JP6916716B2 - heat pump - Google Patents

heat pump Download PDF

Info

Publication number
JP6916716B2
JP6916716B2 JP2017215657A JP2017215657A JP6916716B2 JP 6916716 B2 JP6916716 B2 JP 6916716B2 JP 2017215657 A JP2017215657 A JP 2017215657A JP 2017215657 A JP2017215657 A JP 2017215657A JP 6916716 B2 JP6916716 B2 JP 6916716B2
Authority
JP
Japan
Prior art keywords
stage compressor
stage
refrigerant
low
evaporator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017215657A
Other languages
Japanese (ja)
Other versions
JP2019086237A (en
Inventor
小林 隆之
隆之 小林
洋平 葛山
洋平 葛山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kansai Electric Power Co Inc
Chubu Electric Power Co Inc
Mitsubishi Heavy Industries Thermal Systems Ltd
Original Assignee
Kansai Electric Power Co Inc
Chubu Electric Power Co Inc
Mitsubishi Heavy Industries Thermal Systems Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kansai Electric Power Co Inc, Chubu Electric Power Co Inc, Mitsubishi Heavy Industries Thermal Systems Ltd filed Critical Kansai Electric Power Co Inc
Priority to JP2017215657A priority Critical patent/JP6916716B2/en
Priority to PCT/JP2018/041492 priority patent/WO2019093422A1/en
Priority to CN201880072404.8A priority patent/CN111316048B/en
Priority to EP18877203.2A priority patent/EP3705809A4/en
Publication of JP2019086237A publication Critical patent/JP2019086237A/en
Application granted granted Critical
Publication of JP6916716B2 publication Critical patent/JP6916716B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B5/00Compression machines, plants or systems, with several evaporator circuits, e.g. for varying refrigerating capacity
    • F25B5/02Compression machines, plants or systems, with several evaporator circuits, e.g. for varying refrigerating capacity arranged in parallel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • F25B1/10Compression machines, plants or systems with non-reversible cycle with multi-stage compression

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)

Description

本発明は、冷媒回路が設けられたヒートポンプに関する。 The present invention relates to a heat pump provided with a refrigerant circuit.

従来から、冷媒が圧縮と膨張を繰り返して循環する冷媒回路が設けられた冷凍サイクル、即ちヒートポンプが知られている。このようなヒートポンプでは、例えば特許文献1に記載されているように、冷媒を圧縮する低段側圧縮機と、低段側圧縮機から吐出された冷媒をさらに圧縮する高段側圧縮機とによって冷媒を二段圧縮する場合がある。 Conventionally, a refrigeration cycle, that is, a heat pump, in which a refrigerant circuit in which a refrigerant repeatedly circulates by compression and expansion is provided is known. In such a heat pump, for example, as described in Patent Document 1, a low-stage compressor that compresses the refrigerant and a high-stage compressor that further compresses the refrigerant discharged from the low-stage compressor are used. The refrigerant may be compressed in two stages.

そしてこのようなヒートポンプには、低段側圧縮機の上流側で冷媒を蒸発させる蒸発器が設けられている。蒸発器は例えば冷媒と、水や空気等の熱媒体との間で熱交換が行なわれる熱交換器である。 Such a heat pump is provided with an evaporator that evaporates the refrigerant on the upstream side of the low-stage compressor. The evaporator is, for example, a heat exchanger in which heat exchange is performed between a refrigerant and a heat medium such as water or air.

特開2016−90102号公報Japanese Unexamined Patent Publication No. 2016-90102

ここで特許文献1のヒートポンプでは、蒸発器からの冷媒は低段側圧縮機へ導入され、その後に高段側圧縮機に導入されるようになっている。
しかしながら、蒸発器での熱交換量は必ずしも一定ではなく、環境要因等で変動する可能性がある。このため、熱交換器から低段側圧縮機に導入される冷媒の温度は一定ではなく、低段側圧縮機に導入される冷媒が低段側圧縮機での圧縮に最適な状態とはならず、ヒートポンプ全体として効率のよい運転を行うことができない場合がある。
さらに、蒸発器からの冷媒が液相を含む場合には、低段側圧縮機及び高段側圧縮機での液圧縮の発生のリスクがあり、やはり効率のよい運転を行うことが難しい。
Here, in the heat pump of Patent Document 1, the refrigerant from the evaporator is introduced into the low-stage compressor, and then is introduced into the high-stage compressor.
However, the amount of heat exchanged in the evaporator is not always constant and may fluctuate due to environmental factors and the like. Therefore, the temperature of the refrigerant introduced from the heat exchanger into the low-stage compressor is not constant, and the refrigerant introduced into the low-stage compressor is not in the optimum state for compression in the low-stage compressor. Therefore, it may not be possible to operate the heat pump as a whole efficiently.
Further, when the refrigerant from the evaporator contains a liquid phase, there is a risk of liquid compression occurring in the low-stage compressor and the high-stage compressor, and it is also difficult to perform efficient operation.

そこで本発明は、圧縮に最適な状態の冷媒を低段側圧縮機、及び高段側圧縮機に導入し、効率の良い運転が可能なヒートポンプを提供する。 Therefore, the present invention provides a heat pump capable of efficient operation by introducing a refrigerant in an optimum state for compression into a low-stage compressor and a high-stage compressor.

