JP7097762B2 - Heat pump, heat pump control method - Google Patents

Heat pump, heat pump control method Download PDF

Info

Publication number
JP7097762B2
JP7097762B2 JP2018123707A JP2018123707A JP7097762B2 JP 7097762 B2 JP7097762 B2 JP 7097762B2 JP 2018123707 A JP2018123707 A JP 2018123707A JP 2018123707 A JP2018123707 A JP 2018123707A JP 7097762 B2 JP7097762 B2 JP 7097762B2
Authority
JP
Japan
Prior art keywords
stage
valve
refrigerant
low
heat exchange
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018123707A
Other languages
Japanese (ja)
Other versions
JP2020003151A (en
Inventor
隆之 小林
政司 前野
洋平 葛山
浩 中山
康治 徳永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kansai Electric Power Co Inc
Chubu Electric Power Co Inc
Mitsubishi Heavy Industries Thermal Systems Ltd
Original Assignee
Kansai Electric Power Co Inc
Chubu Electric Power Co Inc
Mitsubishi Heavy Industries Thermal Systems Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kansai Electric Power Co Inc, Chubu Electric Power Co Inc, Mitsubishi Heavy Industries Thermal Systems Ltd filed Critical Kansai Electric Power Co Inc
Priority to JP2018123707A priority Critical patent/JP7097762B2/en
Priority to ES19182535T priority patent/ES2956745T3/en
Priority to EP19182535.5A priority patent/EP3587957B1/en
Publication of JP2020003151A publication Critical patent/JP2020003151A/en
Application granted granted Critical
Publication of JP7097762B2 publication Critical patent/JP7097762B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • F25B1/10Compression machines, plants or systems with non-reversible cycle with multi-stage compression
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/20Disposition of valves, e.g. of on-off valves or flow control valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/20Disposition of valves, e.g. of on-off valves or flow control valves
    • F25B41/24Arrangement of shut-off valves for disconnecting a part of the refrigerant cycle, e.g. an outdoor part
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B47/00Arrangements for preventing or removing deposits or corrosion, not provided for in another subclass
    • F25B47/02Defrosting cycles
    • F25B47/022Defrosting cycles hot gas defrosting
    • F25B47/025Defrosting cycles hot gas defrosting by reversing the cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B5/00Compression machines, plants or systems, with several evaporator circuits, e.g. for varying refrigerating capacity
    • F25B5/02Compression machines, plants or systems, with several evaporator circuits, e.g. for varying refrigerating capacity arranged in parallel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/027Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means
    • F25B2313/02791Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means using shut-off valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B25/00Machines, plants or systems, using a combination of modes of operation covered by two or more of the groups F25B1/00 - F25B23/00
    • F25B25/005Machines, plants or systems, using a combination of modes of operation covered by two or more of the groups F25B1/00 - F25B23/00 using primary and secondary systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2519On-off valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2116Temperatures of a condenser
    • F25B2700/21163Temperatures of a condenser of the refrigerant at the outlet of the condenser
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2117Temperatures of an evaporator
    • F25B2700/21175Temperatures of an evaporator of the refrigerant at the outlet of the evaporator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/002Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant
    • F25B9/008Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant the refrigerant being carbon dioxide

Description

本発明は、冷媒回路が設けられたヒートポンプ、及びヒートポンプの制御方法に関する。 The present invention relates to a heat pump provided with a refrigerant circuit and a control method for the heat pump.

従来から、冷媒が圧縮と膨張を繰り返して循環する冷媒回路が設けられた冷凍サイクル、即ちヒートポンプが知られている。このようなヒートポンプでは、例えば特許文献1に記載されているように冷媒を圧縮する低段側圧縮機と、低段側圧縮機から吐出された冷媒をさらに圧縮する高段側圧縮機とによって、冷媒を二段圧縮する場合がある。 Conventionally, there has been known a refrigeration cycle, that is, a heat pump, which is provided with a refrigerant circuit in which a refrigerant repeatedly compresses and expands to circulate. In such a heat pump, for example, as described in Patent Document 1, a low-stage compressor that compresses the refrigerant and a high-stage compressor that further compresses the refrigerant discharged from the low-stage compressor are used. The refrigerant may be compressed in two stages.

そしてこのようなヒートポンプには、低段側圧縮機の上流側で冷媒を蒸発させる蒸発器が設けられている。蒸発器は、例えば冷媒と、水や空気等の熱媒体との間で熱交換を行なう熱交換器である。 Such a heat pump is provided with an evaporator that evaporates the refrigerant on the upstream side of the low-stage compressor. The evaporator is a heat exchanger that exchanges heat between, for example, a refrigerant and a heat medium such as water or air.

特開2016-90102号公報Japanese Unexamined Patent Publication No. 2016-90102

ここで特許文献1のヒートポンプでは、蒸発器からの冷媒は低段側圧縮機へ導入され、その後に高段側圧縮機に導入されるようになっている。
しかしながら、蒸発器での熱交換量は必ずしも一定ではなく、環境要因等で変動する可能性がある。このため熱交換器から低段側圧縮機に導入される冷媒の温度は一定ではなく、低段側圧縮機に導入される冷媒が、低段側圧縮機での圧縮に最適な状態とはならず、ヒートポンプ全体として効率のよい運転を行うことができない場合がある。
Here, in the heat pump of Patent Document 1, the refrigerant from the evaporator is introduced into the low-stage compressor and then introduced into the high-stage compressor.
However, the amount of heat exchange in the evaporator is not always constant and may fluctuate due to environmental factors and the like. Therefore, the temperature of the refrigerant introduced from the heat exchanger into the low-stage compressor is not constant, and the refrigerant introduced into the low-stage compressor is not in the optimum state for compression in the low-stage compressor. Therefore, it may not be possible to operate the heat pump efficiently as a whole.

そこで本発明は、圧縮に最適な状態の冷媒を低段側圧縮機、及び高段側圧縮機に導入し、効率の良い運転が可能なヒートポンプ、及びヒートポンプの制御方法を提供する。 Therefore, the present invention provides a heat pump capable of efficiently operating by introducing a refrigerant in an optimum state for compression into a low-stage compressor and a high-stage compressor, and a heat pump control method.

本発明の第一の態様に係るヒートポンプは、冷媒を圧縮する低段側圧縮機と、前記低段側圧縮機からの冷媒をさらに圧縮する高段側圧縮機と、前記高段側圧縮機からの冷媒を凝縮させる凝縮器と、前記凝縮器からの冷媒を減圧させる膨張部と、前記膨張部に接続されて、前記膨張部からの冷媒を蒸発させる蒸発器と、前記高段側圧縮機からの冷媒を前記凝縮器へ導入させ、かつ、前記蒸発器からの冷媒を前記低段側圧縮機に導入させる第一経路と、前記高段側圧縮機からの冷媒を前記蒸発器に導入させ、かつ、前記凝縮器からの冷媒を前記低段側圧縮機に導入させる第二経路とを選択可能な四方切換弁と、前記四方切換弁を経由せずに前記蒸発器からの冷媒を前記低段側圧縮機へ導入可能とすることと、前記四方切換弁及び前記低段側圧縮機を経由せずに前記蒸発器からの冷媒を前記高段側圧縮機へ導入可能とすることとを選択的に行うことが可能なバイパス流路と、を備えている。 The heat pump according to the first aspect of the present invention is from a low-stage compressor that compresses the refrigerant, a high-stage compressor that further compresses the refrigerant from the low-stage compressor, and the high-stage compressor. From the condenser that condenses the refrigerant, the expansion section that decompresses the refrigerant from the condenser, the evaporator that is connected to the expansion section and evaporates the refrigerant from the expansion section, and the high-stage compressor. The first path for introducing the refrigerant of the above into the condenser and introducing the refrigerant from the evaporator into the low-stage compressor, and introducing the refrigerant from the high-stage compressor into the evaporator. In addition, a four-way switching valve that can select a second path for introducing the refrigerant from the condenser to the low-stage compressor and a low-stage refrigerant from the evaporator without passing through the four-way switching valve. It is possible to selectively introduce the refrigerant from the evaporator to the high-stage compressor without passing through the four-way switching valve and the low-stage compressor. It is equipped with a bypass flow path, which can be performed in .

蒸発器では熱交換量が変動して冷媒の温度が変化することで、低段側圧縮機及び高段側圧縮機に向かう冷媒の状態がこれら低段側圧縮機及び高段側圧縮機での圧縮に最適な状態ではなくなってしまう場合がある。ここで本態様では、バイパス流路を設けたことで蒸発器からの冷媒を低段側圧縮機へ導入するだけでなく、低段側圧縮機をバイパスして直接高段側圧縮機へ冷媒を導入させることができる。よって、蒸発器から流出した冷媒の状態に応じて、最適な圧縮が可能な圧縮機へ冷媒の経路を切換えることができる。
さらに四方切換弁を経由せずに蒸発器からの冷媒を低段側圧縮機、又は、直接に高段側圧縮機に導入可能となっている。よって四方切換弁を有して冷媒の流通経路を変更可能なヒートポンプであっても、容易に、蒸発器からの冷媒を最適な圧縮が可能な圧縮機へ導入可能とするように、バイパス流路の追設等が可能である。
In the evaporator, the amount of heat exchange fluctuates and the temperature of the refrigerant changes, so that the state of the refrigerant toward the low-stage compressor and the high-stage compressor changes in these low-stage compressors and high-stage compressors. It may not be optimal for compression. Here, in this embodiment, the provision of the bypass flow path not only introduces the refrigerant from the evaporator to the low-stage compressor, but also bypasses the low-stage compressor and directly feeds the refrigerant to the high-stage compressor. Can be introduced. Therefore, the path of the refrigerant can be switched to the compressor capable of optimum compression according to the state of the refrigerant flowing out from the evaporator.
Further, the refrigerant from the evaporator can be introduced into the low-stage compressor or directly into the high-stage compressor without going through the four-way switching valve. Therefore, even if the heat pump has a four-way switching valve and can change the flow path of the refrigerant, the bypass flow path can be easily introduced into the compressor capable of optimal compression of the refrigerant from the evaporator. It is possible to add a new one.

また上記のヒートポンプは、前記バイパス流路に設けられて該バイパス流路を開閉する開閉弁と、前記開閉弁及び前記四方切換弁を動作させる制御部と、をさらに備えていてもよい。 Further, the heat pump may further include an on-off valve provided in the bypass flow path to open and close the bypass flow path, and a control unit for operating the on-off valve and the four-way switching valve.

制御部を備えることで、蒸発器から流出した冷媒の状態に応じて、最適な圧縮が可能な圧縮機へ冷媒を導入するように、冷媒の経路を自動的に切換えることができる。 By providing the control unit, the path of the refrigerant can be automatically switched so as to introduce the refrigerant into the compressor capable of optimum compression according to the state of the refrigerant flowing out from the evaporator.

また上記のヒートポンプでは、前記蒸発器は、冷媒と第一熱媒体との間で熱交換を行なう第一熱交換器と、第一熱交換器と並列に設けられ、冷媒と第二熱媒体との間で熱交換を行なう第二熱交換器と、を有し、前記バイパス流路は、前記第一熱交換器と前記低段側圧縮機とを接続する第一熱交低段バイパス部と、前記低段側圧縮機を経由せずに、前記第一熱交換器と前記高段側圧縮機とを接続する第一熱交高段バイパス部と、前記第二熱交換器と前記低段側圧縮機とを接続する第二熱交低段バイパス部と前記低段側圧縮機を経由せずに、前記第二熱交換器と前記高段側圧縮機とを接続する第二熱交高段バイパス部と、を有し、前記開閉弁は、第一熱交低段バイパス部に設けられた第一弁と、前記第一熱交高段バイパス部に設けられた第二弁と、前記第二熱交低段バイパス部に設けられた第三弁と、前記第二熱交高段バイパス部に設けられた第四弁と、を有していてもよい。 Further, in the above heat pump, the evaporator is provided in parallel with the first heat exchanger for heat exchange between the refrigerant and the first heat medium, and the refrigerant and the second heat medium. It has a second heat exchanger that exchanges heat between the two, and the bypass flow path is a first heat exchange low-stage bypass portion that connects the first heat exchanger and the low-stage side compressor. , The first heat exchange high-stage bypass portion that connects the first heat exchanger and the high-stage side compressor without going through the low-stage side compressor, and the second heat exchanger and the low-stage side. Second heat exchange height that connects the second heat exchanger and the high-stage side compressor without going through the second heat exchange low-stage bypass section that connects the side compressor and the low-stage side compressor. The on-off valve has a stage bypass portion, and the on-off valve includes a first valve provided in the first heat exchange low stage bypass portion, a second valve provided in the first heat exchange high stage bypass portion, and the above. It may have a third valve provided in the second heat exchange low-stage bypass portion and a fourth valve provided in the second heat exchange high-stage bypass portion.

バイパス流路が、第一熱交換器及び第二熱交換器と各々の圧縮機との間を接続する各バイパス部を有しているため、第一熱交換器及び第二熱交換器から、いずれの圧縮機へも冷媒を直接に導入可能となる。従って、冷媒の様々な状態に応じてより最適な冷媒の圧縮が可能となる。 Since the bypass flow path has each bypass portion connecting between the first heat exchanger and the second heat exchanger and each compressor, from the first heat exchanger and the second heat exchanger, The refrigerant can be directly introduced into any compressor. Therefore, more optimum compression of the refrigerant becomes possible according to various states of the refrigerant.

また上記のヒートポンプは、前記第二熱交換器と前記四方切換弁との間を接続する流路を備え、前記第二熱交低段バイパス部及び前記第二熱交高段バイパス部は、前記流路から分岐するように設けられ、前記流路からの前記第二熱交低段バイパス部及び前記第二熱交高段バイパス部の分岐位置よりも、前記流路における前記四方切換弁側に設けられ、該四方切換弁から前記第二熱交換器へ向かう冷媒の流れのみを許容する逆止弁をさらに備えていてもよい。 Further, the heat pump is provided with a flow path connecting the second heat exchanger and the four-way switching valve, and the second heat exchange low-stage bypass portion and the second heat exchange high-stage bypass portion are described. It is provided so as to branch from the flow path, and is located on the four-way switching valve side in the flow path from the branch positions of the second heat exchange low-stage bypass section and the second heat exchange high-stage bypass section from the flow path. It may further be provided with a check valve that is provided and allows only the flow of refrigerant from the four-way switching valve to the second heat exchanger.

このような逆止弁によって、第二熱交換器から四方切換弁を経由せずにバイパス流路を経由して冷媒を各圧縮機へ導入する際に、第二熱交換器からの全ての冷媒がバイパス流路に流れるようにできる。従って、バイパス流路を十分に機能させることができる。 With such a check valve, when introducing the refrigerant from the second heat exchanger to each compressor via the bypass flow path without passing through the four-way switching valve, all the refrigerant from the second heat exchanger is introduced. Can flow into the bypass flow path. Therefore, the bypass flow path can be fully functioned.

また上記のヒートポンプでは、前記制御部は、前記四方切換弁に前記第二経路を選択させ、かつ前記第一弁、前記第二弁、前記第三弁、及び前記第四弁を動作させて前記バイパス流路を閉塞することで、前記逆止弁を介して前記高段側圧縮機からの冷媒を前記第二熱交換器に導入させてもよい。 Further, in the above heat pump, the control unit causes the four-way switching valve to select the second path, and operates the first valve, the second valve, the third valve, and the fourth valve. By closing the bypass flow path, the refrigerant from the high-stage compressor may be introduced into the second heat exchanger via the check valve.

