperature (Tws + α0). The amount of hot water mixed is adjusted by the second hot water mixing valve 17, and hot water of an appropriate temperature is supplied to the faucet.

本実施例によれば、蛇口などの給湯端末の使用が30秒以内であれば、圧縮機1を起動しない。タンク沸き戻し回路96を用いた貯湯運転で作った貯湯タンク21内の湯だけを使用する。したがって、水流が検出されれば圧縮機1を起動する従来の方法に比べて、圧縮機の使用時間が短くなるととともに頻繁な圧縮機1の起動/停止を防止できる。なお、貯湯タンク21へは、給湯要求が無い時にヒートポンプ冷媒回路90と機内循環ポンプ
23を運転して、貯える。その際、貯湯タンク21の水は、機内循環ポンプ23および水冷媒熱交換器2,3、第1湯水混合弁16の順に水経路を循環する。給湯端末の使用が
30秒以内であれば、貯湯タンク21内の湯だけが使用されるので、全体の給湯負荷のうち、貯湯運転の割合が大きくなる。本実施例によれば、水冷媒熱交換器2,3の流路を切り替えて使用するので、貯湯運転のエネルギー効率が向上する。
According to the present embodiment, the compressor 1 is not started if the hot water supply terminal such as a faucet is used within 30 seconds. Only the hot water in the hot water storage tank 21 made by the hot water storage operation using the tank boiling back circuit 96 is used. Therefore, when the water flow is detected, the use time of the compressor is shortened and frequent start / stop of the compressor 1 can be prevented as compared with the conventional method of starting the compressor 1. Note that the hot water storage tank 21 stores the heat pump refrigerant circuit 90 and the in-machine circulation pump 23 when there is no hot water supply request. At that time, the water in the hot water storage tank 21 circulates in the water path in the order of the in-machine circulation pump 23, the water / refrigerant heat exchangers 2 and 3, and the first hot water / water mixing valve 16. If the hot water supply terminal is used within 30 seconds, only the hot water in the hot water storage tank 21 is used, so that the ratio of the hot water storage operation becomes large in the total hot water supply load. According to this embodiment, since the water refrigerant heat exchangers 2 and 3 are switched and used, the energy efficiency of the hot water storage operation is improved.

給湯端末から30秒以上継続して湯を使用するときは、ヒートポンプ冷媒回路90を作動させる。つまり、給水流量センサ13が水流を検出してから30秒経過したら、圧縮機1を起動する。ヒートポンプ冷媒回路90が立上がるまでは、ヒートポンプ冷媒回路
90から供給される湯水は制御装置が設定した所定の目標温度に達しない。そこで、水冷媒熱交換器2,3で加熱された湯水と、貯湯タンク21に蓄えた、例えば、約60℃の湯とを混合して、混合温度センサ63が検出する温度が所定の目標温度となるように、第1湯水混合弁16の開度を調整する。
When using hot water continuously for 30 seconds or more from the hot water supply terminal, the heat pump refrigerant circuit 90 is operated. That is, the compressor 1 is started when 30 seconds have elapsed after the water supply flow rate sensor 13 detects the water flow. Until the heat pump refrigerant circuit 90 starts up, the hot water supplied from the heat pump refrigerant circuit 90 does not reach the predetermined target temperature set by the control device. Therefore, hot water heated by the water / refrigerant heat exchangers 2 and 3 and hot water stored in the hot water storage tank 21, for example, about 60 ° C. are mixed, and the temperature detected by the mixing temperature sensor 63 is a predetermined target temperature. The opening degree of the first hot and cold water mixing valve 16 is adjusted so that

圧縮機1を起動すると、時間が経過するにつれてヒートポンプ冷媒回路90の加熱能力が徐々に増加する。その結果、第1湯水混合弁16では水冷媒熱交換器2,3側の流量が徐々に増加し、貯湯タンク21側の流量が徐々に減少する。使用者の所望の温度と出湯量が、ヒートポンプ冷媒回路90の加熱能力以下であれば、水冷媒熱交換器2,3側の温度が所定の温度に到達したら、貯湯タンク21側からの湯の供給を止め、ヒートポンプ冷媒回路90側からだけ連続給湯する。   When the compressor 1 is started, the heating capacity of the heat pump refrigerant circuit 90 gradually increases as time elapses. As a result, in the first hot water / water mixing valve 16, the flow rate on the water / refrigerant heat exchangers 2 and 3 side gradually increases, and the flow rate on the hot water storage tank 21 side gradually decreases. If the user's desired temperature and amount of hot water are less than the heating capacity of the heat pump refrigerant circuit 90, when the temperature on the water refrigerant heat exchanger 2, 3 side reaches a predetermined temperature, the hot water from the hot water storage tank 21 side Supply is stopped and hot water is continuously supplied only from the heat pump refrigerant circuit 90 side.