本発明の第一の態様に係るヒートポンプは、低段側圧縮機と、前記低段側圧縮機の下流側に直列に接続された高段側圧縮機と、前記高段側圧縮機の下流側に接続された凝縮器と、前記凝縮器の下流側に接続された膨張機構と、前記膨張機構の下流側に接続された蒸発器と、前記蒸発器から前記低段側圧縮機及び前記高段側圧縮機のうちの一方に選択的に冷媒を導入可能とする切換え弁と、前記低段側圧縮機の入口に設けられて、冷媒の液相を分離して気相を前記低段側圧縮機に導入可能とする低段側気液分離器と、前記高段側圧縮機の入口に設けられて、冷媒の液相を分離して気相を前記高段側圧縮機に導入可能とする高段側気液分離器と、を備え、前記蒸発器は複数設けられ、前記切換え弁は、前記蒸発器から前記低段側圧縮機及び前記高段側圧縮機のうちの一方に選択的に冷媒を導入可能とするように、各々の前記蒸発器に対応して設けられているThe heat pump according to the first aspect of the present invention includes a low-stage compressor, a high-stage compressor connected in series to the downstream side of the low-stage compressor, and a downstream side of the high-stage compressor. A condenser connected to, an expansion mechanism connected to the downstream side of the condenser, an evaporator connected to the downstream side of the expansion mechanism, and from the evaporator to the low-stage compressor and the high-stage compressor. A switching valve that allows the refrigerant to be selectively introduced into one of the side compressors and a switching valve provided at the inlet of the low-stage compressor are provided to separate the liquid phase of the compressor and compress the gas phase on the low-stage side. A low-stage gas-liquid separator that can be introduced into the machine and an inlet of the high-stage compressor are provided to separate the liquid phase of the refrigerant so that the gas phase can be introduced into the high-stage compressor. A high-stage gas-liquid separator and a plurality of the evaporators are provided, and the switching valve is selectively provided from the evaporator to one of the low-stage compressor and the high-stage compressor. It is provided corresponding to each of the compressors so that a refrigerant can be introduced .

このようなヒートポンプによると、蒸発器からは、低段側圧縮機と高段側圧縮機のいずれかに選択的に冷媒を導入させることができる。よって、各蒸発器から流出した冷媒の状態に応じて、最適な圧縮が可能な圧縮機へ冷媒の導入経路を切換えることができる。
さらに、蒸発器からの冷媒が低段側圧縮機と高段側圧縮機とのいずれに導入される場合であっても、低段側圧縮機の入口で冷媒から気液分離を低段側気液分離器で行って、または高段側圧縮機の入口で冷媒から気液分離を高段側気液分離器で行ってから、気相を低段側圧縮機か、または、高段側圧縮機に導入することが可能となる。
また、このように蒸発器が複数設けられていることで、ヒートポンプは、それぞれ熱交換量や設置環境の異なる複数の熱交換器を備えるマルチソース型の冷媒回路を有している。
ここで、各々の蒸発器では熱交換量が変動して冷媒の温度が変化することで、低段側圧縮機及び高段側圧縮機に向かう冷媒の状態がこれら低段側圧縮機及び高段側圧縮機での圧縮に最適な状態ではなくなる場合がある。そこで本態様では、切換え弁によって各々の蒸発器から低段側圧縮機へ冷媒を導入するだけでなく、低段側圧縮機をバイパスして直接高段側圧縮機へ冷媒を導入させることができる。
さらに、一の蒸発器から圧縮機への冷媒の導入経路の切換えと同時に、他の蒸発器から圧縮機への冷媒の導入経路の切換えも可能である。よって、各蒸発器から流出した冷媒の状態に応じて、最適な圧縮が可能な圧縮機へ冷媒の導入経路を切換えることができる。
According to such a heat pump, the refrigerant can be selectively introduced from the evaporator to either the low-stage compressor or the high-stage compressor. Therefore, the introduction path of the refrigerant can be switched to the compressor capable of optimum compression according to the state of the refrigerant flowing out from each evaporator.
Further, regardless of whether the refrigerant from the evaporator is introduced into the low-stage compressor or the high-stage compressor, gas-liquid separation from the refrigerant is performed at the inlet of the low-stage compressor at the low-stage side air. After performing the gas-liquid separation from the refrigerant at the inlet of the high-stage compressor with the liquid separator, or after performing the gas-liquid separation from the refrigerant with the high-stage gas-liquid separator, the gas phase is compressed with the low-stage compressor or the high-stage side. It will be possible to introduce it to the machine.
Further, since a plurality of evaporators are provided in this way, the heat pump has a multi-source type refrigerant circuit including a plurality of heat exchangers having different heat exchange amounts and installation environments.
Here, in each evaporator, the amount of heat exchange fluctuates and the temperature of the refrigerant changes, so that the state of the refrigerant toward the low-stage compressor and the high-stage compressor changes to these low-stage compressors and high-stage compressors. It may not be in the optimum state for compression by the side compressor. Therefore, in this embodiment, not only the refrigerant can be introduced from each evaporator to the low-stage compressor by the switching valve, but also the refrigerant can be directly introduced into the high-stage compressor by bypassing the low-stage compressor. ..
Further, at the same time as switching the introduction path of the refrigerant from one evaporator to the compressor, it is possible to switch the introduction path of the refrigerant from the other evaporator to the compressor. Therefore, the introduction path of the refrigerant can be switched to the compressor capable of optimum compression according to the state of the refrigerant flowing out from each evaporator.

本発明の第二の態様に係るヒートポンプは、上記第一の態様において、前記低段側圧縮機と前記高段側圧縮機との間に段間流路をさらに備え、前記高段側気液分離器は、前記段間流路に設けられていてもよい。 The heat pump according to the second aspect of the present invention further includes an interstage flow path between the low-stage compressor and the high-stage compressor in the first aspect, and the high-stage gas-liquid The separator may be provided in the interstage flow path.

