WO2007102463A1 - Refrigeration device - Google Patents

Refrigeration device Download PDF

Info

Publication number
WO2007102463A1
WO2007102463A1 PCT/JP2007/054186 JP2007054186W WO2007102463A1 WO 2007102463 A1 WO2007102463 A1 WO 2007102463A1 JP 2007054186 W JP2007054186 W JP 2007054186W WO 2007102463 A1 WO2007102463 A1 WO 2007102463A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerant
pressure
heat exchanger
gas
circuit
Prior art date
Application number
PCT/JP2007/054186
Other languages
French (fr)
Japanese (ja)
Inventor
Masahiro Yamada
Takahiro Yamaguchi
Original Assignee
Daikin Industries, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries, Ltd. filed Critical Daikin Industries, Ltd.
Priority to US12/224,661 priority Critical patent/US20100229582A1/en
Priority to AU2007223486A priority patent/AU2007223486B2/en
Priority to CN2007800052131A priority patent/CN101384862B/en
Priority to EP07737771.1A priority patent/EP1992887A4/en
Publication of WO2007102463A1 publication Critical patent/WO2007102463A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • F25B1/10Compression machines, plants or systems with non-reversible cycle with multi-stage compression
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/027Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means
    • F25B2313/02741Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means using one four-way valve
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/05Compression system with heat exchange between particular parts of the system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/05Compression system with heat exchange between particular parts of the system
    • F25B2400/053Compression system with heat exchange between particular parts of the system between the storage receiver and another part of the system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/13Economisers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/23Separators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/01Geometry problems, e.g. for reducing size

Definitions

  • the present invention relates to a refrigeration apparatus that performs gas injection by supplying an intermediate-pressure gas refrigerant to a compressor.
  • FIG. 1 of Patent Document 1 discloses a refrigeration apparatus that performs a single-stage compression refrigeration cycle and that supplies an intermediate-pressure gas refrigerant to a compression chamber in the middle of compression in a compressor.
  • FIG. 13 of Patent Document 1 discloses a refrigeration apparatus that performs a two-stage compression refrigeration cycle, and supplies an intermediate-pressure gas refrigerant between a low-stage compressor and a high-stage compressor! Speak.
  • a gas-liquid separator that separates the intermediate pressure refrigerant into a liquid refrigerant and a gas refrigerant is provided in the refrigerant circuit, and an intermediate is provided from the gas-liquid separator to the compressor. Pressure gas refrigerant is supplied. Further, in the refrigeration apparatus described in FIG. 9 of Patent Document 1, the intermediate-pressure refrigerant is vaporized by exchanging heat with the high-pressure liquid refrigerant in the intermediate-pressure heat exchanger, and is transferred from the intermediate-pressure heat exchanger to the compressor. Supply intermediate pressure gas refrigerant! Patent Document 1: JP 2001-033117 A
  • components such as a compressor and a heat exchanger provided in the refrigerant circuit may be arranged at positions separated from each other, or may be arranged at different heights.
  • an air conditioner which is a type of refrigeration system
  • the length of the connecting pipe may reach nearly 100m, or there may be a height difference of about 20-30m between the outdoor unit and the indoor unit.
  • the installation state of the refrigeration apparatus varies depending on the application.
  • the above-described refrigeration apparatus that performs gas injection may not be able to operate smoothly depending on the installation conditions. Hereinafter, this problem will be described.
  • an intermediate-pressure gas refrigerant may be supplied from a gas-liquid separator to a compressor. Since the liquid refrigerant and the gas refrigerant coexist in the gas-liquid separator, the liquid refrigerant to which the gas-liquid separator force is also sent is saturated. When this type of refrigeration system cools the object, the saturated liquid refrigerant that has flowed out of the gas-liquid separator is sent to the heat exchanger on the use side.
  • the use side heat exchange ⁇ is far away from the gas-liquid separator, or if the use-side heat exchanger is installed at a higher position than the gas-liquid separator, the use-side heat exchange ⁇ While flowing through the pipe toward ⁇ , the refrigerant pressure may drop and some of the refrigerant may evaporate. For this reason, the amount of liquid refrigerant flowing into the use-side heat exchanger decreases, and the cooling capacity obtained by the use-side heat exchanger may decrease.
  • the intermediate pressure heat exchange ⁇ is far away from the user side heat exchange ⁇ force, or if the intermediate pressure heat exchange ⁇ is installed higher than the user side heat exchange ⁇ , As the refrigerant flows through the pipe toward the intermediate pressure heat exchanger, the refrigerant pressure may drop, and some of the refrigerant may evaporate, causing the refrigerant temperature to drop. For this reason, the temperature difference between the high-pressure refrigerant and the intermediate-pressure refrigerant that exchange heat with each other by the intermediate-pressure heat exchange becomes small, and the intermediate-pressure heat exchanger may not be able to reliably gasify the intermediate-pressure refrigerant.
  • the present invention has been made in view of the strong points, and is to enable a smooth operation in a refrigeration apparatus that performs so-called gas injection regardless of the installation state or operation state.
  • the first invention includes a compressor (31, 34), a heat source side heat exchanger (36), and a use side heat exchanger (71).
  • the refrigeration cycle is connected and the heat source side heat exchange (36) becomes a condenser and the use side heat exchanger (71) becomes an evaporator, and the use side heat exchanger (71 ) Is a refrigeration apparatus including a refrigerant circuit (20) that can be switched between a heating operation in which the heat source side heat exchanger (36) is an evaporator.
  • the refrigerant circuit (20) includes an instruction passage (43) for supplying intermediate pressure refrigerant obtained by decompressing a part of the high-pressure liquid refrigerant to the compressor (31, 34), and the indication passage (43 ) And an intermediate pressure heat exchanger (40) for evaporating the intermediate pressure refrigerant flowing toward the compressor (31,34) by heat exchange with the high pressure liquid refrigerant and evaporating, and an intermediate pressure obtained by decompressing the high pressure liquid refrigerant.
  • a gas-liquid separator (51) for separating the refrigerant into a liquid refrigerant and a gas refrigerant, and the intermediate-pressure gas refrigerant flowing through the injection passage (43) during the cooling operation is in the heating operation.
  • the flow path of the refrigerant can be changed so that the intermediate-pressure gas refrigerant flowing out of the gas-liquid separator (51) is supplied to the compressor (31, 34), respectively.
  • the supply source of the intermediate pressure coolant to the compressor (31, 34) is changed between the cooling operation and the heating operation.
  • the intermediate pressure refrigerant evaporated in the intermediate pressure heat exchanger (40) is supplied to the compressor (31, 34).
  • the high-pressure liquid refrigerant is cooled by heat exchange with the intermediate-pressure refrigerant, so that the degree of supercooling of the high-pressure liquid refrigerant increases.
  • the high-pressure refrigerant supplied to the use-side heat exchange (71) is in the liquid state.
  • the amount of high-pressure refrigerant that is kept at the temperature or supplied to the use-side heat exchanger (71) is reduced in the middle.
  • the intermediate pressure refrigerant is introduced into the gas-liquid separator (51), and the gas refrigerant in the gas-liquid separator (51) is supplied to the compressor (31, 34).
  • the gas-liquid separator (51) Since the gas refrigerant and the liquid refrigerant are separated, the intermediate-pressure gas refrigerant is reliably supplied to the compressor (31, 34).
  • the refrigerant circuit (20) is a heat source side circuit provided with the compressor (31, 34) and the heat source side heat exchanger (36).
  • (30) and the use side circuit (70) provided with the use side heat exchanger (71) are connected by connecting pipes (21, 22), and the injection passage (43), Intermediate pressure heat exchanger (40) and above A gas-liquid separator (51) is provided in the heat source side circuit (30).
  • the refrigerant circuit (20) includes the heat source side circuit (30), the use side circuit (70), and the connection pipes (21, 22).
  • the high-pressure liquid refrigerant cooled when passing through the intermediate pressure heat exchanger (40) flows into the use side heat exchanger (71) through the connecting pipe (21).
  • the connecting pipe (21, 22) is long or the user circuit (70) is installed at a higher position than the heat source circuit (30)
  • the user heat exchanger (71) The high-pressure refrigerant supplied to is kept in a liquid state, or the amount of high-pressure refrigerant supplied to the use-side heat exchanger (71) is reduced in the middle.
  • the refrigerant condensed in the use side heat exchange (71) flows into the gas-liquid separator (51) through the communication pipe (21), and the gas refrigerant in the gas-liquid separator (51) Is supplied to the compressor (31, 34). Therefore, even if the connecting pipe (21, 22) is long or the heat source side circuit (30) is installed at a higher position than the user side circuit (70), the compressor (31, 34) ) Is reliably supplied to the gas refrigerant.
  • the gas-liquid separator (51) is the refrigerant circuit.
  • the intermediate pressure heat exchanger (40) is constituted by a member (65), and the intermediate pressure refrigerant accommodated in the container-like member (65) and flows through the injection passage (43) is supplied to the container-like member.
  • the heat exchange member (66) is configured to exchange heat with the liquid refrigerant in (65).
  • the gas-liquid separator (51) is constituted by the container-like member (65), and the intermediate pressure heat exchanger (40) is constituted by the heat exchange member (66).
  • the refrigerant (high-pressure liquid refrigerant) condensed in the heat source side heat exchanger (36) flows into the container-like member (65).
  • a part of the high-pressure liquid refrigerant flows into the injection passage (43), is reduced to an intermediate pressure, and flows into the heat exchange member.
  • the intermediate-pressure refrigerant flowing into the heat exchange member evaporates by exchanging heat with the high-pressure liquid refrigerant in the container-like member (65), and then supplied to the compressor (31, 34).
  • the high-pressure liquid refrigerant in the container-like member (65) cooled by heat exchange with the intermediate-pressure refrigerant is sent to the container-like member (65) toward the use side heat exchanger (71).
  • the refrigerant condensed in the use side heat exchanger (71) is reduced to an intermediate pressure in the container-like member (65). It flows in after it is.
  • the container-like member (65) the flowing intermediate pressure refrigerant is separated into a liquid refrigerant and a gas refrigerant. From the heat source side heat exchanger (36), the liquid refrigerant is sent out toward the heat source side heat exchanger (36), and is supplied to the compressors (31, 34) through the gas refrigerant injection passage (43).
  • the refrigerant circuit (20) has a high-pressure liquid refrigerant at a position downstream of the intermediate pressure heat exchanger (40) during the cooling operation.
  • a supercooling heat exchange (60) force S is provided to cool the high-pressure liquid refrigerant by exchanging heat with a low-pressure refrigerant obtained by reducing a part of the pressure to a low pressure.
  • the supercooling heat exchanger (60) is provided in the refrigerant circuit (20). During the cooling operation, the supercooling heat exchanger (60) exchanges heat with the low-pressure refrigerant obtained by decompressing a part of the high-pressure liquid refrigerant that has passed through the intermediate-pressure heat exchanger (40). Cooled by. That is, in the supercooling heat exchanger (60), the degree of supercooling of the high-pressure liquid refrigerant is increased. The high-pressure liquid refrigerant cooled by the subcooling heat exchanger (60) is sent to the use side heat exchanger (71).
  • the refrigerant circuit (20) performs a single-stage compression refrigeration cycle, while the compressor (31) transfers intermediate pressure to a compression chamber in the middle of compression.
  • the gas refrigerant is configured to flow in.
  • the intermediate-pressure gas refrigerant is introduced into the compression chamber in the middle of compression in the compressor (31).
  • the compressor (31) is a evaporator of the use side heat exchanger (71) and the heat source side heat exchanger (36)! 40) or the intermediate pressure refrigerant supplied from the gas-liquid separator (51) is sucked and compressed.
  • the refrigerant circuit (20) includes a low-stage compressor (33) and a high-stage compressor (34) connected in series. While the stage compression refrigeration cycle is performed, the refrigerant circuit (20) is configured to supply an intermediate pressure gas refrigerant to the suction side of the high stage compressor (34).
  • the intermediate-pressure gas refrigerant is introduced to the suction side of the high-stage compressor (34).
  • the high-stage compressor (34) includes the refrigerant compressed by the low-stage compressor (33) and the gas sent from the intermediate pressure heat exchanger (40) and gas-liquid separator (51). Inhale refrigerant.
  • the intermediate pressure refrigerant evaporated by the intermediate pressure heat exchanger (40) is supplied to the compressor (31, 34) and cooled by the intermediate pressure heat exchanger (40).
  • the high-pressure liquid refrigerant is sent to the use side heat exchanger (71).
  • the use side heat exchanger (71) is located far away from the intermediate pressure heat exchanger (40) !, or the use side heat exchanger (71) is from the intermediate pressure heat exchanger (40).
  • the high-pressure refrigerant supplied to the user-side heat exchanger (71) can be kept in a liquid state, or the amount of high-pressure refrigerant supplied to the user-side heat exchanger (71) can be reduced in the middle. .
  • the amount of liquid refrigerant supplied to the use side heat exchanger (71) during the cooling operation can be ensured, and the cooling capacity of the use side heat exchange (71) can be fully exhibited.
  • the gas-liquid separator (51) force is also supplying the intermediate-pressure gas refrigerant to the compressor (31, 34).
  • the gas-liquid separator (51) is located far away from the user-side heat exchanger (71), or the gas-liquid separator (51) is higher than the user-side heat exchanger (71)!
  • the intermediate-pressure gas refrigerant is pressurized. It can be reliably supplied to the compressor (31, 34). As a result, it is possible to avoid a situation in which the intermediate-pressure liquid refrigerant flows into the compressor (31, 34) and causes damage to the compressor (31, 34).
  • the refrigeration apparatus (10) can be used during both the cooling operation and the heating operation regardless of the state in which the refrigeration apparatus (10) is installed. Smooth operation is possible.
  • the refrigerant circuit (20) is constituted by the heat source side circuit (30), the use side circuit (70), and the communication pipes (21, 22).
  • the heat source side circuit (30) provided with the intermediate pressure heat exchange (40) and the gas-liquid separator (51), and the use side circuit (70) provided with the use side heat exchange (71). ) are often placed at distant locations, or they are installed at different heights. Therefore, in the refrigeration apparatus (10) including the refrigerant circuit (20) configured as in the present invention, as described above, the intermediate pressure refrigerant for the compressor (31, 34) is being cooled and heated. Changing the supplier may ease restrictions on the installation status of the refrigeration system (10). it can.
  • the heat exchange member (66) constituting the intermediate pressure heat exchanger (40) is accommodated inside the container-like member (65) constituting the gas-liquid separator (51). ing.
  • the container-like member (65) containing the heat exchange member (66) is connected to the refrigerant circuit (20)
  • both the gas-liquid separator (51) and the intermediate pressure heat exchanger (40) It is installed in the refrigerant circuit (20). Therefore, according to the present invention, the configuration of the refrigerant circuit (20) can be simplified as compared with the case where the gas-liquid separator (51) and the intermediate pressure heat exchanger (40) are individually formed.
  • the supercooling heat exchanger (60) is provided in the refrigerant circuit (20), and the degree of supercooling of the high-pressure liquid refrigerant sent to the use side heat exchanger (71) during the cooling operation is determined. Increase it! For this reason, even if the installation condition is such that the pressure force S of the high-pressure refrigerant decreases from the intermediate pressure heat exchanger (40) to the user-side heat exchanger (71), the user-side heat exchanger (71) The supplied high-pressure refrigerant can be more reliably maintained in a liquid state, or the amount of the high-pressure refrigerant supplied to the use side heat exchanger (71) can be further reduced.
  • FIG. 1 is a piping system diagram showing a configuration of a refrigerant circuit of an air conditioner in Embodiment 1, wherein (A) shows a state during cooling operation, and (B) shows a state during heating operation. Showing
  • FIG. 2 is a piping system diagram showing a configuration of a refrigerant circuit of an air conditioner in Embodiment 2, in which (A) shows a state during cooling operation, and (B) shows a state during heating operation.
  • RU refrigerant circuit of an air conditioner
  • FIG. 3 is a distribution system diagram showing a configuration of a refrigerant circuit of an air conditioner in a first modification of the other embodiment, where (A) shows a state during cooling operation, and (B) shows heating. The state during operation is shown.
  • FIG. 4 is a piping system diagram showing a configuration of a refrigerant circuit of an air conditioner in a second modification of the other embodiment, where (A) shows a state during cooling operation, and (B) shows heating. The state during operation is shown.
  • Embodiment 1 of the present invention will be described.
  • the present embodiment is an air conditioner (10) configured by a refrigeration apparatus according to the present invention.
  • the air conditioner (10) of the present embodiment includes one outdoor unit (11) and two indoor units (12).
  • the number of indoor units (12) is merely an example.
  • the outdoor unit (11) accommodates an outdoor circuit (30) that is a heat source side circuit (30).
  • Each indoor unit (12) accommodates an indoor circuit (70) which is a use side circuit.
  • the refrigerant circuit (20) is formed by connecting the outdoor circuit (30) and the indoor circuit (70) by the liquid side connecting pipe (21) and the gas side connecting pipe (22). Te! In this refrigerant circuit (20), two indoor circuits (70) are connected in parallel to one outdoor circuit (30).
  • Each indoor circuit (70) is provided with one indoor heat exchanger (71) as a use side heat exchanger and one indoor expansion valve (72).
  • Indoor heat exchange (71) is air heat exchange that exchanges heat between indoor air and refrigerant.
  • indoor heat exchange (71) and indoor expansion The tension valves (72) are connected in series with each other.
  • the liquid side communication pipe (21) is connected to the end on the indoor expansion valve (72) side, and the gas side communication pipe (22) is connected to the end on the indoor heat exchanger (71) side. Is connected!
  • the outdoor circuit (30) includes a compressor (31), a four-way switching valve (35), an outdoor heat exchanger (36) as a heat source side heat exchanger, an outdoor expansion valve (37), An accumulator (38) is provided.
  • the outdoor heat exchanger (36) includes an intermediate pressure heat exchanger (40), a gas-liquid separator (51), a bypass pipe (50), an injection pipe (43), and an intermediate pressure gas. Piping (52) is provided.
  • the compressor (31) is a positive displacement compressor (31) and is configured to compress the refrigerant sucked into the compression chamber.
  • the compressor (31) is provided with an intermediate pressure port (32) for introducing an intermediate pressure refrigerant into the compression chamber in the middle of compression.
  • the compressor (31) has its discharge side connected to the first port of the four-way switching valve (35) and its suction side connected to the second port of the four-way switching valve (35) via the accumulator (38). ing.
  • only one compressor (31) is provided in the outdoor circuit (30), but a plurality of compressors may be provided in parallel.
  • the outdoor heat exchanger (36) is an air heat exchanger for exchanging heat between outdoor air and the refrigerant.
  • the intermediate pressure heat exchanger (40) is a heat exchanger that exchanges heat between refrigerants such as a double-pipe heat exchanger and a plate heat exchanger.
  • a first channel (41) and a second channel (42) are formed.
  • the outdoor heat exchanger (36) has one end connected to the third port of the four-way switching valve (35) and the other end connected to the first flow path of the intermediate pressure heat exchanger (40) via the outdoor expansion valve (37). (41) is connected to one end of each.
  • the other end of the first flow path (41) of the intermediate pressure heat exchanger (40) is connected to the liquid side communication pipe (21) via the first check valve (45).
  • the first check valve (45) is arranged so as to allow only the flow of the refrigerant directed to the intermediate pressure heat exchange (40) force liquid side communication pipe (21).
  • the injection pipe (43) forms an injection passage.
  • the injection pipe (43) has its start end connected between the intermediate pressure heat exchanger (40) and the first check valve (45), and its end connected to the intermediate pressure port (32) of the compressor (31). Has been.
  • the second flow path (42) of the intermediate pressure heat exchanger (40) is disposed in the middle of the instruction pipe (43). Inji
  • an injection expansion valve (44) is provided between the starting end of the case pipe (43) and the second flow path (42) of the intermediate pressure heat exchange (40).
  • the gas-liquid separator (51) is a sealed container formed in a vertically long cylindrical shape.
  • the gas-liquid separator (51) has a lower end arranged in the middle of the bypass pipe (50).
  • the no-pass pipe (50) has a leading end between the first check valve (45) and the liquid side connecting pipe (21) and a terminal end connected to the first flow path (41) of the intermediate pressure heat exchanger (40). Each is connected between the outdoor expansion valves (37).
  • a second check valve (55) is provided between the terminal end of the bypass pipe (50) and the gas-liquid separator (51).
  • the second check valve (55) is arranged so as to allow only the flow of the refrigerant in the direction in which the gas-liquid separator (51) force also flows out.
  • One end of an intermediate pressure gas pipe (52) is connected to the top of the gas-liquid separator (51).
  • the other end of the intermediate pressure gas pipe (52) is connected between the second flow path (42) of the intermediate pressure heat exchange (40) in the injection pipe (43) and the compressor (31).
  • a solenoid valve (53) is provided in the middle of the intermediate pressure gas pipe (52).
  • the four-way selector valve (35) has a first port on the discharge side of the compressor (31), a second port on the accumulator (38), and a third port on the outdoor heat. Each is connected to the reversal (36).
  • the fourth port of the four-way selector valve (35) is connected to the gas side communication pipe (22).
  • This four-way switching valve (35) has a first state (the state shown in FIG. 1 (A)) in which the first port and the third port communicate with each other, and the second port and the fourth port communicate with each other. Switch to the 2nd state (state shown in Fig. 1 (B)) where the 1 port communicates with the 4th port and the 2nd port communicates with the 3rd port.
  • the air conditioner (10) can be switched between cooling operation and heating operation!
  • the refrigerant circuit (20) during the cooling operation the refrigerant circulates so that the outdoor heat exchanger (36) serves as a condenser and the indoor heat exchanger (71) serves as an evaporator. That is, the cooling operation is performed in the refrigerant circuit (20).
  • the four-way selector valve (35) is set to the first state.
  • the outdoor expansion valve (37) is set to the fully open state, and the injection expansion valve (44) and the indoor expansion valve ( The opening degree of 72) is adjusted as appropriate, and the solenoid valve (53) is closed.
  • the high-pressure gas refrigerant discharged from the compressor (31) releases heat to the outdoor air and condenses in the outdoor heat exchanger (36).
  • the high-pressure liquid refrigerant from the outdoor heat exchanger (36) dissipates heat to the refrigerant in the second flow path (42) while passing through the first flow path (41) of the intermediate pressure heat exchanger (40).
  • the high-pressure liquid refrigerant that also flowed out of the first flow path (41) of the intermediate pressure heat exchanger (40) flows into the partial force S-injection pipe (43), and the rest passes through the liquid side connecting pipe (21). Distributed to each indoor circuit (70).
  • each indoor circuit (70) the high-pressure liquid refrigerant that has flowed in is reduced in pressure when passing through the indoor expansion valve (72), and is then evaporated by absorbing the indoor aerodynamic force in the indoor heat exchanger (71).
  • the refrigerant evaporated in the indoor heat exchanger (71) returns to the outdoor circuit (30) through the gas side connecting pipe (22), and is sucked into the compressor (31) through the accumulator (38). .
  • the high-pressure liquid refrigerant that has flowed into the injection pipe (43) is reduced to an intermediate pressure when passing through the injection expansion valve (44) to become a gas-liquid two-phase intermediate pressure refrigerant.
  • This intermediate pressure refrigerant absorbs heat from the refrigerant in the first flow path (41) and evaporates while flowing through the second flow path (42) of the intermediate pressure heat exchanger (40).
  • the intermediate pressure gas refrigerant exiting from the second flow path (42) of the intermediate pressure heat exchanger (40) is sent to the intermediate pressure port (32) of the compressor (31).
  • the compressor (31) sucks the low-pressure refrigerant into the compression chamber through the accumulator (38) and compresses it.
  • the intermediate pressure gas refrigerant flowing from the intermediate pressure port (32) is introduced into the compression chamber in the middle of compression.
  • the compressor (31) compresses the refrigerant in the compression chamber to a high pressure and discharges it.
  • the high-pressure liquid refrigerant that has been cooled when passing through the intermediate pressure heat exchanger (40) and has a high degree of supercooling passes through the liquid side communication pipe (21) to the room. Sent to circuit (70). For this reason, the length of the liquid side connecting pipe (21) is more than a certain length, or the indoor circuit (70) is placed at a position that is a little higher than the outdoor circuit (30). If the liquid refrigerant sent from (30) to the liquid side connection pipe (21) is saturated, even if a part of the high-pressure liquid refrigerant evaporates before reaching the indoor circuit (70), The high-pressure refrigerant flowing into the inner circuit (70) is maintained in the liquid single phase state.
  • the refrigerant circuit (20) during the heating operation the refrigerant circulates so that the indoor heat exchanger (71) serves as a condenser and the outdoor heat exchanger (36) serves as an evaporator. That is, a heating operation is performed in the refrigerant circuit (20).
  • the four-way selector valve (35) is set to the second state.
  • the opening degree of the outdoor expansion valve (37) and the indoor expansion valve (72) is adjusted as appropriate, the indication expansion valve (44) is set to the fully closed state, and the electromagnetic valve (53) is opened. .
  • Compressor (31) Force The discharged high-pressure gas refrigerant is distributed to each indoor circuit (70) through the gas side connecting pipe (22).
  • the indoor heat exchanger (71) of each indoor circuit (70) the high-pressure gas refrigerant dissipates heat to the indoor air and condenses.
  • the refrigerant flowing out of the indoor heat exchanger (71) is reduced in pressure when passing through the indoor expansion valve (72) to become a gas-liquid two-phase intermediate pressure refrigerant.
  • the intermediate pressure refrigerant flowing out of each indoor circuit (70) returns to the outdoor circuit (30) through the liquid side connecting pipe (21) and flows into the gas-liquid separator (51) through the bypass pipe (50).
  • the intermediate pressure refrigerant that has flowed into the gas-liquid separator (51) the liquid refrigerant is collected in the lower part of the gas-liquid separator (51), and the gas refrigerant is accumulated in the upper part of the gas-liquid separator (51).
  • the intermediate-pressure liquid refrigerant in the gas-liquid separator (51) flows again through the bypass pipe (50) and is reduced in pressure when passing through the outdoor expansion valve (37) before being introduced into the outdoor heat exchanger (36).
  • the In the outdoor heat exchanger (36) the refrigerant absorbs outdoor air force and evaporates.
  • the refrigerant evaporated in the outdoor heat exchange (36) is sucked into the compressor (31) through the accumulator (38).
  • the intermediate-pressure gas refrigerant in the gas-liquid separator (51) is introduced into the intermediate-pressure port (32) of the compressor (31) through the intermediate-pressure gas pipe (52) and the instruction pipe (43) in this order.
  • the compressor (31) sucks and compresses the low-pressure refrigerant into the compression chamber through the accumulator (38).
  • the intermediate pressure gas refrigerant flowing from the intermediate pressure port (32) is introduced into the compression chamber in the middle of compression.
  • the compressor (31) compresses the refrigerant in the compression chamber to a high pressure and discharges it.
  • the liquid side communication pipe (21) is returned to the outdoor circuit (30).
  • the refrigerant is introduced into the gas-liquid separator (51) and separated into liquid refrigerant and gas refrigerant, and only the gas refrigerant in the gas-liquid separator (51) is supplied to the intermediate pressure port (32) of the compressor (31). is doing. That is, even when the refrigerant flowing into the outdoor circuit (30) is in a gas-liquid two-phase state, only the gas refrigerant is reliably supplied to the intermediate pressure port (32) of the compressor (31). For this reason, the liquid side communication pipe (21) is longer than the length, or the outdoor circuit (30) is higher than the indoor circuit (70) to some extent! Even if a part of the refrigerant evaporates before reaching the circuit (70), the refrigerant flowing into the intermediate pressure port (32) of the compressor (31) is kept in a gas single-phase state. .
  • the intermediate pressure refrigerant evaporated by the intermediate pressure heat exchanger (40) is supplied to the intermediate pressure port (32) of the compressor (31) for intermediate pressure heat exchange.
  • the high-pressure liquid refrigerant cooled by the vessel (40) is supplied to the indoor circuit (70).
  • the liquid side connecting pipe (21) connecting the outdoor circuit (30) and the indoor circuit (70) is extremely long, or the indoor circuit (70) is arranged at a position higher than the outdoor circuit (30).
  • the high-pressure refrigerant supplied to the indoor circuit (70) can be kept in a liquid state even in an installation situation in which the refrigerant pressure drops significantly while flowing through the liquid side connecting pipe (21).
  • the amount of high-pressure refrigerant supplied to the indoor circuit (70) that evaporates in the middle can be reduced.
  • the amount of liquid refrigerant supplied to the indoor circuit (70) during the cooling operation can be secured, and the cooling capacity of the indoor unit (12) can be fully exhibited.
  • the refrigerant distribution ratio to the indoor circuit (70) is adjusted by individually controlling the opening of the indoor expansion valve (72) of each indoor circuit (70).
  • the refrigerant passing through the indoor expansion valve (72) enters a gas-liquid two-phase state, the flow characteristics of the indoor expansion valve (72) become unstable, and the distribution ratio of the refrigerant to each indoor circuit (70) becomes appropriate. May be out of control.
  • the refrigerant flowing into the indoor circuit (70) during the cooling operation can be easily held in a liquid state.
  • the cooling capacity of each indoor unit (12) can be accurately controlled.
  • the refrigerant returned from the indoor circuit (70) to the outdoor circuit (30) is separated into liquid refrigerant and gas refrigerant by the gas-liquid separator (51).
  • the intermediate-pressure gas refrigerant is supplied from the gas-liquid separator (51) to the compressor (31).
  • the liquid side connecting pipe (21) connecting the outdoor circuit (30) and the indoor circuit (70) is extremely long, or the outdoor circuit (30) is positioned higher than the indoor circuit (70).
  • the air conditioner (10) can be installed in both the cooling operation and the heating operation regardless of the state of installation!
  • the air conditioner (10) can be operated smoothly.
  • Embodiment 2 of the present invention will be described.
  • a supercooling heat exchanger (60) and a supercooling pipe (63) are added to the air conditioner (10) of the first embodiment.
  • the air conditioner (10) of the present embodiment differences from the first embodiment will be described.
  • the supercooling heat exchange (60) is provided in the outdoor circuit (30).
  • the subcooling heat exchanger (60) is a heat exchange that exchanges heat between refrigerants such as a double-pipe heat exchanger and a plate heat exchanger.
  • a first channel (61) and a second channel (62) are formed in this supercooling heat exchanger (60).
  • the first flow path (61) of the supercooling heat exchanger (60) is provided between the intermediate pressure heat exchanger (40) and the first check valve (45) in the outdoor circuit (30).
  • the supercooling pipe (63) has a start end between the supercooling heat exchanger (60) and the first check valve (45), and a terminal end of the accumulator (38) and the four-way switching valve (35). Each connected in between.
  • the second flow path (62) of the supercooling heat exchanger (60) is disposed in the middle of the supercooling pipe (63).
  • a supercooling expansion valve (64) is provided between its starting end and the second flow path (62) of the supercooling heat exchanger (60).
  • the refrigerant circulates in the same manner. Specifically, the high-pressure liquid refrigerant that has flowed out of the intermediate-pressure heat exchanger (40) flows into the liquid-side connecting pipe (21) after passing through the supercooling heat exchanger (60), and part of the high-pressure liquid refrigerant. Only the point that the refrigerant flows into the supercooling pipe (63) is different from the refrigerant circulation path in the first embodiment.
  • the opening degree of the supercooling expansion valve (64) is appropriately adjusted.
  • the high-pressure liquid refrigerant flowing out from the first flow path (41) of the intermediate pressure heat exchanger (40) passes through the first flow path (61) of the subcooling heat exchanger (60) while passing through the second flow path. Dissipates heat to refrigerant (62).
  • the first flow path (61) force of the supercooling heat exchange (60) part of the high-pressure liquid refrigerant that has flowed out flows into the supercooling pipe (63) and the rest passes through the liquid side connecting pipe (21).
  • the high-pressure liquid refrigerant that has flowed into the supercooling pipe (63) is reduced to a low pressure when passing through the supercooling expansion valve (64) to become a low-pressure refrigerant in a gas-liquid two-phase state.
  • This low-pressure refrigerant absorbs heat from the refrigerant in the first channel (61) and evaporates while flowing through the second channel (62) of the supercooling heat exchanger (60).
  • the low-pressure gas refrigerant generated in the second flow path (62) of the supercooling heat exchanger (60) returned from the indoor circuit (70) to the outdoor circuit (30) through the gas side connection pipe (22). It is sucked into the compressor (31) together with the low-pressure refrigerant.
  • the refrigerant circulates in exactly the same manner as in the first embodiment. Specifically, during the heating operation, the supercooling expansion valve (64) is fully closed.
  • the intermediate pressure refrigerant flowing from the liquid side connection pipe (21) into the outdoor circuit (30) flows into the gas-liquid separator (51) through the bypass pipe (50) and is separated into the liquid refrigerant and the gas refrigerant. It is.
  • the supercooling heat exchanger (60) is provided in the outdoor circuit (30) to increase the degree of superheat of the high-pressure liquid refrigerant sent to the indoor circuit (70) during the cooling operation. For this reason, even in an installation situation in which the pressure of the high-pressure refrigerant decreases from the outdoor circuit (30) to the indoor circuit (70), the high-pressure refrigerant supplied to the indoor circuit (70) is more reliably liquefied. In keeping the condition Or the amount of high-pressure refrigerant supplied to the indoor circuit (70) that evaporates in the middle can be further reduced.
  • the gas-liquid separator (51) and the intermediate pressure heat exchanger (40) may be integrated.
  • this modification to the air conditioner (10) of the said Embodiment 2 is demonstrated, referring FIG.
  • the gas-liquid separator (51) of the present modification is configured by a container-like member (65) formed in a slightly vertically long cylindrical shape.
  • the bottom of the container-like member (65) constituting the gas-liquid separator (51) is connected to a portion of the outdoor circuit (30) between the outdoor expansion valve (37) and the supercooling heat exchanger (60). ing.
  • the bypass pipe (50), the first check valve (45), and the second check valve (55) may be omitted.
  • a heat exchange member (66) in which a heat transfer tube is formed in a coil spring shape is provided inside the container-like member (65).
  • the heat exchange member (66) is disposed at the bottom of the container-like member (65) so as to be immersed in the liquid refrigerant accumulated in the container-like member (65).
  • the heat exchange member (66) is disposed on the downstream side of the injection expansion valve (44) in the injection pipe (43). In this modification, this heat exchange member (66) constitutes an intermediate pressure heat exchanger (40).
  • the refrigerant condensed in the outdoor heat exchanger (36) passes through the fully-expanded outdoor expansion valve (37) and flows into the container-like member (65).
  • the high-pressure liquid refrigerant in the container-like member (65) radiates heat to the intermediate-pressure refrigerant flowing in the heat exchange member (66). That is, in the container-like member (65), the high-pressure liquid refrigerant is cooled by heat exchange with the intermediate-pressure refrigerant in the heat exchange member (66), and the degree of supercooling of the high-pressure liquid refrigerant increases.
  • the high-pressure liquid refrigerant cooled in the container-like member (65) flows into the partial force injection pipe (43), and the rest is subcooled heat exchanger (60). It is further cooled while passing through the first flow path (61).
  • the high-pressure liquid refrigerant cooled by the supercooling heat exchanger (60) is supplied to the indoor circuit (70) through the liquid-side connecting pipe (21).
  • the high-pressure liquid refrigerant that has flowed into the injection pipe (43) is reduced to an intermediate pressure when passing through the injection expansion valve (44), and is sent to the heat exchange member (66) as an intermediate-pressure refrigerant. It is done.
  • the intermediate pressure refrigerant flowing into the heat exchange member (66) absorbs the high-pressure liquid refrigerant in the container-like member (65) and evaporates, and then is supplied to the intermediate pressure port (32) of the compressor (31). Is done.
  • the refrigerant condensed in the indoor heat exchanger (71) is reduced to an intermediate pressure when passing through the indoor expansion valve (72), and is then passed through the liquid side communication pipe (21). It passes through the first flow path (61) of the cooling heat exchanger (60) in order and flows into the container-like member (65).
  • the container-like member (65) the gas-liquid two-phase intermediate pressure refrigerant is separated into liquid refrigerant and gas refrigerant.
  • the intermediate-pressure gas refrigerant accumulated in the upper part of the container-like member (65) is supplied to the intermediate-pressure port (32) of the compressor (31) through the instruction pipe (43).
  • the intermediate-pressure liquid refrigerant accumulated in the lower part of the container-like member (65) is reduced to a low pressure when passing through the outdoor expansion valve (37) and then introduced into the outdoor heat exchanger (36).
  • the heat exchange member (66) constituting the intermediate pressure heat exchanger (40) is replaced by the container-like member (65) constituting the gas-liquid separator (51). Housed inside.
  • the container-like member (65) that houses the heat exchange member (66) is connected to the outdoor circuit (30)
  • both the gas-liquid separator (51) and the intermediate pressure heat exchanger (40) are connected outdoors. It is installed in the circuit (30). Therefore, according to this modification, the configuration of the outdoor circuit (30) can be simplified as compared with the case where the gas-liquid separator (51) and the intermediate pressure heat exchanger (40) are individually formed. .
  • the low-stage compressor (33) and the high-stage compressor (34) are installed in the outdoor circuit (30), and the refrigerant circuit (20) performs the two-stage compression refrigeration cycle. Also good.
  • FIG. 4 is referred to for the case where the present modification is applied to the air conditioner (10) of the second embodiment. I will explain.
  • the low-stage compressor (33) and the high-stage compressor (34) are connected in series. Specifically, the suction side of the low-stage compressor (33) is connected to the second port of the four-way switching valve (35) via the accumulator (38). The discharge side of the low stage compressor (33) is connected to the suction side of the high stage compressor (34). The discharge side of the high stage compressor (34) is connected to the first port of the four-way selector valve (35).
  • the end of the injection pipe (43) is connected to a pipe connecting the discharge side of the low stage compressor (33) and the suction side of the high stage compressor (34).
  • the intermediate-pressure gas refrigerant flowing through the injection pipe (43) is drawn into the high-stage compressor (34) together with the intermediate-pressure refrigerant discharged from the low-stage compressor (33).
  • the present invention is useful for a refrigeration apparatus that performs gas injection by supplying an intermediate-pressure gas refrigerant to a compressor.

Abstract

A refrigeration device (20) has an intermediate-pressure heat exchanger (40) and a gas-liquid separator (51). In cooling operation, that portion of refrigerant which is condensed in an outdoor heat exchanger (36) flows into injection piping (43). The pressure of the refrigerant flowed into the injection piping (43) is reduced to an intermediate pressure when the refrigerant passes an injection expansion valve (44), and then the refrigerant is supplied to an intermediate pressure port (32) of a compressor (31) after evaporating at the intermediate- pressure heat exchanger (40). In heating operation, the pressure of the refrigerant condensed at an indoor heat exchanger (71) is reduced to an intermediate pressure when the refrigerant passes an indoor expansion valve (72), and then the refrigerant flows into the gas-liquid separator (51). The intermediate-pressure gas refrigerant in the gas-liquid separator (51) is supplied to the intermediate pressure port (32) of the compressor (31).

Description

明 細 書  Specification
冷凍装置  Refrigeration equipment
技術分野  Technical field
[0001] 本発明は、中間圧のガス冷媒を圧縮機へ供給してガスインジェクションを行う冷凍 装置に関するものである。 背景技術  [0001] The present invention relates to a refrigeration apparatus that performs gas injection by supplying an intermediate-pressure gas refrigerant to a compressor. Background art
[0002] 従来より、圧縮機への入力の削減を目的として、いわゆるガスインジェクション (即ち 、中間圧のガス冷媒を圧縮機へ供給する動作)を行う冷凍装置が知られている。例え ば、特許文献 1の図 1には、単段圧縮冷凍サイクルを行う冷凍装置であって、圧縮機 における圧縮途中の圧縮室へ中間圧のガス冷媒を供給するものが開示されている。 また、特許文献 1の図 13には、二段圧縮冷凍サイクルを行う冷凍装置であって低段 圧縮機と高段圧縮機の間に中間圧のガス冷媒を供給するものが開示されて!ヽる。  Conventionally, a refrigeration apparatus that performs so-called gas injection (that is, an operation of supplying an intermediate-pressure gas refrigerant to a compressor) is known for the purpose of reducing the input to the compressor. For example, FIG. 1 of Patent Document 1 discloses a refrigeration apparatus that performs a single-stage compression refrigeration cycle and that supplies an intermediate-pressure gas refrigerant to a compression chamber in the middle of compression in a compressor. Further, FIG. 13 of Patent Document 1 discloses a refrigeration apparatus that performs a two-stage compression refrigeration cycle, and supplies an intermediate-pressure gas refrigerant between a low-stage compressor and a high-stage compressor! Speak.
[0003] ガスインジェクションを行うには、中間圧のガス冷媒を発生させなければならない。  [0003] In order to perform gas injection, an intermediate-pressure gas refrigerant must be generated.
そのため、例えば特許文献 1の図 1に記載された冷凍装置では、中間圧冷媒を液冷 媒とガス冷媒に分離する気液分離器を冷媒回路に設け、この気液分離器から圧縮 機へ中間圧のガス冷媒を供給している。また、特許文献 1の図 9に記載された冷凍装 置では、中間圧熱交換器で中間圧冷媒を高圧液冷媒と熱交換させることによって蒸 発させ、この中間圧熱交換器から圧縮機へ中間圧のガス冷媒を供給して!/ヽる。 特許文献 1 :特開 2001— 033117号公報  Therefore, for example, in the refrigeration apparatus described in FIG. 1 of Patent Document 1, a gas-liquid separator that separates the intermediate pressure refrigerant into a liquid refrigerant and a gas refrigerant is provided in the refrigerant circuit, and an intermediate is provided from the gas-liquid separator to the compressor. Pressure gas refrigerant is supplied. Further, in the refrigeration apparatus described in FIG. 9 of Patent Document 1, the intermediate-pressure refrigerant is vaporized by exchanging heat with the high-pressure liquid refrigerant in the intermediate-pressure heat exchanger, and is transferred from the intermediate-pressure heat exchanger to the compressor. Supply intermediate pressure gas refrigerant! Patent Document 1: JP 2001-033117 A
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0004] ところで、上記冷凍装置では、冷媒回路に設けられた圧縮機や熱交換器等の構成 機器が互 、に離れた位置に配置されたり、互 、に異なる高さに配置される場合があ る。例えば、冷凍装置の一種である空調機は、室外ユニットと室内ユニットを連絡配 管で接続することによって構成される場合が多い。そして、空調機をビルなどに設置 するような場合は、連絡配管の長さが 100m近くに達したり、室外ユニットと室内ュ- ットの間に 20〜30m程度の高低差がつくこともある。 [0005] このように、冷凍装置の設置状況は、その用途などによって様々である。そして、上 記のガスインジヱクシヨンを行う冷凍装置については、その設置状況によっては円滑 な運転ができなくなるおそれがあった。以下では、この問題点について説明する。 [0004] By the way, in the refrigeration apparatus, components such as a compressor and a heat exchanger provided in the refrigerant circuit may be arranged at positions separated from each other, or may be arranged at different heights. is there. For example, an air conditioner, which is a type of refrigeration system, is often configured by connecting an outdoor unit and an indoor unit through a communication pipe. And when installing an air conditioner in a building, etc., the length of the connecting pipe may reach nearly 100m, or there may be a height difference of about 20-30m between the outdoor unit and the indoor unit. . [0005] As described above, the installation state of the refrigeration apparatus varies depending on the application. The above-described refrigeration apparatus that performs gas injection may not be able to operate smoothly depending on the installation conditions. Hereinafter, this problem will be described.
[0006] 上述したように、ガスインジェクションを行う冷凍装置では、気液分離器から圧縮機 へ中間圧のガス冷媒を供給する場合がある。気液分離器内では液冷媒とガス冷媒が 共存しているため、気液分離器力も送り出される液冷媒は飽和状態となっている。こ の種の冷凍装置が対象物を冷却する動作を行う際には、気液分離器力 流出した飽 和状態の液冷媒が利用側熱交^^へ送られる。ところが、利用側熱交^^が気液 分離器から遠く離れていたり、利用側熱交換器が気液分離器よりも高い位置に設置 されていると、気液分離器力 利用側熱交^^へ向けて配管内を流れる間に冷媒の 圧力が低下し、冷媒の一部が蒸発してしまうことがある。このため、利用側熱交 への液冷媒の流入量が減少し、利用側熱交換器で得られる冷却能力が減少するお それがある。  [0006] As described above, in a refrigeration apparatus that performs gas injection, an intermediate-pressure gas refrigerant may be supplied from a gas-liquid separator to a compressor. Since the liquid refrigerant and the gas refrigerant coexist in the gas-liquid separator, the liquid refrigerant to which the gas-liquid separator force is also sent is saturated. When this type of refrigeration system cools the object, the saturated liquid refrigerant that has flowed out of the gas-liquid separator is sent to the heat exchanger on the use side. However, if the use side heat exchange ^^ is far away from the gas-liquid separator, or if the use-side heat exchanger is installed at a higher position than the gas-liquid separator, the use-side heat exchange ^ While flowing through the pipe toward ^, the refrigerant pressure may drop and some of the refrigerant may evaporate. For this reason, the amount of liquid refrigerant flowing into the use-side heat exchanger decreases, and the cooling capacity obtained by the use-side heat exchanger may decrease.
[0007] また、ガスインジェクションを行う冷凍装置では、中間圧熱交換器で中間圧冷媒を 高圧液冷媒と熱交換させ、中間圧熱交換器で蒸発した中間圧冷媒を圧縮機へ供給 する場合がある。この種の冷凍装置が対象物を加熱する動作を行う際には、利用側 熱交換器で凝縮した冷媒の一部が中間圧にまで減圧されて中間圧熱交換器へ導入 される。ところが、中間圧熱交^^が利用側熱交 ^ ^力 遠く離れていたり、中間圧 熱交^^が利用側熱交^^よりも高い位置に設置されていると、利用側熱交 か ら中間圧熱交^^へ向けて配管内を流れる間に冷媒の圧力が低下し、冷媒の一部 が蒸発して冷媒の温度が低下することがある。このため、中間圧熱交^^で互いに 熱交換する高圧冷媒と中間圧冷媒の温度差が小さくなり、中間圧熱交換器で中間圧 冷媒を確実にガス化できなくなるおそれがある。  [0007] Further, in a refrigeration apparatus that performs gas injection, there is a case in which the intermediate pressure refrigerant is heat-exchanged with the high-pressure liquid refrigerant in the intermediate pressure heat exchanger, and the intermediate pressure refrigerant evaporated in the intermediate pressure heat exchanger is supplied to the compressor. is there. When this type of refrigeration apparatus performs an operation of heating an object, a part of the refrigerant condensed in the use side heat exchanger is reduced to an intermediate pressure and introduced into the intermediate pressure heat exchanger. However, if the intermediate pressure heat exchange ^^ is far away from the user side heat exchange ^^ force, or if the intermediate pressure heat exchange ^^ is installed higher than the user side heat exchange ^^, As the refrigerant flows through the pipe toward the intermediate pressure heat exchanger, the refrigerant pressure may drop, and some of the refrigerant may evaporate, causing the refrigerant temperature to drop. For this reason, the temperature difference between the high-pressure refrigerant and the intermediate-pressure refrigerant that exchange heat with each other by the intermediate-pressure heat exchange becomes small, and the intermediate-pressure heat exchanger may not be able to reliably gasify the intermediate-pressure refrigerant.
[0008] 本発明は、力かる点に鑑みてなされたものであり、いわゆるガスインジェクションを行 う冷凍装置において、その設置状況や運転状態に拘わらず円滑な運転を可能とする ことにある。  [0008] The present invention has been made in view of the strong points, and is to enable a smooth operation in a refrigeration apparatus that performs so-called gas injection regardless of the installation state or operation state.
課題を解決するための手段  Means for solving the problem
[0009] 第 1の発明は、圧縮機 (31,34)と熱源側熱交換器 (36)と利用側熱交換器 (71)とが 接続されて冷凍サイクルを行うと共に、上記熱源側熱交翻 (36)が凝縮器となって 上記利用側熱交換器 (71)が蒸発器となる冷却動作と、上記利用側熱交換器 (71)が 凝縮器となって上記熱源側熱交換器 (36)が蒸発器となる加熱動作とが切り換え可能 な冷媒回路 (20)を備える冷凍装置を対象としている。そして、上記冷媒回路 (20)は 、高圧液冷媒の一部を減圧して得られた中間圧冷媒を上記圧縮機 (31,34)へ供給 するインジヱクシヨン通路(43)と、上記インジヱクシヨン通路(43)を上記圧縮機 (31,34 )へ向けて流れる中間圧冷媒を高圧液冷媒と熱交換させて蒸発させる中間圧熱交換 器 (40)と、高圧液冷媒を減圧して得られた中間圧冷媒を液冷媒とガス冷媒に分離す る気液分離器 (51 )とを備え、上記冷却動作中には上記インジ クション通路 (43)を 流れる中間圧のガス冷媒が、上記加熱動作中には上記気液分離器 (51 )力 流出し た中間圧のガス冷媒がそれぞれ上記圧縮機 (31,34)へ供給されるように冷媒の流通 経路が変更可能となって 、るものである。 [0009] The first invention includes a compressor (31, 34), a heat source side heat exchanger (36), and a use side heat exchanger (71). The refrigeration cycle is connected and the heat source side heat exchange (36) becomes a condenser and the use side heat exchanger (71) becomes an evaporator, and the use side heat exchanger (71 ) Is a refrigeration apparatus including a refrigerant circuit (20) that can be switched between a heating operation in which the heat source side heat exchanger (36) is an evaporator. The refrigerant circuit (20) includes an instruction passage (43) for supplying intermediate pressure refrigerant obtained by decompressing a part of the high-pressure liquid refrigerant to the compressor (31, 34), and the indication passage (43 ) And an intermediate pressure heat exchanger (40) for evaporating the intermediate pressure refrigerant flowing toward the compressor (31,34) by heat exchange with the high pressure liquid refrigerant and evaporating, and an intermediate pressure obtained by decompressing the high pressure liquid refrigerant. A gas-liquid separator (51) for separating the refrigerant into a liquid refrigerant and a gas refrigerant, and the intermediate-pressure gas refrigerant flowing through the injection passage (43) during the cooling operation is in the heating operation. The flow path of the refrigerant can be changed so that the intermediate-pressure gas refrigerant flowing out of the gas-liquid separator (51) is supplied to the compressor (31, 34), respectively.
[0010] 第 1の発明では、冷却動作中と加熱動作中とで圧縮機 (31,34)に対する中間圧冷 媒の供給元が変更される。冷却動作中には、中間圧熱交換器 (40)で蒸発した中間 圧冷媒が圧縮機 (31,34)へ供給される。その際、中間圧熱交換器 (40)では、高圧液 冷媒が中間圧冷媒との熱交換によって冷却されるため、高圧液冷媒の過冷却度が 大きくなる。このため、中間圧熱交 (40)から利用側熱交 (71)へ至るまでに 高圧冷媒の圧力がある程度低下しても、利用側熱交 (71)へ供給される高圧冷 媒は液状態に保たれ、あるいは利用側熱交 (71)へ供給される高圧冷媒のうち 途中で蒸発する量が少なくなる。一方、加熱動作中には、中間圧冷媒が気液分離器 (51)へ導入され、気液分離器 (51)内のガス冷媒が圧縮機 (31,34)へ供給される。こ のため、利用側熱交 (71)から気液分離器 (51)へ至るまでに冷媒の圧力がある 程度低下して冷媒の一部が蒸発しても、気液分離器 (51)ではガス冷媒と液冷媒が 分離されるため、圧縮機 (31,34)へは中間圧のガス冷媒が確実に供給される。  [0010] In the first invention, the supply source of the intermediate pressure coolant to the compressor (31, 34) is changed between the cooling operation and the heating operation. During the cooling operation, the intermediate pressure refrigerant evaporated in the intermediate pressure heat exchanger (40) is supplied to the compressor (31, 34). At that time, in the intermediate pressure heat exchanger (40), the high-pressure liquid refrigerant is cooled by heat exchange with the intermediate-pressure refrigerant, so that the degree of supercooling of the high-pressure liquid refrigerant increases. For this reason, even if the pressure of the high-pressure refrigerant drops to some extent from the intermediate pressure heat exchange (40) to the use-side heat exchange (71), the high-pressure refrigerant supplied to the use-side heat exchange (71) is in the liquid state. The amount of high-pressure refrigerant that is kept at the temperature or supplied to the use-side heat exchanger (71) is reduced in the middle. On the other hand, during the heating operation, the intermediate pressure refrigerant is introduced into the gas-liquid separator (51), and the gas refrigerant in the gas-liquid separator (51) is supplied to the compressor (31, 34). For this reason, even if a part of the refrigerant evaporates due to a decrease in the refrigerant pressure from the use side heat exchanger (71) to the gas-liquid separator (51), the gas-liquid separator (51) Since the gas refrigerant and the liquid refrigerant are separated, the intermediate-pressure gas refrigerant is reliably supplied to the compressor (31, 34).
[0011] 第 2の発明は、上記第 1の発明において、上記冷媒回路 (20)は、上記圧縮機 (31,3 4)及び上記熱源側熱交換器 (36)が設けられた熱源側回路 (30)と上記利用側熱交 (71)が設けられた利用側回路 (70)とを連絡配管 (21,22)で接続することによつ て構成され、上記インジェクション通路 (43)、上記中間圧熱交換器 (40)、及び上記 気液分離器 (51)が上記熱源側回路 (30)に設けられるものである。 [0011] In a second aspect based on the first aspect, the refrigerant circuit (20) is a heat source side circuit provided with the compressor (31, 34) and the heat source side heat exchanger (36). (30) and the use side circuit (70) provided with the use side heat exchanger (71) are connected by connecting pipes (21, 22), and the injection passage (43), Intermediate pressure heat exchanger (40) and above A gas-liquid separator (51) is provided in the heat source side circuit (30).
[0012] 第 2の発明では、冷媒回路 (20)が熱源側回路 (30)と利用側回路 (70)と連絡配管( 21,22)とによって構成される。冷却動作中には、中間圧熱交 (40)を通過する際 に冷却された高圧液冷媒が連絡配管 (21)を通って利用側熱交換器 (71)へ流入する 。このため、連絡配管 (21,22)が長い場合や、利用側回路 (70)が熱源側回路 (30)よ りも高い位置に設置される場合であっても、利用側熱交 (71)へ供給される高圧 冷媒は液状態に保たれ、あるいは利用側熱交 (71)へ供給される高圧冷媒のう ち途中で蒸発する量が少なくなる。一方、加熱動作中には、利用側熱交 (71)で 凝縮した冷媒が連絡配管 (21)を通って気液分離器 (51)へ流入し、気液分離器 (51) 内のガス冷媒が圧縮機 (31,34)へ供給される。このため、連絡配管 (21,22)が長い場 合や、熱源側回路 (30)が利用側回路 (70)よりも高 、位置に設置される場合であって も、圧縮機 (31,34)へガス冷媒が確実に供給される。 [0012] In the second invention, the refrigerant circuit (20) includes the heat source side circuit (30), the use side circuit (70), and the connection pipes (21, 22). During the cooling operation, the high-pressure liquid refrigerant cooled when passing through the intermediate pressure heat exchanger (40) flows into the use side heat exchanger (71) through the connecting pipe (21). For this reason, even if the connecting pipe (21, 22) is long or the user circuit (70) is installed at a higher position than the heat source circuit (30), the user heat exchanger (71) The high-pressure refrigerant supplied to is kept in a liquid state, or the amount of high-pressure refrigerant supplied to the use-side heat exchanger (71) is reduced in the middle. On the other hand, during the heating operation, the refrigerant condensed in the use side heat exchange (71) flows into the gas-liquid separator (51) through the communication pipe (21), and the gas refrigerant in the gas-liquid separator (51) Is supplied to the compressor (31, 34). Therefore, even if the connecting pipe (21, 22) is long or the heat source side circuit (30) is installed at a higher position than the user side circuit (70), the compressor (31, 34) ) Is reliably supplied to the gas refrigerant.
[0013] 第 3の発明は、上記第 1の発明において、上記気液分離器 (51)は、上記冷媒回路 [0013] In a third aspect based on the first aspect, the gas-liquid separator (51) is the refrigerant circuit.
(20)のうち上記冷却動作中に上記熱源側熱交換器 (36)の下流側となり且つ上記カロ 熱動作中に上記利用側熱交 (71)の下流側となる位置に配置された容器状部材 (65)によって構成される一方、上記中間圧熱交換器 (40)は、上記容器状部材 (65) の内部に収容されて上記インジェクション通路 (43)を流れる中間圧冷媒を上記容器 状部材 (65)内の液冷媒と熱交換させる熱交換用部材 (66)によって構成されるもので ある。  (20) of the container shape disposed at a position downstream of the heat source side heat exchanger (36) during the cooling operation and downstream of the use side heat exchanger (71) during the caloric heat operation. On the other hand, the intermediate pressure heat exchanger (40) is constituted by a member (65), and the intermediate pressure refrigerant accommodated in the container-like member (65) and flows through the injection passage (43) is supplied to the container-like member. The heat exchange member (66) is configured to exchange heat with the liquid refrigerant in (65).
[0014] 第 3の発明では、気液分離器 (51)が容器状部材 (65)によって構成され、中間圧熱 交換器 (40)が熱交換用部材 (66)によって構成される。冷却動作において、熱源側 熱交換器 (36)で凝縮した冷媒 (高圧液冷媒)が容器状部材 (65)へ流入する。また、 高圧液冷媒の一部は、インジェクション通路 (43)へ流入し、中間圧にまで減圧されて 熱交換部材へ流入する。熱交換部材へ流入した中間圧冷媒は、容器状部材 (65)内 の高圧液冷媒と熱交換して蒸発し、その後に圧縮機 (31,34)へ供給される。中間圧 冷媒との熱交換によって冷却された容器状部材 (65)内の高圧液冷媒は、利用側熱 交 (71)へ向けて容器状部材 (65)力 送り出される。一方、加熱動作において、 容器状部材 (65)には、利用側熱交換器 (71)で凝縮した冷媒が中間圧にまで減圧さ れてから流入する。容器状部材 (65)内では、流入した中間圧冷媒が液冷媒とガス冷 媒に分離される。熱源側熱交換器 (36)からは、液冷媒が熱源側熱交換器 (36)へ向 けて送り出され、ガス冷媒カインジェクション通路 (43)を通じて圧縮機 (31,34)へ供給 される。 In the third invention, the gas-liquid separator (51) is constituted by the container-like member (65), and the intermediate pressure heat exchanger (40) is constituted by the heat exchange member (66). In the cooling operation, the refrigerant (high-pressure liquid refrigerant) condensed in the heat source side heat exchanger (36) flows into the container-like member (65). A part of the high-pressure liquid refrigerant flows into the injection passage (43), is reduced to an intermediate pressure, and flows into the heat exchange member. The intermediate-pressure refrigerant flowing into the heat exchange member evaporates by exchanging heat with the high-pressure liquid refrigerant in the container-like member (65), and then supplied to the compressor (31, 34). The high-pressure liquid refrigerant in the container-like member (65) cooled by heat exchange with the intermediate-pressure refrigerant is sent to the container-like member (65) toward the use side heat exchanger (71). On the other hand, in the heating operation, the refrigerant condensed in the use side heat exchanger (71) is reduced to an intermediate pressure in the container-like member (65). It flows in after it is. In the container-like member (65), the flowing intermediate pressure refrigerant is separated into a liquid refrigerant and a gas refrigerant. From the heat source side heat exchanger (36), the liquid refrigerant is sent out toward the heat source side heat exchanger (36), and is supplied to the compressors (31, 34) through the gas refrigerant injection passage (43).
[0015] 第 4の発明は、上記第 1の発明において、上記冷媒回路 (20)のうち上記冷却動作 中に上記中間圧熱交 (40)の下流側となる位置には、高圧液冷媒の一部を低圧 にまで減圧して得られた低圧冷媒と熱交換させることによって高圧液冷媒を冷却する 過冷却熱交 (60)力 S設けられるものである。  [0015] In a fourth aspect based on the first aspect, the refrigerant circuit (20) has a high-pressure liquid refrigerant at a position downstream of the intermediate pressure heat exchanger (40) during the cooling operation. A supercooling heat exchange (60) force S is provided to cool the high-pressure liquid refrigerant by exchanging heat with a low-pressure refrigerant obtained by reducing a part of the pressure to a low pressure.
[0016] 第 4の発明では、過冷却熱交換器 (60)が冷媒回路 (20)に設けられる。冷却動作中 において、過冷却熱交換器 (60)では、中間圧熱交換器 (40)を通過した高圧液冷媒 力 高圧液冷媒の一部を減圧して得られた低圧冷媒と熱交換することによって冷却さ れる。つまり、過冷却熱交換器 (60)では、高圧液冷媒の過冷却度が大きくなる。過冷 却熱交換器 (60)で冷却された高圧液冷媒は、利用側熱交換器 (71)へ送られる。  [0016] In the fourth invention, the supercooling heat exchanger (60) is provided in the refrigerant circuit (20). During the cooling operation, the supercooling heat exchanger (60) exchanges heat with the low-pressure refrigerant obtained by decompressing a part of the high-pressure liquid refrigerant that has passed through the intermediate-pressure heat exchanger (40). Cooled by. That is, in the supercooling heat exchanger (60), the degree of supercooling of the high-pressure liquid refrigerant is increased. The high-pressure liquid refrigerant cooled by the subcooling heat exchanger (60) is sent to the use side heat exchanger (71).
[0017] 第 5の発明は、上記第 1の発明において、上記冷媒回路 (20)では、単段圧縮冷凍 サイクルが行われる一方、上記圧縮機 (31)は、圧縮途中の圧縮室へ中間圧のガス 冷媒が流入するように構成されるものである。  [0017] In a fifth aspect based on the first aspect, the refrigerant circuit (20) performs a single-stage compression refrigeration cycle, while the compressor (31) transfers intermediate pressure to a compression chamber in the middle of compression. The gas refrigerant is configured to flow in.
[0018] 第 5の発明では、圧縮機 (31)における圧縮途中の圧縮室へ中間圧のガス冷媒が 導入される。圧縮機 (31)は、利用側熱交換器 (71)と熱源側熱交換器 (36)のうち蒸 発器となって!/ヽる方で蒸発した低圧冷媒と、中間圧熱交換器 (40)又は気液分離器 ( 51)から供給された中間圧冷媒とを吸入して圧縮する。  [0018] In the fifth invention, the intermediate-pressure gas refrigerant is introduced into the compression chamber in the middle of compression in the compressor (31). The compressor (31) is a evaporator of the use side heat exchanger (71) and the heat source side heat exchanger (36)! 40) or the intermediate pressure refrigerant supplied from the gas-liquid separator (51) is sucked and compressed.
[0019] 第 6の発明は、上記第 1の発明において、上記冷媒回路 (20)では、低段側の圧縮 機 (33)と高段側の圧縮機 (34)が直列に接続されて二段圧縮冷凍サイクルが行われ る一方、上記冷媒回路 (20)は、上記高段側の圧縮機 (34)の吸入側へ中間圧のガス 冷媒を供給するように構成されるものである。  [0019] In a sixth aspect of the present invention based on the first aspect, the refrigerant circuit (20) includes a low-stage compressor (33) and a high-stage compressor (34) connected in series. While the stage compression refrigeration cycle is performed, the refrigerant circuit (20) is configured to supply an intermediate pressure gas refrigerant to the suction side of the high stage compressor (34).
[0020] 第 6の発明では、高段側の圧縮機 (34)の吸入側に中間圧のガス冷媒が導入される 。高段側の圧縮機 (34)は、低段側の圧縮機 (33)で圧縮された冷媒と、中間圧熱交 換器 (40)や気液分離器 (51)から送られてきたガス冷媒とを吸入する。  [0020] In the sixth invention, the intermediate-pressure gas refrigerant is introduced to the suction side of the high-stage compressor (34). The high-stage compressor (34) includes the refrigerant compressed by the low-stage compressor (33) and the gas sent from the intermediate pressure heat exchanger (40) and gas-liquid separator (51). Inhale refrigerant.
発明の効果 [0021] 本発明では、冷却動作中には中間圧熱交換器 (40)で蒸発させた中間圧冷媒を圧 縮機 (31,34)へ供給し、中間圧熱交換器 (40)で冷却された高圧液冷媒を利用側熱 交 (71)へ送るようにしている。このため、利用側熱交 (71)が中間圧熱交換 器 (40)から遠く離れた位置に配置されて!、たり、利用側熱交換器 (71)が中間圧熱交 翻 (40)よりも高 、位置に配置されて 、て、中間圧熱交翻 (40)から利用側熱交換 器 (71)へ至るまでに高圧冷媒の圧力が力なり低下するような設置状況であっても、 利用側熱交 (71)へ供給される高圧冷媒を液状態に保つことができ、あるいは利 用側熱交 (71)へ供給される高圧冷媒のうち途中で蒸発する量を削減することが できる。その結果、冷却動作中に利用側熱交換器 (71)へ供給される液冷媒の量を 確保することができ、利用側熱交 (71)の冷却能力を充分に発揮させることがで きる。 The invention's effect In the present invention, during the cooling operation, the intermediate pressure refrigerant evaporated by the intermediate pressure heat exchanger (40) is supplied to the compressor (31, 34) and cooled by the intermediate pressure heat exchanger (40). The high-pressure liquid refrigerant is sent to the use side heat exchanger (71). For this reason, the use side heat exchanger (71) is located far away from the intermediate pressure heat exchanger (40) !, or the use side heat exchanger (71) is from the intermediate pressure heat exchanger (40). Even in an installation situation where the pressure of the high-pressure refrigerant is reduced from the intermediate pressure heat exchange (40) to the use side heat exchanger (71), The high-pressure refrigerant supplied to the user-side heat exchanger (71) can be kept in a liquid state, or the amount of high-pressure refrigerant supplied to the user-side heat exchanger (71) can be reduced in the middle. . As a result, the amount of liquid refrigerant supplied to the use side heat exchanger (71) during the cooling operation can be ensured, and the cooling capacity of the use side heat exchange (71) can be fully exhibited.
[0022] また、本発明では、加熱動作中には気液分離器 (51)力も圧縮機 (31,34)へ中間圧 のガス冷媒を供給している。このため、気液分離器 (51)が利用側熱交 (71)から 遠く離れた位置に配置されていたり、気液分離器 (51)が利用側熱交翻 (71)よりも 高!、位置に配置されて 、て、利用側熱交 (71)から気液分離器 (51)へ至るまで に冷媒の圧力がかなり低下するような設置状況であっても、中間圧のガス冷媒を圧 縮機 (31,34)へ確実に供給することができる。その結果、中間圧の液冷媒が圧縮機( 31,34)へ流入してしまって圧縮機 (31,34)の破損を招くといった事態を回避できる。  [0022] Further, in the present invention, during the heating operation, the gas-liquid separator (51) force is also supplying the intermediate-pressure gas refrigerant to the compressor (31, 34). For this reason, the gas-liquid separator (51) is located far away from the user-side heat exchanger (71), or the gas-liquid separator (51) is higher than the user-side heat exchanger (71)! Even in an installation situation where the refrigerant pressure drops considerably from the use side heat exchanger (71) to the gas-liquid separator (51), the intermediate-pressure gas refrigerant is pressurized. It can be reliably supplied to the compressor (31, 34). As a result, it is possible to avoid a situation in which the intermediate-pressure liquid refrigerant flows into the compressor (31, 34) and causes damage to the compressor (31, 34).
[0023] このように、本発明によれば、冷凍装置(10)がどの様な状態で設置されている場合 であっても、冷却動作中と加熱動作中の両方において冷凍装置(10)を円滑に運転 することが可能となる。  [0023] Thus, according to the present invention, the refrigeration apparatus (10) can be used during both the cooling operation and the heating operation regardless of the state in which the refrigeration apparatus (10) is installed. Smooth operation is possible.
[0024] 上記第 2の発明では、冷媒回路 (20)を熱源側回路 (30)と利用側回路 (70)と連絡 配管 (21,22)とによって構成している。この場合には、中間圧熱交翻 (40)や気液分 離器 (51)が設けられた熱源側回路 (30)と、利用側熱交 (71)が設けられた利用 側回路 (70)とが遠く離れた位置に配置されたり、両者が異なる高さに設置されること が多い。従って、この発明のような構成の冷媒回路 (20)を備える冷凍装置(10)にお いて、上述したように冷却動作中と加熱動作中で圧縮機 (31,34)に対する中間圧冷 媒の供給元を変更すると、冷凍装置 (10)の設置状況に関する制約を緩和することが できる。 In the second invention, the refrigerant circuit (20) is constituted by the heat source side circuit (30), the use side circuit (70), and the communication pipes (21, 22). In this case, the heat source side circuit (30) provided with the intermediate pressure heat exchange (40) and the gas-liquid separator (51), and the use side circuit (70) provided with the use side heat exchange (71). ) Are often placed at distant locations, or they are installed at different heights. Therefore, in the refrigeration apparatus (10) including the refrigerant circuit (20) configured as in the present invention, as described above, the intermediate pressure refrigerant for the compressor (31, 34) is being cooled and heated. Changing the supplier may ease restrictions on the installation status of the refrigeration system (10). it can.
[0025] 上記第 3の発明では、中間圧熱交換器 (40)を構成する熱交換用部材 (66)が気液 分離器 (51)を構成する容器状部材 (65)の内部に収容されている。つまり、内部に熱 交換用部材 (66)が収容された容器状部材 (65)を冷媒回路 (20)に接続すれば、気 液分離器 (51)と中間圧熱交 (40)の両方を冷媒回路 (20)に設置したことになる。 従って、この発明によれば、気液分離器 (51)と中間圧熱交 (40)をそれぞれ個別 に形成する場合に比べ、冷媒回路 (20)の構成を簡素化することができる。  [0025] In the third invention, the heat exchange member (66) constituting the intermediate pressure heat exchanger (40) is accommodated inside the container-like member (65) constituting the gas-liquid separator (51). ing. In other words, if the container-like member (65) containing the heat exchange member (66) is connected to the refrigerant circuit (20), both the gas-liquid separator (51) and the intermediate pressure heat exchanger (40) It is installed in the refrigerant circuit (20). Therefore, according to the present invention, the configuration of the refrigerant circuit (20) can be simplified as compared with the case where the gas-liquid separator (51) and the intermediate pressure heat exchanger (40) are individually formed.
[0026] 上記第 4の発明では、冷媒回路 (20)に過冷却熱交換器 (60)を設け、冷却動作中 に利用側熱交換器 (71)へ送られる高圧液冷媒の過冷却度を増大させて!/、る。この ため、中間圧熱交換器 (40)から利用側熱交換器 (71)へ至るまでに高圧冷媒の圧力 力 Sある程度低下するような設置状況であっても、利用側熱交 (71)へ供給される 高圧冷媒を一層確実に液状態に保つことができ、あるいは利用側熱交 (71)へ 供給される高圧冷媒のうち途中で蒸発する量を一層削減することができる。  [0026] In the fourth aspect, the supercooling heat exchanger (60) is provided in the refrigerant circuit (20), and the degree of supercooling of the high-pressure liquid refrigerant sent to the use side heat exchanger (71) during the cooling operation is determined. Increase it! For this reason, even if the installation condition is such that the pressure force S of the high-pressure refrigerant decreases from the intermediate pressure heat exchanger (40) to the user-side heat exchanger (71), the user-side heat exchanger (71) The supplied high-pressure refrigerant can be more reliably maintained in a liquid state, or the amount of the high-pressure refrigerant supplied to the use side heat exchanger (71) can be further reduced.
図面の簡単な説明  Brief Description of Drawings
[0027] [図 1]実施形態 1における空調機の冷媒回路の構成を示す配管系統図であって、 (A) は冷房運転時の状態を示しており、(B)は暖房運転時の状態を示して 、る。  FIG. 1 is a piping system diagram showing a configuration of a refrigerant circuit of an air conditioner in Embodiment 1, wherein (A) shows a state during cooling operation, and (B) shows a state during heating operation. Showing
[図 2]実施形態 2における空調機の冷媒回路の構成を示す配管系統図であって、(A) は冷房運転時の状態を示しており、(B)は暖房運転時の状態を示して 、る。  FIG. 2 is a piping system diagram showing a configuration of a refrigerant circuit of an air conditioner in Embodiment 2, in which (A) shows a state during cooling operation, and (B) shows a state during heating operation. RU
[図 3]その他の実施形態の第 1変形例における空調機の冷媒回路の構成を示す配 管系統図であって、(A)は冷房運転時の状態を示しており、(B)は暖房運転時の状態 を示している。  FIG. 3 is a distribution system diagram showing a configuration of a refrigerant circuit of an air conditioner in a first modification of the other embodiment, where (A) shows a state during cooling operation, and (B) shows heating. The state during operation is shown.
[図 4]その他の実施形態の第 2変形例における空調機の冷媒回路の構成を示す配 管系統図であって、(A)は冷房運転時の状態を示しており、(B)は暖房運転時の状態 を示している。  FIG. 4 is a piping system diagram showing a configuration of a refrigerant circuit of an air conditioner in a second modification of the other embodiment, where (A) shows a state during cooling operation, and (B) shows heating. The state during operation is shown.
符号の説明  Explanation of symbols
[0028] 20 冷媒回路 [0028] 20 Refrigerant circuit
21 液側連絡配管  21 Liquid side connection piping
22 ガス側連絡配管 30 室外回路 (熱源側回路) 22 Gas side communication piping 30 Outdoor circuit (heat source side circuit)
31 圧縮機  31 Compressor
33 低段側圧縮機  33 Low stage compressor
34 高段側圧縮機  34 High stage compressor
36 室外熱交換器 (熱源側熱交換器)  36 Outdoor heat exchanger (heat source side heat exchanger)
40 中間圧熱交  40 Intermediate pressure heat exchange
43 インジェクション配管(インジェクション通路)  43 Injection piping (injection passage)
51 気液分離器  51 Gas-liquid separator
65 容器状部材  65 Container
66 熱交換用部材  66 Heat exchange components
70 室内回路 (利用側回路)  70 Indoor circuit (use side circuit)
71 室内熱交翻 (利用側熱交翻)  71 Indoor heat exchange (user side heat exchange)
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0029] 以下、本発明の実施形態を図面に基づいて詳細に説明する。  Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
[0030] 《発明の実施形態 1》  [Embodiment 1 of the Invention]
本発明の実施形態 1について説明する。本実施形態は、本発明に係る冷凍装置に よって構成された空調機(10)である。  Embodiment 1 of the present invention will be described. The present embodiment is an air conditioner (10) configured by a refrigeration apparatus according to the present invention.
[0031] 図 1に示すように、本実施形態の空調機(10)は、 1台の室外ユニット(11)と、 2台の 室内ユニット(12)とを備えている。なお、室内ユニット(12)の台数は、単なる例示であ る。室外ユニット(11)には、熱源側回路 (30)である室外回路 (30)が収容されている。 各室内ユニット(12)には、利用側回路である室内回路(70)が収容されている。  As shown in FIG. 1, the air conditioner (10) of the present embodiment includes one outdoor unit (11) and two indoor units (12). The number of indoor units (12) is merely an example. The outdoor unit (11) accommodates an outdoor circuit (30) that is a heat source side circuit (30). Each indoor unit (12) accommodates an indoor circuit (70) which is a use side circuit.
[0032] 空調機(10)では、室外回路 (30)と室内回路 (70)を液側連絡配管 (21)及びガス側 連絡配管 (22)で接続することによって冷媒回路 (20)が形成されて!、る。この冷媒回 路 (20)では、 1つの室外回路 (30)に対して 2つの室内回路(70)が互いに並列に接 続されている。  [0032] In the air conditioner (10), the refrigerant circuit (20) is formed by connecting the outdoor circuit (30) and the indoor circuit (70) by the liquid side connecting pipe (21) and the gas side connecting pipe (22). Te! In this refrigerant circuit (20), two indoor circuits (70) are connected in parallel to one outdoor circuit (30).
[0033] 各室内回路 (70)には、利用側熱交換器である室内熱交換器 (71)と、室内膨張弁( 72)とが 1つずつ設けられている。室内熱交 (71)は、室内空気と冷媒を熱交換さ せる空気熱交^^である。各室内回路 (70)において、室内熱交 (71)と室内膨 張弁 (72)は互いに直列に接続されている。各室内回路 (70)では、室内膨張弁 (72) 側の端部に液側連絡配管 (21)が接続され、室内熱交換器 (71)側の端部にガス側連 絡配管 (22)が接続されて!ヽる。 [0033] Each indoor circuit (70) is provided with one indoor heat exchanger (71) as a use side heat exchanger and one indoor expansion valve (72). Indoor heat exchange (71) is air heat exchange that exchanges heat between indoor air and refrigerant. In each indoor circuit (70), indoor heat exchange (71) and indoor expansion The tension valves (72) are connected in series with each other. In each indoor circuit (70), the liquid side communication pipe (21) is connected to the end on the indoor expansion valve (72) side, and the gas side communication pipe (22) is connected to the end on the indoor heat exchanger (71) side. Is connected!
[0034] 室外回路 (30)には、圧縮機 (31)と、四方切換弁 (35)と、熱源側熱交換器である室 外熱交 (36)と、室外膨張弁 (37)と、アキュームレータ (38)とが設けられて 、る。 また、この室外熱交換器 (36)には、中間圧熱交換器 (40)と、気液分離器 (51)と、バ ィパス配管 (50)と、インジェクション配管 (43)と、中間圧ガス配管 (52)とが設けられて いる。 [0034] The outdoor circuit (30) includes a compressor (31), a four-way switching valve (35), an outdoor heat exchanger (36) as a heat source side heat exchanger, an outdoor expansion valve (37), An accumulator (38) is provided. The outdoor heat exchanger (36) includes an intermediate pressure heat exchanger (40), a gas-liquid separator (51), a bypass pipe (50), an injection pipe (43), and an intermediate pressure gas. Piping (52) is provided.
[0035] 圧縮機 (31)は、容積型の圧縮機 (31)であって、圧縮室へ吸入した冷媒を圧縮する ように構成されている。圧縮機 (31)には、圧縮途中の圧縮室へ中間圧の冷媒を導入 するための中間圧ポート (32)が設けられている。この圧縮機 (31)は、その吐出側が 四方切換弁 (35)の第 1のポートに、その吸入側がアキュームレータ (38)を介して四 方切換弁 (35)の第 2のポートにそれぞれ接続されている。なお、本実施形態では室 外回路 (30)に圧縮機 (31)を 1台だけ設けているが、複数台の圧縮機を並列に設け てもよい。  [0035] The compressor (31) is a positive displacement compressor (31) and is configured to compress the refrigerant sucked into the compression chamber. The compressor (31) is provided with an intermediate pressure port (32) for introducing an intermediate pressure refrigerant into the compression chamber in the middle of compression. The compressor (31) has its discharge side connected to the first port of the four-way switching valve (35) and its suction side connected to the second port of the four-way switching valve (35) via the accumulator (38). ing. In the present embodiment, only one compressor (31) is provided in the outdoor circuit (30), but a plurality of compressors may be provided in parallel.
[0036] 室外熱交換器 (36)は、室外空気と冷媒を熱交換させる空気熱交換器である。中間 圧熱交換器 (40)は、二重管式熱交換器やプレート式熱交換器等の冷媒同士を熱交 換させる熱交 である。この中間圧熱交 (40)には、第 1流路 (41)と第 2流路( 42)とが形成されている。室外熱交換器 (36)は、その一端が四方切換弁 (35)の第 3 のポートに、他端が室外膨張弁 (37)を介して中間圧熱交換器 (40)の第 1流路 (41) の一端にそれぞれ接続されて 、る。中間圧熱交換器 (40)の第 1流路 (41)の他端は、 第 1逆止弁 (45)を介して液側連絡配管 (21)に接続されて!、る。第 1逆止弁 (45)は、 中間圧熱交 (40)力 液側連絡配管 (21)へ向力う冷媒の流通だけを許容するよ うに配置されている。  [0036] The outdoor heat exchanger (36) is an air heat exchanger for exchanging heat between outdoor air and the refrigerant. The intermediate pressure heat exchanger (40) is a heat exchanger that exchanges heat between refrigerants such as a double-pipe heat exchanger and a plate heat exchanger. In this intermediate pressure heat exchange (40), a first channel (41) and a second channel (42) are formed. The outdoor heat exchanger (36) has one end connected to the third port of the four-way switching valve (35) and the other end connected to the first flow path of the intermediate pressure heat exchanger (40) via the outdoor expansion valve (37). (41) is connected to one end of each. The other end of the first flow path (41) of the intermediate pressure heat exchanger (40) is connected to the liquid side communication pipe (21) via the first check valve (45). The first check valve (45) is arranged so as to allow only the flow of the refrigerant directed to the intermediate pressure heat exchange (40) force liquid side communication pipe (21).
[0037] インジェクション配管 (43)は、インジェクション通路を形成して 、る。このインジェクシ ヨン配管 (43)は、その始端が中間圧熱交換器 (40)と第 1逆止弁 (45)の間に、終端が 圧縮機 (31)の中間圧ポート (32)にそれぞれ接続されている。中間圧熱交換器 (40) の第 2流路 (42)は、このインジヱクシヨン配管 (43)の途中に配置されて 、る。インジヱ クシヨン配管 (43)では、その始端と中間圧熱交 (40)の第 2流路 (42)との間にィ ンジェクシヨン用膨張弁 (44)が設けられて 、る。 [0037] The injection pipe (43) forms an injection passage. The injection pipe (43) has its start end connected between the intermediate pressure heat exchanger (40) and the first check valve (45), and its end connected to the intermediate pressure port (32) of the compressor (31). Has been. The second flow path (42) of the intermediate pressure heat exchanger (40) is disposed in the middle of the instruction pipe (43). Inji In the case pipe (43), an injection expansion valve (44) is provided between the starting end of the case pipe (43) and the second flow path (42) of the intermediate pressure heat exchange (40).
[0038] 気液分離器 (51)は、縦長の筒状に形成された密閉容器である。この気液分離器 (5 1)は、その下端部がバイパス配管(50)の途中に配置されて 、る。ノ ィパス配管(50) は、その始端が第 1逆止弁 (45)と液側連絡配管 (21)の間に、終端が中間圧熱交換 器 (40)の第 1流路 (41)と室外膨張弁 (37)の間にそれぞれ接続されている。また、バ ィパス配管 (50)では、その終端と気液分離器 (51)の間に第 2逆止弁 (55)が設けられ ている。第 2逆止弁 (55)は、気液分離器 (51)力も流出する方向の冷媒の流通だけを 許容するように配置されて 、る。  [0038] The gas-liquid separator (51) is a sealed container formed in a vertically long cylindrical shape. The gas-liquid separator (51) has a lower end arranged in the middle of the bypass pipe (50). The no-pass pipe (50) has a leading end between the first check valve (45) and the liquid side connecting pipe (21) and a terminal end connected to the first flow path (41) of the intermediate pressure heat exchanger (40). Each is connected between the outdoor expansion valves (37). In the bypass pipe (50), a second check valve (55) is provided between the terminal end of the bypass pipe (50) and the gas-liquid separator (51). The second check valve (55) is arranged so as to allow only the flow of the refrigerant in the direction in which the gas-liquid separator (51) force also flows out.
[0039] 気液分離器 (51)の頂部には、中間圧ガス配管 (52)の一端が接続されている。中間 圧ガス配管 (52)の他端は、インジェクション配管 (43)における中間圧熱交 (40) の第 2流路 (42)と圧縮機 (31)との間に接続されて!、る。この中間圧ガス配管 (52)の 途中には、電磁弁 (53)が設けられている。  [0039] One end of an intermediate pressure gas pipe (52) is connected to the top of the gas-liquid separator (51). The other end of the intermediate pressure gas pipe (52) is connected between the second flow path (42) of the intermediate pressure heat exchange (40) in the injection pipe (43) and the compressor (31). A solenoid valve (53) is provided in the middle of the intermediate pressure gas pipe (52).
[0040] 上述したように、四方切換弁 (35)は、その第 1のポートが圧縮機 (31)の吐出側に、 第 2のポートがアキュームレータ(38)に、第 3のポートが室外熱交翻 (36)にそれぞ れ接続されている。また、四方切換弁 (35)の第 4のポートは、ガス側連絡配管(22)に 接続されている。この四方切換弁 (35)は、第 1のポートと第 3のポートが連通して第 2 のポートと第 4のポートが連通する第 1状態(図 1(A)に示す状態)と、第 1のポートと第 4のポートが連通して第 2のポートと第 3のポートが連通する第 2状態(図 1(B)に示す 状態)とに切り換わる。  [0040] As described above, the four-way selector valve (35) has a first port on the discharge side of the compressor (31), a second port on the accumulator (38), and a third port on the outdoor heat. Each is connected to the reversal (36). The fourth port of the four-way selector valve (35) is connected to the gas side communication pipe (22). This four-way switching valve (35) has a first state (the state shown in FIG. 1 (A)) in which the first port and the third port communicate with each other, and the second port and the fourth port communicate with each other. Switch to the 2nd state (state shown in Fig. 1 (B)) where the 1 port communicates with the 4th port and the 2nd port communicates with the 3rd port.
[0041] 運転動作  [0041] Driving operation
上記空調機(10)では、冷房運転と暖房運転が切り換え可能となって!/、る。  The air conditioner (10) can be switched between cooling operation and heating operation!
[0042] 〈冷房運転〉  [0042] <Cooling operation>
冷房運転時の運転動作について、図 1(A)を参照しながら説明する。冷房運転時の 冷媒回路 (20)では、室外熱交換器 (36)が凝縮器となって室内熱交換器 (71)が蒸発 器となるように冷媒が循環する。つまり、冷媒回路 (20)では、冷却動作が行われる。  The operation during cooling operation will be described with reference to FIG. 1 (A). In the refrigerant circuit (20) during the cooling operation, the refrigerant circulates so that the outdoor heat exchanger (36) serves as a condenser and the indoor heat exchanger (71) serves as an evaporator. That is, the cooling operation is performed in the refrigerant circuit (20).
[0043] 具体的に、冷房運転時には、四方切換弁 (35)が第 1状態に設定される。また、室 外膨張弁 (37)が全開状態に設定され、インジェクション用膨張弁 (44)と室内膨張弁 ( 72)の開度がそれぞれ適宜調節されると共に、電磁弁 (53)が閉じられる。 [0043] Specifically, during the cooling operation, the four-way selector valve (35) is set to the first state. In addition, the outdoor expansion valve (37) is set to the fully open state, and the injection expansion valve (44) and the indoor expansion valve ( The opening degree of 72) is adjusted as appropriate, and the solenoid valve (53) is closed.
[0044] 圧縮機 (31)カゝら吐出された高圧ガス冷媒は、室外熱交 (36)で室外空気へ放 熱して凝縮する。室外熱交換器 (36)から出た高圧液冷媒は、中間圧熱交換器 (40) の第 1流路 (41)を通過する間に第 2流路 (42)の冷媒に対して放熱する。中間圧熱交 (40)の第 1流路 (41)力も流出した高圧液冷媒は、その一部力 Sインジェクション配 管 (43)へ流入し、残りが液側連絡配管 (21)を通って各室内回路 (70)へ分配される。  [0044] The high-pressure gas refrigerant discharged from the compressor (31) releases heat to the outdoor air and condenses in the outdoor heat exchanger (36). The high-pressure liquid refrigerant from the outdoor heat exchanger (36) dissipates heat to the refrigerant in the second flow path (42) while passing through the first flow path (41) of the intermediate pressure heat exchanger (40). . The high-pressure liquid refrigerant that also flowed out of the first flow path (41) of the intermediate pressure heat exchanger (40) flows into the partial force S-injection pipe (43), and the rest passes through the liquid side connecting pipe (21). Distributed to each indoor circuit (70).
[0045] 各室内回路 (70)では、流入した高圧液冷媒が室内膨張弁 (72)を通過する際に減 圧され、その後に室内熱交 (71)で室内空気力 吸熱して蒸発する。室内熱交 換器 (71)で蒸発した冷媒は、ガス側連絡配管 (22)を通って室外回路 (30)へ戻り、ァ キュームレータ (38)を通って圧縮機 (31)へ吸入される。  [0045] In each indoor circuit (70), the high-pressure liquid refrigerant that has flowed in is reduced in pressure when passing through the indoor expansion valve (72), and is then evaporated by absorbing the indoor aerodynamic force in the indoor heat exchanger (71). The refrigerant evaporated in the indoor heat exchanger (71) returns to the outdoor circuit (30) through the gas side connecting pipe (22), and is sucked into the compressor (31) through the accumulator (38). .
[0046] 一方、インジェクション配管 (43)へ流入した高圧液冷媒は、インジェクション用膨張 弁 (44)を通過する際に中間圧にまで減圧されて気液二相状態の中間圧冷媒となる。 この中間圧冷媒は、中間圧熱交換器 (40)の第 2流路 (42)を流れる間に第 1流路 (41 )の冷媒から吸熱して蒸発する。中間圧熱交換器 (40)の第 2流路 (42)から出た中間 圧ガス冷媒は、圧縮機 (31)の中間圧ポート (32)へ送られる。  On the other hand, the high-pressure liquid refrigerant that has flowed into the injection pipe (43) is reduced to an intermediate pressure when passing through the injection expansion valve (44) to become a gas-liquid two-phase intermediate pressure refrigerant. This intermediate pressure refrigerant absorbs heat from the refrigerant in the first flow path (41) and evaporates while flowing through the second flow path (42) of the intermediate pressure heat exchanger (40). The intermediate pressure gas refrigerant exiting from the second flow path (42) of the intermediate pressure heat exchanger (40) is sent to the intermediate pressure port (32) of the compressor (31).
[0047] 圧縮機 (31)は、アキュームレータ (38)を通じて低圧冷媒を圧縮室へ吸入して圧縮 する。また、圧縮途中の圧縮室へは、中間圧ポート (32)から流入した中間圧ガス冷 媒が導入される。そして、圧縮機 (31)は、圧縮室内の冷媒を高圧にまで圧縮して吐 出する。  [0047] The compressor (31) sucks the low-pressure refrigerant into the compression chamber through the accumulator (38) and compresses it. In addition, the intermediate pressure gas refrigerant flowing from the intermediate pressure port (32) is introduced into the compression chamber in the middle of compression. The compressor (31) compresses the refrigerant in the compression chamber to a high pressure and discharges it.
[0048] このように、冷房運転中には、中間圧熱交換器 (40)を通過する際に冷却されて過 冷却度の大きくなつた高圧液冷媒が、液側連絡配管 (21)を通じて室内回路 (70)へ 送られる。このため、液側連絡配管 (21)の長さがある程度以上であったり、室内回路 (70)が室外回路 (30)よりもある程度以上高 、位置に配置されて 、たりして、室外回 路 (30)から液側連絡配管 (21)へ送り込まれる液冷媒が飽和状態だとすると室内回 路(70)に達するまでに高圧液冷媒の一部が蒸発してしまうような場合であっても、室 内回路 (70)へ流入する高圧冷媒が液単相状態に保たれる。また、室内回路 (70)に 達するまでに高圧液冷媒の一部が蒸発したとしても、室外回路 (30)から液側連絡配 管 (21)へ送り込まれる液冷媒が飽和状態である場合に比べれば、蒸発する高圧液 冷媒の量は減少する。 [0048] Thus, during the cooling operation, the high-pressure liquid refrigerant that has been cooled when passing through the intermediate pressure heat exchanger (40) and has a high degree of supercooling passes through the liquid side communication pipe (21) to the room. Sent to circuit (70). For this reason, the length of the liquid side connecting pipe (21) is more than a certain length, or the indoor circuit (70) is placed at a position that is a little higher than the outdoor circuit (30). If the liquid refrigerant sent from (30) to the liquid side connection pipe (21) is saturated, even if a part of the high-pressure liquid refrigerant evaporates before reaching the indoor circuit (70), The high-pressure refrigerant flowing into the inner circuit (70) is maintained in the liquid single phase state. Even if a part of the high-pressure liquid refrigerant evaporates before reaching the indoor circuit (70), the liquid refrigerant sent from the outdoor circuit (30) to the liquid side connection pipe (21) is more saturated. Evaporating high pressure liquid The amount of refrigerant decreases.
[0049] 〈暖房運転〉  [0049] <Heating operation>
暖房運転時の運転動作について、図 1(B)を参照しながら説明する。暖房運転時の 冷媒回路 (20)では、室内熱交換器 (71)が凝縮器となって室外熱交換器 (36)が蒸発 器となるように冷媒が循環する。つまり、冷媒回路 (20)では、加熱動作が行われる。  The operation during heating operation will be described with reference to FIG. 1 (B). In the refrigerant circuit (20) during the heating operation, the refrigerant circulates so that the indoor heat exchanger (71) serves as a condenser and the outdoor heat exchanger (36) serves as an evaporator. That is, a heating operation is performed in the refrigerant circuit (20).
[0050] 具体的に、暖房運転時には、四方切換弁 (35)が第 2状態に設定される。また、室 外膨張弁 (37)と室内膨張弁 (72)の開度がそれぞれ適宜調節され、インジヱクシヨン 用膨張弁 (44)が全閉状態に設定されると共に、電磁弁 (53)が開かれる。  [0050] Specifically, during the heating operation, the four-way selector valve (35) is set to the second state. In addition, the opening degree of the outdoor expansion valve (37) and the indoor expansion valve (72) is adjusted as appropriate, the indication expansion valve (44) is set to the fully closed state, and the electromagnetic valve (53) is opened. .
[0051] 圧縮機 (31)力 吐出された高圧ガス冷媒は、ガス側連絡配管 (22)を通って各室内 回路 (70)へ分配される。各室内回路 (70)の室内熱交換器 (71)では、高圧ガス冷媒 が室内空気へ放熱して凝縮する。各室内回路 (70)において、室内熱交換器 (71)か ら流出した冷媒は、室内膨張弁 (72)を通過する際に減圧されて気液二相状態の中 間圧冷媒となる。各室内回路 (70)から流出した中間圧冷媒は、液側連絡配管 (21)を 通って室外回路 (30)へ戻り、バイパス配管 (50)を通って気液分離器 (51)へ流入す る。  [0051] Compressor (31) Force The discharged high-pressure gas refrigerant is distributed to each indoor circuit (70) through the gas side connecting pipe (22). In the indoor heat exchanger (71) of each indoor circuit (70), the high-pressure gas refrigerant dissipates heat to the indoor air and condenses. In each indoor circuit (70), the refrigerant flowing out of the indoor heat exchanger (71) is reduced in pressure when passing through the indoor expansion valve (72) to become a gas-liquid two-phase intermediate pressure refrigerant. The intermediate pressure refrigerant flowing out of each indoor circuit (70) returns to the outdoor circuit (30) through the liquid side connecting pipe (21) and flows into the gas-liquid separator (51) through the bypass pipe (50). The
[0052] 気液分離器 (51)へ流入した中間圧冷媒は、そのうちの液冷媒が気液分離器 (51) の下部に溜まり、ガス冷媒が気液分離器 (51)の上部に溜まる。気液分離器 (51)内の 中間圧の液冷媒は、再びバイパス配管 (50)を流れ、室外膨張弁 (37)を通過する際 に減圧されてから室外熱交換器 (36)へ導入される。室外熱交換器 (36)では、冷媒 が室外空気力 吸熱して蒸発する。室外熱交 (36)で蒸発した冷媒は、アキユー ムレータ (38)を通って圧縮機 (31)へ吸入される。一方、気液分離器 (51)内の中間圧 のガス冷媒は、中間圧ガス配管(52)とインジヱクシヨン配管 (43)を順に通って圧縮機 (31)の中間圧ポート (32)へ導入される。  [0052] Among the intermediate pressure refrigerant that has flowed into the gas-liquid separator (51), the liquid refrigerant is collected in the lower part of the gas-liquid separator (51), and the gas refrigerant is accumulated in the upper part of the gas-liquid separator (51). The intermediate-pressure liquid refrigerant in the gas-liquid separator (51) flows again through the bypass pipe (50) and is reduced in pressure when passing through the outdoor expansion valve (37) before being introduced into the outdoor heat exchanger (36). The In the outdoor heat exchanger (36), the refrigerant absorbs outdoor air force and evaporates. The refrigerant evaporated in the outdoor heat exchange (36) is sucked into the compressor (31) through the accumulator (38). On the other hand, the intermediate-pressure gas refrigerant in the gas-liquid separator (51) is introduced into the intermediate-pressure port (32) of the compressor (31) through the intermediate-pressure gas pipe (52) and the instruction pipe (43) in this order. The
[0053] 圧縮機 (31)は、アキュームレータ (38)を通じて低圧冷媒を圧縮室へ吸入して圧縮 する。また、圧縮途中の圧縮室へは、中間圧ポート (32)から流入した中間圧ガス冷 媒が導入される。そして、圧縮機 (31)は、圧縮室内の冷媒を高圧にまで圧縮して吐 出する。  [0053] The compressor (31) sucks and compresses the low-pressure refrigerant into the compression chamber through the accumulator (38). In addition, the intermediate pressure gas refrigerant flowing from the intermediate pressure port (32) is introduced into the compression chamber in the middle of compression. The compressor (31) compresses the refrigerant in the compression chamber to a high pressure and discharges it.
[0054] このように、暖房運転中には、液側連絡配管(21)を通って室外回路 (30)へ戻って きた冷媒を気液分離器 (51)へ導入して液冷媒とガス冷媒に分離し、気液分離器 (51 )内のガス冷媒だけを圧縮機 (31)の中間圧ポート (32)へ供給している。つまり、室外 回路 (30)へ流入する冷媒が気液二相状態であっても、圧縮機 (31)の中間圧ポート( 32)へは確実にガス冷媒だけが供給される。このため、液側連絡配管 (21)の長さがあ る程度以上であったり、室外回路 (30)が室内回路 (70)よりもある程度以上高!、位置 に配置されていたりして、室内回路(70)に達するまでに冷媒の一部が蒸発してしまう ような場合であっても、圧縮機 (31)の中間圧ポート (32)へ流入する冷媒がガス単相 状態に保たれる。 [0054] Thus, during the heating operation, the liquid side communication pipe (21) is returned to the outdoor circuit (30). The refrigerant is introduced into the gas-liquid separator (51) and separated into liquid refrigerant and gas refrigerant, and only the gas refrigerant in the gas-liquid separator (51) is supplied to the intermediate pressure port (32) of the compressor (31). is doing. That is, even when the refrigerant flowing into the outdoor circuit (30) is in a gas-liquid two-phase state, only the gas refrigerant is reliably supplied to the intermediate pressure port (32) of the compressor (31). For this reason, the liquid side communication pipe (21) is longer than the length, or the outdoor circuit (30) is higher than the indoor circuit (70) to some extent! Even if a part of the refrigerant evaporates before reaching the circuit (70), the refrigerant flowing into the intermediate pressure port (32) of the compressor (31) is kept in a gas single-phase state. .
[0055] 一実施形態 1の効果 [0055] Effect of Embodiment 1
上記空調機 (10)の冷房運転中には、中間圧熱交換器 (40)で蒸発させた中間圧冷 媒を圧縮機 (31)の中間圧ポート (32)へ供給し、中間圧熱交換器 (40)で冷却された 高圧液冷媒を室内回路 (70)へ供給している。このため、室外回路 (30)と室内回路 (7 0)を繋ぐ液側連絡配管 (21)が極めて長力つたり、室内回路 (70)が室外回路 (30)より も高い位置に配置されていて、液側連絡配管(21)を流れる間に冷媒の圧力が大幅 に低下するような設置状況であっても、室内回路 (70)へ供給される高圧冷媒を液状 態に保つことができ、あるいは室内回路 (70)へ供給される高圧冷媒のうち途中で蒸 発する量を削減することができる。その結果、冷房運転中に室内回路 (70)へ供給さ れる液冷媒の量を確保することができ、室内ユニット(12)の冷房能力を充分に発揮さ せることができる。  During the cooling operation of the air conditioner (10), the intermediate pressure refrigerant evaporated by the intermediate pressure heat exchanger (40) is supplied to the intermediate pressure port (32) of the compressor (31) for intermediate pressure heat exchange. The high-pressure liquid refrigerant cooled by the vessel (40) is supplied to the indoor circuit (70). For this reason, the liquid side connecting pipe (21) connecting the outdoor circuit (30) and the indoor circuit (70) is extremely long, or the indoor circuit (70) is arranged at a position higher than the outdoor circuit (30). Thus, the high-pressure refrigerant supplied to the indoor circuit (70) can be kept in a liquid state even in an installation situation in which the refrigerant pressure drops significantly while flowing through the liquid side connecting pipe (21). Alternatively, the amount of high-pressure refrigerant supplied to the indoor circuit (70) that evaporates in the middle can be reduced. As a result, the amount of liquid refrigerant supplied to the indoor circuit (70) during the cooling operation can be secured, and the cooling capacity of the indoor unit (12) can be fully exhibited.
[0056] ここで、上記空調機(10)のように、複数の室内回路(70)が互いに並列接続されて いる場合には、各室内ユニット(12)の冷房能力を適切に調節するため、各室内回路 (70)の室内膨張弁 (72)の開度を個別に制御して室内回路 (70)への冷媒の分配割 合を調節している。ところが、室内膨張弁 (72)を通過する冷媒が気液二相状態にな ると、室内膨張弁 (72)の流量特性が不安定となり、各室内回路 (70)に対する冷媒の 分配割合を適切に制御できなくなるおそれがある。これに対し、本実施形態の空調 機(10)では、冷房運転時に室内回路 (70)へ流入する冷媒を液状態に保持しやすく なる。従って、本実施形態によれば、複数の室内ユニット(12)を備える空調機(10)に おいて、各室内ユニット(12)の冷房能力を的確に制御することが可能となる。 [0057] また、上記空調機(10)の加熱動作中には、室内回路 (70)から室外回路 (30)へ戻 つてきた冷媒を気液分離器 (51)で液冷媒とガス冷媒に分離し、気液分離器 (51)から 圧縮機 (31)へ中間圧のガス冷媒だけを供給している。このため、室外回路 (30)と室 内回路 (70)を繋ぐ液側連絡配管 (21)が極めて長力つたり、室外回路 (30)が室内回 路 (70)よりも高 、位置に配置されて 、て、液側連絡配管 (21)を流れる間に冷媒の圧 力が大幅に低下するような設置状況であっても、圧縮機 (31)の中間圧ポート (32)へ はガス冷媒だけを確実に供給することができる。その結果、中間圧の液冷媒が圧縮 機 (31)へ流入してしまって圧縮機 (31)の破損を招くと!、つた事態を回避できる。 [0056] Here, when a plurality of indoor circuits (70) are connected in parallel to each other as in the air conditioner (10), in order to appropriately adjust the cooling capacity of each indoor unit (12), The refrigerant distribution ratio to the indoor circuit (70) is adjusted by individually controlling the opening of the indoor expansion valve (72) of each indoor circuit (70). However, if the refrigerant passing through the indoor expansion valve (72) enters a gas-liquid two-phase state, the flow characteristics of the indoor expansion valve (72) become unstable, and the distribution ratio of the refrigerant to each indoor circuit (70) becomes appropriate. May be out of control. In contrast, in the air conditioner (10) of the present embodiment, the refrigerant flowing into the indoor circuit (70) during the cooling operation can be easily held in a liquid state. Therefore, according to the present embodiment, in the air conditioner (10) including the plurality of indoor units (12), the cooling capacity of each indoor unit (12) can be accurately controlled. [0057] During the heating operation of the air conditioner (10), the refrigerant returned from the indoor circuit (70) to the outdoor circuit (30) is separated into liquid refrigerant and gas refrigerant by the gas-liquid separator (51). However, only the intermediate-pressure gas refrigerant is supplied from the gas-liquid separator (51) to the compressor (31). For this reason, the liquid side connecting pipe (21) connecting the outdoor circuit (30) and the indoor circuit (70) is extremely long, or the outdoor circuit (30) is positioned higher than the indoor circuit (70). Therefore, even in an installation situation where the pressure of the refrigerant greatly decreases while flowing through the liquid side connecting pipe (21), the gas refrigerant is connected to the intermediate pressure port (32) of the compressor (31). Can only be reliably supplied. As a result, if the intermediate-pressure liquid refrigerant flows into the compressor (31) and causes the compressor (31) to be damaged!
[0058] このように、本実施形態によれば、空調機(10)がどの様な状態で設置されている場 合であっても、冷房運転中と暖房運転中の両方にお!、て空調機( 10)を円滑に運転 することが可能となる。  [0058] Thus, according to this embodiment, the air conditioner (10) can be installed in both the cooling operation and the heating operation regardless of the state of installation! The air conditioner (10) can be operated smoothly.
[0059] 《発明の実施形態 2》  [Embodiment 2 of the Invention]
本発明の実施形態 2について説明する。本実施形態は、上記実施形態 1の空調機 (10)に過冷却熱交 (60)と過冷却用配管 (63)とを追加したものである。ここでは、 本実施形態の空調機(10)について、上記実施形態 1と異なる点を説明する。  Embodiment 2 of the present invention will be described. In this embodiment, a supercooling heat exchanger (60) and a supercooling pipe (63) are added to the air conditioner (10) of the first embodiment. Here, regarding the air conditioner (10) of the present embodiment, differences from the first embodiment will be described.
[0060] 図 2に示すように、過冷却熱交翻 (60)は、室外回路 (30)に設けられて 、る。過冷 却熱交換器 (60)は、二重管式熱交換器やプレート式熱交換器等の冷媒同士を熱交 換させる熱交 である。この過冷却熱交 (60)には、第 1流路 (61)と第 2流路( 62)とが形成されている。過冷却熱交換器 (60)の第 1流路 (61)は、室外回路 (30)に おける中間圧熱交 (40)と第 1逆止弁 (45)の間に設けられて 、る。  [0060] As shown in FIG. 2, the supercooling heat exchange (60) is provided in the outdoor circuit (30). The subcooling heat exchanger (60) is a heat exchange that exchanges heat between refrigerants such as a double-pipe heat exchanger and a plate heat exchanger. In this supercooling heat exchanger (60), a first channel (61) and a second channel (62) are formed. The first flow path (61) of the supercooling heat exchanger (60) is provided between the intermediate pressure heat exchanger (40) and the first check valve (45) in the outdoor circuit (30).
[0061] 過冷却用配管 (63)は、その始端が過冷却熱交翻 (60)と第 1逆止弁 (45)の間に 、終端がアキュームレータ(38)と四方切換弁 (35)の間にそれぞれ接続されている。 過冷却熱交換器 (60)の第 2流路 (62)は、この過冷却用配管 (63)の途中に配置され ている。過冷却用配管 (63)では、その始端と過冷却熱交 (60)の第 2流路 (62)と の間に過冷却用膨張弁 (64)が設けられて 、る。  [0061] The supercooling pipe (63) has a start end between the supercooling heat exchanger (60) and the first check valve (45), and a terminal end of the accumulator (38) and the four-way switching valve (35). Each connected in between. The second flow path (62) of the supercooling heat exchanger (60) is disposed in the middle of the supercooling pipe (63). In the supercooling pipe (63), a supercooling expansion valve (64) is provided between its starting end and the second flow path (62) of the supercooling heat exchanger (60).
[0062] 運転動作  [0062] Driving operation
〈冷房運転〉  <Cooling operation>
図 2(A)に示すように、冷房運転時の冷媒回路 (20)では、上記実施形態 1の場合と 概ね同様に冷媒が循環する。具体的には、中間圧熱交換器 (40)から流出した高圧 液冷媒が過冷却熱交換器 (60)を通過後に液側連絡配管 (21)へ流入する点と、高圧 液冷媒の一部が過冷却用配管 (63)へ流入する点だけが、上記実施形態 1における 冷媒の循環経路と異なって 、る。 As shown in FIG. 2 (A), in the refrigerant circuit (20) during the cooling operation, the case of the first embodiment and In general, the refrigerant circulates in the same manner. Specifically, the high-pressure liquid refrigerant that has flowed out of the intermediate-pressure heat exchanger (40) flows into the liquid-side connecting pipe (21) after passing through the supercooling heat exchanger (60), and part of the high-pressure liquid refrigerant. Only the point that the refrigerant flows into the supercooling pipe (63) is different from the refrigerant circulation path in the first embodiment.
[0063] 本実施形態の空調機(10)の冷房運転では、過冷却用膨張弁 (64)の開度が適宜 調節される。中間圧熱交換器 (40)の第 1流路 (41)から流出した高圧液冷媒は、過冷 却熱交換器 (60)の第 1流路 (61)を通過する間に第 2流路 (62)の冷媒に対して放熱 する。過冷却熱交翻 (60)の第 1流路 (61)力 流出した高圧液冷媒は、その一部が 過冷却用配管 (63)へ流入し、残りが液側連絡配管 (21)を通って各室内回路 (70)へ 分配される。つまり、室内回路 (70)へは、中間圧熱交 (40)と過冷却熱交 (6 0)の両方で冷却された高圧液冷媒が供給される。  [0063] In the cooling operation of the air conditioner (10) of the present embodiment, the opening degree of the supercooling expansion valve (64) is appropriately adjusted. The high-pressure liquid refrigerant flowing out from the first flow path (41) of the intermediate pressure heat exchanger (40) passes through the first flow path (61) of the subcooling heat exchanger (60) while passing through the second flow path. Dissipates heat to refrigerant (62). The first flow path (61) force of the supercooling heat exchange (60) part of the high-pressure liquid refrigerant that has flowed out flows into the supercooling pipe (63) and the rest passes through the liquid side connecting pipe (21). Distributed to each indoor circuit (70). That is, the indoor circuit (70) is supplied with the high-pressure liquid refrigerant cooled by both the intermediate pressure heat exchange (40) and the supercooling heat exchange (60).
[0064] 一方、過冷却用配管 (63)へ流入した高圧液冷媒は、過冷却用膨張弁 (64)を通過 する際に低圧にまで減圧されて気液二相状態の低圧冷媒となる。この低圧冷媒は、 過冷却熱交換器 (60)の第 2流路 (62)を流れる間に第 1流路 (61)の冷媒から吸熱し て蒸発する。過冷却熱交換器 (60)の第 2流路 (62)力 出た低圧ガス冷媒は、室内回 路 (70)からガス側連絡配管 (22)を通って室外回路 (30)へ戻ってきた低圧冷媒と共 に圧縮機 (31)へ吸入される。  [0064] On the other hand, the high-pressure liquid refrigerant that has flowed into the supercooling pipe (63) is reduced to a low pressure when passing through the supercooling expansion valve (64) to become a low-pressure refrigerant in a gas-liquid two-phase state. This low-pressure refrigerant absorbs heat from the refrigerant in the first channel (61) and evaporates while flowing through the second channel (62) of the supercooling heat exchanger (60). The low-pressure gas refrigerant generated in the second flow path (62) of the supercooling heat exchanger (60) returned from the indoor circuit (70) to the outdoor circuit (30) through the gas side connection pipe (22). It is sucked into the compressor (31) together with the low-pressure refrigerant.
[0065] 〈暖房運転〉  [0065] <Heating operation>
図 2(B)に示すように、暖房運転時の冷媒回路 (20)では、上記実施形態 1の場合と 全く同様に冷媒が循環する。具体的に、暖房運転時には、過冷却用膨張弁 (64)が 全閉される。そして、液側連絡配管 (21)から室外回路 (30)へ流入した中間圧冷媒は 、バイパス配管 (50)を通って気液分離器 (51)へ流入し、液冷媒とガス冷媒に分離さ れる。  As shown in FIG. 2 (B), in the refrigerant circuit (20) during the heating operation, the refrigerant circulates in exactly the same manner as in the first embodiment. Specifically, during the heating operation, the supercooling expansion valve (64) is fully closed. The intermediate pressure refrigerant flowing from the liquid side connection pipe (21) into the outdoor circuit (30) flows into the gas-liquid separator (51) through the bypass pipe (50) and is separated into the liquid refrigerant and the gas refrigerant. It is.
[0066] 一実施形態 2の効果  [0066] Effect of Embodiment 2
本実施形態では、室外回路 (30)に過冷却熱交換器 (60)を設け、冷房運転中に室 内回路 (70)へ送られる高圧液冷媒の過熱度を増大させている。このため、室外回路 (30)から室内回路 (70)へ至るまでに高圧冷媒の圧力が低下するような設置状況で あっても、室内回路 (70)へ供給される高圧冷媒を一層確実に液状態に保つことがで き、あるいは室内回路 (70)へ供給される高圧冷媒のうち途中で蒸発する量を一層削 減することができる。 In the present embodiment, the supercooling heat exchanger (60) is provided in the outdoor circuit (30) to increase the degree of superheat of the high-pressure liquid refrigerant sent to the indoor circuit (70) during the cooling operation. For this reason, even in an installation situation in which the pressure of the high-pressure refrigerant decreases from the outdoor circuit (30) to the indoor circuit (70), the high-pressure refrigerant supplied to the indoor circuit (70) is more reliably liquefied. In keeping the condition Or the amount of high-pressure refrigerant supplied to the indoor circuit (70) that evaporates in the middle can be further reduced.
[0067] 《その他の実施形態》  [0067] << Other Embodiments >>
上記実施形態にっ 、ては、以下のような構成としてもょ 、。  According to the above embodiment, the following configuration may be adopted.
[0068] 第 1変形例  [0068] First modification
上記の各実施形態では、気液分離器 (51)と中間圧熱交換器 (40)を一体化しても よい。ここでは、本変形例を上記実施形態 2の空調機(10)に適用したものについて、 図 3を参照しながら説明する。  In each of the above embodiments, the gas-liquid separator (51) and the intermediate pressure heat exchanger (40) may be integrated. Here, what applied this modification to the air conditioner (10) of the said Embodiment 2 is demonstrated, referring FIG.
[0069] 本変形例の気液分離器 (51)は、やや縦長の筒状に形成された容器状部材 (65)に よって構成されている。気液分離器 (51)を構成する容器状部材 (65)は、その底部が 室外回路 (30)のうち室外膨張弁 (37)と過冷却熱交換器 (60)の間の部分に接続され ている。なお、本変形例の室外回路 (30)では、バイパス配管 (50)と第 1逆止弁 (45) と第 2逆止弁 (55)とが省略されて ヽる。  [0069] The gas-liquid separator (51) of the present modification is configured by a container-like member (65) formed in a slightly vertically long cylindrical shape. The bottom of the container-like member (65) constituting the gas-liquid separator (51) is connected to a portion of the outdoor circuit (30) between the outdoor expansion valve (37) and the supercooling heat exchanger (60). ing. In the outdoor circuit (30) of this modification, the bypass pipe (50), the first check valve (45), and the second check valve (55) may be omitted.
[0070] 容器状部材 (65)の内部には、伝熱管をコイルばね状に成形した熱交換用部材 (66 )が設けられている。熱交換用部材 (66)は、容器状部材 (65)内に溜まった液冷媒に 浸力るように、容器状部材 (65)内の底部に配置されている。熱交換用部材 (66)は、 インジェクション配管 (43)におけるインジェクション用膨張弁 (44)の下流側に配置さ れている。本変形例では、この熱交換用部材 (66)が中間圧熱交換器 (40)を構成し ている。  [0070] Inside the container-like member (65), a heat exchange member (66) in which a heat transfer tube is formed in a coil spring shape is provided. The heat exchange member (66) is disposed at the bottom of the container-like member (65) so as to be immersed in the liquid refrigerant accumulated in the container-like member (65). The heat exchange member (66) is disposed on the downstream side of the injection expansion valve (44) in the injection pipe (43). In this modification, this heat exchange member (66) constitutes an intermediate pressure heat exchanger (40).
[0071] 冷房運転時の動作について説明する。冷房運転時には、上記実施形態 2の場合と 同様に、インジ クシヨン用膨張弁 (44)と過冷却用膨張弁 (64)の開度が適宜調節さ れ、電磁弁 (53)が閉じられる。  [0071] The operation during the cooling operation will be described. During the cooling operation, as in the case of the second embodiment, the opening degrees of the index expansion valve (44) and the supercooling expansion valve (64) are appropriately adjusted, and the electromagnetic valve (53) is closed.
[0072] 冷房運転時にお!ヽて、室外熱交換器 (36)で凝縮した冷媒は、全開状態の室外膨 張弁 (37)を通過して容器状部材 (65)へ流入する。容器状部材 (65)内の高圧液冷媒 は、熱交換用部材 (66)内を流れる中間圧冷媒へ放熱する。つまり、容器状部材 (65) 内では、高圧液冷媒が熱交換用部材 (66)内の中間圧冷媒との熱交換によって冷却 され、高圧液冷媒の過冷却度が大きくなる。容器状部材 (65)内で冷却された高圧液 冷媒は、その一部力インジェクション配管 (43)へ流入し、残りが過冷却熱交 (60) の第 1流路 (61)を通過する間に更に冷却される。 [0072] During the cooling operation, the refrigerant condensed in the outdoor heat exchanger (36) passes through the fully-expanded outdoor expansion valve (37) and flows into the container-like member (65). The high-pressure liquid refrigerant in the container-like member (65) radiates heat to the intermediate-pressure refrigerant flowing in the heat exchange member (66). That is, in the container-like member (65), the high-pressure liquid refrigerant is cooled by heat exchange with the intermediate-pressure refrigerant in the heat exchange member (66), and the degree of supercooling of the high-pressure liquid refrigerant increases. The high-pressure liquid refrigerant cooled in the container-like member (65) flows into the partial force injection pipe (43), and the rest is subcooled heat exchanger (60). It is further cooled while passing through the first flow path (61).
[0073] 過冷却熱交換器 (60)で冷却された高圧液冷媒は、液側連絡配管 (21)を通じて室 内回路 (70)へ供給される。一方、インジヱクシヨン配管 (43)へ流入した高圧液冷媒 は、インジェクション用膨張弁 (44)を通過する際に中間圧にまで減圧され、中間圧冷 媒となって熱交換用部材 (66)へ送られる。熱交換用部材 (66)へ流入した中間圧冷 媒は、容器状部材 (65)内の高圧液冷媒力 吸熱して蒸発し、その後に圧縮機 (31) の中間圧ポート (32)へ供給される。  [0073] The high-pressure liquid refrigerant cooled by the supercooling heat exchanger (60) is supplied to the indoor circuit (70) through the liquid-side connecting pipe (21). On the other hand, the high-pressure liquid refrigerant that has flowed into the injection pipe (43) is reduced to an intermediate pressure when passing through the injection expansion valve (44), and is sent to the heat exchange member (66) as an intermediate-pressure refrigerant. It is done. The intermediate pressure refrigerant flowing into the heat exchange member (66) absorbs the high-pressure liquid refrigerant in the container-like member (65) and evaporates, and then is supplied to the intermediate pressure port (32) of the compressor (31). Is done.
[0074] 暖房運転時の動作について説明する。暖房運転時には、上記実施形態 2の場合と 同様に、インジェクション用膨張弁 (44)と過冷却用膨張弁 (64)が全閉され、電磁弁( 53)が開かれる。  [0074] The operation during the heating operation will be described. During the heating operation, as in the case of the second embodiment, the injection expansion valve (44) and the supercooling expansion valve (64) are fully closed and the electromagnetic valve (53) is opened.
[0075] 暖房運転時において、室内熱交換器 (71)で凝縮した冷媒は、室内膨張弁 (72)を 通過する際に中間圧にまで減圧され、その後に液側連絡配管 (21)と過冷却熱交換 器 (60)の第 1流路 (61)とを順に通過して容器状部材 (65)へ流入する。容器状部材( 65)内では、気液二相状態の中間圧冷媒が液冷媒とガス冷媒に分離される。そして、 容器状部材 (65)内の上部に溜まった中間圧のガス冷媒は、インジヱクシヨン配管 (43 )を通じて圧縮機 (31)の中間圧ポート (32)へ供給される。また、容器状部材 (65)内 の下部に溜まった中間圧の液冷媒は、室外膨張弁 (37)を通過する際に低圧にまで 減圧されてから室外熱交 (36)へ導入される。  [0075] During the heating operation, the refrigerant condensed in the indoor heat exchanger (71) is reduced to an intermediate pressure when passing through the indoor expansion valve (72), and is then passed through the liquid side communication pipe (21). It passes through the first flow path (61) of the cooling heat exchanger (60) in order and flows into the container-like member (65). In the container-like member (65), the gas-liquid two-phase intermediate pressure refrigerant is separated into liquid refrigerant and gas refrigerant. The intermediate-pressure gas refrigerant accumulated in the upper part of the container-like member (65) is supplied to the intermediate-pressure port (32) of the compressor (31) through the instruction pipe (43). The intermediate-pressure liquid refrigerant accumulated in the lower part of the container-like member (65) is reduced to a low pressure when passing through the outdoor expansion valve (37) and then introduced into the outdoor heat exchanger (36).
[0076] 上述したように、本変形例では、中間圧熱交換器 (40)を構成する熱交換用部材 (6 6)が気液分離器 (51)を構成する容器状部材 (65)の内部に収容されている。つまり、 内部に熱交換用部材 (66)を収容する容器状部材 (65)を室外回路 (30)に接続すれ ば、気液分離器 (51)と中間圧熱交 (40)の両方を室外回路 (30)に設置したこと になる。従って、本変形例によれば、気液分離器 (51)と中間圧熱交 (40)をそれ ぞれ個別に形成する場合に比べ、室外回路 (30)の構成を簡素化することができる。  [0076] As described above, in this variation, the heat exchange member (66) constituting the intermediate pressure heat exchanger (40) is replaced by the container-like member (65) constituting the gas-liquid separator (51). Housed inside. In other words, if the container-like member (65) that houses the heat exchange member (66) is connected to the outdoor circuit (30), both the gas-liquid separator (51) and the intermediate pressure heat exchanger (40) are connected outdoors. It is installed in the circuit (30). Therefore, according to this modification, the configuration of the outdoor circuit (30) can be simplified as compared with the case where the gas-liquid separator (51) and the intermediate pressure heat exchanger (40) are individually formed. .
[0077] 第 2変形例  [0077] Second modification
上記の各実施形態では、室外回路 (30)に低段側圧縮機 (33)と高段側圧縮機 (34) を設置し、冷媒回路 (20)で二段圧縮冷凍サイクルを行うようにしてもよい。ここでは、 本変形例を上記実施形態 2の空調機(10)に適用したものについて、図 4を参照しな がら説明する。 In each of the above embodiments, the low-stage compressor (33) and the high-stage compressor (34) are installed in the outdoor circuit (30), and the refrigerant circuit (20) performs the two-stage compression refrigeration cycle. Also good. Here, FIG. 4 is referred to for the case where the present modification is applied to the air conditioner (10) of the second embodiment. I will explain.
[0078] 本変形例の室外回路 (30)では、低段側圧縮機 (33)と高段側圧縮機 (34)が直列に 接続される。具体的に、低段側圧縮機 (33)の吸入側は、アキュームレータ (38)を介 して四方切換弁 (35)の第 2のポートに接続されて 、る。低段側圧縮機 (33)の吐出側 は、高段側圧縮機 (34)の吸入側に接続されている。高段側圧縮機 (34)の吐出側は 、四方切換弁 (35)の第 1のポートに接続されている。また、本変形例において、イン ジェクシヨン配管 (43)の終端は、低段側圧縮機 (33)の吐出側と高段側圧縮機 (34) の吸入側を繋ぐ配管に接続されている。そして、インジェクション配管 (43)を流れる中 間圧のガス冷媒は、低段側圧縮機 (33)から吐出された中間圧冷媒と共に高段側圧 縮機 (34)へ吸入される。  [0078] In the outdoor circuit (30) of this modification, the low-stage compressor (33) and the high-stage compressor (34) are connected in series. Specifically, the suction side of the low-stage compressor (33) is connected to the second port of the four-way switching valve (35) via the accumulator (38). The discharge side of the low stage compressor (33) is connected to the suction side of the high stage compressor (34). The discharge side of the high stage compressor (34) is connected to the first port of the four-way selector valve (35). In this modification, the end of the injection pipe (43) is connected to a pipe connecting the discharge side of the low stage compressor (33) and the suction side of the high stage compressor (34). The intermediate-pressure gas refrigerant flowing through the injection pipe (43) is drawn into the high-stage compressor (34) together with the intermediate-pressure refrigerant discharged from the low-stage compressor (33).
[0079] なお、以上の実施形態は、本質的に好ましい例示であって、本発明、その適用物、 あるいはその用途の範囲を制限することを意図するものではない。  Note that the above embodiments are essentially preferable examples, and are not intended to limit the scope of the present invention, its application, or its use.
産業上の利用可能性  Industrial applicability
[0080] 以上説明したように、本発明は、中間圧のガス冷媒を圧縮機へ供給してガスインジ ェクシヨンを行う冷凍装置について有用である。 [0080] As described above, the present invention is useful for a refrigeration apparatus that performs gas injection by supplying an intermediate-pressure gas refrigerant to a compressor.

Claims

請求の範囲 The scope of the claims
[1] 圧縮機 (31,34)と熱源側熱交 (36)と利用側熱交 (71)とが接続されて冷凍 サイクルを行うと共に、上記熱源側熱交翻 (36)が凝縮器となって上記利用側熱交 換器 (71)が蒸発器となる冷却動作と、上記利用側熱交換器 (71)が凝縮器となって 上記熱源側熱交換器 (36)が蒸発器となる加熱動作とが切り換え可能な冷媒回路 (20 )を備える冷凍装置であって、  [1] The compressor (31, 34), the heat source side heat exchange (36) and the use side heat exchange (71) are connected to perform a refrigeration cycle, and the heat source side heat exchange (36) is connected to the condenser. The cooling operation in which the use side heat exchanger (71) becomes an evaporator, and the use side heat exchanger (71) becomes a condenser, and the heat source side heat exchanger (36) becomes an evaporator. A refrigeration apparatus comprising a refrigerant circuit (20) capable of switching between heating operations,
上記冷媒回路 (20)は、  The refrigerant circuit (20)
高圧液冷媒の一部を減圧して得られた中間圧冷媒を上記圧縮機 (31,34)へ供給 するインジェクション通路(43)と、上記インジェクション通路(43)を上記圧縮機 (31,34 )へ向けて流れる中間圧冷媒を高圧液冷媒と熱交換させて蒸発させる中間圧熱交換 器 (40)と、高圧液冷媒を減圧して得られた中間圧冷媒を液冷媒とガス冷媒に分離す る気液分離器 (51)とを備え、  An injection passage (43) for supplying intermediate pressure refrigerant obtained by decompressing a part of the high-pressure liquid refrigerant to the compressor (31, 34), and the injection passage (43) serve as the compressor (31, 34). An intermediate pressure heat exchanger (40) that evaporates the intermediate pressure refrigerant flowing toward the high pressure liquid refrigerant by heat exchange with the high pressure liquid refrigerant, and separates the intermediate pressure refrigerant obtained by depressurizing the high pressure liquid refrigerant into liquid refrigerant and gas refrigerant Gas-liquid separator (51)
上記冷却動作中には上記インジェクション通路 (43)を流れる中間圧のガス冷媒 力 上記加熱動作中には上記気液分離器 (51)力 流出した中間圧のガス冷媒がそ れぞれ上記圧縮機 (31,34)へ供給されるように冷媒の流通経路が変更可能となって いる  During the cooling operation, the intermediate-pressure gas refrigerant flowing through the injection passage (43). During the heating operation, the gas-liquid separator (51) force is discharged. Refrigerant distribution path can be changed to be supplied to (31,34)
ことを特徴とする冷凍装置。  A refrigeration apparatus characterized by that.
[2] 請求項 1において、 [2] In claim 1,
上記冷媒回路 (20)は、上記圧縮機 (31,34)及び上記熱源側熱交換器 (36)が設け られた熱源側回路 (30)と上記利用側熱交 (71)が設けられた利用側回路 (70)と を連絡配管 (21,22)で接続することによって構成され、  The refrigerant circuit (20) includes a heat source side circuit (30) provided with the compressor (31, 34) and the heat source side heat exchanger (36) and a use side provided with the use side heat exchanger (71). Side circuit (70) and connecting pipe (21, 22)
上記インジェクション通路 (43)、上記中間圧熱交換器 (40)、及び上記気液分離器 ( 51)が上記熱源側回路 (30)に設けられている  The injection passage (43), the intermediate pressure heat exchanger (40), and the gas-liquid separator (51) are provided in the heat source side circuit (30).
ことを特徴とする冷凍装置。  A refrigeration apparatus characterized by that.
[3] 請求項 1において、 [3] In claim 1,
上記気液分離器 (51)は、上記冷媒回路 (20)のうち上記冷却動作中に上記熱源側 熱交換器 (36)の下流側となり且つ上記加熱動作中に上記利用側熱交換器 (71)の 下流側となる位置に配置された容器状部材 (65)によって構成される一方、 上記中間圧熱交換器 (40)は、上記容器状部材 (65)の内部に収容されて上記イン ジ クシヨン通路 (43)を流れる中間圧冷媒を上記容器状部材 (65)内の液冷媒と熱交 換させる熱交換用部材 (66)によって構成されている The gas-liquid separator (51) is located downstream of the heat source side heat exchanger (36) during the cooling operation in the refrigerant circuit (20), and the use side heat exchanger (71) during the heating operation. While being constituted by a container-like member (65) arranged at a position downstream of The intermediate pressure heat exchanger (40) is accommodated in the container-like member (65) and the intermediate-pressure refrigerant flowing through the index passage (43) is converted into the liquid refrigerant in the container-like member (65). Consists of heat exchange member (66) for heat exchange
ことを特徴とする冷凍装置。  A refrigeration apparatus characterized by that.
[4] 請求項 1において、 [4] In claim 1,
上記冷媒回路 (20)のうち上記冷却動作中に上記中間圧熱交換器 (40)の下流側と なる位置には、高圧液冷媒の一部を低圧にまで減圧して得られた低圧冷媒と熱交換 させることによって高圧液冷媒を冷却する過冷却熱交 (60)が設けられている ことを特徴とする冷凍装置。  In the refrigerant circuit (20), at a position downstream of the intermediate pressure heat exchanger (40) during the cooling operation, there is a low-pressure refrigerant obtained by reducing a part of the high-pressure liquid refrigerant to a low pressure. A refrigeration apparatus comprising a supercooling heat exchanger (60) for cooling the high-pressure liquid refrigerant by heat exchange.
[5] 請求項 1において、 [5] In claim 1,
上記冷媒回路 (20)では、単段圧縮冷凍サイクルが行われる一方、  In the refrigerant circuit (20), a single-stage compression refrigeration cycle is performed,
上記圧縮機 (31)は、圧縮途中の圧縮室へ中間圧のガス冷媒が流入するように構 成されている  The compressor (31) is configured such that intermediate-pressure gas refrigerant flows into the compression chamber in the middle of compression.
ことを特徴とする冷凍装置。  A refrigeration apparatus characterized by that.
[6] 請求項 1において、 [6] In claim 1,
上記冷媒回路 (20)では、低段側の圧縮機 (33)と高段側の圧縮機 (34)が直列に接 続されて二段圧縮冷凍サイクルが行われる一方、  In the refrigerant circuit (20), a low-stage compressor (33) and a high-stage compressor (34) are connected in series to perform a two-stage compression refrigeration cycle.
上記冷媒回路 (20)は、上記高段側の圧縮機 (34)の吸入側へ中間圧のガス冷媒を 供給するように構成されて 、る  The refrigerant circuit (20) is configured to supply intermediate-pressure gas refrigerant to the suction side of the high-stage compressor (34).
ことを特徴とする冷凍装置。  A refrigeration apparatus characterized by that.
PCT/JP2007/054186 2006-03-06 2007-03-05 Refrigeration device WO2007102463A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US12/224,661 US20100229582A1 (en) 2006-03-06 2007-03-05 Refrigeration System
AU2007223486A AU2007223486B2 (en) 2006-03-06 2007-03-05 Refrigeration system
CN2007800052131A CN101384862B (en) 2006-03-06 2007-03-05 Refrigeration device
EP07737771.1A EP1992887A4 (en) 2006-03-06 2007-03-05 Refrigeration device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006-059482 2006-03-06
JP2006059482A JP4715561B2 (en) 2006-03-06 2006-03-06 Refrigeration equipment

Publications (1)

Publication Number Publication Date
WO2007102463A1 true WO2007102463A1 (en) 2007-09-13

Family

ID=38474891

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/054186 WO2007102463A1 (en) 2006-03-06 2007-03-05 Refrigeration device

Country Status (7)

Country Link
US (1) US20100229582A1 (en)
EP (1) EP1992887A4 (en)
JP (1) JP4715561B2 (en)
KR (1) KR100960196B1 (en)
CN (1) CN101384862B (en)
AU (1) AU2007223486B2 (en)
WO (1) WO2007102463A1 (en)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009150594A (en) * 2007-12-19 2009-07-09 Mitsubishi Heavy Ind Ltd Refrigeration device
JP4989511B2 (en) * 2008-02-22 2012-08-01 三菱電機株式会社 Air conditioner
JP5186949B2 (en) * 2008-02-28 2013-04-24 ダイキン工業株式会社 Refrigeration equipment
CN101922823A (en) * 2010-09-02 2010-12-22 广州德能热源设备有限公司 Secondary air injection high-efficiency ultralow temperature heat pump unit
CN103238034B (en) * 2011-01-31 2015-04-01 三菱电机株式会社 Air-conditioning device
DE102011014943A1 (en) * 2011-03-24 2012-09-27 Airbus Operations Gmbh Multifunctional refrigerant container and method for operating such a refrigerant container
DE202011102503U1 (en) * 2011-06-03 2012-09-04 Glen Dimplex Deutschland Gmbh heat pump system
CN103348197B (en) * 2011-07-05 2016-02-10 松下知识产权经营株式会社 Refrigerating circulatory device
JP5240332B2 (en) * 2011-09-01 2013-07-17 ダイキン工業株式会社 Refrigeration equipment
JP5447499B2 (en) * 2011-12-28 2014-03-19 ダイキン工業株式会社 Refrigeration equipment
US9689590B2 (en) * 2012-05-11 2017-06-27 Hill Phoenix, Inc. CO2 refrigeration system with integrated air conditioning module
JP5516712B2 (en) * 2012-05-28 2014-06-11 ダイキン工業株式会社 Refrigeration equipment
JP6029879B2 (en) * 2012-07-10 2016-11-24 シャープ株式会社 Heat pump type heating device
KR102103360B1 (en) * 2013-04-15 2020-05-29 엘지전자 주식회사 Air Conditioner and Controlling method for the same
US11118817B2 (en) * 2018-04-03 2021-09-14 Heatcraft Refrigeration Products Llc Cooling system
US10864993B2 (en) * 2018-10-22 2020-12-15 Hamilton Sunstrand Corporation Liquid vapor separator
KR102294499B1 (en) * 2019-12-31 2021-08-27 엘지전자 주식회사 Multistage compression type frozen apparatus

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01102656U (en) * 1987-12-25 1989-07-11
JPH06331223A (en) * 1993-05-21 1994-11-29 Mitsubishi Electric Corp Refrigerating cycle unit
JPH10220898A (en) * 1997-02-10 1998-08-21 Daikin Ind Ltd Air conditioner
JPH11118266A (en) * 1997-10-21 1999-04-30 Daikin Ind Ltd Refrigerant circuit
JP2003279169A (en) * 2002-03-25 2003-10-02 Mitsubishi Electric Corp Refrigerating plant
JP2006090563A (en) * 2004-09-21 2006-04-06 Hitachi Ltd Refrigerating device

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2510881A (en) * 1946-07-10 1950-06-06 Carrier Corp Refrigeration system
US3151469A (en) * 1961-10-02 1964-10-06 Lester K Quick Heat reclaiming system
JPS60262A (en) * 1983-06-17 1985-01-05 株式会社日立製作所 Refrigeration cycle
JPH01102656A (en) * 1987-10-15 1989-04-20 Fujitsu Ltd Estimation processing system for system performance
US4791790A (en) * 1987-12-24 1988-12-20 Yazaki Corporation Air-cooled absorption-type water cooling and heating apparatus
US5174123A (en) * 1991-08-23 1992-12-29 Thermo King Corporation Methods and apparatus for operating a refrigeration system
US5222378A (en) * 1991-12-09 1993-06-29 Chuan Pan C Filter/separator for a vehicle air conditioning system
US6321542B1 (en) * 1997-04-02 2001-11-27 Daikin Industries, Ltd. Method for cleaning pipe and pipe cleaning apparatus for refrigerating apparatus
JPH10318614A (en) * 1997-05-16 1998-12-04 Matsushita Electric Ind Co Ltd Air conditioner
US6892553B1 (en) * 2003-10-24 2005-05-17 Carrier Corporation Combined expansion device and four-way reversing valve in economized heat pumps
US7272948B2 (en) * 2004-09-16 2007-09-25 Carrier Corporation Heat pump with reheat and economizer functions
JP4797715B2 (en) * 2006-03-09 2011-10-19 ダイキン工業株式会社 Refrigeration equipment
JP4904908B2 (en) * 2006-04-28 2012-03-28 ダイキン工業株式会社 Air conditioner
CN101460789B (en) * 2006-06-01 2011-01-26 开利公司 Multi-stage compressor unit for a refrigeration system
DE102006031197B4 (en) * 2006-07-03 2012-09-27 Visteon Global Technologies Inc. Internal heat exchanger with accumulator

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01102656U (en) * 1987-12-25 1989-07-11
JPH06331223A (en) * 1993-05-21 1994-11-29 Mitsubishi Electric Corp Refrigerating cycle unit
JPH10220898A (en) * 1997-02-10 1998-08-21 Daikin Ind Ltd Air conditioner
JPH11118266A (en) * 1997-10-21 1999-04-30 Daikin Ind Ltd Refrigerant circuit
JP2003279169A (en) * 2002-03-25 2003-10-02 Mitsubishi Electric Corp Refrigerating plant
JP2006090563A (en) * 2004-09-21 2006-04-06 Hitachi Ltd Refrigerating device

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1992887A4 *

Also Published As

Publication number Publication date
KR100960196B1 (en) 2010-05-27
JP4715561B2 (en) 2011-07-06
AU2007223486A1 (en) 2007-09-13
AU2007223486B2 (en) 2010-03-04
KR20080087902A (en) 2008-10-01
CN101384862A (en) 2009-03-11
JP2007240026A (en) 2007-09-20
EP1992887A4 (en) 2015-12-16
EP1992887A1 (en) 2008-11-19
CN101384862B (en) 2010-08-18
US20100229582A1 (en) 2010-09-16

Similar Documents

Publication Publication Date Title
WO2007102463A1 (en) Refrigeration device
JP4906894B2 (en) Heat pump device and outdoor unit of heat pump device
KR100743344B1 (en) Air conditioner
WO2007105511A1 (en) Refrigerating apparatus
WO2011048662A1 (en) Heat pump device
JPWO2006003925A1 (en) Refrigeration apparatus and air conditioner
JP2007064510A (en) Air conditioner
JP5983401B2 (en) Air conditioner
US20110192181A1 (en) Refrigerant system
AU2003281797B2 (en) Refrigeration equipment
JP3575484B2 (en) Heat source unit of air conditioner and air conditioner
WO2013146415A1 (en) Heat pump-type heating device
KR20100096857A (en) Air conditioner
JP2008267653A (en) Refrigerating device
JP2001235245A (en) Freezer
JP5213986B2 (en) Refrigeration cycle equipment
KR20050017004A (en) Refrigeration equipment
JP2012002418A (en) Air conditioner and gas-liquid separator
EP3156743A1 (en) Air conditioning apparatus
JP2010078165A (en) Refrigeration and air conditioning device
WO2007040031A1 (en) Liquid gas heat exchanger for air conditioner
KR20040054282A (en) Air-conditioner
JP2007225271A (en) Refrigerating unit
KR100606274B1 (en) device of balancing press in a air conditioner having compressors
KR100606277B1 (en) heat-pump air-conditioner

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 200780005213.1

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2007223486

Country of ref document: AU

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2007737771

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2007737771

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2007223486

Country of ref document: AU

Date of ref document: 20070305

Kind code of ref document: A