これに対して、使用者の所望の温度と出湯量が、ヒートポンプ冷媒回路90の加熱能力を超えているときには、水冷媒熱交換器2,3から所定の温度に達していない湯水が供給され、この湯水に貯湯タンク21に貯えた高温の湯を混合して、給湯端末に使用者の所望の温度と出湯量で給湯される。貯湯タンク21に貯えられた高温湯が無くなったら、給湯温度をそのままにして、ヒートポンプ冷媒回路90の加熱能力で供給可能な流量まで、流量調整弁18が流量を絞る。この状態で、ヒートポンプ冷媒回路90から給湯端末に連続給湯される。   On the other hand, when the user's desired temperature and amount of hot water exceeds the heating capacity of the heat pump refrigerant circuit 90, hot water that has not reached the predetermined temperature is supplied from the water refrigerant heat exchangers 2 and 3, Hot water stored in the hot water storage tank 21 is mixed with this hot water, and hot water is supplied to the hot water supply terminal at the temperature and amount of hot water desired by the user. When the hot water stored in the hot water storage tank 21 is exhausted, the flow rate adjustment valve 18 reduces the flow rate to a flow rate that can be supplied by the heating capacity of the heat pump refrigerant circuit 90 while keeping the hot water supply temperature. In this state, hot water is continuously supplied from the heat pump refrigerant circuit 90 to the hot water supply terminal.

給水流量センサ13が、給湯端末が閉じられたことを検出して、貯湯タンク21の温度センサ65aが検出した湯温が設定値に満たないときには、残湯量が少ないと判断して沸き戻し回路96を用いて沸き戻し運転する。貯湯タンク21の温度センサ65aが検出した湯温が設定値以上であれば、残湯量が多いと判断して圧縮機1を停止する。   When the hot water supply sensor 13 detects that the hot water supply terminal has been closed and the hot water temperature detected by the temperature sensor 65a of the hot water storage tank 21 is less than the set value, it is determined that the remaining hot water amount is small and the boil-back circuit 96 Use the to boil back. If the hot water temperature detected by the temperature sensor 65a of the hot water storage tank 21 is equal to or higher than the set value, it is determined that the remaining hot water amount is large, and the compressor 1 is stopped.

本実施例では、給湯端末が開かれたことを給水流量センサ13が検出して30秒経過後に圧縮機1を起動させているが、使用者ごとに圧縮機の起動時間を変えてもよい。また、使用時間帯でこの時間を変えてもよい。さらに、学習制御を用いて使用者の給湯パターンを学習し、給湯時間の短い場合と長い場合を統計して、圧縮機の起動時間を決定してもよい。   In the present embodiment, the water supply flow rate sensor 13 detects that the hot water supply terminal has been opened, and the compressor 1 is started after 30 seconds. However, the start time of the compressor may be changed for each user. Further, this time may be changed depending on the use time zone. Further, the user's hot water supply pattern may be learned using learning control, and the start time of the compressor may be determined by statistically analyzing the cases where the hot water supply time is short and long.