このようなヒートポンプでは、高段側圧縮機からの冷媒を第二熱交換器に導入させることで、第二熱交換器に付着した霜を取り除くデフロスト運転が可能となる。さらに、このデフロスト運転では、凝縮器で冷媒に吸熱させて冷媒を蒸発させた後に、低段側圧縮機及び高段側圧縮機で冷媒を圧縮し、その後、高温高圧の冷媒を第二熱交換器に導入することができる。従って、第二熱交換器において効果的に短時間でのデフロストが可能となる。この結果、第二熱交換器を広い運転範囲で使用することが可能となる。 In such a heat pump, by introducing the refrigerant from the high-stage compressor into the second heat exchanger, the defrost operation for removing the frost adhering to the second heat exchanger becomes possible. Further, in this defrost operation, after the refrigerant is absorbed by the condenser to evaporate the refrigerant, the refrigerant is compressed by the low-stage compressor and the high-stage compressor, and then the high-temperature and high-pressure refrigerant is exchanged for the second heat. Can be introduced into the vessel. Therefore, the second heat exchanger can effectively defrost in a short time. As a result, the second heat exchanger can be used in a wide operating range.

また上記のヒートポンプでは、前記凝縮器と前記膨張部との間に弁装置をさらに備え、前記制御部は、 前記弁装置を動作させることで前記凝縮器から前記膨張部への冷媒の流れを停止させ、前記四方切換弁に前記第二経路を選択させ、前記第一弁を動作させることによって前記第一熱交低段バイパス部を開放し、かつ、前記第二弁、前記第三弁、及び前記第四弁を動作させて前記第一熱交高段バイパス部、前記第二熱交低段バイパス部、及び前記第二熱交高段バイパス部を閉塞してもよい。 Further, in the above heat pump, a valve device is further provided between the condenser and the expansion portion, and the control unit stops the flow of the refrigerant from the condenser to the expansion portion by operating the valve device. The four-way switching valve is made to select the second path, and the first valve is operated to open the first heat exchange low-stage bypass portion, and the second valve, the third valve, and the third valve are opened. The fourth valve may be operated to close the first heat exchange high-stage bypass portion, the second heat exchange low-stage bypass portion, and the second heat exchange high-stage bypass portion.

このようなヒートポンプでは、高段側圧縮機からの冷媒を第二熱交換器に導入させることで、第二熱交換器に付着した霜を取り除くデフロスト運転が可能となる。さらに、このデフロスト運転では、第一弁によって第一熱交低段バイパス部を開放することで、第一熱交換器で冷媒に吸熱させて冷媒を蒸発させた後に、低段側圧縮機及び高段側圧縮機で冷媒を圧縮し、その後、高温高圧の冷媒を第二熱交換器に導入することができる。従って、第二熱交換器において、効果的に短時間でのデフロストが可能となる。この結果、第二熱交換器を広い運転範囲で使用することが可能となる。 In such a heat pump, by introducing the refrigerant from the high-stage compressor into the second heat exchanger, the defrost operation for removing the frost adhering to the second heat exchanger becomes possible. Further, in this defrost operation, the first heat exchange low-stage bypass portion is opened by the first valve, so that the refrigerant absorbs heat in the first heat exchanger to evaporate the refrigerant, and then the low-stage compressor and the high stage side compressor are used. The refrigerant can be compressed by the stage compressor, and then the high temperature and high pressure refrigerant can be introduced into the second heat exchanger. Therefore, in the second heat exchanger, defrosting can be effectively performed in a short time. As a result, the second heat exchanger can be used in a wide operating range.

また上記のヒートポンプでは、前記膨張部は、前記凝縮器と前記第一熱交換器との間で該第一熱交換器の入口に設けられた第一膨張弁と、前記第一膨張弁と並列に配置され、前記凝縮器と前記第二熱交換器との間で該第二熱交換器の入口に設けられた第二膨張弁と、を有し、前記第二熱交換器と前記第二膨張弁との間と、前記低段側圧縮機の入口とを連通可能に設けられたホットガス回路と、前記ホットガス回路に設けられた第五弁と、前記ホットガス回路に設けられて前記第二熱交換器の入口から前記低段側圧縮機の入口へ向かう冷媒の流れのみを許容する逆止弁と、をさらに備え、前記制御部は、前記第二膨張弁を動作させて前記凝縮器から前記第二膨張弁への冷媒の流れを停止させ、かつ前記第五弁を動作させて前記ホットガス回路を開放することで、前記逆止弁を介して前記第二熱交換器からの冷媒を前記低段側圧縮機に導入させてもよい。 Further, in the above heat pump, the expansion portion is parallel to the first expansion valve provided at the inlet of the first heat exchanger between the condenser and the first heat exchanger and the first expansion valve. It has a second expansion valve provided at the inlet of the second heat exchanger between the condenser and the second heat exchanger, the second heat exchanger and the second. A hot gas circuit provided so as to be able to communicate between the expansion valve and the inlet of the lower stage side compressor, a fifth valve provided in the hot gas circuit, and the hot gas circuit provided in the hot gas circuit. Further provided with a check valve that allows only the flow of refrigerant from the inlet of the second heat exchanger to the inlet of the lower stage compressor, the control unit operates the second expansion valve to condense the condensate. By stopping the flow of the refrigerant from the device to the second expansion valve and operating the fifth valve to open the hot gas circuit, the second heat exchanger can be opened via the check valve. The refrigerant may be introduced into the lower stage side compressor.

このような構成により、制御部によっていわゆるホットガス運転を行うことができる。ホットガス運転を行うことで、冷媒が凝縮器を経由せずに、第二熱交換器と低段側圧縮機及び高段側圧縮機との間を循環することが可能となる。 With such a configuration, so-called hot gas operation can be performed by the control unit. By performing the hot gas operation, the refrigerant can circulate between the second heat exchanger and the low-stage compressor and the high-stage compressor without passing through the condenser.

また上記のヒートポンプでは、前記制御部は、前記四方切換弁に前記第一経路を選択させ、前記第一熱交換器から流出する冷媒の温度が前記第二熱交換器から流出する冷媒の温度よりも小さい場合には、前記第一弁によって前記第一熱交低段バイパス部を開放し、前記第二弁によって前記第一熱交高段バイパス部を閉塞し、前記第三弁によって前記第二熱交低段バイパス部を閉塞し、かつ、前記第四弁によって前記第二熱交高段バイパス部を開放し、前記第一熱交換器から流出する冷媒の温度が前記第二熱交換器から流出する冷媒の温度よりも大きい場合には、前記第一弁によって前記第一熱交低段バイパス部を閉塞し、前記第二弁によって前記第一熱交高段バイパス部を開放し、前記第三弁によって前記第二熱交低段バイパス部を開放し、かつ、前記第四弁によって前記第二熱交高段バイパス部を閉塞してもよい。 Further, in the above heat pump, the control unit causes the four-way switching valve to select the first path, and the temperature of the refrigerant flowing out of the first heat exchanger is higher than the temperature of the refrigerant flowing out of the second heat exchanger. If it is also small, the first valve opens the first heat exchange low-stage bypass portion, the second valve closes the first heat exchange high-stage bypass portion, and the third valve closes the second. The heat exchange low-stage bypass portion is closed, the second heat exchange high-stage bypass portion is opened by the fourth valve, and the temperature of the refrigerant flowing out of the first heat exchanger is measured from the second heat exchanger. When the temperature is higher than the temperature of the outflowing refrigerant, the first valve closes the first heat exchange low-stage bypass portion, and the second valve opens the first heat exchange high-stage bypass portion. The second heat exchange low-stage bypass portion may be opened by the three valves, and the second heat exchange high-stage bypass portion may be closed by the fourth valve.

このような構成によれば、第一熱交換器から流出する冷媒の温度が第二熱交換器から流出する冷媒の温度よりも小さい場合には、第一熱交換器からの冷媒を低段側圧縮機に導入させ、かつ、第二熱交換器からの冷媒を直接に高段側圧縮機に導入させることができる。さらに、第一熱交換器から流出する冷媒の温度が第二熱交換器から流出する冷媒の温度よりも大きい場合には、第一熱交換器からの冷媒を直接に高段側圧縮機に導入させ、かつ、第二熱交換器からの冷媒を低段側圧縮機に導入させることができる。即ち、第一熱交換器からの冷媒と第二熱交換器からの冷媒の各々の冷媒を、低段側圧縮機、及び高段側圧縮機のうちの圧縮に適した圧縮機へ導入できる。 According to such a configuration, when the temperature of the refrigerant flowing out from the first heat exchanger is smaller than the temperature of the refrigerant flowing out from the second heat exchanger, the refrigerant from the first heat exchanger is placed on the lower stage side. It can be introduced into the compressor, and the refrigerant from the second heat exchanger can be directly introduced into the high-stage compressor. Further, when the temperature of the refrigerant flowing out from the first heat exchanger is higher than the temperature of the refrigerant flowing out from the second heat exchanger, the refrigerant from the first heat exchanger is directly introduced into the high-stage compressor. And the refrigerant from the second heat exchanger can be introduced into the lower stage compressor. That is, each of the refrigerants of the refrigerant from the first heat exchanger and the refrigerant from the second heat exchanger can be introduced into the compressor suitable for compression among the low-stage side compressor and the high-stage side compressor.

また上記のヒートポンプでは、前記制御部は、前記四方切換弁に前記第一経路を選択させ、前記凝縮器から流出する冷媒の温度と、前記第一熱交換器から流出する冷媒の温度と、前記第二熱交換器から流出する冷媒の温度と、が同等である場合には、前記第一弁によって前記第一熱交低段バイパス部を閉塞し、前記第二弁によって前記第一熱交高段バイパス部を開放し、前記第三弁によって前記第二熱交低段バイパス部を閉塞し、かつ、前記第四弁によって前記第二熱交高段バイパス部を開放してもよい。 Further, in the above heat pump, the control unit causes the four-way switching valve to select the first path, the temperature of the refrigerant flowing out of the condenser, the temperature of the refrigerant flowing out of the first heat exchanger, and the above. When the temperature of the refrigerant flowing out of the second heat exchanger is the same, the first valve closes the first heat exchange low-stage bypass portion, and the second valve closes the first heat exchange height. The stage bypass portion may be opened, the second heat exchange low stage bypass portion may be closed by the third valve, and the second heat exchange high stage bypass portion may be opened by the fourth valve.

このような構成によれば、凝縮器から流出する冷媒の温度と、第一熱交換器から流出する冷媒の温度と、第二熱交換器から流出する冷媒の温度と、が同等である場合には第一熱交換器からの冷媒を直接に高段側圧縮機に導入させ、かつ、第二熱交換器からの冷媒を直接に高段側圧縮機に導入させることができる。即ち、第一熱交換器からの冷媒と第二熱交換器からの冷媒の各々の冷媒を、低段側圧縮機、及び高段側圧縮機のうちの圧縮に適した圧縮機へ導入できる。 According to such a configuration, when the temperature of the refrigerant flowing out of the condenser, the temperature of the refrigerant flowing out of the first heat exchanger, and the temperature of the refrigerant flowing out of the second heat exchanger are equal to each other. Can directly introduce the refrigerant from the first heat exchanger into the high-stage side compressor, and can directly introduce the refrigerant from the second heat exchanger into the high-stage side compressor. That is, each of the refrigerants of the refrigerant from the first heat exchanger and the refrigerant from the second heat exchanger can be introduced into the compressor suitable for compression among the low-stage side compressor and the high-stage side compressor.

また上記のヒートポンプでは、前記制御部は、前記四方切換弁に前記第一経路を選択させ、前記第一熱交換器から流出する冷媒の温度と、前記第二熱交換器から流出する冷媒の温度と、が同等であり、かつ、前記第一熱交換器から流出する冷媒の温度及び前記第二熱交換器から流出する冷媒の温度と、前記凝縮器から流出する冷媒の温度との間に温度差が存在する場合には、前記第一弁によって前記第一熱交低段バイパス部を開放し、前記第二弁によって前記第一熱交高段バイパス部を閉塞し、前記第三弁によって前記第二熱交低段バイパス部を開放し、かつ、前記第四弁によって前記第二熱交高段バイパス部を閉塞してもよい。 Further, in the above heat pump, the control unit causes the four-way switching valve to select the first path, and the temperature of the refrigerant flowing out from the first heat exchanger and the temperature of the refrigerant flowing out from the second heat exchanger. , And the temperature between the temperature of the refrigerant flowing out of the first heat exchanger and the temperature of the refrigerant flowing out of the second heat exchanger and the temperature of the refrigerant flowing out of the condenser. If there is a difference, the first valve opens the first heat exchange low-stage bypass portion, the second valve closes the first heat exchange high-stage bypass portion, and the third valve closes the first heat exchange high-stage bypass portion. The second heat exchange low-stage bypass portion may be opened and the second heat exchange high-stage bypass portion may be closed by the fourth valve.

このような構成によれば、前記第一熱交換器から流出する冷媒の温度と、前記第二熱交換器から流出する冷媒の温度と、が同等であり、かつ、前記第一熱交換器から流出する冷媒の温度及び前記第二熱交換器から流出する冷媒の温度と、前記凝縮器から流出する冷媒の温度との間に温度差が存在する場合には、第一熱交換器からの冷媒を低段側圧縮機に導入させ、かつ、第二熱交換器からの冷媒を低段側圧縮機に導入させることができる。即ち、第一熱交換器からの冷媒と第二熱交換器からの冷媒の各々の冷媒を、低段側圧縮機、及び高段側圧縮機のうちの圧縮に適した圧縮機へ導入できる。 According to such a configuration, the temperature of the refrigerant flowing out from the first heat exchanger and the temperature of the refrigerant flowing out from the second heat exchanger are equal to each other, and from the first heat exchanger. If there is a temperature difference between the temperature of the outflowing refrigerant and the temperature of the refrigerant flowing out of the second heat exchanger and the temperature of the refrigerant flowing out of the condenser, the refrigerant from the first heat exchanger Can be introduced into the low-stage side compressor, and the refrigerant from the second heat exchanger can be introduced into the low-stage side compressor. That is, each of the refrigerants of the refrigerant from the first heat exchanger and the refrigerant from the second heat exchanger can be introduced into the compressor suitable for compression among the low-stage side compressor and the high-stage side compressor.

本発明の第二の態様に係るヒートポンプの制御方法では、前記四方切換弁に前記第一経路を選択させ、前記第一熱交換器から流出する冷媒の温度が前記第二熱交換器から流出する冷媒の温度よりも小さい場合には、前記第一弁によって前記第一熱交低段バイパス部を開放し、前記第二弁によって前記第一熱交高段バイパス部を閉塞し、前記第三弁によって前記第二熱交低段バイパス部を閉塞し、かつ、前記第四弁によって前記第二熱交高段バイパス部を開放し、前記第一熱交換器から流出する冷媒の温度が前記第二熱交換器から流出する冷媒の温度よりも大きい場合には、前記第一弁によって前記第一熱交低段バイパス部を閉塞し、前記第二弁によって前記第一熱交高段バイパス部を開放し、前記第三弁によって前記第二熱交低段バイパス部を開放し、かつ、前記第四弁によって前記第二熱交高段バイパス部を閉塞する。 In the heat pump control method according to the second aspect of the present invention, the four-way switching valve is made to select the first path, and the temperature of the refrigerant flowing out of the first heat exchanger flows out from the second heat exchanger. When the temperature is lower than the temperature of the refrigerant, the first valve opens the first heat exchange low-stage bypass portion, the second valve closes the first heat exchange high-stage bypass portion, and the third valve. The second heat exchange low-stage bypass portion is closed by the fourth valve, and the second heat exchange high-stage bypass portion is opened by the fourth valve, and the temperature of the refrigerant flowing out of the first heat exchanger is the second. When the temperature is higher than the temperature of the refrigerant flowing out of the heat exchanger, the first valve closes the first heat exchange low-stage bypass portion, and the second valve opens the first heat exchange high-stage bypass portion. Then, the second heat exchange low-stage bypass portion is opened by the third valve, and the second heat exchange high-stage bypass portion is closed by the fourth valve.