このように、段間流路に高段側気液分離器が設けられていることで、蒸発器からの冷媒が低段側圧縮機を経由して高段側圧縮機に導入される場合に、冷媒の気液分離を行うことができ、高段側圧縮機での液圧縮のリスクをさらに低減することができる。 In this way, when the high-stage gas-liquid separator is provided in the interstage flow path, the refrigerant from the evaporator is introduced into the high-stage compressor via the low-stage compressor. , Gas-liquid separation of the refrigerant can be performed, and the risk of liquid compression in the high-stage compressor can be further reduced.

本発明の第三の態様に係るヒートポンプは、上記第一の態様において、前記蒸発器と前記高段側圧縮機との間を前記低段側圧縮機を経由せずに接続する高段流路をさらに備え、前記高段側気液分離器は、前記高段流路に設けられていてもよい。 The heat pump according to the third aspect of the present invention is a high-stage flow path that connects the evaporator and the high-stage compressor without passing through the low-stage compressor in the first aspect. The high-stage gas-liquid separator may be provided in the high-stage flow path.

蒸発器からの冷媒が低段側圧縮機を経由して高段側圧縮機に導入される場合には、冷媒は高段流路を流通しない。この場合には、高段流路に高段側気液分離器が設けられていることで冷媒は高段側気液分離器を通過しないことになる。よって低段側圧縮機から吐出された冷媒が高段側気液分離器を通過する場合に生じる圧力損失を回避できる。よって、ヒートポンプでのCOP(Coefficient Of Performance)、即ち運転効率の向上が可能である。 When the refrigerant from the evaporator is introduced into the high-stage compressor via the low-stage compressor, the refrigerant does not flow through the high-stage flow path. In this case, since the high-stage gas-liquid separator is provided in the high-stage flow path, the refrigerant does not pass through the high-stage gas-liquid separator. Therefore, it is possible to avoid the pressure loss that occurs when the refrigerant discharged from the low-stage compressor passes through the high-stage gas-liquid separator. Therefore, COP (Coefficient Of Performance) in the heat pump, that is, the operation efficiency can be improved.

上記のヒートポンプによれば、圧縮に最適な状態の冷媒を低段側圧縮機、及び高段側圧縮機に導入し、効率の良い運転が可能となる。 According to the above heat pump, the refrigerant in the optimum state for compression is introduced into the low-stage compressor and the high-stage compressor, and efficient operation becomes possible.

本発明の第一実施形態のヒートポンプの全体構成図である。It is an overall block diagram of the heat pump of the 1st Embodiment of this invention. 本発明の第二実施形態のヒートポンプの全体構成図である。It is an overall block diagram of the heat pump of the 2nd Embodiment of this invention.

以下、本発明の第一実施形態のヒートポンプ1について説明する。
図1に示すように、本実施形態に係るヒートポンプ1は、二段圧縮サイクルで運転を行う冷媒回路2を有する。冷媒回路2は、低段側圧縮機3、高段側圧縮機4、凝縮器5、膨張弁(膨張機構)6、及び蒸発器10を有し、これらの構成要素がこの順に配管15によって接続されている。そして冷媒回路2を例えば二酸化炭素等の冷媒Rが循環する。ここで冷媒Rは特に二酸化炭素に限定されない。
Hereinafter, the heat pump 1 according to the first embodiment of the present invention will be described.
As shown in FIG. 1, the heat pump 1 according to the present embodiment has a refrigerant circuit 2 that operates in a two-stage compression cycle. The refrigerant circuit 2 has a low-stage compressor 3, a high-stage compressor 4, a condenser 5, an expansion valve (expansion mechanism) 6, and an evaporator 10, and these components are connected by a pipe 15 in this order. Has been done. Then, a refrigerant R such as carbon dioxide circulates in the refrigerant circuit 2. Here, the refrigerant R is not particularly limited to carbon dioxide.

低段側圧縮機3は冷媒Rを吸込み、冷媒Rを圧縮する。低段側圧縮機3は、例えばロータリ圧縮機やスクロール圧縮機である。 The low-stage compressor 3 sucks in the refrigerant R and compresses the refrigerant R. The low-stage compressor 3 is, for example, a rotary compressor or a scroll compressor.

高段側圧縮機4は低段側圧縮機3に直列に接続され、低段側圧縮機3から吐出された冷媒Rをさらに高圧に圧縮する。低段側圧縮機3と高段側圧縮機4との間の配管15は段間流路CMとなっている。高段側圧縮機4は、例えばロータリ圧縮機やスクロール圧縮機である。 The high-stage compressor 4 is connected in series with the low-stage compressor 3 and further compresses the refrigerant R discharged from the low-stage compressor 3 to a higher pressure. The pipe 15 between the low-stage compressor 3 and the high-stage compressor 4 is an interstage flow path CM. The high-stage compressor 4 is, for example, a rotary compressor or a scroll compressor.

凝縮器5は、高段側圧縮機4から吐出された高温高圧の冷媒Rと、空気や水等の熱媒体R1との間で熱交換を行い、冷媒Rを冷却して凝縮させる。 The condenser 5 exchanges heat between the high-temperature and high-pressure refrigerant R discharged from the high-stage compressor 4 and the heat medium R1 such as air or water to cool and condense the refrigerant R.

膨張弁6は、凝縮器5からの冷媒Rを断熱膨張させ、冷媒Rを減圧する。膨張弁6は複数(本実施形態では二つ)が、後述する第一蒸発器11と第二蒸発器12とに対応して、蒸発器10の上流側(入口側)に設けられている。 The expansion valve 6 adiabatically expands the refrigerant R from the condenser 5, and depressurizes the refrigerant R. A plurality of expansion valves 6 (two in this embodiment) are provided on the upstream side (inlet side) of the evaporator 10 corresponding to the first evaporator 11 and the second evaporator 12, which will be described later.