本実施例に記載のヒートポンプ給湯装置100は、風呂自動湯張り機能も有している。使用者が図示しないリモコンを用いて風呂温度を、たとえば42℃に設定し、風呂自動湯張りボタンをONにすると、風呂湯張り回路93の注湯電磁弁31が開く。このとき、水道圧により給水金具11から流入した水が、減圧弁12および給水流量センサ13,逆止弁14,水冷媒熱交換器流量センサ15,水冷媒熱交換器2,第1湯水混合弁16,第2湯水混合弁17,流量調整弁18,注湯電磁弁31,フロースイッチ32,風呂循環ポンプ33,水位センサ34,入出湯金具35,風呂循環アダプタ36aを経て、加温されて浴槽36へ供給される。この風呂自動湯張りにおいては、上水の給水を給水流量センサ
13が検出するが、風呂自動湯張りボタンがONになっているので、制御装置は給湯時間が長いと自動的に判断し、給水流量センサ13が水流を検出してから30秒経過しないうちに、ヒートポンプ冷媒回路90の圧縮機1を起動する。
The heat pump hot water supply apparatus 100 described in the present embodiment also has a bath automatic hot water filling function. When the user sets the bath temperature to 42 ° C., for example, using a remote controller (not shown) and turns on the bath hot water filling button, the hot water solenoid valve 31 of the bath water filling circuit 93 is opened. At this time, the water flowing in from the water supply fitting 11 due to the water supply pressure is supplied to the pressure reducing valve 12, the water supply flow rate sensor 13, the check valve 14, the water refrigerant heat exchanger flow rate sensor 15, the water refrigerant heat exchanger 2, and the first hot water mixing valve. 16, the second hot water / water mixing valve 17, the flow rate adjusting valve 18, the pouring solenoid valve 31, the flow switch 32, the bath circulation pump 33, the water level sensor 34, the hot water fitting 35, and the bath circulation adapter 36a, and heated and bathed. 36. In this automatic bath filling, the water supply flow rate sensor 13 detects the supply of clean water, but since the automatic bath filling button is ON, the control device automatically determines that the hot water supply time is long and supplies the water. The compressor 1 of the heat pump refrigerant circuit 90 is activated within 30 seconds after the flow sensor 13 detects the water flow.

ここで、制御装置は給水流量センサ13の流量が所定値となるように、流量調整弁18の開度を制御する。ヒートポンプ冷媒回路90が立上がるまでの湯水の温度は、制御装置に設定された所定の目標温度より低い。そこで、水冷媒熱交換器2で加熱された湯水と、貯湯タンク21に貯えた約60℃の湯を第1湯水混合弁16で混合し、混合温度センサ63が検出する温度が目標温度となるように、制御装置が第1湯水混合弁16での混合量を制御する。なお、貯湯タンク21の湯を再加熱もしくは貯湯することは、上記給湯端末からの給湯後と同様である。また制御回路は、ヒートポンプ冷媒回路90の起動時に、給湯端末からの給湯と同様に、各弁を切り替え制御する。   Here, the control device controls the opening degree of the flow rate adjusting valve 18 so that the flow rate of the feed water flow rate sensor 13 becomes a predetermined value. The temperature of the hot water until the heat pump refrigerant circuit 90 rises is lower than a predetermined target temperature set in the control device. Therefore, hot water heated by the water / refrigerant heat exchanger 2 and hot water of about 60 ° C. stored in the hot water storage tank 21 are mixed by the first hot water / water mixing valve 16, and the temperature detected by the mixing temperature sensor 63 becomes the target temperature. As described above, the control device controls the mixing amount in the first hot water mixing valve 16. Reheating or storing hot water in the hot water storage tank 21 is the same as after hot water supply from the hot water supply terminal. Further, the control circuit switches and controls each valve when the heat pump refrigerant circuit 90 is activated, similarly to the hot water supply from the hot water supply terminal.

浴槽36の湯が所定の水位になったことを水位センサ34が検出したら、制御装置は注湯電磁弁31をOFFにする。リモコンは風呂湯張りが完了したことを、メロディ等で知らせる。この時、貯湯タンク21に取り付けた温度センサ65aの湯温が設定値未満であれば、残湯量が少ないと制御装置は判断し、沸き戻し回路96を用いて沸き戻し運転する。温度センサ65aの湯温が設定値以上であれば、残湯量が多いと制御装置が判断し、圧縮機1を停止させる。   When the water level sensor 34 detects that the hot water in the bathtub 36 has reached a predetermined water level, the control device turns off the hot water solenoid valve 31. The remote control notifies you that bathing has been completed with a melody. At this time, if the hot water temperature of the temperature sensor 65 a attached to the hot water storage tank 21 is less than the set value, the control device determines that the remaining hot water amount is small, and performs a boil-back operation using the boil-back circuit 96. If the hot water temperature of the temperature sensor 65a is equal to or higher than the set value, the control device determines that the remaining hot water amount is large, and stops the compressor 1.