また、本発明の第三の態様に係るヒートポンプの制御方法では、前記四方切換弁に前記第一経路を選択させ、前記凝縮器から流出する冷媒の温度と、前記第一熱交換器から流出する冷媒の温度と、前記第二熱交換器から流出する冷媒の温度と、が同等である場合には、前記第一弁によって前記第一熱交低段バイパス部を閉塞し、前記第二弁によって前記第一熱交高段バイパス部を開放し、前記第三弁によって前記第二熱交低段バイパス部を閉塞し、かつ、前記第四弁によって前記第二熱交高段バイパス部を開放する。 Further, in the heat pump control method according to the third aspect of the present invention, the four-way switching valve is made to select the first path, the temperature of the refrigerant flowing out of the condenser, and the temperature of the refrigerant flowing out of the first heat exchanger. When the temperature of the refrigerant and the temperature of the refrigerant flowing out of the second heat exchanger are equal, the first valve closes the first heat exchange low-stage bypass portion, and the second valve closes the first heat exchange low-stage bypass portion. The first heat exchange high-stage bypass portion is opened, the second heat exchange low-stage bypass portion is closed by the third valve, and the second heat exchange high-stage bypass portion is opened by the fourth valve. ..

また、本発明の第四の態様に係るヒートポンプの制御方法では、前記四方切換弁に前記第一経路を選択させ、前記第一熱交換器から流出する冷媒の温度と、前記第二熱交換器から流出する冷媒の温度と、が同等であり、かつ、前記第一熱交換器から流出する冷媒の温度及び前記第二熱交換器から流出する冷媒の温度と、前記凝縮器から流出する冷媒の温度との間に温度差が存在する場合には、前記第一弁によって前記第一熱交低段バイパス部を開放し、前記第二弁によって前記第一熱交高段バイパス部を閉塞し、前記第三弁によって前記第二熱交低段バイパス部を開放し、かつ、前記第四弁によって前記第二熱交高段バイパス部を閉塞する。 Further, in the heat pump control method according to the fourth aspect of the present invention, the four-way switching valve is made to select the first path, the temperature of the refrigerant flowing out from the first heat exchanger, and the second heat exchanger. The temperature of the refrigerant flowing out of the heat exchanger is the same as the temperature of the refrigerant flowing out of the first heat exchanger, the temperature of the refrigerant flowing out of the second heat exchanger, and the temperature of the refrigerant flowing out of the condenser. When there is a temperature difference between the temperature and the temperature, the first valve opens the first heat exchange low-stage bypass portion, and the second valve closes the first heat exchange high-stage bypass portion. The second heat exchange low-stage bypass portion is opened by the third valve, and the second heat exchange high-stage bypass portion is closed by the fourth valve.

上記のヒートポンプ、及びヒートポンプの制御方法によれば、圧縮に最適な状態の冷媒を低段側圧縮機、及び高段側圧縮機に導入でき、効率の良い運転が可能となる。 According to the above heat pump and the heat pump control method, the refrigerant in the optimum state for compression can be introduced into the low-stage compressor and the high-stage compressor, and efficient operation becomes possible.

本発明の実施形態のヒートポンプの全体構成図であって、運転パターン1を示す。また冷媒の流れる箇所を太線で示す。It is the whole block diagram of the heat pump of embodiment of this invention, and shows the operation pattern 1. In addition, the place where the refrigerant flows is indicated by a thick line. 本発明の実施形態のヒートポンプの全体構成図であって、運転パターン2を示す。また冷媒の流れる箇所を太線で示す。It is the whole block diagram of the heat pump of embodiment of this invention, and shows the operation pattern 2. In addition, the place where the refrigerant flows is indicated by a thick line. 本発明の実施形態のヒートポンプの全体構成図であって、運転パターン3を示す。また冷媒の流れる箇所を太線で示す。It is the whole block diagram of the heat pump of embodiment of this invention, and shows the operation pattern 3. In addition, the place where the refrigerant flows is indicated by a thick line. 本発明の実施形態のヒートポンプの全体構成図であって、運転パターン4を示す。また冷媒の流れる箇所を太線で示す。It is the whole block diagram of the heat pump of embodiment of this invention, and shows the operation pattern 4. In addition, the place where the refrigerant flows is indicated by a thick line. 本発明の実施形態のヒートポンプの全体構成図であって、運転パターン5を示す。また冷媒の流れる箇所を太線で示す。It is the whole block diagram of the heat pump of embodiment of this invention, and shows the operation pattern 5. In addition, the place where the refrigerant flows is indicated by a thick line. 本発明の実施形態のヒートポンプの全体構成図であって、デフロスト運転パターン1を示す。また冷媒の流れる箇所を太線で示す。It is the whole block diagram of the heat pump of embodiment of this invention, and shows the defrost operation pattern 1. In addition, the place where the refrigerant flows is indicated by a thick line. 本発明の実施形態のヒートポンプの全体構成図であって、デフロスト運転パターン2を示す。また冷媒の流れる箇所を太線で示す。It is the whole block diagram of the heat pump of embodiment of this invention, and shows the defrost operation pattern 2. In addition, the place where the refrigerant flows is indicated by a thick line. 本発明の実施形態のヒートポンプの全体構成図であって、ホットガス運転パターンを示す。また冷媒の流れる箇所を太線で示す。It is an overall block diagram of the heat pump of embodiment of this invention, and shows a hot gas operation pattern. In addition, the place where the refrigerant flows is indicated by a thick line.

以下、本発明の実施形態のヒートポンプ1について説明する。
図1に示すように、本実施形態に係るヒートポンプ1は、二段圧縮サイクルで運転を行う冷媒回路2を備える。冷媒回路2は、低段側圧縮機3、高段側圧縮機4、凝縮器5、膨張部6、及び蒸発器7を有し、これらの構成要素がこの順に配管10(流路)によって接続されている。そして冷媒回路2を例えば二酸化炭素等の冷媒が循環する。ここで冷媒は特に二酸化炭素に限定されない。
Hereinafter, the heat pump 1 according to the embodiment of the present invention will be described.
As shown in FIG. 1, the heat pump 1 according to the present embodiment includes a refrigerant circuit 2 that operates in a two-stage compression cycle. The refrigerant circuit 2 has a low-stage compressor 3, a high-stage compressor 4, a condenser 5, an expansion unit 6, and an evaporator 7, and these components are connected in this order by a pipe 10 (flow path). Has been done. Then, a refrigerant such as carbon dioxide circulates in the refrigerant circuit 2. Here, the refrigerant is not particularly limited to carbon dioxide.

さらに、冷媒回路2は高段側圧縮機4と凝縮器5との間に設けられた四方切換弁11を有している。また冷媒回路2は、四方切換弁11を経由せずに蒸発器7からの冷媒を低段側圧縮機3、又は、低段側圧縮機3を経由せずに高段側圧縮機4に導入可能とするバイパス流路12を有している。さらに冷媒回路2は、バイパス流路12に設けられてバイパス流路12を開閉する開閉弁13と、開閉弁13及び四方切換弁11を動作させる制御部14とを有している。 Further, the refrigerant circuit 2 has a four-way switching valve 11 provided between the high-stage compressor 4 and the condenser 5. Further, the refrigerant circuit 2 introduces the refrigerant from the evaporator 7 into the low-stage compressor 3 without passing through the four-way switching valve 11 or into the high-stage compressor 4 without passing through the low-stage compressor 3. It has a bypass flow path 12 that enables it. Further, the refrigerant circuit 2 has an on-off valve 13 provided in the bypass flow path 12 for opening and closing the bypass flow path 12, and a control unit 14 for operating the on-off valve 13 and the four-way switching valve 11.

低段側圧縮機3は冷媒を吸込み、冷媒を圧縮する。本実施形態では、低段側圧縮機3は、冷媒の気液分離を行う低段アキュムレータ3aと、低段アキュムレータ3aからの冷媒の気相を圧縮する低段圧縮機本体3bと、低段圧縮機本体3bからの吐出冷媒中の潤滑油を取り除く低段オイルセパレータ3cとを有している。 The low-stage compressor 3 sucks in the refrigerant and compresses the refrigerant. In the present embodiment, the low-stage compressor 3 includes a low-stage accumulator 3a that separates the gas and liquid of the refrigerant, a low-stage compressor main body 3b that compresses the gas phase of the refrigerant from the low-stage accumulator 3a, and low-stage compression. It has a low-stage oil separator 3c that removes the lubricating oil in the refrigerant discharged from the machine body 3b.

高段側圧縮機4は低段側圧縮機3に直列に接続され、低段側圧縮機3から吐出された冷媒をさらに高圧に圧縮する。より具体的には、本実施形態では、低段オイルセパレータ3cを通過した冷媒をさらに圧縮する高段圧縮機本体4bと、高段圧縮機本体4bからの吐出冷媒中の潤滑油を取り除く高段オイルセパレータ4cとを有している。
高段圧縮機本体4bは、低段オイルセパレータ3cに段間配管10aによって接続されている。そして高段圧縮機本体4bは、段間配管10aの途中に合流するアキュムレータ配管10cに接続されて上流から流入する冷媒の気液分離を行う高段アキュムレータ4aをさらに有している。高段圧縮機本体4bは、低段オイルセパレータ3cからの冷媒に加え、高段アキュムレータ4aからの冷媒の気相を圧縮するようになっている。
The high-stage compressor 4 is connected in series with the low-stage compressor 3 and further compresses the refrigerant discharged from the low-stage compressor 3 at a higher pressure. More specifically, in the present embodiment, the high-stage compressor main body 4b that further compresses the refrigerant that has passed through the low-stage oil separator 3c and the high-stage compressor that removes the lubricating oil in the refrigerant discharged from the high-stage compressor main body 4b. It has an oil separator 4c.
The high-stage compressor main body 4b is connected to the low-stage oil separator 3c by an interstage pipe 10a. The high-stage compressor main body 4b further has a high-stage accumulator 4a that is connected to the accumulator pipe 10c that joins in the middle of the interstage pipe 10a and separates the gas and liquid of the refrigerant flowing from the upstream. The high-stage compressor main body 4b is adapted to compress the gas phase of the refrigerant from the high-stage accumulator 4a in addition to the refrigerant from the low-stage oil separator 3c.

凝縮器5は、高段側圧縮機4の高段圧縮機本体4bから吐出された高温高圧の冷媒と、空気や水等の熱媒体との間で熱交換を行い、冷媒を冷却し凝縮させる。凝縮器5は室内に設置された室内熱交換器である。 The condenser 5 exchanges heat between the high-temperature and high-pressure refrigerant discharged from the high-stage compressor main body 4b of the high-stage compressor 4 and a heat medium such as air or water to cool and condense the refrigerant. .. The condenser 5 is an indoor heat exchanger installed indoors.

膨張部6は、凝縮器5からの冷媒を断熱膨張させ、冷媒を減圧する。膨張部6は複数(本実施形態では三つ)の膨張弁6a、6b、6cを有し、後述する蒸発器7の三つの熱交換器に対応して、蒸発器7の上流側(入口側)に設けられている。膨張弁6と凝縮器5との間の接続配管10bには、弁装置15が設けられている。この弁装置15は、接続配管10bの流路の開閉を行う。膨張弁6に代えてキャピラリチューブ等を用いてもよい。 The expansion unit 6 adiabatically expands the refrigerant from the condenser 5 and reduces the pressure of the refrigerant. The expansion unit 6 has a plurality of expansion valves 6a, 6b, 6c (three in the present embodiment), and corresponds to the three heat exchangers of the evaporator 7 described later, and is on the upstream side (inlet side) of the evaporator 7. ). A valve device 15 is provided in the connection pipe 10b between the expansion valve 6 and the condenser 5. The valve device 15 opens and closes the flow path of the connecting pipe 10b. A capillary tube or the like may be used instead of the expansion valve 6.

蒸発器7は、本実施形態では水熱交換器(第一熱交換器)31と、水熱交換器31と並列に設けられた空気熱交換器(第二熱交換器)32とを有している。蒸発器7は室外に設置された室外熱交換器である。 In the present embodiment, the evaporator 7 has a water heat exchanger (first heat exchanger) 31 and an air heat exchanger (second heat exchanger) 32 provided in parallel with the water heat exchanger 31. ing. The evaporator 7 is an outdoor heat exchanger installed outdoors.

水熱交換器31は、凝縮器5から流出して膨張弁(第一膨張弁)6cを通過した冷媒を導入し、冷媒と水(第一熱媒体)との間で熱交換を行なわせる。 The water heat exchanger 31 introduces a refrigerant that has flowed out of the condenser 5 and has passed through the expansion valve (first expansion valve) 6c, and causes heat exchange between the refrigerant and water (first heat medium).

空気熱交換器32は、凝縮器5から流出して膨張弁(第二膨張弁)6a、6bを通過した冷媒を導入し、冷媒と空気(第二熱媒体)との間で熱交換を行なわせる。また、本実施形態では空気熱交換器32は、互いに並列に設けられた第一空気熱交換部32aと第二空気熱交換部32bとを有している。 The air heat exchanger 32 introduces the refrigerant that has flowed out of the condenser 5 and has passed through the expansion valves (second expansion valves) 6a and 6b, and exchanges heat between the refrigerant and the air (second heat medium). Let me. Further, in the present embodiment, the air heat exchanger 32 has a first air heat exchange unit 32a and a second air heat exchange unit 32b provided in parallel with each other.

四方切換弁11は、四つのポートA、B、C、Dを有する弁である。ポートDが高段オイルセパレータ4cに、吐出配管10dによって接続されている。またポートAと凝縮器5との間は凝縮器接続配管10eによって接続されている。ポートBは導入配管10fによって低段アキュムレータ3aに接続されている。ポートCは空気熱交換器32の第一空気熱交換部32a及び第二空気熱交換部32bに、熱交接続配管10gによって接続されている。熱交接続配管10gには、四方切換弁11から空気熱交換器32へ向かう冷媒の流れのみを許容する逆止弁16が設けられている。 The four-way switching valve 11 is a valve having four ports A, B, C, and D. The port D is connected to the high-stage oil separator 4c by a discharge pipe 10d. Further, the port A and the condenser 5 are connected by a condenser connecting pipe 10e. The port B is connected to the low-stage accumulator 3a by the introduction pipe 10f. The port C is connected to the first air heat exchange section 32a and the second air heat exchange section 32b of the air heat exchanger 32 by a heat exchange connection pipe 10g. The heat exchange connection pipe 10g is provided with a check valve 16 that allows only the flow of the refrigerant from the four-way switching valve 11 to the air heat exchanger 32.