蒸発器10としては、本実施形態では第一蒸発器11と第二蒸発器12とが設けられている。第一蒸発器11と第二蒸発器12とは並列に設けられている。ただし、蒸発器10の数量は本実施形態の場合に限定されない。 As the evaporator 10, the first evaporator 11 and the second evaporator 12 are provided in the present embodiment. The first evaporator 11 and the second evaporator 12 are provided in parallel. However, the quantity of the evaporator 10 is not limited to the case of this embodiment.

第一蒸発器11は、膨張弁6を通過した冷媒Rと、熱媒体R2として例えば空気との間で熱交換を行う空気熱交換器である。 The first evaporator 11 is an air heat exchanger that exchanges heat between the refrigerant R that has passed through the expansion valve 6 and, for example, air as the heat medium R2.

第一蒸発器11と、低段側圧縮機3の上流側(吸い込み側)との間における配管15は、第一流路C1となっている。第一流路C1には、冷媒Rの流通方向を切換え可能な第一弁部17が設けられている。本実施形態では第一弁部17は四方弁である。 The pipe 15 between the first evaporator 11 and the upstream side (suction side) of the low-stage compressor 3 is the first flow path C1. The first flow path C1 is provided with a first valve portion 17 capable of switching the flow direction of the refrigerant R. In this embodiment, the first valve portion 17 is a four-way valve.

また第一蒸発器11と、高段側圧縮機4の上流側(高段側圧縮機4の吸い込み側であって、低段側圧縮機3の吐出側)との間における配管15は、第二流路(高段流路)C2となっている。ここで、第一弁部17と第一蒸発器11との間の位置で、第一流路C1には第二弁部(切換え弁)18が設けられている。第二流路C2は、第二弁部18と段間流路CMとを接続している。第二弁部18は三方弁である。第二弁部18によって、冷媒Rが第一流路C1の下流に向かって流通するか、第二流路C2に向かって流通するかで、冷媒Rの流通方向を切換え可能となっている。第二流路C2を冷媒Rが流通する場合には、低段側圧縮機3を冷媒Rは通過しない。 Further, the pipe 15 between the first evaporator 11 and the upstream side of the high-stage compressor 4 (the suction side of the high-stage compressor 4 and the discharge side of the low-stage compressor 3) is the first. It has two flow paths (high-stage flow paths) C2. Here, a second valve portion (switching valve) 18 is provided in the first flow path C1 at a position between the first valve portion 17 and the first evaporator 11. The second flow path C2 connects the second valve portion 18 and the interstage flow path CM. The second valve portion 18 is a three-way valve. The second valve portion 18 makes it possible to switch the flow direction of the refrigerant R depending on whether the refrigerant R flows toward the downstream of the first flow path C1 or toward the second flow path C2. When the refrigerant R flows through the second flow path C2, the refrigerant R does not pass through the low-stage compressor 3.

第二蒸発器12は、膨張弁6を通過した冷媒Rと、熱媒体R3として例えば水との間で熱交換を行う水熱交換器である。 The second evaporator 12 is a water heat exchanger that exchanges heat between the refrigerant R that has passed through the expansion valve 6 and, for example, water as the heat medium R3.

第二蒸発器12と、低段側圧縮機3の上流側(吸い込み側)との間における配管15は、第三流路C3となっている。具体的には第三流路C3は、第二蒸発器12の下流側の出口と、第一弁部17よりも上流側の位置での第一流路C1とを接続する上流側部C3aを有している。また第三流路C3は、第一弁部17と、低段側圧縮機3の上流側の入口とを接続する下流側部C3bとを有している。また上流側部C3aには第三弁部(切換え弁)19が設けられている。本実施形態では第二弁部18および第三弁部19は三方弁であるが、これに限定されず、冷媒Rの流れ方向を切換え可能な弁であればよい。 The pipe 15 between the second evaporator 12 and the upstream side (suction side) of the low-stage compressor 3 is a third flow path C3. Specifically, the third flow path C3 has an upstream side portion C3a connecting the outlet on the downstream side of the second evaporator 12 and the first flow path C1 at a position upstream of the first valve portion 17. is doing. Further, the third flow path C3 has a downstream side portion C3b that connects the first valve portion 17 and the upstream side inlet of the low-stage compressor 3. Further, a third valve portion (switching valve) 19 is provided on the upstream side portion C3a. In the present embodiment, the second valve portion 18 and the third valve portion 19 are three-way valves, but the present invention is not limited to this, and any valve that can switch the flow direction of the refrigerant R may be used.

また第二蒸発器12と、高段側圧縮機4の上流側の入口との間における配管15は、第四流路(高段流路)C4となっている。第四流路C4は、第三弁部19と第二流路C2の中途位置とを接続していることで、第二流路C2を介して第三弁部19と段間流路CMとを接続している。そして第三弁部19によって、冷媒Rが上流側部C3aの下流に向かって流通するか、第四流路C4に向かって流通するかで、冷媒Rの流通方向を切換え可能となっている。第四流路C4を冷媒Rが流通する場合には、低段側圧縮機3を冷媒Rは通過しない。 Further, the pipe 15 between the second evaporator 12 and the inlet on the upstream side of the high-stage compressor 4 is a fourth flow path (high-stage flow path) C4. The fourth flow path C4 connects the third valve portion 19 and the intermediate position of the second flow path C2 to the third valve portion 19 and the interstage flow path CM via the second flow path C2. Is connected. The third valve portion 19 makes it possible to switch the flow direction of the refrigerant R depending on whether the refrigerant R flows toward the downstream side of the upstream side portion C3a or toward the fourth flow path C4. When the refrigerant R flows through the fourth flow path C4, the refrigerant R does not pass through the low-stage compressor 3.