以上述べたように、本実施例によれば、給湯を開始して所定時間経過した後に圧縮機を起動できるようにしたので、短時間だけ給湯する場合にヒートポンプ冷媒回路を起動させる必要が無く、エネルギー効率の低い立上り運転の運転時間を低減できる。また、貯湯タンクから出湯が増加してタンク貯湯運転が増加しても、水冷媒熱交換器において並列接続と直列接続を切り替え可能にしたので、貯湯運転時には直列接続により、水冷媒熱交換器の効率を向上できる。したがって、ヒートポンプ給湯装置のエネルギー効率を向上できる。   As described above, according to the present embodiment, since the compressor can be started after a predetermined time has elapsed since the start of hot water supply, it is not necessary to start the heat pump refrigerant circuit when supplying hot water only for a short time, The operation time of start-up operation with low energy efficiency can be reduced. In addition, even if the amount of hot water discharged from the hot water storage tank increases and the tank hot water storage operation increases, the water refrigerant heat exchanger can be switched between parallel connection and series connection. Efficiency can be improved. Therefore, the energy efficiency of the heat pump water heater can be improved.

本発明に係るヒートポンプ給湯装置の一実施例の回路図である。It is a circuit diagram of one Example of the heat pump hot-water supply apparatus which concerns on this invention. 本発明に係るヒートポンプ給湯装置の一実施例の回路図である。It is a circuit diagram of one Example of the heat pump hot-water supply apparatus which concerns on this invention. 図1に示したヒートポンプ給湯装置の給湯運転を説明する図である。It is a figure explaining the hot water supply operation of the heat pump hot water supply apparatus shown in FIG. 図1に示したヒートポンプ給湯装置の給湯運転を説明する図である。It is a figure explaining the hot water supply operation of the heat pump hot water supply apparatus shown in FIG. 給湯温度を変化させたときのヒートポンプ給湯装置の性能の一例を示す表である。It is a table | surface which shows an example of the performance of the heat pump hot-water supply apparatus when changing hot-water supply temperature. 給湯端末の開閉とヒートポンプの運転停止の関係を説明する図である。It is a figure explaining the relationship between opening and closing of a hot water supply terminal, and the operation stop of a heat pump.

符号の説明Explanation of symbols

1…圧縮機、2,3…水冷媒熱交換器、4…膨張弁、5…蒸発器、13…給水流量センサ、15…水冷媒熱交換器流量センサ、16…第1湯水混合弁、17…第2湯水混合弁、18…流量調整弁、21…貯湯タンク、31…注湯電磁弁、36…浴槽、40a,41a…冷媒側電磁弁、40b,41b…水側電磁弁、42a…冷媒側逆止弁、50…水側逆止弁、50…吐出温度センサ、51…吐出圧力センサ、52…蒸発器冷媒入口温度センサ、53…蒸発器冷媒出口温度センサ、61…水冷媒熱交換器水入口温度センサ、62…水冷媒熱交換器水出口温度センサ、63…混合温度センサ、64…給湯温度センサ、100…ヒートポンプ給湯装置。
DESCRIPTION OF SYMBOLS 1 ... Compressor, 2, 3 ... Water refrigerant heat exchanger, 4 ... Expansion valve, 5 ... Evaporator, 13 ... Feed water flow sensor, 15 ... Water refrigerant heat exchanger flow sensor, 16 ... 1st hot water mixing valve, 17 2nd hot water / water mixing valve, 18 ... flow rate adjustment valve, 21 ... hot water storage tank, 31 ... pouring solenoid valve, 36 ... bathtub, 40a, 41a ... refrigerant side solenoid valve, 40b, 41b ... water side solenoid valve, 42a ... refrigerant Side check valve, 50 ... Water side check valve, 50 ... Discharge temperature sensor, 51 ... Discharge pressure sensor, 52 ... Evaporator refrigerant inlet temperature sensor, 53 ... Evaporator refrigerant outlet temperature sensor, 61 ... Water refrigerant heat exchanger Water inlet temperature sensor, 62 ... water refrigerant heat exchanger water outlet temperature sensor, 63 ... mixing temperature sensor, 64 ... hot water supply temperature sensor, 100 ... heat pump hot water supply device.