バイパス流路12は、水熱交換器31と低段側圧縮機3とを接続する水熱交低段バイパス部41と、低段側圧縮機3を経由せずに、水熱交換器31と高段側圧縮機4とを接続する水熱交高段バイパス部42と、空気熱交換器32と低段側圧縮機3とを接続する空気熱交低段バイパス部43と、低段側圧縮機3を経由せずに、空気熱交換器32と高段側圧縮機4とを接続する空気熱交高段バイパス部44と、を有している。 The bypass flow path 12 includes a water heat exchange low-stage bypass portion 41 that connects the water heat exchanger 31 and the low-stage compressor 3, and the water heat exchanger 31 without passing through the low-stage compressor 3. A water heat exchange high-stage bypass section 42 that connects the high-stage side compressor 4, an air heat exchange low-stage bypass section 43 that connects the air heat exchanger 32 and the low-stage side compressor 3, and a low-stage side compression. It has an air heat exchange high-stage bypass portion 44 that connects the air heat exchanger 32 and the high-stage side compressor 4 without going through the machine 3.

水熱交低段バイパス部41は、水熱交換器31と、四方切換弁11のポートBから延びる導入配管10fの途中とを接続する配管である。水熱交低段バイパス部41は、水熱交換器31から、低段側圧縮機3の低段アキュムレータ3aへ冷媒を導入可能となっている。 The water heat exchange low-stage bypass portion 41 is a pipe that connects the water heat exchanger 31 and the middle of the introduction pipe 10f extending from the port B of the four-way switching valve 11. The water heat exchange low-stage bypass portion 41 can introduce the refrigerant from the water heat exchanger 31 to the low-stage accumulator 3a of the low-stage side compressor 3.

水熱交高段バイパス部42は、水熱交低段バイパス部41の途中から分岐し、水熱交換器31と高段側圧縮機4の高段アキュムレータ4aとを接続する配管10である。水熱交高段バイパス部42は、水熱交換器31から高段アキュムレータ4aへ直接に冷媒を導入可能となっている。 The water heat exchange high-stage bypass portion 42 is a pipe 10 that branches from the middle of the water heat exchange low-stage bypass portion 41 and connects the water heat exchanger 31 and the high-stage accumulator 4a of the high-stage side compressor 4. The water heat exchange high-stage bypass portion 42 can directly introduce the refrigerant from the water heat exchanger 31 to the high-stage accumulator 4a.

空気熱交低段バイパス部43は、熱交接続配管10gの途中から分岐し、空気熱交換器32と低段アキュムレータ3aとを接続する配管である。これにより空気熱交低段バイパス部43は、空気熱交換器32から低段アキュムレータ3aへ冷媒を導入可能としている。よって上記の逆止弁16は、空気熱交低段バイパス部43の熱交接続配管10gからの分岐位置、即ち空気熱交低段バイパス部43の熱交接続配管10gとの接続箇所よりも四方切換弁11側に設けられている。 The air heat exchange low-stage bypass portion 43 is a pipe that branches from the middle of the heat exchange connection pipe 10g and connects the air heat exchanger 32 and the low-stage accumulator 3a. As a result, the air heat exchange low-stage bypass portion 43 can introduce the refrigerant from the air heat exchanger 32 to the low-stage accumulator 3a. Therefore, the check valve 16 is located in four directions from the branch position of the air heat exchange low stage bypass portion 43 from the heat exchange connection pipe 10 g, that is, the connection point of the air heat exchange low stage bypass portion 43 with the heat exchange connection pipe 10 g. It is provided on the switching valve 11 side.

空気熱交高段バイパス部44は、熱交接続配管10gの途中から分岐し、空気熱交換器32と高段アキュムレータ4aとを接続する配管である。これにより空気熱交高段バイパス部44は、空気熱交換器32から高段アキュムレータ4aへ直接に冷媒を導入可能としている。本実施形態では、空気熱交高段バイパス部44は、空気熱交低段バイパス部43よりも空気熱交換器32に近い側で熱交接続配管10gから分岐している。よって上記の逆止弁16は、空気熱交高段バイパス部44の熱交接続配管10gからの分岐位置、即ち空気熱交高段バイパス部44の熱交接続配管10gとの接続箇所よりも四方切換弁11側に設けられている。 The air heat exchange high-stage bypass portion 44 is a pipe that branches from the middle of the heat exchange connection pipe 10g and connects the air heat exchanger 32 and the high-stage accumulator 4a. As a result, the air heat exchange high-stage bypass portion 44 can directly introduce the refrigerant from the air heat exchanger 32 to the high-stage accumulator 4a. In the present embodiment, the air heat exchange high-stage bypass portion 44 is branched from the heat exchange connection pipe 10 g on the side closer to the air heat exchanger 32 than the air heat exchange low-stage bypass portion 43. Therefore, the check valve 16 is located in four directions from the branch position of the air heat exchange high-stage bypass portion 44 from the heat exchange connection pipe 10 g, that is, the connection point of the air heat exchange high-stage bypass portion 44 with the heat exchange connection pipe 10 g. It is provided on the switching valve 11 side.

開閉弁13は、水熱交低段バイパス部41に設けられた第一弁21と、水熱交高段バイパス部42に設けられた第二弁22と、空気熱交低段バイパス部43に設けられた第三弁23と、空気熱交高段バイパス部44に設けられた第四弁24と、を有している。各弁21、22、23、24は二方弁であって、各々のバイパス部41、42、43、44の流路を開閉する。 The on-off valve 13 is provided in the first valve 21 provided in the water heat exchange low stage bypass portion 41, the second valve 22 provided in the water heat exchange high stage bypass portion 42, and the air heat exchange low stage bypass portion 43. It has a third valve 23 provided and a fourth valve 24 provided in the air heat exchange high-stage bypass portion 44. Each valve 21, 22, 23, 24 is a two-way valve, and opens and closes the flow path of each bypass portion 41, 42, 43, 44.

制御部14は、膨張弁6、開閉弁13、四方切換弁11、及び弁装置15を動作させることで、冷媒回路2中の冷媒の流れ方向を変化させる。 The control unit 14 changes the flow direction of the refrigerant in the refrigerant circuit 2 by operating the expansion valve 6, the on-off valve 13, the four-way switching valve 11, and the valve device 15.

ここで、本実施形態のヒートポンプ1は、さらにホットガス回路50を備えている。
ホットガス回路50は、第一空気熱交換部32aと膨張弁6aとの間と、第二空気熱交換部32bと膨張弁6bとの間とを接続する熱交換器間配管51と、この熱交換器間配管51から分岐して低段アキュムレータ3aと四方切換弁11との間でアキュムレータ配管10cに接続されたホットガス配管52とを有している。即ち、ホットガス回路50は、第一空気熱交換部32aと膨張弁6aとの間(及び第二空気熱交換部32bと膨張弁6bとの間)と、低段側圧縮機3の入口とを連通可能に設けられている。
Here, the heat pump 1 of the present embodiment further includes a hot gas circuit 50.
The hot gas circuit 50 includes a heat exchanger inter-pipe pipe 51 connecting between the first air heat exchange unit 32a and the expansion valve 6a and between the second air heat exchange unit 32b and the expansion valve 6b, and the heat thereof. It has a hot gas pipe 52 branched from the heat exchanger pipe 51 and connected to the accumulator pipe 10c between the low-stage accumulator 3a and the four-way switching valve 11. That is, the hot gas circuit 50 is provided between the first air heat exchange unit 32a and the expansion valve 6a (and between the second air heat exchange unit 32b and the expansion valve 6b) and at the inlet of the low-stage compressor 3. Is provided so that communication is possible.

熱交換器間配管51では、ホットガス配管52の熱交換器間配管51からの分岐位置と第一空気熱交換部32aとの間に第五弁25、及び、逆止弁27が設けられ、ホットガス配管52の熱交換器間配管51からの分岐位置と第二熱交換器32bとの間には、第六弁26、及び、逆止弁27が設けられている。第五弁25及び第六弁26も、制御部14によって動作され、熱交換器間配管51の流路の開閉を行う。逆止弁27は、第一空気熱交換部32a及び第二空気熱交換部32bから、熱交換器間配管51を通じてホットガス配管52へ冷媒が流れるようにし、逆にホットガス配管52から第一空気熱交換部32a及び第二空気熱交換部32bへは冷媒が流れないようにしている。第六弁26は第五弁25と全く同じものであってもよい。 In the heat exchanger inter-pipe pipe 51, a fifth valve 25 and a check valve 27 are provided between the branch position of the hot gas pipe 52 from the heat exchanger inter-pipe pipe 51 and the first air heat exchange unit 32a. A sixth valve 26 and a check valve 27 are provided between the branch position of the hot gas pipe 52 from the heat exchanger inter-pipe pipe 51 and the second heat exchanger 32b. The fifth valve 25 and the sixth valve 26 are also operated by the control unit 14 to open and close the flow path of the heat exchanger inter-pipe pipe 51. The check valve 27 allows the refrigerant to flow from the first air heat exchange unit 32a and the second air heat exchange unit 32b to the hot gas pipe 52 through the heat exchanger inter-pipe pipe 51, and conversely, the first from the hot gas pipe 52. The gas does not flow to the air heat exchange section 32a and the second air heat exchange section 32b. The sixth valve 26 may be exactly the same as the fifth valve 25.

次に、図1から図5に示す運転パターン1から5でヒートポンプ1を運転する場合の、制御部14による各弁の切換えの手順を説明する。 Next, a procedure for switching each valve by the control unit 14 when the heat pump 1 is operated according to the operation patterns 1 to 5 shown in FIGS. 1 to 5 will be described.

[運転パターン1]
図1に示すように、運転パターン1では、制御部14は、四方切換弁11を動作させ、ポートDとポートAとを連通させる。さらに、ポートBとポートCとを連通させる。これにより、高段側圧縮機4からの冷媒を凝縮器5へ導入させ、かつ、蒸発器7からの冷媒を低段側圧縮機3に導入させる。この場合の冷媒の流通経路を第一経路とする。
[Operation pattern 1]
As shown in FIG. 1, in the operation pattern 1, the control unit 14 operates the four-way switching valve 11 to communicate the port D and the port A. Further, the port B and the port C are communicated with each other. As a result, the refrigerant from the high-stage compressor 4 is introduced into the condenser 5, and the refrigerant from the evaporator 7 is introduced into the low-stage compressor 3. The flow path of the refrigerant in this case is the first path.

さらに制御部14は、第一弁21から第四弁24を動作させて、水熱交低段バイパス部41を閉塞し、水熱交高段バイパス部42を閉塞し、空気熱交低段バイパス部43を開放し、空気熱交高段バイパス部44を閉塞する。これにより、空気熱交換器32からの冷媒は四方切換弁11を経由することなく、全て低段側圧縮機3の低段アキュムレータ3aに導入される。そして空気熱交換器32からの冷媒は低段圧縮機本体3bで圧縮された後に、高段圧縮機本体4bでさらに圧縮されて四方切換弁11を通過して凝縮器5へ導入される。運転パターン1では水熱交換器31は用いない。 Further, the control unit 14 operates the first valve 21 to the fourth valve 24 to close the water heat exchange low stage bypass unit 41, close the water heat exchange high stage bypass unit 42, and close the air heat exchange low stage bypass unit 42. The portion 43 is opened, and the air heat exchange high-stage bypass portion 44 is closed. As a result, all the refrigerant from the air heat exchanger 32 is introduced into the low-stage accumulator 3a of the low-stage side compressor 3 without passing through the four-way switching valve 11. Then, the refrigerant from the air heat exchanger 32 is compressed by the low-stage compressor main body 3b, then further compressed by the high-stage compressor main body 4b, passes through the four-way switching valve 11, and is introduced into the condenser 5. The water heat exchanger 31 is not used in the operation pattern 1.

[運転パターン2]
図2に示すように、運転パターン2では、制御部14は、四方切換弁11を動作させて冷媒の流通経路を第一経路とする。
[Operation pattern 2]
As shown in FIG. 2, in the operation pattern 2, the control unit 14 operates the four-way switching valve 11 and sets the flow path of the refrigerant as the first path.

さらに制御部14は、第一弁21から第四弁24を動作させて、水熱交低段バイパス部41を開放し、水熱交高段バイパス部42を閉塞し、空気熱交低段バイパス部43を開放し、空気熱交高段バイパス部44を閉塞する。これにより、水熱交換器31及び空気熱交換器32からの冷媒は四方切換弁11を経由することなく、全て低段側圧縮機3の低段アキュムレータ3aに導入される。そして冷媒は低段圧縮機本体3bで圧縮された後に、高段圧縮機本体4bでさらに圧縮されて四方切換弁11を通過して凝縮器5へ導入される。
運転パターン2は、水熱交換器31から流出する冷媒の温度と、空気熱交換器32から流出する冷媒の温度と、が同等であり、かつ、水熱交換器31から流出する冷媒の温度及び空気熱交換器32から流出する冷媒の温度と、凝縮器5から流出する冷媒の温度との間に所定値以上の温度差が存在する場合に実施される。以下、「水熱交換器31から流出する冷媒の温度」とは、第一空気熱交換部32aから流出する冷媒と第二空気熱交換部32bから流出する冷媒とが合流した後の冷媒の温度を意味する。
Further, the control unit 14 operates the first valve 21 to the fourth valve 24 to open the water heat exchange low stage bypass unit 41, close the water heat exchange high stage bypass unit 42, and air heat exchange low stage bypass. The portion 43 is opened, and the air heat exchange high-stage bypass portion 44 is closed. As a result, all the refrigerants from the water heat exchanger 31 and the air heat exchanger 32 are introduced into the low-stage accumulator 3a of the low-stage side compressor 3 without passing through the four-way switching valve 11. Then, the refrigerant is compressed by the low-stage compressor main body 3b, then further compressed by the high-stage compressor main body 4b, passes through the four-way switching valve 11, and is introduced into the condenser 5.
In the operation pattern 2, the temperature of the refrigerant flowing out from the water heat exchanger 31 and the temperature of the refrigerant flowing out from the air heat exchanger 32 are the same, and the temperature of the refrigerant flowing out from the water heat exchanger 31 and the temperature of the refrigerant flowing out from the water heat exchanger 31 This is performed when there is a temperature difference of a predetermined value or more between the temperature of the refrigerant flowing out of the air heat exchanger 32 and the temperature of the refrigerant flowing out of the condenser 5. Hereinafter, the “temperature of the refrigerant flowing out of the water heat exchanger 31” is the temperature of the refrigerant after the refrigerant flowing out from the first air heat exchange unit 32a and the refrigerant flowing out from the second air heat exchange unit 32b merge. Means.

[運転パターン3]
図3に示すように、運転パターン3では、制御部14は、四方切換弁11を動作させて冷媒の流通経路を第一経路とする。
[Operation pattern 3]
As shown in FIG. 3, in the operation pattern 3, the control unit 14 operates the four-way switching valve 11 and sets the flow path of the refrigerant as the first path.

さらに制御部14は、第一弁21から第四弁24を動作させて、水熱交低段バイパス部41を閉塞し、水熱交高段バイパス部42を開放し、空気熱交低段バイパス部43を開放し、空気熱交高段バイパス部44を閉塞する。これにより、水熱交換器31からの冷媒は四方切換弁11を経由することなく、低段側圧縮機3を経由することなく、高段側圧縮機4の高段アキュムレータ4aに導入される。そして水熱交換器31からの冷媒は高段圧縮機本体4bで圧縮された後に四方切換弁11を通過して凝縮器5へ導入される。また、空気熱交換器32からの冷媒は四方切換弁11を経由することなく、全て低段側圧縮機3の低段アキュムレータ3aに導入される。そして空気熱交換器32からの冷媒は低段圧縮機本体3bで圧縮された後に、高段圧縮機本体4bでさらに圧縮されて四方切換弁11を通過して凝縮器5へ導入される。
運転パターン3は、水熱交換器31から流出する冷媒の温度が空気熱交換器32から流出する冷媒の温度よりも大きい場合に実施される。
Further, the control unit 14 operates the first valve 21 to the fourth valve 24 to close the water heat exchange low stage bypass unit 41, open the water heat exchange high stage bypass unit 42, and open the air heat exchange low stage bypass unit 42. The portion 43 is opened, and the air heat exchange high-stage bypass portion 44 is closed. As a result, the refrigerant from the water heat exchanger 31 is introduced into the high-stage accumulator 4a of the high-stage side compressor 4 without passing through the four-way switching valve 11 and the low-stage side compressor 3. Then, the refrigerant from the water heat exchanger 31 is compressed by the high-stage compressor main body 4b, passes through the four-way switching valve 11, and is introduced into the condenser 5. Further, all the refrigerant from the air heat exchanger 32 is introduced into the low-stage accumulator 3a of the low-stage side compressor 3 without passing through the four-way switching valve 11. Then, the refrigerant from the air heat exchanger 32 is compressed by the low-stage compressor main body 3b, then further compressed by the high-stage compressor main body 4b, passes through the four-way switching valve 11, and is introduced into the condenser 5.
The operation pattern 3 is implemented when the temperature of the refrigerant flowing out of the water heat exchanger 31 is higher than the temperature of the refrigerant flowing out of the air heat exchanger 32.

[運転パターン4]
図4に示すように、運転パターン4では、制御部14は、四方切換弁11を動作させて冷媒の流通経路を第一経路とする。
[Operation pattern 4]
As shown in FIG. 4, in the operation pattern 4, the control unit 14 operates the four-way switching valve 11 and sets the flow path of the refrigerant as the first path.

さらに制御部14は、第一弁21から第四弁24を動作させて、水熱交低段バイパス部41を開放し、水熱交高段バイパス部42を閉塞し、空気熱交低段バイパス部43を閉塞し、空気熱交高段バイパス部44を閉塞する。これにより、水熱交換器31からの冷媒は四方切換弁11を経由することなく、全て低段側圧縮機3の低段アキュムレータ3aに導入される。そして水熱交換器31からの冷媒は低段圧縮機本体3bで圧縮された後に、高段圧縮機本体4bでさらに圧縮されて四方切換弁11を通過して凝縮器5へ導入される。運転パターン4では空気熱交換器32は用いない。 Further, the control unit 14 operates the first valve 21 to the fourth valve 24 to open the water heat exchange low stage bypass unit 41, close the water heat exchange high stage bypass unit 42, and air heat exchange low stage bypass. The portion 43 is closed, and the air heat exchange high-stage bypass portion 44 is closed. As a result, all the refrigerant from the water heat exchanger 31 is introduced into the low-stage accumulator 3a of the low-stage side compressor 3 without passing through the four-way switching valve 11. Then, the refrigerant from the water heat exchanger 31 is compressed by the low-stage compressor main body 3b, then further compressed by the high-stage compressor main body 4b, passes through the four-way switching valve 11, and is introduced into the condenser 5. The air heat exchanger 32 is not used in the operation pattern 4.

[運転パターン5]
図5に示すように、運転パターン5では、制御部14は、四方切換弁11を動作させて冷媒の流通経路を第一経路とする。
[Operation pattern 5]
As shown in FIG. 5, in the operation pattern 5, the control unit 14 operates the four-way switching valve 11 and sets the flow path of the refrigerant as the first path.

さらに制御部14は、第一弁21から第四弁24を動作させて、水熱交低段バイパス部41を開放し、水熱交高段バイパス部42を閉塞し、空気熱交低段バイパス部43を閉塞し、空気熱交高段バイパス部44を開放する。これにより、水熱交換器31からの冷媒は四方切換弁11を経由することなく、全て低段側圧縮機3の低段アキュムレータ3aに導入される。そして水熱交換器31からの冷媒は低段圧縮機本体3bで圧縮された後に、高段圧縮機本体4bでさらに圧縮されて四方切換弁11を通過して凝縮器5へ導入される。また、空気熱交換器32からの冷媒は四方切換弁11を経由することなく、低段側圧縮機3を経由することなく、高段アキュムレータ4aに導入される。そして空気熱交換器32からの冷媒は高段圧縮機本体4bで圧縮された後に四方切換弁11を通過して凝縮器5へ導入される。
運転パターン4は、水熱交換器31から流出する冷媒の温度が空気熱交換器32から流出する冷媒の温度よりも小さい場合に実施される。
Further, the control unit 14 operates the first valve 21 to the fourth valve 24 to open the water heat exchange low stage bypass unit 41, close the water heat exchange high stage bypass unit 42, and air heat exchange low stage bypass. The portion 43 is closed, and the air heat exchange high-stage bypass portion 44 is opened. As a result, all the refrigerant from the water heat exchanger 31 is introduced into the low-stage accumulator 3a of the low-stage side compressor 3 without passing through the four-way switching valve 11. Then, the refrigerant from the water heat exchanger 31 is compressed by the low-stage compressor main body 3b, then further compressed by the high-stage compressor main body 4b, passes through the four-way switching valve 11, and is introduced into the condenser 5. Further, the refrigerant from the air heat exchanger 32 is introduced into the high-stage accumulator 4a without passing through the four-way switching valve 11 and the low-stage side compressor 3. Then, the refrigerant from the air heat exchanger 32 is compressed by the high-stage compressor main body 4b, passes through the four-way switching valve 11, and is introduced into the condenser 5.
The operation pattern 4 is implemented when the temperature of the refrigerant flowing out of the water heat exchanger 31 is smaller than the temperature of the refrigerant flowing out of the air heat exchanger 32.

次に、図6及び図7に示すデフロスト運転パターン1及び2でヒートポンプ1を運転する場合の、制御部14による各弁の切換えの手順を説明する。 Next, a procedure for switching each valve by the control unit 14 when the heat pump 1 is operated in the defrost operation patterns 1 and 2 shown in FIGS. 6 and 7 will be described.

[デフロスト運転パターン1]
図6に示すように、デフロスト運転パターン1では、制御部14は、四方切換弁11を動作させ、ポートDとポートCとを連通させる。さらに、ポートBとポートAとを連通させる。これにより、高段側圧縮機4からの冷媒を蒸発器7へ導入させ、かつ、凝縮器5からの冷媒を低段側圧縮機3に導入させる。この場合の冷媒の流通経路を第二経路とする。
[Defrost operation pattern 1]
As shown in FIG. 6, in the defrost operation pattern 1, the control unit 14 operates the four-way switching valve 11 to communicate the port D and the port C. Further, port B and port A are communicated with each other. As a result, the refrigerant from the high-stage compressor 4 is introduced into the evaporator 7, and the refrigerant from the condenser 5 is introduced into the low-stage compressor 3. The flow path of the refrigerant in this case is the second path.

さらに制御部14は、第一弁21から第四弁24を動作させて、水熱交低段バイパス部41を閉塞し、水熱交高段バイパス部42を閉塞し、空気熱交低段バイパス部43を閉塞し、空気熱交高段バイパス部44を閉塞する。これにより、高段側圧縮機4からの高温高圧の冷媒は四方切換弁11を通過して熱交接続配管10g及び逆止弁16を通じて空気熱交換器32に導入される。そして、空気熱交換器32を冷媒が通過することで空気熱交換器32のデフロストを行って第一空気熱交換部32a及び第二空気熱交換部32bに設けられた膨張弁6a、6bへ冷媒が流入する。その後、凝縮器5へ冷媒が導入され、四方切換弁11を通過して低段側圧縮機3の低段アキュムレータ3aへ導入される。この際、水熱交換器31は使用しない。 Further, the control unit 14 operates the first valve 21 to the fourth valve 24 to close the water heat exchange low stage bypass unit 41, close the water heat exchange high stage bypass unit 42, and close the air heat exchange low stage bypass unit 42. The portion 43 is closed, and the air heat exchange high-stage bypass portion 44 is closed. As a result, the high-temperature and high-pressure refrigerant from the high-stage compressor 4 passes through the four-way switching valve 11 and is introduced into the air heat exchanger 32 through the heat exchange connection pipe 10 g and the check valve 16. Then, the refrigerant passes through the air heat exchanger 32 to defrost the air heat exchanger 32, and the refrigerant is sent to the expansion valves 6a and 6b provided in the first air heat exchange section 32a and the second air heat exchange section 32b. Inflows. After that, the refrigerant is introduced into the condenser 5, passes through the four-way switching valve 11, and is introduced into the low-stage accumulator 3a of the low-stage compressor 3. At this time, the water heat exchanger 31 is not used.

[デフロスト運転パターン2]
図7に示すように、デフロスト運転パターン2では、制御部14は、四方切換弁11を動作させ、冷媒の流通経路を第二経路とする。さらに制御部14は弁装置15を動作させて接続配管10bを閉塞する。
[Defrost operation pattern 2]
As shown in FIG. 7, in the defrost operation pattern 2, the control unit 14 operates the four-way switching valve 11 and sets the flow path of the refrigerant as the second path. Further, the control unit 14 operates the valve device 15 to close the connection pipe 10b.

さらに制御部14は、第一弁21から第四弁24を動作させて、水熱交低段バイパス部41を開放し、水熱交高段バイパス部42を閉塞し、空気熱交低段バイパス部43を閉塞し、空気熱交高段バイパス部44を閉塞する。これにより、高段側圧縮機4からの高温高圧の冷媒は四方切換弁11を通過して熱交接続配管10gを通じて空気熱交換器32に導入される。そして、空気熱交換器32を冷媒が通過することで空気熱交換器32のデフロストを行って、第一空気熱交換部32a及び第二空気熱交換部32bに設けられた膨張弁6a、6bへ冷媒が流入する。その後、水熱交換器31へ冷媒が導入され、水熱交低段バイパス部41を通じて低段側圧縮機3の低段アキュムレータ3aへ導入される。この際、凝縮器5は使用しない。 Further, the control unit 14 operates the first valve 21 to the fourth valve 24 to open the water heat exchange low stage bypass unit 41, close the water heat exchange high stage bypass unit 42, and air heat exchange low stage bypass. The portion 43 is closed, and the air heat exchange high-stage bypass portion 44 is closed. As a result, the high-temperature and high-pressure refrigerant from the high-stage compressor 4 passes through the four-way switching valve 11 and is introduced into the air heat exchanger 32 through the heat exchange connection pipe 10 g. Then, when the refrigerant passes through the air heat exchanger 32, the air heat exchanger 32 is defrosted to the expansion valves 6a and 6b provided in the first air heat exchange unit 32a and the second air heat exchange unit 32b. The refrigerant flows in. After that, the refrigerant is introduced into the water heat exchanger 31 and introduced into the low stage accumulator 3a of the low stage side compressor 3 through the water heat exchange low stage bypass portion 41. At this time, the condenser 5 is not used.

[ホットガス運転パターン]
図8に示すように、ホットガス運転パターンでは、制御部14は、四方切換弁11を動作させ、冷媒の流通経路を第二経路とする。さらに制御部14は膨張弁6a、6bを動作させて接続配管10bを閉塞する。
[Hot gas operation pattern]
As shown in FIG. 8, in the hot gas operation pattern, the control unit 14 operates the four-way switching valve 11 and sets the flow path of the refrigerant as the second path. Further, the control unit 14 operates the expansion valves 6a and 6b to close the connection pipe 10b.

さらに制御部14は、第一弁21から第四弁24を動作させて、水熱交低段バイパス部41を閉塞し、水熱交高段バイパス部42を閉塞し、空気熱交低段バイパス部43を閉塞し、空気熱交高段バイパス部44を閉塞する。さらに制御部14は第五弁25及び第六弁26を動作させて、熱交換器間配管51を開放する。これにより、高段側圧縮機4からの高温高圧の冷媒は四方切換弁11を通過して熱交接続配管10gを通じて空気熱交換器32に導入される。そして、空気熱交換器32を冷媒が通過することで空気熱交換器32のデフロストを行って、冷媒は熱交換器間配管51に流入する。その後、ホットガス配管52を通じて低段側圧縮機3の低段アキュムレータ3aに冷媒が導入される。この際、空気熱交換器32及び水熱交換器31は使用しない。 Further, the control unit 14 operates the first valve 21 to the fourth valve 24 to close the water heat exchange low stage bypass unit 41, close the water heat exchange high stage bypass unit 42, and close the air heat exchange low stage bypass unit 42. The portion 43 is closed, and the air heat exchange high-stage bypass portion 44 is closed. Further, the control unit 14 operates the fifth valve 25 and the sixth valve 26 to open the heat exchanger inter-heat exchanger piping 51. As a result, the high-temperature and high-pressure refrigerant from the high-stage compressor 4 passes through the four-way switching valve 11 and is introduced into the air heat exchanger 32 through the heat exchange connection pipe 10 g. Then, the refrigerant passes through the air heat exchanger 32 to defrost the air heat exchanger 32, and the refrigerant flows into the heat exchanger inter-pipe pipe 51. After that, the refrigerant is introduced into the low-stage accumulator 3a of the low-stage compressor 3 through the hot gas pipe 52. At this time, the air heat exchanger 32 and the water heat exchanger 31 are not used.

以上説明した本実施形態のヒートポンプ1では、蒸発器7での熱交換量が変動して冷媒の温度が変化することで、低段側圧縮機3及び高段側圧縮機4に向かう冷媒の状態がこれら低段側圧縮機3及び高段側圧縮機4での圧縮に最適な状態ではなくなってしまう場合がある。特に、蒸発器7が第一空気熱交換部32a及び第二空気熱交換部32bを有する空気熱交換器32と、水熱交換器31を有している。従って、各々では環境の変化によって熱交換を行なう媒体である空気や水の温度が変動し、冷媒の熱交換量も変動する可能性が大きい。 In the heat pump 1 of the present embodiment described above, the state of the refrigerant toward the low-stage compressor 3 and the high-stage compressor 4 due to the change in the heat exchange amount in the evaporator 7 and the change in the temperature of the refrigerant. However, there are cases where the optimum state for compression by the low-stage compressor 3 and the high-stage compressor 4 is not achieved. In particular, the evaporator 7 has an air heat exchanger 32 having a first air heat exchange unit 32a and a second air heat exchange unit 32b, and a water heat exchanger 31. Therefore, it is highly possible that the temperature of air or water, which is a medium for heat exchange, fluctuates due to changes in the environment, and the amount of heat exchange of the refrigerant also fluctuates.

ここでバイパス流路12を設けたことで、蒸発器7からの冷媒を低段側圧縮機3へ導入するだけでなく、蒸発器7からの冷媒を、低段側圧縮機3をバイパスして直接に高段側圧縮機4へ導入させることができる。よって、蒸発器7から流出した冷媒の状態に応じて、最適な圧縮が可能な圧縮機へ冷媒の経路を切換えることができる。よってヒートポンプ1の運転効率を向上できる。 By providing the bypass flow path 12 here, not only the refrigerant from the evaporator 7 is introduced into the low-stage compressor 3, but also the refrigerant from the evaporator 7 is bypassed by the low-stage compressor 3. It can be directly introduced into the high-stage compressor 4. Therefore, the path of the refrigerant can be switched to the compressor capable of optimum compression according to the state of the refrigerant flowing out from the evaporator 7. Therefore, the operating efficiency of the heat pump 1 can be improved.

さらに、バイパス流路12を設けたことで四方切換弁11を経由せずに蒸発器7からの冷媒を低段側圧縮機3、又は、直接に高段側圧縮機4に導入可能となっている。よって四方切換弁11を有して冷媒の流通経路を変更可能なヒートポンプであっても、蒸発器7からの冷媒を最適な圧縮が可能な圧縮機へ導入可能とするように、バイパス流路12の追設等が容易となる。 Further, by providing the bypass flow path 12, the refrigerant from the evaporator 7 can be introduced directly into the low-stage compressor 3 or the high-stage compressor 4 without passing through the four-way switching valve 11. There is. Therefore, even if the heat pump has a four-way switching valve 11 and can change the flow path of the refrigerant, the bypass flow path 12 can introduce the refrigerant from the evaporator 7 into a compressor capable of optimum compression. It will be easier to add the

さらに制御部14を備えることで、蒸発器7から流出した冷媒の状態に応じて、最適な圧縮が可能な圧縮機へ冷媒を導入するように、冷媒の経路を自動的に切換えることができる。 Further, by providing the control unit 14, the path of the refrigerant can be automatically switched so as to introduce the refrigerant into the compressor capable of optimum compression according to the state of the refrigerant flowing out from the evaporator 7.

さらに、熱交接続配管10gに逆止弁16を設けたことによって、空気熱交換器32から四方切換弁11を経由せずに、バイパス流路12を経由して冷媒を各圧縮機3、4へ導入する際に、空気熱交換器32からの全ての冷媒がバイパス流路12(空気熱交低段バイパス部43、空気熱交高段バイパス部44)に流れるようにできる。従ってバイパス流路12を十分に機能させることができる。 Further, by providing the check valve 16 in the heat exchange connection pipe 10 g, the refrigerant is transferred from the air heat exchanger 32 via the bypass flow path 12 without passing through the four-way switching valve 11, respectively. All the refrigerant from the air heat exchanger 32 can be made to flow into the bypass flow path 12 (air heat exchange low-stage bypass section 43, air heat exchange high-stage bypass section 44). Therefore, the bypass flow path 12 can be fully functioned.

さらに、本実施形態の構成では、制御部14によってデフロスト運転パターン1、及びデフロスト運転パターン2のいずれも選択可能である。そして、デフロスト運転パターン1、2によって、空気熱交換器32において、効果的に短時間でのデフロストが可能となる。さらに制御部14によってホットガス運転パターンも選択可能である。ホットガス運転を行うことで冷媒が凝縮器5を経由せずに、空気熱交換器32と低段側圧縮機3及び高段側圧縮機4との間を循環することが可能となる。 Further, in the configuration of the present embodiment, either the defrost operation pattern 1 or the defrost operation pattern 2 can be selected by the control unit 14. The defrost operation patterns 1 and 2 enable effective defrosting in a short time in the air heat exchanger 32. Further, the hot gas operation pattern can be selected by the control unit 14. By performing the hot gas operation, the refrigerant can circulate between the air heat exchanger 32 and the low-stage side compressor 3 and the high-stage side compressor 4 without passing through the condenser 5.

以上、本発明の実施形態について図面を参照して詳述したが、各実施形態における各構成及びそれらの組み合わせ等は一例であり、本発明の趣旨から逸脱しない範囲内で、構成の付加、省略、置換、およびその他の変更が可能である。また、本発明は実施形態によって限定されることはなく、特許請求の範囲によってのみ限定される。 例えば、凝縮器5から流出する冷媒の温度と、水熱交換器31から流出する冷媒の温度と、空気熱交換器32から流出する冷媒の温度と、が同等である場合には、制御部14が、四方切換弁11に第一経路を選択させ、第一弁21によって水熱交低段バイパス部41を閉塞し、第二弁22によって水熱交高段バイパス部42を開放し、第三弁23によって空気熱交低段バイパス部43を閉塞し、かつ、第四弁24によって空気熱交高段バイパス部44を開放してもよい。このような運転を行うことで、凝縮器5から流出する冷媒の温度と、水熱交換器31から流出する冷媒の温度と、空気熱交換器32から流出する冷媒の温度と、が同等である場合には、水熱交換器31からの冷媒を直接に高段側圧縮機4に導入させ、かつ、空気熱交換器32からの冷媒を直接に高段側圧縮機4に導入させることができる。即ち、水熱交換器31からの冷媒と空気熱交換器32からの冷媒の各々の冷媒を、低段側圧縮機3、及び高段側圧縮機4のうちの圧縮に適した圧縮機へ導入できる。 Although the embodiments of the present invention have been described in detail with reference to the drawings, the configurations and combinations thereof in each embodiment are examples, and the configurations may be added or omitted within a range not deviating from the gist of the present invention. , Replacement, and other changes are possible. Further, the present invention is not limited to the embodiments, but only to the scope of claims. For example, if the temperature of the refrigerant flowing out of the condenser 5, the temperature of the refrigerant flowing out of the water heat exchanger 31, and the temperature of the refrigerant flowing out of the air heat exchanger 32 are equal, the control unit 14 However, the four-way switching valve 11 is made to select the first path, the first valve 21 closes the water heat exchange low-stage bypass portion 41, and the second valve 22 opens the water heat exchange high-stage bypass portion 42. The air heat exchange low-stage bypass portion 43 may be closed by the valve 23, and the air heat exchange high-stage bypass portion 44 may be opened by the fourth valve 24. By performing such an operation, the temperature of the refrigerant flowing out of the condenser 5, the temperature of the refrigerant flowing out of the water heat exchanger 31, and the temperature of the refrigerant flowing out of the air heat exchanger 32 are equivalent. In this case, the refrigerant from the water heat exchanger 31 can be directly introduced into the high-stage side compressor 4, and the refrigerant from the air heat exchanger 32 can be directly introduced into the high-stage side compressor 4. .. That is, each of the refrigerants of the refrigerant from the water heat exchanger 31 and the refrigerant from the air heat exchanger 32 is introduced into the compressor suitable for compression among the low-stage side compressor 3 and the high-stage side compressor 4. can.

例えば、制御部14は必ずしも設けなくともよい。この場合、手動で各弁を動作させてもよい。 For example, the control unit 14 does not necessarily have to be provided. In this case, each valve may be operated manually.

また、蒸発器7については、上記の水熱交換器31と空気熱交換器32との組合せを有する場合に限定されず、熱交換器の数量も上述の場合に限定されない。例えば蒸発器7が空気熱交換器32を有さず、二つの水熱交換器を並列に有していてもよい。 Further, the evaporator 7 is not limited to the case where the combination of the water heat exchanger 31 and the air heat exchanger 32 is provided, and the number of heat exchangers is not limited to the above case. For example, the evaporator 7 may not have the air heat exchanger 32 and may have two water heat exchangers in parallel.

また、上述した冷媒回路2中には、上記の各種弁の他に様々な弁が設けられてもよい。 Further, in the above-mentioned refrigerant circuit 2, various valves may be provided in addition to the above-mentioned various valves.

1…ヒートポンプ
2…冷媒回路
3…低段側圧縮機
3a…低段アキュムレータ
3b…低段圧縮機本体
3c…低段オイルセパレータ
4…高段側圧縮機
4a…高段アキュムレータ
4b…高段圧縮機本体
4c…高段オイルセパレータ
5…凝縮器
6…膨張部
6a、6b…(第二)膨張弁
6c…(第一)膨張弁
7…蒸発器
10…配管(流路)
10a…段間配管
10b…接続配管
10c…アキュムレータ配管
10d…吐出配管
10e…凝縮器接続配管
10f…導入配管
10g…熱交接続配管
11…四方切換弁
12…バイパス流路
13…開閉弁
14…制御部
15…弁装置
16…逆止弁
21…第一弁
22…第二弁
23…第三弁
24…第四弁
25…第五弁
26…第六弁
27…逆止弁
31…水熱交換器(第一熱交換器)
32…空気熱交換器(第二熱交換器)
32a…第一空気熱交換部
32b…第二空気熱交換部
41…水熱交低段バイパス部
42…水熱交高段バイパス部
43…空気熱交低段バイパス部
44…空気熱交高段バイパス部
50…ホットガス回路
51…熱交換器間配管
52…ホットガス配管
1 ... Heat pump 2 ... Refrigerant circuit 3 ... Low-stage compressor 3a ... Low-stage compressor 3b ... Low-stage compressor body 3c ... Low-stage oil separator 4 ... High-stage side compressor 4a ... High-stage accumulator 4b ... High-stage compressor Main body 4c ... High-stage oil separator 5 ... Compressor 6 ... Expansion parts 6a, 6b ... (Second) Expansion valve 6c ... (First) Expansion valve 7 ... Evaporator 10 ... Piping (flow path)
10a ... Interstage piping 10b ... Connection piping 10c ... Accumulator piping 10d ... Discharge piping 10e ... Condenser connection piping 10f ... Introduction piping 10g ... Heat exchange connection piping 11 ... Four-way switching valve 12 ... Bypass flow path 13 ... On / off valve 14 ... Control Part 15 ... Valve device 16 ... Check valve 21 ... First valve 22 ... Second valve 23 ... Third valve 24 ... Fourth valve 25 ... Fifth valve 26 ... Sixth valve 27 ... Check valve 31 ... Water heat exchange Vessel (first heat exchanger)
32 ... Air heat exchanger (second heat exchanger)
32a ... First air heat exchange unit 32b ... Second air heat exchange unit 41 ... Water heat exchange low stage bypass unit 42 ... Water heat exchange high stage bypass unit 43 ... Air heat exchange low stage bypass unit 44 ... Air heat exchange high stage Bypass 50 ... Hot gas circuit 51 ... Heat exchanger inter-pipe pipe 52 ... Hot gas pipe

Claims (13)

冷媒を圧縮する低段側圧縮機と、
前記低段側圧縮機からの冷媒をさらに圧縮する高段側圧縮機と、
前記高段側圧縮機からの冷媒を凝縮させる凝縮器と、
前記凝縮器からの冷媒を減圧させる膨張部と、
前記膨張部に接続されて、前記膨張部からの冷媒を蒸発させる蒸発器と、
前記高段側圧縮機からの冷媒を前記凝縮器へ導入させ、かつ、前記蒸発器からの冷媒を前記低段側圧縮機に導入させる第一経路と、前記高段側圧縮機からの冷媒を前記蒸発器に導入させ、かつ、前記凝縮器からの冷媒を前記低段側圧縮機に導入させる第二経路とを選択可能な四方切換弁と、
前記四方切換弁を経由せずに前記蒸発器からの冷媒を前記低段側圧縮機へ導入可能とすることと、前記四方切換弁及び前記低段側圧縮機を経由せずに前記蒸発器からの冷媒を前記高段側圧縮機へ導入可能とすることとを選択的に行うことが可能なバイパス流路と、
を備えるヒートポンプ。
A low-stage compressor that compresses the refrigerant,
A high-stage compressor that further compresses the refrigerant from the low-stage compressor, and
A condenser that condenses the refrigerant from the high-stage compressor,
An expansion part that reduces the pressure of the refrigerant from the condenser,
An evaporator connected to the expansion portion to evaporate the refrigerant from the expansion portion,
The first path for introducing the refrigerant from the high-stage compressor into the condenser and introducing the refrigerant from the evaporator into the low-stage compressor, and the refrigerant from the high-stage compressor. A four-way switching valve capable of selecting a second path to be introduced into the evaporator and to introduce the refrigerant from the condenser into the low-stage compressor.
The refrigerant from the evaporator can be introduced into the low-stage compressor without passing through the four-way switching valve, and the evaporator does not pass through the four-way switching valve and the low-stage compressor. A bypass flow path that can selectively introduce the refrigerant of the above to the high-stage compressor, and
A heat pump equipped with.
前記バイパス流路に設けられて該バイパス流路を開閉する開閉弁と、
前記開閉弁及び前記四方切換弁を動作させる制御部と、
をさらに備える請求項1に記載のヒートポンプ。
An on-off valve provided in the bypass flow path to open and close the bypass flow path,
A control unit that operates the on-off valve and the four-way switching valve,
The heat pump according to claim 1.
前記蒸発器は、
冷媒と第一熱媒体との間で熱交換を行なう第一熱交換器と、
前記第一熱交換器と並列に設けられ、冷媒と第二熱媒体との間で熱交換を行なう第二熱交換器と、
を有し、
前記バイパス流路は、
前記第一熱交換器と前記低段側圧縮機とを接続する第一熱交低段バイパス部と、
前記低段側圧縮機を経由せずに、前記第一熱交換器と前記高段側圧縮機とを接続する第一熱交高段バイパス部と、
前記第二熱交換器と前記低段側圧縮機とを接続する第二熱交低段バイパス部と、
前記低段側圧縮機を経由せずに、前記第二熱交換器と前記高段側圧縮機とを接続する第二熱交高段バイパス部と、
を有し、
前記開閉弁は、
第一熱交低段バイパス部に設けられた第一弁と、
前記第一熱交高段バイパス部に設けられた第二弁と、
前記第二熱交低段バイパス部に設けられた第三弁と、
前記第二熱交高段バイパス部に設けられた第四弁と、
を有する請求項2に記載のヒートポンプ。
The evaporator is
A first heat exchanger that exchanges heat between the refrigerant and the first heat medium,
A second heat exchanger, which is provided in parallel with the first heat exchanger and exchanges heat between the refrigerant and the second heat medium,
Have,
The bypass flow path is
The first heat exchange low-stage bypass section that connects the first heat exchanger and the low-stage compressor,
A first heat exchange high-stage bypass section that connects the first heat exchanger and the high-stage compressor without going through the low-stage compressor.
A second heat exchange low-stage bypass section connecting the second heat exchanger and the low-stage compressor,
A second heat exchange high-stage bypass section that connects the second heat exchanger and the high-stage compressor without going through the low-stage compressor.
Have,
The on-off valve
The first valve provided in the first heat exchange low-stage bypass part,
The second valve provided in the first heat exchange high-stage bypass portion and
The third valve provided in the second heat exchange low-stage bypass portion and
The fourth valve provided in the second heat exchange high-stage bypass section and
The heat pump according to claim 2.
前記第二熱交換器と前記四方切換弁との間を接続する流路を備え、
前記第二熱交低段バイパス部及び前記第二熱交高段バイパス部は、前記流路から分岐するように設けられ、
前記流路からの前記第二熱交低段バイパス部及び前記第二熱交高段バイパス部の分岐位置よりも、前記流路における前記四方切換弁側に設けられ、該四方切換弁から前記第二熱交換器へ向かう冷媒の流れのみを許容する逆止弁をさらに備える請求項3に記載のヒートポンプ。
A flow path connecting the second heat exchanger and the four-way switching valve is provided.
The second heat exchange low-stage bypass portion and the second heat exchange high-stage bypass portion are provided so as to branch from the flow path.
It is provided on the four-way switching valve side in the flow path from the branch position of the second heat exchange low-stage bypass portion and the second heat exchange high-stage bypass portion from the flow path, and the four-way switching valve is used to display the second. (Ii) The heat pump according to claim 3, further comprising a check valve that allows only the flow of refrigerant toward the heat exchanger.
前記制御部は、前記四方切換弁に前記第二経路を選択させ、かつ前記第一弁、前記第二弁、前記第三弁、及び前記第四弁を動作させて前記バイパス流路を閉塞することで、前記逆止弁を介して前記高段側圧縮機からの冷媒を前記第二熱交換器に導入させる請求項4に記載のヒートポンプ。 The control unit causes the four-way switching valve to select the second path, and operates the first valve, the second valve, the third valve, and the fourth valve to close the bypass flow path. The heat pump according to claim 4, wherein the refrigerant from the high-stage compressor is introduced into the second heat exchanger via the check valve. 前記凝縮器と前記膨張部との間に弁装置をさらに備え、
前記制御部は、前記弁装置を動作させることで前記凝縮器から前記膨張部への冷媒の流れを停止させ、前記四方切換弁に前記第二経路を選択させ、前記第一弁を動作させて前記第一熱交低段バイパス部を開放し、かつ、前記第二弁、前記第三弁、及び前記第四弁を動作させて前記第一熱交高段バイパス部、前記第二熱交低段バイパス部、及び前記第二熱交高段バイパス部を閉塞する請求項4に記載のヒートポンプ。
A valve device is further provided between the condenser and the inflatable portion.
The control unit operates the valve device to stop the flow of the refrigerant from the condenser to the expansion unit, causes the four-way switching valve to select the second path, and operates the first valve. The first heat exchange low-stage bypass section is opened, and the second valve, the third valve, and the fourth valve are operated to operate the first heat exchange high-stage bypass section and the second heat exchange low. The heat pump according to claim 4, which closes the stage bypass portion and the second heat exchange high stage bypass portion.
前記膨張部は、
前記凝縮器と前記第一熱交換器との間で該第一熱交換器の入口に設けられた第一膨張弁と、
前記第一膨張弁と並列に配置され、前記凝縮器と前記第二熱交換器との間で該第二熱交換器の入口に設けられた第二膨張弁と、
を有し、
前記第二熱交換器と前記第二膨張弁との間と、前記低段側圧縮機の入口とを連通可能に設けられたホットガス回路と、
前記ホットガス回路に設けられた第五弁と、
前記ホットガス回路に設けられて前記第二熱交換器の入口から前記低段側圧縮機の入口へ向かう冷媒の流れのみを許容する逆止弁と、
をさらに備え、
前記制御部は、前記第二膨張弁を動作させて前記凝縮器から前記第二膨張弁への冷媒の流れを停止させ、かつ前記第五弁を動作させて前記ホットガス回路を開放することで、前記逆止弁を介して前記第二熱交換器からの冷媒を前記低段側圧縮機に導入させる請求項5に記載のヒートポンプ。
The expanded portion is
A first expansion valve provided at the inlet of the first heat exchanger between the condenser and the first heat exchanger,
A second expansion valve arranged in parallel with the first expansion valve and provided at the inlet of the second heat exchanger between the condenser and the second heat exchanger.
Have,
A hot gas circuit provided so as to allow communication between the second heat exchanger and the second expansion valve and the inlet of the lower stage compressor.
The fifth valve provided in the hot gas circuit and
A check valve provided in the hot gas circuit that allows only the flow of refrigerant from the inlet of the second heat exchanger to the inlet of the lower stage compressor.
Further prepare
The control unit operates the second expansion valve to stop the flow of the refrigerant from the condenser to the second expansion valve, and operates the fifth valve to open the hot gas circuit. The heat pump according to claim 5, wherein the refrigerant from the second heat exchanger is introduced into the low-stage compressor via the check valve.
前記制御部は、
前記四方切換弁に前記第一経路を選択させ、
前記第一熱交換器から流出する冷媒の温度が前記第二熱交換器から流出する冷媒の温度よりも小さい場合には、前記第一弁によって前記第一熱交低段バイパス部を開放し、前記第二弁によって前記第一熱交高段バイパス部を閉塞し、前記第三弁によって前記第二熱交低段バイパス部を閉塞し、かつ、前記第四弁によって前記第二熱交高段バイパス部を開放し、
前記第一熱交換器から流出する冷媒の温度が前記第二熱交換器から流出する冷媒の温度よりも大きい場合には、前記第一弁によって前記第一熱交低段バイパス部を閉塞し、前記第二弁によって前記第一熱交高段バイパス部を開放し、前記第三弁によって前記第二熱交低段バイパス部を開放し、かつ、前記第四弁によって前記第二熱交高段バイパス部を閉塞する請求項4から7のいずれか一項に記載のヒートポンプ。
The control unit
Let the four-way switching valve select the first path.
When the temperature of the refrigerant flowing out of the first heat exchanger is lower than the temperature of the refrigerant flowing out of the second heat exchanger, the first valve opens the first heat exchange low-stage bypass portion. The second valve closes the first heat exchange high-stage bypass portion, the third valve closes the second heat exchange low-stage bypass portion, and the fourth valve closes the second heat exchange high-stage. Open the bypass part and
When the temperature of the refrigerant flowing out of the first heat exchanger is higher than the temperature of the refrigerant flowing out of the second heat exchanger, the first valve closes the first heat exchange low-stage bypass portion. The second valve opens the first heat exchange high-stage bypass portion, the third valve opens the second heat exchange low-stage bypass portion, and the fourth valve opens the second heat exchange high-stage. The heat pump according to any one of claims 4 to 7, which closes the bypass portion.
前記制御部は、
前記四方切換弁に前記第一経路を選択させ、
前記凝縮器から流出する冷媒の温度と、前記第一熱交換器から流出する冷媒の温度と、前記第二熱交換器から流出する冷媒の温度と、が同等である場合には、前記第一弁によって前記第一熱交低段バイパス部を閉塞し、前記第二弁によって前記第一熱交高段バイパス部を開放し、前記第三弁によって前記第二熱交低段バイパス部を閉塞し、かつ、前記第四弁によって前記第二熱交高段バイパス部を開放する請求項4から8のいずれか一項に記載のヒートポンプ。
The control unit
Let the four-way switching valve select the first path.
When the temperature of the refrigerant flowing out of the condenser, the temperature of the refrigerant flowing out of the first heat exchanger, and the temperature of the refrigerant flowing out of the second heat exchanger are equal, the first. The first heat exchange low-stage bypass portion is closed by the valve, the first heat exchange high-stage bypass portion is opened by the second valve, and the second heat exchange low-stage bypass portion is closed by the third valve. The heat pump according to any one of claims 4 to 8, wherein the second heat exchange high-stage bypass portion is opened by the fourth valve.
前記制御部は、
前記四方切換弁に前記第一経路を選択させ、
前記第一熱交換器から流出する冷媒の温度と、前記第二熱交換器から流出する冷媒の温度と、が同等であり、かつ、前記第一熱交換器から流出する冷媒の温度及び前記第二熱交換器から流出する冷媒の温度と、前記凝縮器から流出する冷媒の温度との間に温度差が存在する場合には、前記第一弁によって前記第一熱交低段バイパス部を開放し、前記第二弁によって前記第一熱交高段バイパス部を閉塞し、前記第三弁によって前記第二熱交低段バイパス部を開放し、かつ、前記第四弁によって前記第二熱交高段バイパス部を閉塞する請求項4から9のいずれか一項に記載のヒートポンプ。
The control unit
Let the four-way switching valve select the first path.
The temperature of the refrigerant flowing out of the first heat exchanger and the temperature of the refrigerant flowing out of the second heat exchanger are equal to each other, and the temperature of the refrigerant flowing out of the first heat exchanger and the first heat exchanger. (Ii) If there is a temperature difference between the temperature of the refrigerant flowing out of the heat exchanger and the temperature of the refrigerant flowing out of the condenser, the first valve opens the first heat exchange low-stage bypass portion. The second valve closes the first heat exchange high-stage bypass portion, the third valve opens the second heat exchange low-stage bypass portion, and the fourth valve opens the second heat exchange. The heat pump according to any one of claims 4 to 9, which closes the high-stage bypass portion.
冷媒を圧縮する低段側圧縮機と、
前記低段側圧縮機からの冷媒をさらに圧縮する高段側圧縮機と、
前記高段側圧縮機からの冷媒を凝縮させる凝縮器と、
前記凝縮器からの冷媒を減圧させる膨張部と、
前記膨張部に接続されて、前記膨張部からの冷媒を蒸発させる蒸発器と、
前記高段側圧縮機からの冷媒を前記凝縮器へ導入させ、かつ、前記蒸発器からの冷媒を前記低段側圧縮機に導入させる第一経路と、前記高段側圧縮機からの冷媒を前記蒸発器に導入させ、かつ、前記凝縮器からの冷媒を前記低段側圧縮機に導入させる第二経路とを選択可能な四方切換弁と、
前記四方切換弁を経由せずに前記蒸発器からの冷媒を前記低段側圧縮機に導入可能とするか、又は、前記四方切換弁及び前記低段側圧縮機を経由せずに前記高段側圧縮機に導入可能とするバイパス流路と、
前記バイパス流路に設けられて該バイパス流路を開閉する開閉弁と、
を備え、
前記蒸発器は、
冷媒と第一熱媒体との間で熱交換を行なう第一熱交換器と、
前記第一熱交換器と並列に設けられ、冷媒と第二熱媒体との間で熱交換を行なう第二熱交換器と、
を有し、
前記バイパス流路は、
前記第一熱交換器と前記低段側圧縮機とを接続する第一熱交低段バイパス部と、
前記低段側圧縮機を経由せずに、前記第一熱交換器と前記高段側圧縮機とを接続する第一熱交高段バイパス部と、
前記第二熱交換器と前記低段側圧縮機とを接続する第二熱交低段バイパス部と、
前記低段側圧縮機を経由せずに、前記第二熱交換器と前記高段側圧縮機とを接続する第二熱交高段バイパス部と、
を有し、
前記開閉弁は、
第一熱交低段バイパス部に設けられた第一弁と、
前記第一熱交高段バイパス部に設けられた第二弁と、
前記第二熱交低段バイパス部に設けられた第三弁と、
前記第二熱交高段バイパス部に設けられた第四弁と、
を有し、
前記第二熱交換器と前記四方切換弁との間を接続する流路をさらに備え、
前記第二熱交低段バイパス部及び前記第二熱交高段バイパス部は、前記流路から分岐するように設けられ、
前記流路からの前記第二熱交低段バイパス部及び前記第二熱交高段バイパス部の分岐位置よりも、前記流路における前記四方切換弁側に設けられ、該四方切換弁から前記第二熱交換器へ向かう冷媒の流れのみを許容する逆止弁をさらに備えるヒートポンプの制御方法であって、
前記四方切換弁に前記第一経路を選択させ、
前記第一熱交換器から流出する冷媒の温度が前記第二熱交換器から流出する冷媒の温度よりも小さい場合には、前記第一弁によって前記第一熱交低段バイパス部を開放し、前記第二弁によって前記第一熱交高段バイパス部を閉塞し、前記第三弁によって前記第二熱交低段バイパス部を閉塞し、かつ、前記第四弁によって前記第二熱交高段バイパス部を開放し、
前記第一熱交換器から流出する冷媒の温度が前記第二熱交換器から流出する冷媒の温度よりも大きい場合には、前記第一弁によって前記第一熱交低段バイパス部を閉塞し、前記第二弁によって前記第一熱交高段バイパス部を開放し、前記第三弁によって前記第二熱交低段バイパス部を開放し、かつ、前記第四弁によって前記第二熱交高段バイパス部を閉塞するヒートポンプの制御方法。
A low-stage compressor that compresses the refrigerant,
A high-stage compressor that further compresses the refrigerant from the low-stage compressor, and
A condenser that condenses the refrigerant from the high-stage compressor,
An expansion part that reduces the pressure of the refrigerant from the condenser,
An evaporator connected to the expansion portion to evaporate the refrigerant from the expansion portion,
The first path for introducing the refrigerant from the high-stage compressor into the condenser and introducing the refrigerant from the evaporator into the low-stage compressor, and the refrigerant from the high-stage compressor. A four-way switching valve capable of selecting a second path to be introduced into the evaporator and to introduce the refrigerant from the condenser into the low-stage compressor.
The refrigerant from the evaporator can be introduced into the low-stage compressor without passing through the four-way switching valve, or the high-stage compressor can be introduced without passing through the four-way switching valve and the low-stage compressor. Bypass flow path that can be introduced into the side compressor,
An on-off valve provided in the bypass flow path to open and close the bypass flow path,
Equipped with
The evaporator is
A first heat exchanger that exchanges heat between the refrigerant and the first heat medium,
A second heat exchanger, which is provided in parallel with the first heat exchanger and exchanges heat between the refrigerant and the second heat medium,
Have,
The bypass flow path is
The first heat exchange low-stage bypass section that connects the first heat exchanger and the low-stage compressor,
A first heat exchange high-stage bypass section that connects the first heat exchanger and the high-stage compressor without going through the low-stage compressor.
A second heat exchange low-stage bypass section connecting the second heat exchanger and the low-stage compressor,
A second heat exchange high-stage bypass section that connects the second heat exchanger and the high-stage compressor without going through the low-stage compressor.
Have,
The on-off valve
The first valve provided in the first heat exchange low-stage bypass part,
The second valve provided in the first heat exchange high-stage bypass portion and
The third valve provided in the second heat exchange low-stage bypass portion and
The fourth valve provided in the second heat exchange high-stage bypass section and
Have,
Further provided with a flow path connecting the second heat exchanger and the four-way switching valve.
The second heat exchange low-stage bypass portion and the second heat exchange high-stage bypass portion are provided so as to branch from the flow path.
It is provided on the four-way switching valve side in the flow path from the branch position of the second heat exchange low-stage bypass portion and the second heat exchange high-stage bypass portion from the flow path, and the four-way switching valve is used to display the second. (Ii) A method for controlling a heat pump that further includes a check valve that allows only the flow of refrigerant toward the heat exchanger.
Let the four-way switching valve select the first path.
When the temperature of the refrigerant flowing out of the first heat exchanger is lower than the temperature of the refrigerant flowing out of the second heat exchanger, the first valve opens the first heat exchange low-stage bypass portion. The second valve closes the first heat exchange high-stage bypass portion, the third valve closes the second heat exchange low-stage bypass portion, and the fourth valve closes the second heat exchange high-stage. Open the bypass part and
When the temperature of the refrigerant flowing out of the first heat exchanger is higher than the temperature of the refrigerant flowing out of the second heat exchanger, the first valve closes the first heat exchange low-stage bypass portion. The second valve opens the first heat exchange high-stage bypass portion, the third valve opens the second heat exchange low-stage bypass portion, and the fourth valve opens the second heat exchange high-stage. A heat pump control method that closes the bypass section.
冷媒を圧縮する低段側圧縮機と、
前記低段側圧縮機からの冷媒をさらに圧縮する高段側圧縮機と、
前記高段側圧縮機からの冷媒を凝縮させる凝縮器と、
前記凝縮器からの冷媒を減圧させる膨張部と、
前記膨張部に接続されて、前記膨張部からの冷媒を蒸発させる蒸発器と、
前記高段側圧縮機からの冷媒を前記凝縮器へ導入させ、かつ、前記蒸発器からの冷媒を前記低段側圧縮機に導入させる第一経路と、前記高段側圧縮機からの冷媒を前記蒸発器に導入させ、かつ、前記凝縮器からの冷媒を前記低段側圧縮機に導入させる第二経路とを選択可能な四方切換弁と、
前記四方切換弁を経由せずに前記蒸発器からの冷媒を前記低段側圧縮機に導入可能とするか、又は、前記四方切換弁及び前記低段側圧縮機を経由せずに前記高段側圧縮機に導入可能とするバイパス流路と、
前記バイパス流路に設けられて該バイパス流路を開閉する開閉弁と、
を備え、
前記蒸発器は、
冷媒と第一熱媒体との間で熱交換を行なう第一熱交換器と、
前記第一熱交換器と並列に設けられ、冷媒と第二熱媒体との間で熱交換を行なう第二熱交換器と、
を有し、
前記バイパス流路は、
前記第一熱交換器と前記低段側圧縮機とを接続する第一熱交低段バイパス部と、
前記低段側圧縮機を経由せずに、前記第一熱交換器と前記高段側圧縮機とを接続する第一熱交高段バイパス部と、
前記第二熱交換器と前記低段側圧縮機とを接続する第二熱交低段バイパス部と、
前記低段側圧縮機を経由せずに、前記第二熱交換器と前記高段側圧縮機とを接続する第二熱交高段バイパス部と、
を有し、
前記開閉弁は、
第一熱交低段バイパス部に設けられた第一弁と、
前記第一熱交高段バイパス部に設けられた第二弁と、
前記第二熱交低段バイパス部に設けられた第三弁と、
前記第二熱交高段バイパス部に設けられた第四弁と、
を有し、
前記第二熱交換器と前記四方切換弁との間を接続する流路をさらに備え、
前記第二熱交低段バイパス部及び前記第二熱交高段バイパス部は、前記流路から分岐するように設けられ、
前記流路からの前記第二熱交低段バイパス部及び前記第二熱交高段バイパス部の分岐位置よりも、前記流路における前記四方切換弁側に設けられ、該四方切換弁から前記第二熱交換器へ向かう冷媒の流れのみを許容する逆止弁をさらに備えるヒートポンプの制御方法であって、
前記四方切換弁に前記第一経路を選択させ、
前記凝縮器から流出する冷媒の温度と、前記第一熱交換器から流出する冷媒の温度と、前記第二熱交換器から流出する冷媒の温度と、が同等である場合には、前記第一弁によって前記第一熱交低段バイパス部を閉塞し、前記第二弁によって前記第一熱交高段バイパス部を開放し、前記第三弁によって前記第二熱交低段バイパス部を閉塞し、かつ、前記第四弁によって前記第二熱交高段バイパス部を開放するヒートポンプの制御方法。
A low-stage compressor that compresses the refrigerant,
A high-stage compressor that further compresses the refrigerant from the low-stage compressor, and
A condenser that condenses the refrigerant from the high-stage compressor,
An expansion part that reduces the pressure of the refrigerant from the condenser,
An evaporator connected to the expansion portion to evaporate the refrigerant from the expansion portion,
The first path for introducing the refrigerant from the high-stage compressor into the condenser and introducing the refrigerant from the evaporator into the low-stage compressor, and the refrigerant from the high-stage compressor. A four-way switching valve capable of selecting a second path to be introduced into the evaporator and to introduce the refrigerant from the condenser into the low-stage compressor.
The refrigerant from the evaporator can be introduced into the low-stage compressor without passing through the four-way switching valve, or the high-stage compressor can be introduced without passing through the four-way switching valve and the low-stage compressor. Bypass flow path that can be introduced into the side compressor,
An on-off valve provided in the bypass flow path to open and close the bypass flow path,
Equipped with
The evaporator is
A first heat exchanger that exchanges heat between the refrigerant and the first heat medium,
A second heat exchanger, which is provided in parallel with the first heat exchanger and exchanges heat between the refrigerant and the second heat medium,
Have,
The bypass flow path is
The first heat exchange low-stage bypass section that connects the first heat exchanger and the low-stage compressor,
A first heat exchange high-stage bypass section that connects the first heat exchanger and the high-stage compressor without going through the low-stage compressor.
A second heat exchange low-stage bypass section connecting the second heat exchanger and the low-stage compressor,
A second heat exchange high-stage bypass section that connects the second heat exchanger and the high-stage compressor without going through the low-stage compressor.
Have,
The on-off valve
The first valve provided in the first heat exchange low-stage bypass part,
The second valve provided in the first heat exchange high-stage bypass portion and
The third valve provided in the second heat exchange low-stage bypass portion and
The fourth valve provided in the second heat exchange high-stage bypass section and
Have,
Further provided with a flow path connecting the second heat exchanger and the four-way switching valve.
The second heat exchange low-stage bypass portion and the second heat exchange high-stage bypass portion are provided so as to branch from the flow path.
It is provided on the four-way switching valve side in the flow path from the branch position of the second heat exchange low-stage bypass portion and the second heat exchange high-stage bypass portion from the flow path, and the four-way switching valve is used to display the second. (Ii) A method for controlling a heat pump that further includes a check valve that allows only the flow of refrigerant toward the heat exchanger.
Let the four-way switching valve select the first path.
When the temperature of the refrigerant flowing out of the condenser, the temperature of the refrigerant flowing out of the first heat exchanger, and the temperature of the refrigerant flowing out of the second heat exchanger are equal, the first. The first heat exchange low-stage bypass portion is closed by the valve, the first heat exchange high-stage bypass portion is opened by the second valve, and the second heat exchange low-stage bypass portion is closed by the third valve. A method for controlling a heat pump that opens the second heat exchange high-stage bypass portion by the fourth valve.
冷媒を圧縮する低段側圧縮機と、
前記低段側圧縮機からの冷媒をさらに圧縮する高段側圧縮機と、
前記高段側圧縮機からの冷媒を凝縮させる凝縮器と、
前記凝縮器からの冷媒を減圧させる膨張部と、
前記膨張部に接続されて、前記膨張部からの冷媒を蒸発させる蒸発器と、
前記高段側圧縮機からの冷媒を前記凝縮器へ導入させ、かつ、前記蒸発器からの冷媒を前記低段側圧縮機に導入させる第一経路と、前記高段側圧縮機からの冷媒を前記蒸発器に導入させ、かつ、前記凝縮器からの冷媒を前記低段側圧縮機に導入させる第二経路とを選択可能な四方切換弁と、
前記四方切換弁を経由せずに前記蒸発器からの冷媒を前記低段側圧縮機に導入可能とするか、又は、前記四方切換弁及び前記低段側圧縮機を経由せずに前記高段側圧縮機に導入可能とするバイパス流路と、
前記バイパス流路に設けられて該バイパス流路を開閉する開閉弁と、
を備え、
前記蒸発器は、
冷媒と第一熱媒体との間で熱交換を行なう第一熱交換器と、
前記第一熱交換器と並列に設けられ、冷媒と第二熱媒体との間で熱交換を行なう第二熱交換器と、
を有し、
前記バイパス流路は、
前記第一熱交換器と前記低段側圧縮機とを接続する第一熱交低段バイパス部と、
前記低段側圧縮機を経由せずに、前記第一熱交換器と前記高段側圧縮機とを接続する第一熱交高段バイパス部と、
前記第二熱交換器と前記低段側圧縮機とを接続する第二熱交低段バイパス部と、
前記低段側圧縮機を経由せずに、前記第二熱交換器と前記高段側圧縮機とを接続する第二熱交高段バイパス部と、
を有し、
前記開閉弁は、
第一熱交低段バイパス部に設けられた第一弁と、
前記第一熱交高段バイパス部に設けられた第二弁と、
前記第二熱交低段バイパス部に設けられた第三弁と、
前記第二熱交高段バイパス部に設けられた第四弁と、
を有し、
前記第二熱交換器と前記四方切換弁との間を接続する流路をさらに備え、
前記第二熱交低段バイパス部及び前記第二熱交高段バイパス部は、前記流路から分岐するように設けられ、
前記流路からの前記第二熱交低段バイパス部及び前記第二熱交高段バイパス部の分岐位置よりも、前記流路における前記四方切換弁側に設けられ、該四方切換弁から前記第二熱交換器へ向かう冷媒の流れのみを許容する逆止弁をさらに備えるヒートポンプの制御方法であって、
前記四方切換弁に前記第一経路を選択させ、
前記第一熱交換器から流出する冷媒の温度と、前記第二熱交換器から流出する冷媒の温度と、が同等であり、かつ、前記第一熱交換器から流出する冷媒の温度及び前記第二熱交換器から流出する冷媒の温度と、前記凝縮器から流出する冷媒の温度との間に温度差が存在する場合には、前記第一弁によって前記第一熱交低段バイパス部を開放し、前記第二弁によって前記第一熱交高段バイパス部を閉塞し、前記第三弁によって前記第二熱交低段バイパス部を開放し、かつ、前記第四弁によって前記第二熱交高段バイパス部を閉塞するヒートポンプの制御方法。
A low-stage compressor that compresses the refrigerant,
A high-stage compressor that further compresses the refrigerant from the low-stage compressor, and
A condenser that condenses the refrigerant from the high-stage compressor,
An expansion part that reduces the pressure of the refrigerant from the condenser,
An evaporator connected to the expansion portion to evaporate the refrigerant from the expansion portion,
The first path for introducing the refrigerant from the high-stage compressor into the condenser and introducing the refrigerant from the evaporator into the low-stage compressor, and the refrigerant from the high-stage compressor. A four-way switching valve capable of selecting a second path to be introduced into the evaporator and to introduce the refrigerant from the condenser into the low-stage compressor.
The refrigerant from the evaporator can be introduced into the low-stage compressor without passing through the four-way switching valve, or the high-stage compressor can be introduced without passing through the four-way switching valve and the low-stage compressor. Bypass flow path that can be introduced into the side compressor,
An on-off valve provided in the bypass flow path to open and close the bypass flow path,
Equipped with
The evaporator is
A first heat exchanger that exchanges heat between the refrigerant and the first heat medium,
A second heat exchanger, which is provided in parallel with the first heat exchanger and exchanges heat between the refrigerant and the second heat medium,
Have,
The bypass flow path is
The first heat exchange low-stage bypass section that connects the first heat exchanger and the low-stage compressor,
A first heat exchange high-stage bypass section that connects the first heat exchanger and the high-stage compressor without going through the low-stage compressor.
A second heat exchange low-stage bypass section connecting the second heat exchanger and the low-stage compressor,
A second heat exchange high-stage bypass section that connects the second heat exchanger and the high-stage compressor without going through the low-stage compressor.
Have,
The on-off valve
The first valve provided in the first heat exchange low-stage bypass part,
The second valve provided in the first heat exchange high-stage bypass portion and
The third valve provided in the second heat exchange low-stage bypass portion and
The fourth valve provided in the second heat exchange high-stage bypass section and
Have,
Further provided with a flow path connecting the second heat exchanger and the four-way switching valve.
The second heat exchange low-stage bypass portion and the second heat exchange high-stage bypass portion are provided so as to branch from the flow path.
It is provided on the four-way switching valve side in the flow path from the branch position of the second heat exchange low-stage bypass portion and the second heat exchange high-stage bypass portion from the flow path, and the four-way switching valve is used to display the first. (Ii) A method for controlling a heat pump that further includes a check valve that allows only the flow of refrigerant toward the heat exchanger.
Let the four-way switching valve select the first path.
The temperature of the refrigerant flowing out of the first heat exchanger and the temperature of the refrigerant flowing out of the second heat exchanger are equal to each other, and the temperature of the refrigerant flowing out of the first heat exchanger and the first heat exchanger. (Ii) If there is a temperature difference between the temperature of the refrigerant flowing out of the heat exchanger and the temperature of the refrigerant flowing out of the condenser, the first valve opens the first heat exchange low-stage bypass portion. The second valve closes the first heat exchange high-stage bypass portion, the third valve opens the second heat exchange low-stage bypass portion, and the fourth valve opens the second heat exchange. A heat pump control method that closes the high-stage bypass section.
JP2018123707A 2018-06-28 2018-06-28 Heat pump, heat pump control method Active JP7097762B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2018123707A JP7097762B2 (en) 2018-06-28 2018-06-28 Heat pump, heat pump control method
ES19182535T ES2956745T3 (en) 2018-06-28 2019-06-26 Heat pump and heat pump control method
EP19182535.5A EP3587957B1 (en) 2018-06-28 2019-06-26 Heat pump and method of controlling heat pump

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018123707A JP7097762B2 (en) 2018-06-28 2018-06-28 Heat pump, heat pump control method

Publications (2)

Publication Number Publication Date
JP2020003151A JP2020003151A (en) 2020-01-09
JP7097762B2 true JP7097762B2 (en) 2022-07-08

Family

ID=67070740

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018123707A Active JP7097762B2 (en) 2018-06-28 2018-06-28 Heat pump, heat pump control method

Country Status (3)

Country Link
EP (1) EP3587957B1 (en)
JP (1) JP7097762B2 (en)
ES (1) ES2956745T3 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7137094B1 (en) * 2021-03-29 2022-09-14 ダイキン工業株式会社 Heat source unit and refrigerator

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000234815A (en) 1998-12-16 2000-08-29 Matsushita Electric Ind Co Ltd Air-conditioner
JP2000283594A (en) 1999-03-31 2000-10-13 Sanyo Electric Co Ltd Gas heat pump air conditioner
JP2014029237A (en) 2012-07-31 2014-02-13 Mitsubishi Heavy Ind Ltd Two-stage-compression heat pump system

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58158273U (en) * 1982-04-16 1983-10-21 三菱重工業株式会社 refrigeration cycle
JP5516712B2 (en) * 2012-05-28 2014-06-11 ダイキン工業株式会社 Refrigeration equipment
EP2896911B1 (en) * 2012-09-07 2019-08-07 Mitsubishi Electric Corporation Air conditioning apparatus
JP6548890B2 (en) 2014-10-31 2019-07-24 三菱重工サーマルシステムズ株式会社 Control device of refrigeration cycle, refrigeration cycle, and control method of refrigeration cycle
JP6020549B2 (en) * 2014-12-26 2016-11-02 ダイキン工業株式会社 Thermal storage air conditioner

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000234815A (en) 1998-12-16 2000-08-29 Matsushita Electric Ind Co Ltd Air-conditioner
JP2000283594A (en) 1999-03-31 2000-10-13 Sanyo Electric Co Ltd Gas heat pump air conditioner
JP2014029237A (en) 2012-07-31 2014-02-13 Mitsubishi Heavy Ind Ltd Two-stage-compression heat pump system

Also Published As

Publication number Publication date
ES2956745T3 (en) 2023-12-27
EP3587957C0 (en) 2023-08-30
EP3587957A1 (en) 2020-01-01
JP2020003151A (en) 2020-01-09
EP3587957B1 (en) 2023-08-30

Similar Documents

Publication Publication Date Title
US20090145151A1 (en) Air conditioner
KR100589913B1 (en) Air conditioning apparatus
US20110192181A1 (en) Refrigerant system
US11112140B2 (en) Air conditioning apparatus
EP3534082B1 (en) Air conditioner
KR20040094099A (en) Air conditioner capable of defrosting and heating operation simultaneously and out door unit with self defrosting cycle for air conditioner
WO2013146415A1 (en) Heat pump-type heating device
KR20040094100A (en) Air conditioner capable of defrosting and heating operation simultaneously and out door unit with self defrosting cycle for air conditioner
JP4449139B2 (en) Refrigeration equipment
JP7097762B2 (en) Heat pump, heat pump control method
JP2008267653A (en) Refrigerating device
WO2021065678A1 (en) Air conditioner
JP5976459B2 (en) Air conditioner
JP6373469B1 (en) heat pump
KR101151529B1 (en) Refrigerant system
KR102198332B1 (en) Air conditioner and gas-liguid separating unit
JP2012017951A (en) Refrigeration cycle device
WO2018074370A1 (en) Refrigeration system and indoor unit
JP4775405B2 (en) Low stage compression unit
CN111316048B (en) Heat pump
CN111919073B (en) Refrigerating device
WO2012127834A1 (en) Refrigeration cycle device
JP6029382B2 (en) Air conditioner
US20220221168A1 (en) Air conditioner
JP6849037B1 (en) Heat source unit, freezing equipment, and supercooling unit

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180720

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210408

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220209

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220215

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220418

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220607

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220628

R150 Certificate of patent or registration of utility model

Ref document number: 7097762

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150