ここで、冷媒回路2は、さらに低段側気液分離器21と高段側気液分離器22とを有している。
低段側気液分離器21はアキュムレータと呼ばれる装置であって、低段側圧縮機3の入口で、第三流路C3の下流側部C3bに設けられている。低段側気液分離器21は低段側気液分離器21の入口で、冷媒Rの液相を分離して気相を低段側圧縮機3に導入可能とする。低段側気液分離器21で分離された冷媒Rの液相は、不図示の装置により低段側圧縮機3へ導入可能となっていてもよい。
Here, the refrigerant circuit 2 further includes a low-stage gas-liquid separator 21 and a high-stage gas-liquid separator 22.
The low-stage gas-liquid separator 21 is a device called an accumulator, which is provided at the inlet of the low-stage compressor 3 and on the downstream side C3b of the third flow path C3. The low-stage gas-liquid separator 21 separates the liquid phase of the refrigerant R at the inlet of the low-stage gas-liquid separator 21 so that the gas phase can be introduced into the low-stage compressor 3. The liquid phase of the refrigerant R separated by the low-stage gas-liquid separator 21 may be introduced into the low-stage compressor 3 by a device (not shown).

高段側気液分離器22は低段側気液分離器21と同様に、アキュムレータと呼ばれる装置であって、低段側圧縮機3の出口と高段側圧縮機4の入口との間で段間流路CMに設けられている。高段側気液分離器22は冷媒Rの液相を分離して気相を高段側圧縮機4に導入可能とする。高段側気液分離器22で分離された冷媒Rの液相は、不図示の装置により高段側圧縮機4へ導入可能となっていてもよい。 Like the low-stage gas-liquid separator 21, the high-stage gas-liquid separator 22 is a device called an accumulator, and is between the outlet of the low-stage compressor 3 and the inlet of the high-stage compressor 4. It is provided in the interstage flow path CM. The high-stage gas-liquid separator 22 separates the liquid phase of the refrigerant R so that the gas phase can be introduced into the high-stage compressor 4. The liquid phase of the refrigerant R separated by the high-stage gas-liquid separator 22 may be introduced into the high-stage compressor 4 by a device (not shown).

以上説明した本実施形態のヒートポンプ1によると、第一蒸発器11及び第二蒸発器12からは、低段側圧縮機3と高段側圧縮機4のいずれかに選択的に冷媒Rを導入させることができる。 According to the heat pump 1 of the present embodiment described above, the refrigerant R is selectively introduced from the first evaporator 11 and the second evaporator 12 into either the low-stage compressor 3 or the high-stage compressor 4. Can be made to.

具体的には、第一蒸発器11から低段側圧縮機3に冷媒Rを導入する場合と、高段側圧縮機4に冷媒Rを導入する場合とを切換える際には、第二弁部18を操作する。第二弁部18の操作は不図示の制御部で行ってもよいし手動で行ってもよい。 Specifically, when switching between the case where the refrigerant R is introduced from the first evaporator 11 into the low-stage compressor 3 and the case where the refrigerant R is introduced into the high-stage compressor 4, the second valve portion Operate 18. The operation of the second valve portion 18 may be performed by a control unit (not shown) or manually.

また、第二蒸発器12から低段側圧縮機3に冷媒Rを導入する場合と、高段側圧縮機4に冷媒Rを導入する場合とを切換える際には、第三弁部19を操作する。第三弁部19の操作は不図示の制御部で行ってもよいし手動で行ってもよい。 Further, when switching between the case where the refrigerant R is introduced from the second evaporator 12 into the low-stage compressor 3 and the case where the refrigerant R is introduced into the high-stage compressor 4, the third valve portion 19 is operated. do. The operation of the third valve portion 19 may be performed by a control unit (not shown) or may be performed manually.

このように第一蒸発器11及び第二蒸発器12からの冷媒Rの流通経路を適宜変更できることで、各蒸発器10から流出した冷媒Rの状態に応じて、低段側圧縮機3と高段側圧縮機4とのうち、最適な圧縮が可能な圧縮機へ冷媒Rを導入できる。 By appropriately changing the flow path of the refrigerant R from the first evaporator 11 and the second evaporator 12 in this way, the lower stage side compressor 3 and the higher stage compressor 3 can be changed according to the state of the refrigerant R flowing out from each evaporator 10. Of the stage side compressors 4, the refrigerant R can be introduced into a compressor capable of optimum compression.

さらに、蒸発器10(11、12)からの冷媒Rが、低段側圧縮機3と高段側圧縮機4とのいずれに導入される場合であっても、低段側気液分離器21によって低段側圧縮機3の入口で冷媒Rの気液分離を行って、又は、高段側気液分離器22によって高段側圧縮機4の入口で冷媒Rの気液分離を行ってから、気相を低段側圧縮機3か、又は、高段側圧縮機4に導入することが可能となる。即ち低段側圧縮機3及び高段側圧縮機4のいずれに第一蒸発器11及び第二蒸発器12から冷媒Rが導入される場合であっても、必ず冷媒Rの気液分離が行われる。
従って、圧縮に最適な状態の冷媒Rを低段側圧縮機3、高段側圧縮機4に導入し、かつ、低段側圧縮機3、高段側圧縮機4での液圧縮を回避できるため、効率の良い運転が可能となる。
Further, regardless of whether the refrigerant R from the evaporator 10 (11, 12) is introduced into either the low-stage compressor 3 or the high-stage compressor 4, the low-stage gas-liquid separator 21 After the gas-liquid separation of the refrigerant R is performed at the inlet of the low-stage compressor 3 or the gas-liquid separation of the refrigerant R is performed at the inlet of the high-stage compressor 4 by the high-stage side compressor 22. , The gas phase can be introduced into the low-stage compressor 3 or the high-stage compressor 4. That is, regardless of whether the refrigerant R is introduced from the first evaporator 11 or the second evaporator 12 into either the low-stage compressor 3 or the high-stage compressor 4, gas-liquid separation of the refrigerant R is always performed. It is said.
Therefore, the refrigerant R in the optimum state for compression can be introduced into the low-stage compressor 3 and the high-stage compressor 4, and the liquid compression in the low-stage compressor 3 and the high-stage compressor 4 can be avoided. Therefore, efficient operation is possible.

さらに、本実施形態では蒸発器10が複数設けられていることで、ヒートポンプ1は、それぞれ熱交換量や設置環境の異なる複数の熱交換器を有するマルチソース型の冷媒回路2を有している。 Further, in the present embodiment, since a plurality of evaporators 10 are provided, the heat pump 1 has a multi-source type refrigerant circuit 2 having a plurality of heat exchangers having different heat exchange amounts and installation environments. ..

ここで、第一蒸発器11及び第二蒸発器12の各々では、熱交換量が変動して冷媒Rの温度が変化することで、低段側圧縮機3及び高段側圧縮機4に向かう冷媒Rの状態がこれら低段側圧縮機3及び高段側圧縮機4での圧縮に最適な状態ではなくなる場合がある。そこで、本実施形態では第二弁部18及び第三弁部19によって各々の蒸発器10から低段側圧縮機3へ冷媒Rを導入するだけでなく、低段側圧縮機3をバイパスして直接に高段側圧縮機4へ冷媒Rを導入させることができる。よって効率の良い運転が可能となる。 Here, in each of the first evaporator 11 and the second evaporator 12, the heat exchange amount fluctuates and the temperature of the refrigerant R changes, so that the compressor 3 moves toward the low-stage compressor 3 and the high-stage compressor 4 moves toward the high-stage compressor 4. The state of the refrigerant R may not be the optimum state for compression by the low-stage compressor 3 and the high-stage compressor 4. Therefore, in the present embodiment, the second valve portion 18 and the third valve portion 19 not only introduce the refrigerant R from each evaporator 10 to the lower stage compressor 3, but also bypass the lower stage compressor 3. The refrigerant R can be directly introduced into the high-stage compressor 4. Therefore, efficient operation is possible.

さらに、第一蒸発器11からの冷媒Rの流通経路の切換えと同時に、第二蒸発器12からの冷媒Rの流通経路の切換えも可能である。よって、第一蒸発器11及び第二蒸発器12の各々から流出した冷媒Rの状態に応じて、低段側圧縮機3か高段側圧縮機4のうち、最適な圧縮が可能な圧縮機へ冷媒Rの導入経路を切換えることができる。よって運転効率の向上が可能となる。 Further, it is possible to switch the flow path of the refrigerant R from the second evaporator 12 at the same time as switching the flow path of the refrigerant R from the first evaporator 11. Therefore, depending on the state of the refrigerant R flowing out from each of the first evaporator 11 and the second evaporator 12, the compressor capable of optimal compression among the low-stage side compressor 3 and the high-stage side compressor 4 The introduction path of the refrigerant R can be switched. Therefore, it is possible to improve the operating efficiency.

〔第二実施形態〕
次に、図2を参照して本発明の第二実施形態のヒートポンプ1Aについて説明する。以下に説明する第二実施形態においては、第一実施形態と同一部分に同一符号を付して説明するとともに、重複説明を省略する。第二実施形態では、第一実施形態とは、高段側気液分離器22Aの設置箇所が異なっている。
[Second Embodiment]
Next, the heat pump 1A of the second embodiment of the present invention will be described with reference to FIG. In the second embodiment described below, the same parts as those in the first embodiment will be described with the same reference numerals, and duplicate description will be omitted. In the second embodiment, the installation location of the high-stage gas-liquid separator 22A is different from that in the first embodiment.

高段側気液分離器22Aは、高段側圧縮機4の入口で第二流路C2に設けられている。即ち第一蒸発器11(第二蒸発器12)から、高段側圧縮機4に低段側圧縮機3を経由せずに冷媒Rが導入される場合、低段側圧縮機3を経由しない冷媒Rと、低段側圧縮機3から吐出された冷媒Rとが合流する手前(上流側)で、高段側気液分離器22Aが設けられている。 The high-stage gas-liquid separator 22A is provided in the second flow path C2 at the inlet of the high-stage compressor 4. That is, when the refrigerant R is introduced from the first evaporator 11 (second evaporator 12) into the high-stage compressor 4 without passing through the low-stage compressor 3, the refrigerant R does not pass through the low-stage compressor 3. The high-stage side gas-liquid separator 22A is provided before (upstream side) where the refrigerant R and the refrigerant R discharged from the low-stage compressor 3 merge.

このような本実施形態のヒートポンプ1Aによれば、第一蒸発器11からの冷媒Rが低段側圧縮機3を経由せずに高段側圧縮機4に導入される場合、高段側気液分離器22Aで冷媒Rの気液分離を行って気相を高段側圧縮機4に導入することができる。よって、高段側圧縮機4での液圧縮のリスクを低減することができる。
さらに、第二流路C2に高段側気液分離器22Aが設けられていることで、第一蒸発器11、第二蒸発器12からの冷媒Rが低段側圧縮機3を経由して高段側圧縮機4に導入される場合には冷媒Rは第二流路C2を流通しない。よってこの場合、冷媒Rは高段側気液分離器22Aを通過しないため、低段側圧縮機3から吐出された冷媒Rが高段側気液分離器22Aを通過することによる圧力損失の発生を回避できる。よって、ヒートポンプ1AでのCOP、即ち運転効率の向上が可能である。
According to the heat pump 1A of the present embodiment, when the refrigerant R from the first evaporator 11 is introduced into the high-stage compressor 4 without passing through the low-stage compressor 3, the high-stage side air The liquid separator 22A can separate the refrigerant R into gas and liquid, and the gas phase can be introduced into the high-stage compressor 4. Therefore, the risk of liquid compression in the high-stage compressor 4 can be reduced.
Further, since the high-stage gas-liquid separator 22A is provided in the second flow path C2, the refrigerant R from the first evaporator 11 and the second evaporator 12 passes through the low-stage compressor 3. When introduced into the high-stage compressor 4, the refrigerant R does not flow through the second flow path C2. Therefore, in this case, since the refrigerant R does not pass through the high-stage gas-liquid separator 22A, pressure loss occurs due to the refrigerant R discharged from the low-stage compressor 3 passing through the high-stage gas-liquid separator 22A. Can be avoided. Therefore, it is possible to improve the COP of the heat pump 1A, that is, the operating efficiency.

以上、本発明の実施形態について図面を参照して詳述したが、各実施形態における各構成及びそれらの組み合わせ等は一例であり、本発明の趣旨から逸脱しない範囲内で、構成の付加、省略、置換、およびその他の変更が可能である。また、本発明は実施形態によって限定されることはなく、特許請求の範囲によってのみ限定される。
例えば、上記の実施形態では蒸発器10として第一蒸発器11及び第二蒸発器12を設けた例を説明したが、蒸発器10の数量は上記の実施形態の場合に限定されず、一つのみが設けられていてもよいし、3つ以上が設けられていてもよい。
Although the embodiments of the present invention have been described in detail with reference to the drawings, the configurations and combinations thereof in the respective embodiments are examples, and the configurations are added or omitted within the range not deviating from the gist of the present invention. , Replacement, and other changes are possible. Further, the present invention is not limited to the embodiments, but only to the scope of claims.
For example, in the above embodiment, an example in which the first evaporator 11 and the second evaporator 12 are provided as the evaporator 10 has been described, but the number of evaporators 10 is not limited to the case of the above embodiment and is one. Only may be provided, or three or more may be provided.

1、1A…ヒートポンプ
2…冷媒回路
3…低段側圧縮機
4…高段側圧縮機
5…凝縮器
6…膨張弁
10…蒸発器
11…第一蒸発器
12…第二蒸発器
15…配管
17…第一弁部
18…第二弁部(切換え弁)
19…第三弁部(切換え弁)
21…低段側気液分離器
22、22A…高段側気液分離器
R1…熱媒体
R2…熱媒体
R3…熱媒体
C1…第一流路
C2…第二流路(高段流路)
C3…第三流路
C3a…上流側部
C3b…下流側部
C4…第四流路(高段流路)
CM…段間流路
R…冷媒
1, 1A ... Heat pump 2 ... Refrigerant circuit 3 ... Low-stage compressor 4 ... High-stage compressor 5 ... Condenser 6 ... Expansion valve 10 ... Evaporator 11 ... First evaporator 12 ... Second evaporator 15 ... Piping 17 ... First valve portion 18 ... Second valve portion (switching valve)
19 ... Third valve (switching valve)
21 ... Low-stage gas-liquid separators 22, 22A ... High-stage gas-liquid separator R1 ... Heat medium R2 ... Heat medium R3 ... Heat medium C1 ... First flow path C2 ... Second flow path (high-stage flow path)
C3 ... Third flow path C3a ... Upstream side C3b ... Downstream side C4 ... Fourth flow path (high-stage flow path)
CM ... Interstage flow path R ... Refrigerant

Claims (3)

低段側圧縮機と、
前記低段側圧縮機の下流側に直列に接続された高段側圧縮機と、
前記高段側圧縮機の下流側に接続された凝縮器と、
前記凝縮器の下流側に接続された膨張機構と、
前記膨張機構の下流側に接続された蒸発器と、
前記蒸発器から前記低段側圧縮機及び前記高段側圧縮機のうちの一方に選択的に冷媒を導入可能とする切換え弁と、
前記低段側圧縮機の入口に設けられて、前記冷媒の液相を分離して気相を前記低段側圧縮機に導入可能とする低段側気液分離器と、
前記高段側圧縮機の入口に設けられて、前記冷媒の液相を分離して気相を前記高段側圧縮機に導入可能とする高段側気液分離器と、
を備え
前記蒸発器は複数設けられ、
前記切換え弁は、前記蒸発器から前記低段側圧縮機及び前記高段側圧縮機のうちの一方に選択的に前記冷媒を導入可能とするように、各々の前記蒸発器に対応して設けられているヒートポンプ。
Low-stage compressor and
A high-stage compressor connected in series to the downstream side of the low-stage compressor,
A condenser connected to the downstream side of the high-stage compressor and
An expansion mechanism connected to the downstream side of the condenser and
An evaporator connected to the downstream side of the expansion mechanism and
A switching valve that allows the refrigerant to be selectively introduced from the evaporator to one of the low-stage compressor and the high-stage compressor.
Wherein provided on the inlet of the low-stage compressor, a low-stage gas-liquid separator which enables introduction of the gas phase to separate the liquid phase of the said coolant in the low-stage compressor,
Provided to the inlet of the high stage side compressor, a high-stage gas-liquid separator which enables introduction of the gas phase to separate the liquid phase of the said coolant in the high-pressure stage compressor,
Equipped with a,
A plurality of the evaporators are provided,
The switching valve is provided corresponding to each of the evaporators so that the refrigerant can be selectively introduced from the evaporator to one of the low-stage compressor and the high-stage compressor. The heat pump that is being used.
前記低段側圧縮機と前記高段側圧縮機との間に段間流路をさらに備え、
前記高段側気液分離器は、前記段間流路に設けられている請求項1に記載のヒートポンプ。
An interstage flow path is further provided between the low-stage compressor and the high-stage compressor.
The heat pump according to claim 1, wherein the high-stage gas-liquid separator is provided in the interstage flow path.
前記蒸発器と前記高段側圧縮機との間を前記低段側圧縮機を経由せずに接続する高段流路をさらに備え、
前記高段側気液分離器は、前記高段流路に設けられている請求項1に記載のヒートポンプ。
A high-stage flow path for connecting the evaporator and the high-stage compressor without passing through the low-stage compressor is further provided.
The heat pump according to claim 1, wherein the high-stage gas-liquid separator is provided in the high-stage flow path.
JP2017215657A 2017-11-08 2017-11-08 heat pump Active JP6916716B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2017215657A JP6916716B2 (en) 2017-11-08 2017-11-08 heat pump
PCT/JP2018/041492 WO2019093422A1 (en) 2017-11-08 2018-11-08 Heat pump
CN201880072404.8A CN111316048B (en) 2017-11-08 2018-11-08 Heat pump
EP18877203.2A EP3705809A4 (en) 2017-11-08 2018-11-08 Heat pump

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017215657A JP6916716B2 (en) 2017-11-08 2017-11-08 heat pump

Publications (2)

Publication Number Publication Date
JP2019086237A JP2019086237A (en) 2019-06-06
JP6916716B2 true JP6916716B2 (en) 2021-08-11

Family

ID=66439194

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017215657A Active JP6916716B2 (en) 2017-11-08 2017-11-08 heat pump

Country Status (4)

Country Link
EP (1) EP3705809A4 (en)
JP (1) JP6916716B2 (en)
CN (1) CN111316048B (en)
WO (1) WO2019093422A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11273687B2 (en) 2020-04-30 2022-03-15 Thermo King Corporation System and method of energy efficient operation of a transport climate control system

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3036310B2 (en) * 1992-08-01 2000-04-24 三菱電機株式会社 Multi-temperature generation circuit by vapor compression refrigeration cycle
JPH09145189A (en) * 1995-11-27 1997-06-06 Sanyo Electric Co Ltd Refrigerating cycle and air conditioner provided with the refrigerating cycle
JP4441965B2 (en) * 1999-06-11 2010-03-31 ダイキン工業株式会社 Air conditioner
EP2532991B1 (en) * 2011-06-08 2019-10-30 LG Electronics Inc. Refrigerating cycle apparatus and method for operating the same
KR102033934B1 (en) * 2013-03-15 2019-10-18 엘지전자 주식회사 Refrigerator
JP6548890B2 (en) 2014-10-31 2019-07-24 三菱重工サーマルシステムズ株式会社 Control device of refrigeration cycle, refrigeration cycle, and control method of refrigeration cycle
CN205316762U (en) * 2015-11-25 2016-06-15 东莞市美泰科检测设备有限公司 Energy -conserving refrigeration control system
JP2017215657A (en) 2016-05-30 2017-12-07 京セラドキュメントソリューションズ株式会社 Job transmission program

Also Published As

Publication number Publication date
CN111316048B (en) 2022-01-14
EP3705809A4 (en) 2021-01-06
CN111316048A (en) 2020-06-19
WO2019093422A1 (en) 2019-05-16
EP3705809A1 (en) 2020-09-09
JP2019086237A (en) 2019-06-06

Similar Documents

Publication Publication Date Title
JP5332604B2 (en) Cooling and heating simultaneous operation type air conditioner
JP5288020B1 (en) Refrigeration equipment
WO2009107626A1 (en) Refrigeration device
US10012419B2 (en) Heat-pump system
EP2860471B1 (en) Multi-room air conditioner
US9851132B2 (en) Air conditioner
WO2007102463A1 (en) Refrigeration device
JP2009133585A (en) Refrigerating device
EP2587177A2 (en) Air conditioner
US11112140B2 (en) Air conditioning apparatus
JP5125611B2 (en) Refrigeration equipment
JP2009180427A (en) Refrigerating device
JP2009180426A (en) Refrigerating device
EP2587192A2 (en) Air conditioner
JP6916716B2 (en) heat pump
KR20100032200A (en) Air conditioner
WO2019093420A1 (en) Heat pump
JP5895662B2 (en) Refrigeration equipment
JP2012017951A (en) Refrigeration cycle device
JP7097762B2 (en) Heat pump, heat pump control method
WO2013099895A1 (en) Refrigeration device
JP4393786B2 (en) Refrigeration or air conditioner and method for updating the same
JP2005076983A (en) Air conditioning system
JP2013210158A (en) Refrigerating device
JP7356049B2 (en) air conditioner

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171207

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200907

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210420

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210609

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210629

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210716

R150 Certificate of patent or registration of utility model

Ref document number: 6916716

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150