Claims (10)

ヒートポンプ冷媒回路と、このヒートポンプ冷媒回路で加熱された水を貯湯する貯湯タンクとを備えたヒートポンプ給湯装置において、前記ヒートポンプ冷媒回路は冷媒と水とが熱交換する2個の水冷媒熱交換器を有し、この2個の水冷媒熱交換器の水流路および冷媒流路の直列接続と並列接続を切り替え可能にする複数の開閉弁とこの開閉弁を前記ヒートポンプ冷媒回路での加熱の目標温度に応じて制御する制御装置とを有し、高い目標温度で給湯するときには、前記2個の水冷媒熱交換器を直列接続し、低い目標温度で給湯するときは、前記2個の水冷媒熱交換器を並列接続することを特徴とするヒートポンプ給湯装置。 In a heat pump water heater comprising a heat pump refrigerant circuit and a hot water storage tank for storing hot water heated by the heat pump refrigerant circuit, the heat pump refrigerant circuit includes two water refrigerant heat exchangers for exchanging heat between the refrigerant and water. A plurality of on-off valves that enable switching between a series connection and a parallel connection of the water flow paths and the refrigerant flow paths of the two water-refrigerant heat exchangers, and the on-off valves to a target temperature for heating in the heat pump refrigerant circuit. The two water refrigerant heat exchangers are connected in series when hot water is supplied at a high target temperature, and the two water refrigerant heat exchanges are provided when hot water is supplied at a low target temperature. A heat pump hot water supply device, characterized in that the appliances are connected in parallel. 前記制御装置は、前記ヒートポンプ冷媒回路を運転して前記貯湯タンクに給湯するときは、前記2個の水冷媒熱交換器を直列接続し、前記ヒートポンプ冷媒回路を運転して給湯端末に給湯するときは、前記2個の水冷媒熱交換器を並列接続することを特徴とする請求項1に記載のヒートポンプ給湯装置。   When the control device operates the heat pump refrigerant circuit to supply hot water to the hot water storage tank, the two water refrigerant heat exchangers are connected in series, and the heat pump refrigerant circuit operates to supply hot water to the hot water supply terminal. The heat pump hot water supply apparatus according to claim 1, wherein the two water refrigerant heat exchangers are connected in parallel. このヒートポンプ給湯装置に接続される給湯端末での給湯使用を検出する流量検出手段を有し、前記制御装置は前記ヒートポンプ冷媒回路を制御可能であるとともに、前記流量検出手段が給湯端末の給湯使用を検出してから所定時間経過するまでは、前記貯湯タンクからだけ給湯するように前記ヒートポンプ冷媒回路を制御することを特徴とする請求項1又は2に記載のヒートポンプ給湯装置。   It has flow rate detection means for detecting the use of hot water supply at a hot water supply terminal connected to the heat pump hot water supply device, the control device can control the heat pump refrigerant circuit, and the flow rate detection means uses hot water supply at the hot water supply terminal. 3. The heat pump hot water supply apparatus according to claim 1, wherein the heat pump refrigerant circuit is controlled so that hot water is supplied only from the hot water storage tank until a predetermined time elapses after detection. 前記制御装置は、前記給湯端末が浴槽に接続されてこの浴槽に湯張りするときは、前記流量検出手段が給湯を検出したらすぐに前記ヒートポンプ冷媒回路を起動するように制御することを特徴とする請求項3に記載のヒートポンプ給湯装置。   The control device controls the heat pump refrigerant circuit to be activated as soon as the flow rate detection means detects hot water when the hot water supply terminal is connected to the bathtub and fills the bathtub. The heat pump hot water supply apparatus according to claim 3. 圧縮機が圧縮した冷媒と水とを熱交換する水冷媒熱交換器を有するヒートポンプ冷媒回路と、前記水冷媒熱交換器で加熱された湯を貯える貯湯タンクと、前記水冷媒熱交換器と前記貯湯タンクへ水を供給する給水手段と、前記水冷媒熱交換器と前記貯湯タンクから送られた湯水を供給する給湯手段とを備えたヒートポンプ給湯装置において、前記水冷媒熱交換器の少なくとも冷媒流路は、複数形成されており、この複数形成された冷媒流路の並列接続および直列接続を前記ヒートポンプ冷媒回路での加熱の目標温度に応じて切替可能とし、高い目標温度で給湯するときには、前記冷媒流路を直列接続とし、低い目標温度で給湯するときは、前記冷媒流路を並列接続とすることを特徴とするヒートポンプ給湯装置。A heat pump refrigerant circuit having a water refrigerant heat exchanger for exchanging heat between the refrigerant compressed by the compressor and water; a hot water storage tank for storing hot water heated by the water refrigerant heat exchanger; the water refrigerant heat exchanger; In a heat pump hot water supply apparatus comprising a water supply means for supplying water to a hot water storage tank, and a hot water supply means for supplying hot water sent from the water refrigerant heat exchanger and the hot water storage tank, at least the refrigerant flow of the water refrigerant heat exchanger. A plurality of paths are formed, and the parallel connection and series connection of the plurality of formed refrigerant flow paths can be switched according to the target temperature of heating in the heat pump refrigerant circuit, and when hot water is supplied at a high target temperature, A heat pump hot water supply apparatus characterized in that when the refrigerant flow paths are connected in series and hot water is supplied at a low target temperature, the refrigerant flow paths are connected in parallel. 前記貯湯タンクに加熱された湯を貯える場合は、水冷媒熱交換器の複数形成された冷媒流路を直列接続し、前記ヒートポンプ冷媒回路を運転して給湯端末に給湯するときは、前記冷媒流路を並列接続することを特徴とする請求項5に記載のヒートポンプ給湯装置。When hot water is stored in the hot water storage tank, a plurality of formed refrigerant flow paths of the water refrigerant heat exchanger are connected in series, and when the heat pump refrigerant circuit is operated to supply hot water to the hot water supply terminal, the refrigerant flow The heat pump hot water supply apparatus according to claim 5, wherein the paths are connected in parallel. 給湯を開始してから所定時間経過した後に、前記圧縮機を起動させる制御手段を備えることを特徴とする請求項5に記載のヒートポンプ給湯装置。The heat pump hot water supply apparatus according to claim 5, further comprising a control unit that activates the compressor after a predetermined time has elapsed since the hot water supply was started. 前記給湯手段を複数有し、一方の給湯手段は風呂に接続されるものであり、他方の給湯手段は風呂以外のものに接続されるものであり、風呂に接続される給湯手段から給湯するときと風呂以外に接続される給湯手段から給湯するときとで、前記制御手段は前記圧縮機を起動させる時間を変更可能であることを特徴とする請求項7記載のヒートポンプ給湯装置。When there are a plurality of hot water supply means, one hot water supply means is connected to a bath, the other hot water supply means is connected to something other than a bath, and hot water is supplied from a hot water supply means connected to the bath 8. The heat pump hot water supply apparatus according to claim 7, wherein the control means can change the time for starting the compressor when hot water is supplied from a hot water supply means connected to a place other than the bath. ヒートポンプ冷媒回路と、このヒートポンプ冷媒回路で加熱された水を貯湯する貯湯タンクとを備えたヒートポンプ給湯装置において、前記ヒートポンプ冷媒回路は冷媒と水とが熱交換する2個の水冷媒熱交換器を有し、この2個の水冷媒熱交換器の直列接続と並列接続を切り替え可能にする複数の開閉弁とこの開閉弁を前記ヒートポンプ冷媒回路での加熱の目標温度に応じて制御する制御装置とを有し、高い目標温度で給湯するときには、前記2個の水冷媒熱交換器を直列接続し、低い目標温度で給湯するときは、前記2個の水冷媒熱交換器を並列接続するヒートポンプ給湯装置であって、In a heat pump water heater comprising a heat pump refrigerant circuit and a hot water storage tank for storing hot water heated by the heat pump refrigerant circuit, the heat pump refrigerant circuit includes two water refrigerant heat exchangers for exchanging heat between the refrigerant and water. A plurality of on-off valves that enable switching between serial connection and parallel connection of the two water refrigerant heat exchangers, and a control device that controls the on-off valves according to a target temperature of heating in the heat pump refrigerant circuit; When the hot water supply is performed at a high target temperature, the two water refrigerant heat exchangers are connected in series, and when the hot water supply is performed at a low target temperature, the two water refrigerant heat exchangers are connected in parallel. A device,
このヒートポンプ給湯装置に接続される給湯端末での給湯使用を検出する流量検出手段を有し、前記制御装置は前記ヒートポンプ冷媒回路を制御可能であるとともに、前記流量検出手段が給湯端末の給湯使用を検出してから所定時間経過するまでは、前記貯湯タンクからだけ給湯するように前記ヒートポンプ冷媒回路を制御する一方、It has flow rate detection means for detecting the use of hot water supply at a hot water supply terminal connected to the heat pump hot water supply device, the control device can control the heat pump refrigerant circuit, and the flow rate detection means uses hot water supply at the hot water supply terminal. Until the predetermined time has passed since the detection, while controlling the heat pump refrigerant circuit to supply hot water only from the hot water storage tank,
前記制御装置は、前記給湯端末が浴槽に接続されてこの浴槽に湯張りするときは、前記流量検出手段が給湯を検出したらすぐに前記ヒートポンプ冷媒回路を起動するように制御することを特徴とするヒートポンプ給湯装置。The control device controls the heat pump refrigerant circuit to be activated as soon as the flow rate detection means detects hot water when the hot water supply terminal is connected to the bathtub and fills the bathtub. Heat pump water heater.
圧縮機が圧縮した冷媒と水とを熱交換する水冷媒熱交換器を有するヒートポンプ冷媒回路と、前記水冷媒熱交換器で加熱された湯を貯える貯湯タンクと、前記水冷媒熱交換器と前記貯湯タンクへ水を供給する給水手段と、前記水冷媒熱交換器と前記貯湯タンクから送られた湯水を供給する給湯手段とを備えたヒートポンプ給湯装置において、前記水冷媒熱交換器の少なくとも水流路と冷媒流路のいずれか一方は、複数形成されており、この複数形成された流路の並列接続および直列接続を前記ヒートポンプ冷媒回路での加熱の目標温度に応じて切替可能とし、高い目標温度で給湯するときには、前記流路を直列接続とし、低い目標温度で給湯するときは、前記流路を並列接続とするヒートポンプ給湯装置であって、A heat pump refrigerant circuit having a water refrigerant heat exchanger for exchanging heat between the refrigerant compressed by the compressor and water; a hot water storage tank for storing hot water heated by the water refrigerant heat exchanger; the water refrigerant heat exchanger; In a heat pump hot water supply apparatus comprising a water supply means for supplying water to a hot water storage tank, and a hot water supply means for supplying hot water sent from the water refrigerant heat exchanger and the hot water storage tank, at least a water flow path of the water refrigerant heat exchanger And a plurality of the refrigerant flow paths are formed, and the parallel connection and the series connection of the plurality of formed flow paths can be switched according to the target temperature of heating in the heat pump refrigerant circuit, and a high target temperature When supplying hot water with, the flow path is connected in series, and when supplying hot water at a low target temperature, a heat pump hot water supply apparatus with the flow path connected in parallel,
給湯を開始してから所定時間経過した後に、前記圧縮機を起動させる制御手段を備え、After a lapse of a predetermined time from the start of hot water supply, comprising a control means for starting the compressor,
前記給湯手段を複数有し、一方の給湯手段は風呂に接続されるものであり、他方の給湯手段は風呂以外のものに接続されるものであり、風呂に接続される給湯手段から給湯するときと風呂以外に接続される給湯手段から給湯するときとで、前記制御手段は前記圧縮機を起動させる時間を変更可能であることを特徴とするヒートポンプ給湯装置。When there are a plurality of hot water supply means, one hot water supply means is connected to a bath, the other hot water supply means is connected to something other than a bath, and hot water is supplied from a hot water supply means connected to the bath A heat pump hot water supply apparatus characterized in that the control means can change the time for starting the compressor when hot water is supplied from hot water supply means connected to other than the bath.
JP2006174716A 2006-06-26 2006-06-26 Heat pump water heater Expired - Fee Related JP4839141B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006174716A JP4839141B2 (en) 2006-06-26 2006-06-26 Heat pump water heater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006174716A JP4839141B2 (en) 2006-06-26 2006-06-26 Heat pump water heater

Publications (3)

Publication Number Publication Date
JP2008002776A JP2008002776A (en) 2008-01-10
JP2008002776A5 JP2008002776A5 (en) 2008-09-25
JP4839141B2 true JP4839141B2 (en) 2011-12-21

Family

ID=39007307

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006174716A Expired - Fee Related JP4839141B2 (en) 2006-06-26 2006-06-26 Heat pump water heater

Country Status (1)

Country Link
JP (1) JP4839141B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11885507B2 (en) 2021-05-24 2024-01-30 Timothy Tilley Instantaneous hot water heat pump

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4310960B2 (en) * 2002-03-13 2009-08-12 ダイキン工業株式会社 Scroll type fluid machinery
JP5308783B2 (en) * 2008-07-31 2013-10-09 日立アプライアンス株式会社 Heat pump water heater
JP2011149631A (en) * 2010-01-22 2011-08-04 Hitachi Appliances Inc Heat pump water heater
WO2013160929A1 (en) * 2012-04-23 2013-10-31 三菱電機株式会社 Refrigeration cycle system
JP5985418B2 (en) * 2013-03-04 2016-09-06 ジョンソンコントロールズ ヒタチ エア コンディショニング テクノロジー(ホンコン)リミテッド Refrigeration cycle apparatus, and refrigeration apparatus and air conditioner equipped with the refrigeration cycle apparatus
JP6281736B2 (en) * 2013-05-23 2018-02-21 株式会社ノーリツ Heat pump water heater
CN107429948B (en) * 2015-03-19 2019-12-13 三菱电机株式会社 heat pump system
CN105841255A (en) * 2016-03-23 2016-08-10 海信(山东)空调有限公司 Heat exchanger, outdoor unit, heat exchange controller and heat exchange control method

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02100169A (en) * 1988-10-07 1990-04-12 Seiko Epson Corp Document preparing device
JPH10267494A (en) * 1997-03-25 1998-10-09 Mitsubishi Electric Corp Cooler
JP3465574B2 (en) * 1998-02-26 2003-11-10 三菱電機株式会社 Refrigeration air conditioner and equipment selection method
JP3778102B2 (en) * 2002-02-19 2006-05-24 松下電器産業株式会社 Heat pump water heater
JP3743375B2 (en) * 2002-02-12 2006-02-08 松下電器産業株式会社 Heat pump water heater
JP3742356B2 (en) * 2002-03-20 2006-02-01 株式会社日立製作所 Heat pump water heater
JP2004150677A (en) * 2002-10-30 2004-05-27 Hitachi Home & Life Solutions Inc Heat pump type hot water supply device
JP3642334B2 (en) * 2003-05-19 2005-04-27 松下電器産業株式会社 Heat pump water heater
JP3909311B2 (en) * 2003-06-24 2007-04-25 日立アプライアンス株式会社 Heat pump water heater
JP2005076964A (en) * 2003-08-29 2005-03-24 Hitachi Home & Life Solutions Inc Heat pump hot water supplier
JP3915770B2 (en) * 2003-10-31 2007-05-16 松下電器産業株式会社 Heat pump water heater
JP2005195211A (en) * 2004-01-05 2005-07-21 Matsushita Electric Ind Co Ltd Heat pump water heater
JP4715439B2 (en) * 2005-10-11 2011-07-06 パナソニック株式会社 Heat pump water heater

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11885507B2 (en) 2021-05-24 2024-01-30 Timothy Tilley Instantaneous hot water heat pump

Also Published As

Publication number Publication date
JP2008002776A (en) 2008-01-10

Similar Documents

Publication Publication Date Title
JP4839141B2 (en) Heat pump water heater
US9010281B2 (en) Hot water supply system
JP5200842B2 (en) Water heater
JP2009275957A (en) Hot water supply apparatus
JP2006300489A (en) Hot water storage type water heater
JP4875970B2 (en) Heat pump water heater
JP4778299B2 (en) Hot water storage type hot water supply device and method for changing standby opening of hot water mixing valve
JP3887781B2 (en) Heat pump water heater
JP2004340461A (en) Hot water storage type water heater
JP5678812B2 (en) Hot water storage water heater
KR20050005744A (en) Heat pump type hot water supplier
JP2007198637A (en) Heat pump type water heater
JP2009002599A (en) Heat pump type water heater
JP4207867B2 (en) Hot water storage water heater
JP4148909B2 (en) Heat pump water heater / heater
JP4515883B2 (en) Hot water storage water heater
JP2011141069A (en) Bath device
JP5094217B2 (en) Heat pump water heater
JP2019215158A (en) Heat pump type hot water supply device
JP4155162B2 (en) Hot water storage water heater
JP3909312B2 (en) Heat pump water heater
JP2005016759A (en) Heat pump type water heater
JP2006266593A (en) Heat pump water heater
JP3987014B2 (en) Hot water storage water heater
JP5893992B2 (en) Heat supply system

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080709

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080709

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080709

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100924

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101012

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101209

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110614

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110803

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110906

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111003

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141007

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees