JP2018204805A - Refrigeration unit, refrigeration system and control method for refrigerant circuit - Google Patents

Refrigeration unit, refrigeration system and control method for refrigerant circuit Download PDF

Info

Publication number
JP2018204805A
JP2018204805A JP2017107271A JP2017107271A JP2018204805A JP 2018204805 A JP2018204805 A JP 2018204805A JP 2017107271 A JP2017107271 A JP 2017107271A JP 2017107271 A JP2017107271 A JP 2017107271A JP 2018204805 A JP2018204805 A JP 2018204805A
Authority
JP
Japan
Prior art keywords
refrigerant
bypass
compressor
oil
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2017107271A
Other languages
Japanese (ja)
Inventor
峰正 大村
Minemasa Omura
峰正 大村
村上 健一
Kenichi Murakami
健一 村上
章夫 川西
Akio Kawanishi
章夫 川西
將樹 池田
Masaki Ikeda
將樹 池田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Thermal Systems Ltd
Original Assignee
Mitsubishi Heavy Industries Thermal Systems Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Thermal Systems Ltd filed Critical Mitsubishi Heavy Industries Thermal Systems Ltd
Priority to JP2017107271A priority Critical patent/JP2018204805A/en
Priority to EP18175305.4A priority patent/EP3410037A1/en
Publication of JP2018204805A publication Critical patent/JP2018204805A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B31/00Compressor arrangements
    • F25B31/002Lubrication
    • F25B31/004Lubrication oil recirculating arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B43/00Arrangements for separating or purifying gases or liquids; Arrangements for vaporising the residuum of liquid refrigerant, e.g. by heat
    • F25B43/02Arrangements for separating or purifying gases or liquids; Arrangements for vaporising the residuum of liquid refrigerant, e.g. by heat for separating lubricants from the refrigerant
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/04Refrigeration circuit bypassing means
    • F25B2400/0409Refrigeration circuit bypassing means for the evaporator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/04Refrigeration circuit bypassing means
    • F25B2400/0411Refrigeration circuit bypassing means for the expansion valve or capillary tube
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2113Temperatures of a suction accumulator

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Power Engineering (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)

Abstract

To avoid deterioration of oil return performance to a compressor caused by an increase in viscosity of refrigerator oil retained in a gas liquid separator.SOLUTION: A refrigeration unit 1 includes: a gas liquid separator 14; a bypass passage 15 for causing at least part of a refrigerant flowing via a heat exchanger 12 toward a decompression section 13 to flow into the gas liquid separator 14; a bypass valve 16 for opening/closing the bypass passage 15; and a control section 20 for controlling the bypass valve 16. The gas liquid separator 14 includes an oil return mechanism 142 for collecting and returning refrigerator oil retained inside and dissolved to a liquid phase of a refrigerant to a compressor 11. A low-temperature side two-layer separation temperature of a mixed solution of the liquid phase of the refrigerant and the refrigerator oil is lower than a lower limit of a specified evaporation temperature set in the refrigeration unit 1. The control section 20 takes bypass measures for opening the bypass passage 15 or increasing a flow rate of the refrigerant flowing in the bypass passage 15 by controlling the bypass valve 16 on the basis of a predetermined condition where deterioration of oil return performance caused by an increase in viscosity of the refrigerator oil is assumed.SELECTED DRAWING: Figure 1

Description

本発明は、冷凍サイクルを構成する冷凍ユニット、それを備えた冷凍システム、および冷媒回路の制御方法に関する。   The present invention relates to a refrigeration unit constituting a refrigeration cycle, a refrigeration system including the refrigeration unit, and a refrigerant circuit control method.

冷凍機や空気調和機等の冷凍システムは、圧縮機および凝縮器を含む熱源側のユニットと、蒸発器を含む熱利用側のユニット(冷凍ケースや室内空調機等)とを備えている。熱源側のユニットの圧縮機から吐出されて凝縮器により凝縮した冷媒は、熱利用側のユニットへと流出し、蒸発器を経て熱源側のユニットへと戻る。   A refrigeration system such as a refrigerator or an air conditioner includes a heat source side unit including a compressor and a condenser, and a heat utilization side unit (such as a refrigeration case and an indoor air conditioner) including an evaporator. The refrigerant discharged from the compressor of the unit on the heat source side and condensed by the condenser flows out to the unit on the heat utilization side, and returns to the unit on the heat source side through the evaporator.

熱源側のユニット(以下、冷凍ユニット)には、圧縮機を液圧縮から保護するため、圧縮機へと吸入される冷媒から液冷媒を分離させる気液分離器が備えられることが多い(例えば、特許文献1,2)。
特許文献1では、圧縮機内部の冷凍機油の粘度増大による潤滑性の低下を避けるため、圧縮機のケーシングにヒータを設け、冷凍機油の粘度増大を防いでいる。
In order to protect the compressor from liquid compression, the heat source unit (hereinafter referred to as a refrigeration unit) is often provided with a gas-liquid separator that separates liquid refrigerant from refrigerant sucked into the compressor (for example, Patent Documents 1 and 2).
In patent document 1, in order to avoid the fall of the lubricity by the viscosity increase of the refrigerator oil inside a compressor, the heater is provided in the casing of the compressor and the viscosity increase of the refrigerator oil is prevented.

圧縮機の摺動部の潤滑のために用いられる冷凍機油は、圧縮機から吐出される冷媒と共に熱利用側のユニットへと流出する。その冷凍機油を圧縮機へと戻すため、気液分離器内部の底に液冷媒に溶解した状態で溜まった冷凍機油をピックアップホールのあいたU字管やキャピラリチューブ等の油戻し機構により吸い上げて回収するようにしている。吸い上げられた冷凍機油は、圧縮機へと戻される。   The refrigerating machine oil used for lubricating the sliding portion of the compressor flows out to the heat utilization side unit together with the refrigerant discharged from the compressor. In order to return the refrigeration oil to the compressor, the refrigeration oil accumulated in the liquid refrigerant at the bottom inside the gas-liquid separator is sucked up and collected by an oil return mechanism such as a U-tube or capillary tube with a pickup hole. Like to do. The sucked refrigeration oil is returned to the compressor.

特許文献2では、圧縮機から吐出される冷媒の吐出温度、または圧縮機へと吸入される冷媒の吸入温度あるいは過熱度が設定値以上となった場合に、凝縮器により凝縮液化した液冷媒の一部を、蒸発器を経たガス冷媒と共に気液分離器を介して圧縮機へ吸入させることで、圧縮機へ吸入されるガス冷媒の温度の上昇を抑制している。   In Patent Document 2, when the discharge temperature of the refrigerant discharged from the compressor, or the suction temperature or superheat degree of the refrigerant sucked into the compressor exceeds a set value, the liquid refrigerant condensed and liquefied by the condenser is discharged. A part of the refrigerant is sucked into the compressor through the gas-liquid separator together with the gas refrigerant passed through the evaporator, thereby suppressing an increase in the temperature of the gas refrigerant sucked into the compressor.

特開2010−210208号公報JP 2010-210208 A 実開平5−79357号公報Japanese Utility Model Publication No. 5-79357

冷凍ユニットや冷凍システムには、規定の冷媒蒸発温度が与えられている。この規定蒸発温度の範囲内で蒸発温度を設定可能である。
冷凍システムの使用目的や気温等に応じて設定された蒸発温度が冷凍機油の粘度に大きな影響を及ぼす程に低ければ、気液分離器において液冷媒に溶解した状態で溜まる冷凍機油の粘度が大きくなり、気液分離器に備えられた油戻し機構への冷凍機油の吸い上げが鈍化する。そのため、気液分離器から圧縮機への冷凍機油の戻りが悪化してしまう。
ここで、油戻し機構の孔径は、圧縮機における冷凍機油の液冷媒による希釈率が、潤滑性を確保できる適正値以下となるように設計されている。冷凍機油の粘度が増大している低温設定時の油戻り性を良くするため、油戻し機構の孔径を大きくすると、通常の粘度のときに、冷凍機油が液冷媒と共に圧縮機へと戻り過ぎてしまう。
The refrigeration unit and the refrigeration system are given a specified refrigerant evaporation temperature. The evaporation temperature can be set within the range of the specified evaporation temperature.
If the evaporating temperature set according to the purpose of use of the refrigeration system and the temperature is so low as to greatly affect the viscosity of the refrigerating machine oil, the viscosity of the refrigerating machine oil accumulated in the liquid refrigerant in the gas-liquid separator increases. Accordingly, the suction of the refrigerating machine oil to the oil return mechanism provided in the gas-liquid separator is slowed down. Therefore, the return of the refrigeration oil from the gas-liquid separator to the compressor is deteriorated.
Here, the hole diameter of the oil return mechanism is designed so that the dilution rate of the refrigeration oil in the compressor by the liquid refrigerant is not more than an appropriate value that can ensure lubricity. If the hole diameter of the oil return mechanism is increased in order to improve the oil return property at low temperature settings where the viscosity of the refrigerating machine oil is increasing, the refrigerating machine oil will return to the compressor together with the liquid refrigerant at the normal viscosity. End up.

上述の特許文献1と同様にヒータを使用して、気液分離器を加熱することで冷凍機油の粘度増大を防ぐことも考えられるが、ヒータの増設は、製造コストおよびランニングコストの増加に繋がる。
上述した特許文献2は、圧縮機へと吸入されるガス冷媒の温度が上昇するとガス冷媒に冷凍機油が溶け難くなるため、気液分離器に溜まった冷凍機油がガス冷媒により圧縮機へと運ばれなくなる現象に関するものであり、低温設定時における冷凍機油の粘度増大に対処するものではない。
Although it is conceivable to prevent an increase in the viscosity of the refrigerating machine oil by heating the gas-liquid separator using the heater in the same manner as in Patent Document 1 described above, the addition of the heater leads to an increase in manufacturing cost and running cost. .
In Patent Document 2 described above, since the refrigeration oil hardly dissolves in the gas refrigerant when the temperature of the gas refrigerant sucked into the compressor rises, the refrigeration oil accumulated in the gas-liquid separator is transported to the compressor by the gas refrigerant. This is related to a phenomenon that does not occur, and does not deal with an increase in the viscosity of the refrigerating machine oil at a low temperature setting.

以上を踏まえ、本発明は、気液分離器に溜まった冷凍機油の粘度増大による圧縮機への油戻り性の悪化を避けることを目的とする。   In light of the above, an object of the present invention is to avoid deterioration in oil return to the compressor due to an increase in the viscosity of the refrigerating machine oil accumulated in the gas-liquid separator.

本発明は、冷媒を圧縮する圧縮機、冷媒と空気との間で熱交換させる熱交換器、および冷媒を減圧させる減圧部を含む冷媒回路を有し、減圧部を経た冷媒を熱利用先へと供給する冷凍ユニットであって、熱利用先および圧縮機の間に介在する気液分離器と、熱交換器を経て減圧部へと向かう冷媒の少なくとも一部を気液分離器へと流入させるバイパス経路と、バイパス経路を開閉するか、あるいはバイパス経路を流れる冷媒の流量を調整するバイパス弁と、バイパス弁を制御する制御部と、を備える。
気液分離器は、冷媒の液相に溶解した状態で内部に溜まった冷凍機油を回収して圧縮機へと戻す油戻し機構を有する。
冷媒の液相および冷凍機油の混合溶液の低温側二層分離温度は、冷凍ユニットに定められている規定蒸発温度の下限未満である。
制御部は、冷凍機油の粘度増大による油戻り性の悪化が想定される所定の条件に基づいてバイパス弁を制御することで、バイパス経路を開くか、あるいはバイパス経路を流れる冷媒の流量を増やす、バイパス措置を行う。
The present invention has a refrigerant circuit including a compressor that compresses a refrigerant, a heat exchanger that exchanges heat between the refrigerant and air, and a decompression unit that decompresses the refrigerant, and the refrigerant that has passed through the decompression unit is used as a heat utilization destination. A gas-liquid separator interposed between the heat utilization destination and the compressor, and at least a part of the refrigerant that goes to the decompression unit through the heat exchanger flows into the gas-liquid separator. A bypass path, a bypass valve that opens and closes the bypass path or adjusts the flow rate of the refrigerant flowing through the bypass path, and a control unit that controls the bypass valve are provided.
The gas-liquid separator has an oil return mechanism that recovers refrigeration oil accumulated inside in a state dissolved in the liquid phase of the refrigerant and returns it to the compressor.
The low temperature side two-layer separation temperature of the mixed liquid of the refrigerant liquid phase and the refrigerating machine oil is less than the lower limit of the prescribed evaporation temperature defined for the refrigeration unit.
The control unit opens the bypass path or increases the flow rate of the refrigerant flowing through the bypass path by controlling the bypass valve based on a predetermined condition in which deterioration of oil return property due to increase in the viscosity of the refrigerating machine oil is assumed. Take bypass measures.

本発明の冷凍ユニットにおいて、条件に用いる指標は、圧縮機へと吸入される冷媒の圧力に対応する飽和温度であり、制御部は、飽和温度が規定値に対して低い場合に、バイパス弁を制御することで、バイパス措置を行うことが好ましい。   In the refrigeration unit of the present invention, the index used for the condition is a saturation temperature corresponding to the pressure of the refrigerant sucked into the compressor, and the control unit sets the bypass valve when the saturation temperature is lower than the specified value. By controlling, it is preferable to perform a bypass measure.

本発明の冷凍ユニットにおいて、制御部は、条件に基づいて、所定の時間毎に、バイパス措置を間欠的に行うことが好ましい。   In the refrigeration unit of the present invention, it is preferable that the control unit intermittently performs bypass measures at predetermined time intervals based on conditions.

本発明の冷凍ユニットにおいて、制御部は、圧縮機へと吸入される冷媒の圧力に対応する飽和温度が規定値に対して低く、かつ圧縮機における冷凍機油の液位が規定液位に対して低い場合に、バイパス措置を行うことが好ましい。   In the refrigeration unit of the present invention, the control unit is configured such that the saturation temperature corresponding to the pressure of the refrigerant sucked into the compressor is lower than the specified value, and the level of the refrigeration oil in the compressor is lower than the specified level. When it is low, it is preferable to take a bypass measure.

本発明の冷凍ユニットにおいて、制御部は、バイパス措置の開始から規定時間が経過したならば、あるいは、バイパス措置により圧縮機における冷凍機油の液位が少なくとも規定液位まで達したならば、バイパス弁を制御することで、バイパス措置を終了することが好ましい。   In the refrigeration unit of the present invention, the control unit detects that the bypass valve is used when the specified time has elapsed from the start of the bypass measure or when the level of the refrigeration oil in the compressor reaches at least the specified liquid level due to the bypass measure. It is preferable to end the bypass measure by controlling.

本発明の冷凍ユニットにおいて、制御部は、圧縮機へと吸入される冷媒の圧力に対応する飽和温度が規定値に対して低く、かつ圧縮機における冷凍機油の過熱度が規定過熱度に対して高い場合に、バイパス措置を行うことが好ましい。   In the refrigeration unit of the present invention, the control unit is configured such that the saturation temperature corresponding to the pressure of the refrigerant sucked into the compressor is lower than the specified value, and the superheat degree of the refrigeration oil in the compressor is less than the specified superheat degree. When it is high, it is preferable to take a bypass measure.

本発明の冷凍ユニットにおいて、制御部は、バイパス措置の開始から規定時間が経過したならば、あるいは、バイパス措置により圧縮機における冷凍機油の過熱度が少なくとも規定過熱度にまで抑制されたならば、バイパス弁を制御することで、バイパス措置を終了することが好ましい。   In the refrigeration unit of the present invention, the control unit, if the specified time has elapsed from the start of the bypass measure, or if the superheat degree of the refrigeration oil in the compressor is suppressed to at least the specified superheat degree by the bypass measure, It is preferable to end the bypass measure by controlling the bypass valve.

また、本発明は、冷媒を圧縮する圧縮機、冷媒と空気との間で熱交換させる熱交換器、冷媒を減圧させる減圧部、および冷媒を蒸発させる蒸発器を有する冷凍システムであって、蒸発器および圧縮機の間に介在する気液分離器と、熱交換器を経て減圧部へと向かう冷媒の少なくとも一部を気液分離器へと流入させるバイパス経路と、バイパス経路を開閉するか、あるいはバイパス経路を流れる冷媒の流量を調整するバイパス弁と、バイパス弁を制御する制御部と、を備える。
気液分離器は、冷媒の液相に溶解した状態で内部に溜まった冷凍機油を回収して圧縮機へと戻す油戻し機構を有する。
冷媒の液相および冷凍機油の混合溶液の低温側二層分離温度は、冷凍システムに定められている規定蒸発温度の下限未満である。
制御部は、冷凍機油の粘度増大による油戻り性の悪化が想定される所定の条件に基づいてバイパス弁を制御することで、バイパス経路を開くか、あるいはバイパス経路を流れる冷媒の流量を増やす、バイパス措置を行う。
The present invention is also a refrigeration system comprising a compressor that compresses a refrigerant, a heat exchanger that exchanges heat between the refrigerant and air, a decompression unit that depressurizes the refrigerant, and an evaporator that evaporates the refrigerant. A gas-liquid separator interposed between the compressor and the compressor, a bypass path for allowing at least a part of the refrigerant going to the decompression section via the heat exchanger to flow into the gas-liquid separator, or opening or closing the bypass path, Or the bypass valve which adjusts the flow volume of the refrigerant | coolant which flows through a bypass path | route, and the control part which controls a bypass valve are provided.
The gas-liquid separator has an oil return mechanism that recovers refrigeration oil accumulated inside in a state dissolved in the liquid phase of the refrigerant and returns it to the compressor.
The low-temperature two-layer separation temperature of the refrigerant liquid phase and the mixed solution of the refrigeration oil is less than the lower limit of the prescribed evaporation temperature defined for the refrigeration system.
The control unit opens the bypass path or increases the flow rate of the refrigerant flowing through the bypass path by controlling the bypass valve based on a predetermined condition in which deterioration of oil return property due to increase in the viscosity of the refrigerating machine oil is assumed. Take bypass measures.

さらに、本発明は、冷媒を圧縮する圧縮機、冷媒と空気との間で熱交換させる熱交換器、および冷媒を減圧させる減圧部を含む冷媒回路の制御方法であって、冷媒回路は、減圧部を経た冷媒が供給される熱利用先および圧縮機の間に介在する気液分離器と、熱交換器を経て減圧部へと向かう冷媒の少なくとも一部を気液分離器へと流入させるバイパス経路と、バイパス経路を開閉するか、あるいはバイパス経路を流れる冷媒の流量を調整するバイパス弁と、を含んで構成されており、冷凍機油の粘度増大による油戻り性の悪化が想定される所定の条件に基づいて、バイパス経路を開くか、あるいはバイパス経路を流れる冷媒の流量を増やすようにバイパス弁を制御することで、気液分離器に備えられた油戻し機構により、冷媒の液相に溶解した状態で気液分離器の内部に溜まって冷凍機油を回収して圧縮機へと戻す。   Furthermore, the present invention is a control method for a refrigerant circuit including a compressor that compresses a refrigerant, a heat exchanger that exchanges heat between the refrigerant and air, and a decompression unit that decompresses the refrigerant. A gas-liquid separator interposed between the heat utilization destination to which the refrigerant having passed through the section is supplied and the compressor, and a bypass for allowing at least part of the refrigerant to flow to the decompression section through the heat exchanger into the gas-liquid separator Path and a bypass valve that opens and closes the bypass path or adjusts the flow rate of the refrigerant flowing through the bypass path. Based on the conditions, the bypass valve is opened or the bypass valve is controlled to increase the flow rate of the refrigerant flowing through the bypass path, so that the oil return mechanism provided in the gas-liquid separator dissolves in the refrigerant liquid phase. Shi State to recover refrigerating machine oil accumulated inside the gas-liquid separator back to the compressor.

本発明によれば、気液分離器における冷凍機油の粘度増大による油戻り性の悪化が想定される条件に基づいて、気液分離器に溜まった冷凍機油に、適時に、バイパス経路を通じて適量の冷媒の液相を混入させる。そのため、低温下であっても、気液分離器に溜まった冷凍機油と液冷媒との混合溶液全体としての粘度増大が抑制される。したがって、気液分離器にヒータを増設することなく、圧縮機における適正な冷凍機油の希釈率および気液分離器による液圧縮の役割を維持しつつ、油戻し機構により、低温設定時にも、気液分離器に溜まった冷凍機油を混合溶液として十分な量だけ回収して圧縮機へと戻すことができる。   According to the present invention, an appropriate amount of the refrigerating machine oil accumulated in the gas-liquid separator is appropriately passed through the bypass path based on the condition that the oil return property is deteriorated due to the increase in the viscosity of the refrigerating machine oil in the gas-liquid separator. Mix the liquid phase of the refrigerant. Therefore, even at a low temperature, an increase in the viscosity of the entire mixed solution of the refrigerating machine oil and the liquid refrigerant accumulated in the gas-liquid separator is suppressed. Therefore, without adding a heater to the gas-liquid separator, the oil return mechanism maintains the proper refrigeration oil dilution rate in the compressor and the role of liquid compression by the gas-liquid separator. A sufficient amount of the refrigeration oil accumulated in the liquid separator can be recovered as a mixed solution and returned to the compressor.

第1実施形態に係る冷凍ユニットを示す模式図である。It is a schematic diagram which shows the refrigeration unit which concerns on 1st Embodiment. 第2実施形態に係る冷凍ユニットを示す模式図である。It is a schematic diagram which shows the refrigeration unit which concerns on 2nd Embodiment. 第3実施形態に係る冷凍ユニットを示す模式図である。It is a schematic diagram which shows the refrigeration unit which concerns on 3rd Embodiment.

以下、添付図面を参照しながら、本発明の実施形態について説明する。
〔第1実施形態〕
図1に示す冷凍ユニット1(コンデンシングユニット)は、圧縮機11、熱交換器12、および減圧部13を含む熱源回路10と、気液分離器14と、バイパス経路15と、バイパス弁16と、制御部20とを備えている。これら熱源回路10の要素11〜13、気液分離器14、バイパス経路15、およびバイパス弁16を収容する筐体は室外に設置される。
冷凍ユニット1は、圧縮機11により圧縮された冷媒を、熱交換器12により熱源としての空気との間で熱交換させた後、膨張弁等の減圧部13により減圧させ、減圧部13を経た冷媒を室内の熱利用先Aへと供給する。
Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings.
[First Embodiment]
The refrigeration unit 1 (condensing unit) shown in FIG. 1 includes a heat source circuit 10 including a compressor 11, a heat exchanger 12, and a decompression unit 13, a gas-liquid separator 14, a bypass path 15, and a bypass valve 16. The control unit 20 is provided. A housing that houses the elements 11 to 13 of the heat source circuit 10, the gas-liquid separator 14, the bypass path 15, and the bypass valve 16 is installed outside the room.
The refrigeration unit 1 exchanges heat between the refrigerant compressed by the compressor 11 and air as a heat source by the heat exchanger 12, and then depressurizes the refrigerant by the decompression unit 13 such as an expansion valve. The refrigerant is supplied to the indoor heat utilization destination A.

熱利用先Aは、冷凍ユニット1の熱源回路10と共に冷凍サイクルを構成する図示しない蒸発器を含む。その蒸発器を備えた図示しない熱利用先ユニットと、冷凍ユニット1と、これらのユニット間を接続する配管とを含んで、冷凍システムが構成される。熱利用先ユニットは、例えば、店舗内に装備されて食品等を収容する冷蔵ケースや冷凍ケースに該当する。   The heat utilization destination A includes an evaporator (not shown) that constitutes a refrigeration cycle together with the heat source circuit 10 of the refrigeration unit 1. A refrigeration system is configured including a heat utilization destination unit (not shown) provided with the evaporator, a refrigeration unit 1 and a pipe connecting the units. The heat utilization destination unit corresponds to, for example, a refrigerated case or a freezing case that is installed in a store and accommodates food or the like.

冷凍ユニット1には、規定の冷媒蒸発温度が与えられている。規定蒸発温度の範囲内で蒸発温度を設定可能である。   The refrigeration unit 1 is given a prescribed refrigerant evaporation temperature. The evaporation temperature can be set within the range of the specified evaporation temperature.

本実施形態の冷凍システムには、例えば、R404A等のHFC系冷媒や、CO等の自然冷媒等、適宜な冷媒を使用することができる。
圧縮機11から吐出され、熱交換器12において外気と熱交換された冷媒は、熱利用先Aへと流出し、熱利用先Aの蒸発器を経て冷凍ユニット1へと戻る。
本実施形態の冷凍システムは、亜臨界サイクル、遷臨界サイクルのいずれにも適用可能である。熱交換器12は、亜臨界サイクルにおいて、流入したガス冷媒を空気との熱交換により凝縮液化させる凝縮器として機能する。一方、熱交換器12は、例えばCO冷媒を用いる場合である遷臨界サイクルにおいては、流入した超臨界状態の冷媒を空気との熱交換により冷却するガスクーラーとして機能する。
For the refrigeration system of the present embodiment, an appropriate refrigerant such as an HFC refrigerant such as R404A or a natural refrigerant such as CO 2 can be used.
The refrigerant discharged from the compressor 11 and heat-exchanged with the outside air in the heat exchanger 12 flows out to the heat utilization destination A, and returns to the refrigeration unit 1 through the evaporator of the heat utilization destination A.
The refrigeration system of the present embodiment can be applied to both the subcritical cycle and the transcritical cycle. The heat exchanger 12 functions as a condenser that condenses and liquefies the gas refrigerant that has flowed in by heat exchange with air in the subcritical cycle. On the other hand, the heat exchanger 12 functions as a gas cooler that cools the supercritical refrigerant that has flowed in by heat exchange with air, for example, in a transcritical cycle in which CO 2 refrigerant is used.

圧縮機11のハウジング11Aには、内蔵する圧縮機構の軸受等の摺動部を潤滑するため、冷凍機油が封入される。冷凍機油としては、本実施形態の冷凍システムに使用される冷媒に対して相溶性を有するものを適宜に選定することができる。相溶性の観点より、例えば、COに対しては、エステル系合成油を選定することができる。選定可能なエステル系合成油の一例としては、JXTGエネルギー株式会社の製品である「ダイヤモンドフリーズMA68」が挙げられる。HFC系冷媒の一種であるR404Aに対しては、JXTGエネルギー株式会社の製品である「ダイヤモンドフリーズMA32R」を選定することができる。
冷凍機油は、冷媒に溶解するため、冷媒と共に圧縮機11から吐出され、熱交換器12、および減圧部13を経て熱利用先Aへと流出する。
Refrigerating machine oil is enclosed in the housing 11A of the compressor 11 in order to lubricate sliding portions such as bearings of a built-in compression mechanism. As refrigerating machine oil, what has compatibility with the refrigerant | coolant used for the refrigerating system of this embodiment can be selected suitably. From the viewpoint of compatibility, for example, an ester-based synthetic oil can be selected for CO 2 . An example of a selectable ester-based synthetic oil is “Diamond Freeze MA68”, a product of JXTG Energy Corporation. For R404A, which is a kind of HFC refrigerant, “Diamond Freeze MA32R”, a product of JXTG Energy Co., Ltd., can be selected.
Since the refrigeration oil is dissolved in the refrigerant, it is discharged from the compressor 11 together with the refrigerant, and flows out to the heat utilization destination A through the heat exchanger 12 and the pressure reducing unit 13.

本実施形態は、熱源回路10、気液分離器14、バイパス経路15、およびバイパス弁16を含んで構成された冷媒回路の構成と、その冷媒回路を制御部20により制御する方法に主要な特徴を有する。   The present embodiment is mainly characterized in the configuration of the refrigerant circuit including the heat source circuit 10, the gas-liquid separator 14, the bypass path 15, and the bypass valve 16, and the method of controlling the refrigerant circuit by the control unit 20. Have

圧縮機11へと吸入される冷媒は、圧縮機11を液圧縮から保護するため、熱利用先Aおよび圧縮機11の間に介在する気液分離器14へと受け入れられ、ガス冷媒と液冷媒とに分離される。
気液分離器14(アキュムレータ)は、熱利用先Aから戻った冷媒を受け入れるタンク141と、タンク141の内部の底に液冷媒と溶解した状態で溜まる冷凍機油を回収して圧縮機11へと戻す油戻し機構142とを備えている。
タンク141内の底部に液冷媒が溜まるため、タンク141内の上部からガス冷媒が圧縮機11へと吸入される。
The refrigerant sucked into the compressor 11 is received by the gas-liquid separator 14 interposed between the heat utilization destination A and the compressor 11 in order to protect the compressor 11 from liquid compression. And separated.
The gas-liquid separator 14 (accumulator) collects the tank 141 that receives the refrigerant returned from the heat utilization destination A, and the refrigerating machine oil that is stored in the state of being dissolved with the liquid refrigerant at the bottom inside the tank 141 to the compressor 11. An oil return mechanism 142 is provided.
Since liquid refrigerant accumulates at the bottom of the tank 141, gas refrigerant is sucked into the compressor 11 from the upper part of the tank 141.

油戻し機構142は、例えば、ピックアップホール142A(小さい孔)のあいたU字管や、キャピラリチューブを含んで構成されている。
油戻し機構142により、タンク141内に溜まった冷凍機油が吸い上げられ、ガス冷媒と共に圧縮機11に吸入されることで、圧縮機11のハウジング11Aの内部へと戻される。圧縮機11のハウジング11Aにも冷凍機油が液冷媒に溶解した状態で溜まっている。
油戻し機構142の孔径は、圧縮機11における冷凍機油の液冷媒による希釈率が、潤滑性を確保できる適正値以下となるように設計されている。
The oil return mechanism 142 includes, for example, a U-shaped tube having a pickup hole 142A (small hole) and a capillary tube.
The oil return mechanism 142 sucks up the refrigerating machine oil accumulated in the tank 141 and sucks it into the compressor 11 together with the gas refrigerant, thereby returning it to the inside of the housing 11 </ b> A of the compressor 11. Refrigerating machine oil is also stored in the housing 11A of the compressor 11 in a state of being dissolved in the liquid refrigerant.
The hole diameter of the oil return mechanism 142 is designed so that the dilution rate of the refrigeration oil by the liquid refrigerant in the compressor 11 is not more than an appropriate value that can ensure lubricity.

さて、冷凍機油は、温度の低下により粘度が大きくなる。そのため、冷媒蒸発温度が冷凍機油の粘度に大きな影響を及ぼす程に低ければ、気液分離器14に溜まった冷凍機油の圧縮機11への油戻り性の悪化が想定される。この蒸発温度は、熱利用先ユニットの蒸発器の出口温度に相当する。
冷凍ユニット1の蒸発温度としては、例えば、−5℃〜−45℃に定められている。この温度範囲を規定蒸発温度と言うものとする。規定蒸発温度の範囲内で、冷凍ユニット1を含む冷凍システムの用途や気温等に応じて、ユーザーにより任意の蒸発温度を設定可能である。設定された蒸発温度のことを設定蒸発温度と言うものとする。
冷凍機油の粘度が大きくなり、油戻し機構142への冷凍機油の吸い上げが鈍化すると、気液分離器14から圧縮機11への冷凍機油の戻りが悪化してしまう。
Now, the viscosity of refrigeration oil increases with a decrease in temperature. Therefore, if the refrigerant evaporating temperature is low enough to significantly affect the viscosity of the refrigerating machine oil, it is assumed that the refrigerating machine oil accumulated in the gas-liquid separator 14 deteriorates in oil return to the compressor 11. This evaporation temperature corresponds to the outlet temperature of the evaporator of the heat utilization destination unit.
The evaporation temperature of the refrigeration unit 1 is set to, for example, -5 ° C to -45 ° C. This temperature range is referred to as a specified evaporation temperature. An arbitrary evaporation temperature can be set by the user in accordance with the use of the refrigeration system including the refrigeration unit 1, the temperature, and the like within the range of the specified evaporation temperature. The set evaporation temperature is referred to as the set evaporation temperature.
When the viscosity of the refrigerating machine oil increases and the suction of the refrigerating machine oil to the oil return mechanism 142 slows down, the return of the refrigerating machine oil from the gas-liquid separator 14 to the compressor 11 becomes worse.

冷凍機油の粘度増大による気液分離器14から圧縮機11への油戻り性の悪化を避けるため、本実施形態の冷凍ユニット1は、適時に、バイパス経路15を通じて気液分離器14に液冷媒を混入する措置を取ることで、気液分離器14に溜まった冷凍機油と液冷媒との混合溶液の粘度増大を抑制する。
そのため、冷凍ユニット1は、熱交換器12を経た冷媒の一部を気液分離器14へと流入させるバイパス経路15と、バイパス経路15を開閉するバイパス弁16とを備えるとともに、制御部20により、気液分離器14における冷凍機油の粘度増大による油戻り性の悪化が想定される所定の条件に基づいてバイパス弁16を制御している。油戻り性の悪化が想定される条件に用いる指標としての吸入圧力飽和温度を得るため、本実施形態では、圧縮機11へと吸入される冷媒の圧力を検知する圧力センサ21を用いる。吸入圧力飽和温度は、設定蒸発温度に応じて変化する。
In order to avoid deterioration of the oil return property from the gas-liquid separator 14 to the compressor 11 due to the increase in the viscosity of the refrigerating machine oil, the refrigeration unit 1 according to the present embodiment supplies the liquid refrigerant to the gas-liquid separator 14 through the bypass path 15 at appropriate times. By taking measures to mix, the viscosity increase of the mixed solution of the refrigerating machine oil and the liquid refrigerant accumulated in the gas-liquid separator 14 is suppressed.
Therefore, the refrigeration unit 1 includes a bypass path 15 that allows a part of the refrigerant that has passed through the heat exchanger 12 to flow into the gas-liquid separator 14, and a bypass valve 16 that opens and closes the bypass path 15. The bypass valve 16 is controlled based on a predetermined condition in which deterioration of the oil return property due to an increase in the viscosity of the refrigerating machine oil in the gas-liquid separator 14 is assumed. In this embodiment, a pressure sensor 21 that detects the pressure of the refrigerant sucked into the compressor 11 is used in order to obtain a suction pressure saturation temperature as an index used for a condition assumed to deteriorate oil return. The suction pressure saturation temperature changes according to the set evaporation temperature.

バイパス経路15は、熱交換器12の出口側と気液分離器14の入口側とを接続する配管と、継手等からなる。
バイパス弁16は、電磁弁であり、制御部20から発せられる指令に応じて駆動されることで、バイパス経路15を開閉する。バイパス弁16によりバイパス経路15が開かれると、熱交換器12を経て、減圧部13へと向かう冷媒の一部が、バイパス経路15を通じて気液分離器14へと流入する。バイパス経路15を流れて気液分離器14へと到達した冷媒は、減圧され気液二相の状態となる。
The bypass path 15 includes a pipe connecting the outlet side of the heat exchanger 12 and the inlet side of the gas-liquid separator 14, a joint, and the like.
The bypass valve 16 is an electromagnetic valve, and opens and closes the bypass path 15 by being driven according to a command issued from the control unit 20. When the bypass path 15 is opened by the bypass valve 16, a part of the refrigerant going to the decompression unit 13 through the heat exchanger 12 flows into the gas-liquid separator 14 through the bypass path 15. The refrigerant that has flowed through the bypass path 15 and reached the gas-liquid separator 14 is decompressed and becomes a gas-liquid two-phase state.

気液分離器14には、熱利用先Aの蒸発器を経た冷媒と、バイパス経路15を流れた冷媒とが流入する。気液分離器14のタンク141の内部に流入した冷媒は、当該冷媒の気相と液相との密度の違いにより分離し、気相よりも密度が大きい液相がタンク141の底に溜まる。
上述のように冷媒に溶解した状態で、冷凍機油も冷媒と共に冷媒回路を搬送されるため、熱利用先Aからの冷媒と、バイパス経路15からの冷媒とにそれぞれ含まれている冷凍機油も気液分離器14へと流入し、タンク141の底に溜まる。冷凍機油は、タンク141の底の液冷媒と混合し、液冷媒に溶解する。
The refrigerant that has passed through the evaporator at the heat utilization destination A and the refrigerant that has flowed through the bypass path 15 flow into the gas-liquid separator 14. The refrigerant flowing into the tank 141 of the gas-liquid separator 14 is separated due to the difference in density between the gas phase and the liquid phase of the refrigerant, and a liquid phase having a density higher than that of the gas phase is accumulated at the bottom of the tank 141.
Since the refrigerating machine oil is transported through the refrigerant circuit together with the refrigerant in the state of being dissolved in the refrigerant as described above, the refrigerating machine oil contained in the refrigerant from the heat utilization destination A and the refrigerant from the bypass path 15 is also gas. It flows into the liquid separator 14 and accumulates at the bottom of the tank 141. The refrigerating machine oil is mixed with the liquid refrigerant at the bottom of the tank 141 and dissolved in the liquid refrigerant.

本実施形態では、バイパス経路15を流れた冷媒が、熱利用先Aから気液分離器14へと向かう冷媒と合流して気液分離器14へと流入する。これに限らず、バイパス経路15を流れた冷媒が熱利用先Aからの冷媒の流れとは合流しないで、気液分離器14へと直接流入するように構成することもできる。   In the present embodiment, the refrigerant that has flowed through the bypass path 15 merges with the refrigerant from the heat utilization destination A toward the gas-liquid separator 14 and flows into the gas-liquid separator 14. However, the present invention is not limited to this, and the refrigerant flowing through the bypass path 15 may be configured to directly flow into the gas-liquid separator 14 without joining the refrigerant flow from the heat utilization destination A.

制御部20は、冷凍機油の粘度増大による油戻りの悪化が想定される場合に、バイパス経路15を開く指令をバイパス弁16に送り、バイパス経路15を開通させる。これをもってバイパス措置が開始される。
本実施形態において、制御部20は、圧力センサ21により検知された吸入圧力を用いて、吸入圧力に対応する飽和温度を演算する。そして、気液分離器14における吸入圧力飽和温度が規定値に対して低い場合は、油戻り性の悪化が想定されるため、バイパス弁16に指令を送ってバイパス経路15を開き、バイパス経路15を通じて気液分離器14へと冷媒を流入させる。
圧力センサ21は、本実施形態では気液分離器14の入口側に設置されているが、圧縮機11へと吸入される冷媒の圧力を代表する圧力を検知可能な適宜な位置に設けることができる。例えば、気液分離器14と圧縮機11との間や、バイパス経路15の末端付近等に圧力センサ21を設けることもできる。
When the deterioration of the oil return due to the increase in the viscosity of the refrigerating machine oil is assumed, the control unit 20 sends a command to open the bypass path 15 to the bypass valve 16 to open the bypass path 15. With this, the bypass measure is started.
In the present embodiment, the control unit 20 calculates a saturation temperature corresponding to the suction pressure using the suction pressure detected by the pressure sensor 21. If the suction pressure saturation temperature in the gas-liquid separator 14 is lower than the specified value, the oil return property is assumed to deteriorate. Therefore, a command is sent to the bypass valve 16 to open the bypass path 15 and the bypass path 15 Through which the refrigerant flows into the gas-liquid separator 14.
Although the pressure sensor 21 is installed on the inlet side of the gas-liquid separator 14 in this embodiment, the pressure sensor 21 may be provided at an appropriate position where the pressure representing the pressure of the refrigerant sucked into the compressor 11 can be detected. it can. For example, the pressure sensor 21 can be provided between the gas-liquid separator 14 and the compressor 11 or near the end of the bypass path 15.

バイパス経路15を通じて気液分離器14へと流入した気液二相の冷媒の液相が、タンク141に溜まった混合容液に混入されると、混合溶液における液冷媒の比率が高まる。
したがって、規定蒸発温度の下限付近の低温下であっても、バイパス経路15を通じて冷媒の液相が混入されることで、気液分離器14内に溜まった冷凍機油と液冷媒との混合溶液全体としての粘度増大が抑制される。そのため、油戻し機構142により、タンク141に溜まった冷凍機油を混合溶液として十分な量だけ回収して圧縮機11へと戻すことができる。そのため、圧縮機11における潤滑不良や焼き付きを未然に防ぐことができる。
When the liquid phase of the gas-liquid two-phase refrigerant that has flowed into the gas-liquid separator 14 through the bypass path 15 is mixed into the mixed solution stored in the tank 141, the ratio of the liquid refrigerant in the mixed solution increases.
Therefore, even at a low temperature near the lower limit of the specified evaporation temperature, the entire liquid mixture of the refrigerating machine oil and the liquid refrigerant accumulated in the gas-liquid separator 14 is obtained by mixing the liquid phase of the refrigerant through the bypass path 15. As a result, an increase in viscosity is suppressed. Therefore, the oil return mechanism 142 can collect a sufficient amount of the refrigeration oil accumulated in the tank 141 as a mixed solution and return it to the compressor 11. Therefore, poor lubrication and seizure in the compressor 11 can be prevented in advance.

バイパス経路15を通じて気液分離器14内の冷凍機油に液冷媒を混入させるバイパス措置は、吸入圧力飽和温度が規定値に対して低い場合に、規定の時間に限り、実施するものとする。実施するにあたり、具体的な温度や時間の条件は適宜に定めることができる。   The bypass measure for mixing the liquid refrigerant into the refrigerating machine oil in the gas-liquid separator 14 through the bypass path 15 is performed only for a specified time when the suction pressure saturation temperature is lower than the specified value. In implementation, specific temperature and time conditions can be determined as appropriate.

本実施形態によるバイパス措置は、バイパス経路15を通じて気液分離器14内の冷凍機油に冷媒の液相を混入させることにより、気液分離器14内の混合溶液における冷凍機油の濃度が低下することに基づいている。かかるバイパス措置によれば、冷凍機油の単体でみれば粘度が増大する温度条件においても、混合溶液全体としての粘度の増大を抑えることができる。   In the bypass measure according to the present embodiment, the concentration of the refrigeration oil in the mixed solution in the gas-liquid separator 14 is reduced by mixing the liquid phase of the refrigerant into the refrigeration oil in the gas-liquid separator 14 through the bypass path 15. Based on. According to such a bypass measure, it is possible to suppress an increase in the viscosity of the mixed solution as a whole even under temperature conditions in which the viscosity increases when viewed as a single refrigeration oil.

ここで、液冷媒と冷凍機油とが溶け合わずに二層に分離した状態、または乳濁した状態を二層分離といい、そのような状態になる温度のことを二層分離温度と称する。
冷凍機油と液冷媒との二層分離温度は、冷凍機油の濃度と温度との関係を示す二層分離温度曲線により表すことができる。二層分離温度曲線には、温度を上昇させていくと分離を開始する高温側の二層分離温度曲線(下に凸の曲線)と、温度を低下させていくと分離を開始する低温側の二層分離温度曲線(上に凸の曲線)とがある。
低温側の二層分離温度曲線を下回ると、液冷媒および冷凍機油の混合溶液は、濃度の均一な1つの相から濃度の異なる2つの相へと分離する。
上述のように冷媒の液相と冷凍機油との混合溶液全体として粘度の増大を抑えて、油戻り性を十分に担保するために、混合溶液が分離することなく、冷凍機油を液冷媒に均一に溶解させる。そのため、低温側の二層分離温度曲線の極大値(UCST:Upper Critical Solution Temperature)である低温側二層分離温度が、冷凍ユニットに定められている規定蒸発温度の下限未満となるように、冷媒および冷凍機油を選ぶものとする。低温側二層分離温度は、規定蒸発温度の下限に対して余裕を持って、例えば10℃以上低いことが好ましい。例えば、規定蒸発温度の下限が−45℃である場合は、低温側二層分離温度が−55℃以下となるような組み合わせの冷媒および冷凍機油を採用することが好ましい。低温側二層分離温度が−55℃以下となるような組み合わせの一例としては、CO冷媒および上述したダイヤモンドフリーズMA68を挙げることができる。
Here, the state in which the liquid refrigerant and the refrigerating machine oil are separated into two layers without being melted together, or the state in which it is emulsified is called two-layer separation, and the temperature at which such a state is reached is called the two-layer separation temperature.
The two-layer separation temperature between the refrigerating machine oil and the liquid refrigerant can be represented by a two-layer separation temperature curve indicating the relationship between the concentration and the temperature of the refrigerating machine oil. The two-layer separation temperature curve includes a two-layer separation temperature curve on the high temperature side that starts separation when the temperature is increased (a convex curve downward), and a low-temperature side that begins separation when the temperature is decreased. There is a two-layer separation temperature curve (upward convex curve).
When the temperature falls below the two-layer separation temperature curve on the low temperature side, the mixed solution of liquid refrigerant and refrigerating machine oil separates from one phase having a uniform concentration into two phases having different concentrations.
As described above, the mixed solution of the refrigerant liquid phase and the refrigerating machine oil is prevented from increasing in viscosity as a whole, and the refrigerating machine oil is uniformly made into a liquid refrigerant without separating the mixed solution in order to sufficiently ensure the oil return. Dissolve in. For this reason, the refrigerant is set so that the low temperature side two-layer separation temperature, which is the maximum value (UCST: Upper Critical Solution Temperature) of the low temperature side two-layer separation temperature curve, is less than the lower limit of the specified evaporation temperature set for the refrigeration unit. And refrigeration oil shall be selected. The low temperature side two-layer separation temperature is preferably lower by 10 ° C. or more, for example, with a margin with respect to the lower limit of the specified evaporation temperature. For example, when the lower limit of the specified evaporation temperature is −45 ° C., it is preferable to employ a combination of refrigerant and refrigerating machine oil such that the low temperature side two-layer separation temperature is −55 ° C. or lower. As an example of a combination in which the low temperature side two-layer separation temperature is −55 ° C. or lower, a CO 2 refrigerant and the above-described diamond freeze MA68 can be cited.

ここに、バイパス措置を実施する条件の一例を示す。
制御部20は、圧力センサ21により検知される圧力を用いて演算することで得られた吸入圧力飽和温度を監視しながら、その吸入圧力飽和温度が規定値としての−30℃以下であって、冷凍ユニット1の積算運転時間が60分に達する毎に、バイパス措置の開始から規定時間としての5分間に亘り、バイパス経路15を開くバイパス措置を実施する。つまり、低温設定時には、冷凍ユニット1を含む冷凍システムが運転される間、60分毎に間欠的に、バイパス措置を実施することで、圧縮機11への油戻りが滞ることなく、気液分離器14に溜まった冷凍機油を圧縮機11へとスムーズに戻せるようにする。
Here, an example of conditions for implementing the bypass measure is shown.
While monitoring the suction pressure saturation temperature obtained by calculating using the pressure detected by the pressure sensor 21, the control unit 20 has a suction pressure saturation temperature of −30 ° C. or less as a specified value, Every time the integrated operation time of the refrigeration unit 1 reaches 60 minutes, a bypass measure for opening the bypass path 15 is performed for five minutes as a specified time from the start of the bypass measure. In other words, when the refrigeration system including the refrigeration unit 1 is operated at the time of low temperature setting, by performing bypass measures intermittently every 60 minutes, the oil return to the compressor 11 is not delayed and gas-liquid separation is performed. The refrigerating machine oil accumulated in the container 14 can be smoothly returned to the compressor 11.

冷凍ユニット1においては、例えば−5℃〜−45℃もの広い規定蒸発温度の範囲内で設定蒸発温度を変更可能である。そのため、規定蒸発温度における低い温度域においては、冷凍機油の粘度に大きな影響が及んで気液分離器14からの油戻り性に影響するとしても、それ以外の温度域では、油戻し機構142により十分に回収可能な適切な粘度であって、油戻り性に影響しない場合もある。   In the refrigeration unit 1, the set evaporation temperature can be changed within a range of a specified evaporation temperature as wide as, for example, -5 ° C to -45 ° C. For this reason, in the low temperature range at the specified evaporation temperature, the viscosity of the refrigerating machine oil is greatly affected, and the oil return property from the gas-liquid separator 14 is affected. The viscosity is adequately recoverable and may not affect oil return.

仮に、低温設定時に冷凍機油の粘度が増大したときに、タンク141内から十分な量の冷凍機油を油戻し機構142に回収できるように、油戻し機構142のピックアップホール142Aの径や、油戻し機構に用いられたキャピラリチューブの径を大きくするとすれば、それ以外の温度域の設定時には、油戻し機構142により気液分離器14から圧縮機11へと液が戻り過ぎてしまう。液圧縮から圧縮機11を保護し、かつ、液冷媒により希釈された冷凍機油によって十分な潤滑性が得られるように、気液分離器14に溜まった冷凍機油を適切な量だけ圧縮機11へと戻す必要がある。
また、低温設定時にも、気液分離器14における冷凍機油の粘度が増大しないように、気液分離器14のタンク141の下部をヒータにより加熱することも考えられるが、ヒータの増設は、ヒータの制御装置も含めた冷凍ユニット1の製造コストの上昇、およびランニングコストの増加に繋がる。
If the viscosity of the refrigeration oil increases at the low temperature setting, the diameter of the pickup hole 142A of the oil return mechanism 142 and the oil return so that a sufficient amount of the refrigeration oil can be recovered from the tank 141 to the oil return mechanism 142. If the diameter of the capillary tube used in the mechanism is increased, the liquid will be returned too much from the gas-liquid separator 14 to the compressor 11 by the oil return mechanism 142 when setting the temperature range other than that. An appropriate amount of refrigeration oil accumulated in the gas-liquid separator 14 is supplied to the compressor 11 so that the compressor 11 is protected from liquid compression and sufficient lubricity is obtained by the refrigeration oil diluted with the liquid refrigerant. It is necessary to return.
Further, it is conceivable that the lower part of the tank 141 of the gas-liquid separator 14 is heated by a heater so that the viscosity of the refrigerating machine oil in the gas-liquid separator 14 does not increase even at a low temperature setting. This leads to an increase in manufacturing cost of the refrigeration unit 1 including the control device and an increase in running cost.

本実施形態によれば、気液分離器14における冷凍機油の粘度増大による油戻り性の悪化が想定される条件に基づいて、気液分離器14に溜まった冷凍機油にバイパス経路15を通じて冷媒の液相を混入させることで、気液分離器14にヒータを増設することなく、圧縮機11における適正な冷凍機油の希釈率および気液分離器14による液圧縮の役割を維持しつつ、低温設定時にも適切な量だけ冷凍機油を圧縮機11へとスムーズに戻すことができる。   According to the present embodiment, the refrigerant is stored in the gas-liquid separator 14 through the bypass path 15 based on the conditions that the oil return property is deteriorated due to the increase in the viscosity of the refrigerator oil in the gas-liquid separator 14. By mixing the liquid phase, without adding a heater to the gas-liquid separator 14, the proper refrigeration oil dilution rate in the compressor 11 and the role of liquid compression by the gas-liquid separator 14 are maintained, and the temperature setting is low. Sometimes, an appropriate amount of refrigeration oil can be smoothly returned to the compressor 11.

〔第2実施形態〕
次に、本発明の第2実施形態について説明する。
以下、第1実施形態と相違する事項を中心に説明する。第1実施形態と同様の構成には同じ符号を付している。後述する第3実施形態においても同様である。
[Second Embodiment]
Next, a second embodiment of the present invention will be described.
In the following, the description will be focused on matters that differ from the first embodiment. The same code | symbol is attached | subjected to the structure similar to 1st Embodiment. The same applies to a third embodiment to be described later.

図2に示す第2実施形態の冷凍ユニット2は、第1実施形態の冷凍ユニット1と同様の構成の冷媒回路と、制御部22と、圧力センサ21および油面レベルセンサ23とを備える。
油面レベルセンサ23は、圧縮機11のハウジング11A内に、液冷媒に溶解した状態で溜まる冷凍機油の液位(油面レベル)を検知する。この液位を、冷凍機油の圧縮機11への戻り状況の指標として用いる。
The refrigeration unit 2 of the second embodiment shown in FIG. 2 includes a refrigerant circuit having the same configuration as the refrigeration unit 1 of the first embodiment, a control unit 22, a pressure sensor 21, and an oil level sensor 23.
The oil level sensor 23 detects the liquid level (oil level) of the refrigeration oil that accumulates in the housing 11A of the compressor 11 while being dissolved in the liquid refrigerant. This liquid level is used as an index for returning the refrigeration oil to the compressor 11.

バイパス経路15が開いている間は、熱交換器12を経た冷媒の一部をバイパス経路15へと流入させる分だけ、熱利用先Aへと流れる冷媒の流量が減少し、冷媒回路全体を循環する冷媒流量が減少するため、冷凍能力が低下する。これを考慮し、本実施形態では、吸入圧力飽和温度に加え、圧縮機11内の検知された冷凍機油の液位にも関係する条件に基づいて、バイパス経路15を開閉する。   While the bypass path 15 is open, the flow rate of the refrigerant flowing to the heat utilization destination A is reduced by an amount corresponding to the flow of a part of the refrigerant that has passed through the heat exchanger 12 into the bypass path 15, and the entire refrigerant circuit is circulated. Since the refrigerant flow rate to be reduced is reduced, the refrigeration capacity is reduced. In consideration of this, in the present embodiment, the bypass path 15 is opened and closed based on conditions related to the detected refrigerant level in the compressor 11 in addition to the suction pressure saturation temperature.

以下、圧力センサ21および油面レベルセンサ23を用いる制御の一例を示す。
この制御では、圧縮機11に溜まった冷凍機油の液位が規定の第1液位を下回ったことを検知する第1油面レベルスイッチ231と、圧縮機11に溜まった冷凍機油の液位が、第1液位よりも高い、規定の第2液位を上回ったことを検知する第2油面レベルスイッチ232とから油面レベルセンサ23が構成されているものとする。第1油面レベルスイッチ231および第2油面レベルスイッチ232は、それぞれが対応する液位に応じて入り切りされる。
ここでは、バイパス措置を頻繁に繰り返すハンチングを避けるため、規定液位としての2つの液位(第1液位および第2液位)を制御に用いている。但し、1つの規定液位のみを用いてバイパス措置に係る制御を行うことも許容される。その場合は、1つの油面レベルスイッチのみで足りる。
Hereinafter, an example of control using the pressure sensor 21 and the oil level sensor 23 will be described.
In this control, the first oil level switch 231 that detects that the liquid level of the refrigerating machine oil accumulated in the compressor 11 has fallen below the prescribed first liquid level, and the liquid level of the refrigerating machine oil accumulated in the compressor 11 are It is assumed that the oil level sensor 23 is composed of a second oil level switch 232 that detects that the specified second level is higher than the first level. The first oil level switch 231 and the second oil level switch 232 are turned on and off according to the corresponding liquid level.
Here, in order to avoid hunting in which the bypass measure is frequently repeated, two liquid levels (first liquid level and second liquid level) as the predetermined liquid levels are used for control. However, it is also permissible to perform control related to the bypass measure using only one specified liquid level. In that case, only one oil level switch is required.

圧力センサ21により検知された圧力を用いて制御部22により演算した吸入圧力飽和温度が規定値以下、つまりは冷凍ユニット1の蒸発温度が低温に設定されており、かつ、圧縮機11における冷凍機油の液位が第1液位を下回ったために第1油面レベルスイッチ231がオン(またはオフ)となると、制御部22によりバイパス弁16が制御されることで、バイパス経路15が開かれる。これをもってバイパス措置が開始される。   The suction pressure saturation temperature calculated by the control unit 22 using the pressure detected by the pressure sensor 21 is equal to or lower than a specified value, that is, the evaporation temperature of the refrigeration unit 1 is set to a low temperature, and the refrigeration oil in the compressor 11 When the first oil level switch 231 is turned on (or off) because the liquid level is lower than the first liquid level, the bypass valve 16 is controlled by the control unit 22 to open the bypass path 15. With this, the bypass measure is started.

バイパス経路15を通じて気液分離器14へと流入した冷媒の液相が気液分離器14に溜まった冷凍機油へと混入されることで、油戻り性が良くなるので、潤滑不良や焼き付きの防止に足りる量の冷凍機油が圧縮機11へと戻る。
その後、圧縮機11に溜まった冷凍機油の液位が、第2液位にまで達し、第2油面レベルスイッチ232がオン(またはオフ)となれば、制御部22によりバイパス弁16が制御されることで、バイパス経路15が閉じられる。
バイパス経路15を通じて気液分離器14へと流入した冷媒の液相による冷凍機油の希釈が過度に進展するのを防ぐため、圧縮機11内の冷凍機油の液位が少なくとも第1液位にまで、好ましくは第2液位にまで達し、油戻り性の改善の必要がなくなった時点で、バイパス経路15を閉じてバイパス措置を終了し、それ以上の希釈進展を阻止することが好ましい。
Since the liquid phase of the refrigerant that has flowed into the gas-liquid separator 14 through the bypass path 15 is mixed into the refrigeration oil accumulated in the gas-liquid separator 14, the oil return property is improved. A sufficient amount of refrigerating machine oil returns to the compressor 11.
Thereafter, when the liquid level of the refrigeration oil accumulated in the compressor 11 reaches the second liquid level and the second oil level switch 232 is turned on (or off), the control unit 22 controls the bypass valve 16. As a result, the bypass path 15 is closed.
In order to prevent excessive dilution of the refrigerating machine oil due to the liquid phase of the refrigerant flowing into the gas-liquid separator 14 through the bypass path 15, the level of the refrigerating machine oil in the compressor 11 reaches at least the first liquid level. Preferably, when the oil reaches the second liquid level and the oil return property does not need to be improved, it is preferable to close the bypass passage 15 and end the bypass measure to prevent further dilution.

第2実施形態によれば、油面レベルセンサ23により検知可能な実際の油戻り状況に基づいて、油戻り性が悪化しつつあるために油戻り性の改善の必要がある場合にのみ、バイパス措置を限定的に実施することができる。そのため、冷凍能力の低下を抑えつつ、圧縮機11における潤滑不良や焼き付きを未然に防止することができる。   According to the second embodiment, on the basis of the actual oil return state that can be detected by the oil level sensor 23, the bypass is only performed when the oil return property needs to be improved because the oil return property is deteriorating. Measures can be implemented in a limited way. Therefore, it is possible to prevent poor lubrication and seizure in the compressor 11 while suppressing a decrease in refrigeration capacity.

上記第2実施形態における制御を次のように変更することもできる。
例えば、吸入圧力飽和温度が規定値としての−30℃以下であって、冷凍ユニット1の積算運転時間が60分に達する毎に、圧縮機11に溜まっている冷凍機油の液位が規定液位に対して低い場合に限ってバイパス経路15が開かれるように、制御部22がバイパス弁16を制御するようにしてもよい。
その後、圧縮機11における冷凍機油の液位が少なくとも規定液位にまで達したならば、あるいは、バイパス経路15を開くバイパス措置の開始から、規定時間として、例えば5分間が経過したならば、バイパス弁16の制御によりバイパス経路15を閉じ、バイパス措置を終了することができる。
The control in the second embodiment can be changed as follows.
For example, when the suction pressure saturation temperature is −30 ° C. or less as a specified value and the accumulated operation time of the refrigeration unit 1 reaches 60 minutes, the liquid level of the refrigerating machine oil accumulated in the compressor 11 becomes the specified liquid level. However, the control unit 22 may control the bypass valve 16 so that the bypass path 15 is opened only when it is low.
After that, if the level of the refrigeration oil in the compressor 11 reaches at least the specified level, or if, for example, 5 minutes have passed as the specified time from the start of the bypass measure for opening the bypass path 15, the bypass is performed. By controlling the valve 16, the bypass path 15 can be closed and the bypass measure can be terminated.

〔第3実施形態〕
次に、本発明の第3実施形態について説明する。
図3に示す第3実施形態の冷凍ユニット3は、第1実施形態の冷凍ユニット1と同様の構成の冷媒回路と、制御部24と、圧力センサ21および温度センサ25とを備える。
本実施形態では、圧縮機11における冷凍機油の温度、またはその温度を推定可能な温度を制御に用いる。圧縮機11のハウジング11Aに溜まった冷凍機油の温度を検知するため、温度センサ25は、ハウジング11Aの下部外周部に設置される。
[Third Embodiment]
Next, a third embodiment of the present invention will be described.
The refrigeration unit 3 of the third embodiment shown in FIG. 3 includes a refrigerant circuit having the same configuration as that of the refrigeration unit 1 of the first embodiment, a control unit 24, a pressure sensor 21, and a temperature sensor 25.
In this embodiment, the temperature of the refrigerating machine oil in the compressor 11 or the temperature at which the temperature can be estimated is used for control. In order to detect the temperature of the refrigerating machine oil accumulated in the housing 11A of the compressor 11, the temperature sensor 25 is installed on the lower outer peripheral portion of the housing 11A.

制御部24は、温度センサ25により検知された温度と、圧力センサ21により検知された吸入圧力飽和温度との差から冷凍機油の過熱度(以下、油過熱度)を演算する。この油過熱度を、冷凍機油の圧縮機11への戻り状況の指標として用いる。
ここで、CO冷媒等のように、圧縮機11のハウジング11A内部の圧力が高圧に設定される場合、油過熱度は、吐出圧力に対応する飽和温度と、圧縮機11の冷凍機油の温度または推定温度との差から演算する。その場合は、圧縮機11の吐出側に設置した圧力センサにより検知された吐出圧力から飽和温度を演算する。
The control unit 24 calculates the degree of superheat of the refrigerating machine oil (hereinafter referred to as oil superheat degree) from the difference between the temperature detected by the temperature sensor 25 and the suction pressure saturation temperature detected by the pressure sensor 21. This degree of oil superheat is used as an index of the return status of the refrigeration oil to the compressor 11.
Here, when the pressure inside the housing 11A of the compressor 11 is set to a high pressure, such as CO 2 refrigerant, the oil superheat degree is equal to the saturation temperature corresponding to the discharge pressure and the temperature of the refrigerating machine oil of the compressor 11. Or it calculates from the difference with estimated temperature. In that case, the saturation temperature is calculated from the discharge pressure detected by the pressure sensor installed on the discharge side of the compressor 11.

本実施形態においても、冷凍能力を考慮し、油過熱度に基づいて油戻り性の改善の要請がある場合にのみ、バイパス措置を実施する。
以下、吸入圧力飽和温度と、油過熱度とを用いる制御の一例を示す。この制御では、圧縮機11の油過熱度について、油戻り性が悪化しつつあることを示す第1過熱度と、それよりも低い第2過熱度とが設定されているものとする。
本実施形態でも、ハンチングを避けるため、規定過熱度としての2つの液位(第1過熱度および第2過熱度)を制御に用いている。但し、1つの規定過熱度のみを用いてバイパス措置に係る制御を行うことも許容される。
Also in the present embodiment, the bypass measure is implemented only when there is a request for improving the oil return property based on the degree of oil superheat in consideration of the refrigerating capacity.
Hereinafter, an example of control using the suction pressure saturation temperature and the oil superheat degree will be shown. In this control, regarding the oil superheat degree of the compressor 11, it is assumed that a first superheat degree indicating that the oil return property is deteriorating and a second superheat degree lower than that are set.
Also in this embodiment, in order to avoid hunting, two liquid levels (first superheat degree and second superheat degree) as the specified superheat degree are used for control. However, it is also permissible to perform control related to the bypass measure using only one specified superheat degree.

圧力センサ21により検知された圧力を用いて制御部24により演算した吸入圧力飽和温度が規定値以下でかつ、圧縮機11の油過熱度が第1過熱度に対して高ければ、制御部24によりバイパス弁16が制御されることで、バイパス経路15が開かれる。   If the suction pressure saturation temperature calculated by the control unit 24 using the pressure detected by the pressure sensor 21 is equal to or lower than a specified value and the oil superheat degree of the compressor 11 is higher than the first superheat degree, the control unit 24 By controlling the bypass valve 16, the bypass path 15 is opened.

上記のバイパス措置により、圧縮機11の油過熱度が第2過熱度にまで抑制されたならば、制御部24によりバイパス弁16が制御されることで、バイパス経路15が閉じられる。
油過熱度が、少なくとも第1過熱度にまで、好ましくは第2過熱度にまで抑制されていれば、潤滑に足りる量の冷凍機油と液冷媒との混合溶液が圧縮機11内に溜まっているので、バイパス経路15を閉じて、それ以上の希釈進展を阻止することが好ましい。
If the oil superheat degree of the compressor 11 is suppressed to the second superheat degree by the above bypass measure, the bypass valve 16 is controlled by the control unit 24, whereby the bypass path 15 is closed.
If the oil superheat degree is suppressed to at least the first superheat degree, and preferably to the second superheat degree, a sufficient amount of mixed solution of refrigeration oil and liquid refrigerant is accumulated in the compressor 11. Therefore, it is preferable to close the bypass path 15 to prevent further dilution progress.

第3実施形態によれば、圧縮機11内部で液冷媒に溶解した冷凍機油の量を推定可能な油過熱度に基づいて、油戻り性の改善の必要がある場合にのみ、バイパス措置を限定的に実施することができる。そのため、冷凍能力の低下を抑えつつ、圧縮機11における潤滑不良や焼き付きを未然に防止することができる。   According to the third embodiment, the bypass measure is limited only when the oil return property needs to be improved based on the degree of oil superheat that can estimate the amount of refrigerating machine oil dissolved in the liquid refrigerant inside the compressor 11. Can be implemented automatically. Therefore, it is possible to prevent poor lubrication and seizure in the compressor 11 while suppressing a decrease in refrigeration capacity.

上記第3実施形態における制御を次のように変更することもできる。
例えば、吸入圧力飽和温度が規定値としての−30℃以下であって、冷凍ユニット1の積算運転時間が60分に達する毎に、圧縮機11に溜まっている冷凍機油の過熱度が規定過熱度に対して高い場合に限ってバイパス経路15が開かれるように、制御部24がバイパス弁16を制御するようにしてもよい。
その後、圧縮機11における冷凍機油の過熱度が少なくとも規定過熱度にまで抑制されたならば、あるいは、バイパス経路15を開くバイパス措置の開始から例えば5分間が経過したならば、バイパス弁16の制御によりバイパス経路15を閉じ、バイパス措置を終了することができる。
The control in the third embodiment can be changed as follows.
For example, when the suction pressure saturation temperature is −30 ° C. or less as a specified value and the accumulated operation time of the refrigeration unit 1 reaches 60 minutes, the superheat degree of the refrigerating machine oil accumulated in the compressor 11 is the specified superheat degree. However, the control unit 24 may control the bypass valve 16 so that the bypass path 15 is opened only when it is high.
Thereafter, if the superheat degree of the refrigeration oil in the compressor 11 is suppressed to at least the specified superheat degree, or if, for example, 5 minutes have elapsed since the start of the bypass measure for opening the bypass path 15, the control of the bypass valve 16 is performed. Thus, the bypass path 15 can be closed and the bypass measure can be terminated.

バイパス措置の開始条件と、バイパス措置の終了条件とに異なる指標を用いることもできる。例えば、圧縮機11における冷凍機油の液位が規定液位を下回ればバイパス措置を開始し、バイパス措置の開始から規定時間の経過後、あるいは、バイパス措置により圧縮機11における冷凍機油の過熱度が少なくとも規定過熱度にまで抑制されたならば、バイパス措置を終了するように制御することができる。   Different indicators can be used for the start condition of the bypass measure and the end condition of the bypass measure. For example, when the level of the refrigeration oil in the compressor 11 falls below a specified liquid level, the bypass measure is started, and after a lapse of a specified time from the start of the bypass measure or by the bypass measure, the degree of superheat of the refrigeration oil in the compressor 11 is increased. Control can be made to end the bypass measure if at least the specified degree of superheat is suppressed.

上記以外にも、本発明の主旨を逸脱しない限り、上記実施形態で挙げた構成を取捨選択したり、他の構成に適宜変更したりすることが可能である。   In addition to the above, as long as the gist of the present invention is not deviated, the configuration described in the above embodiment can be selected or changed to another configuration as appropriate.

本発明は、冷蔵・冷凍ケースを有する冷凍システムや、そのシステムを構成するコンデンシングユニットに限らず、空気調和機、コンテナ等に係る冷凍システムや、そのシステムを構成する冷凍ユニットにも適用することができる。   The present invention is not limited to a refrigeration system having a refrigeration / freezing case and a condensing unit constituting the system, but also to a refrigeration system relating to an air conditioner, a container, etc., and a refrigeration unit constituting the system. Can do.

バイパス弁16は、必ずしも開閉弁である必要はなく、バイパス経路15を流れる冷媒の流量を調整する流量調整弁として構成されていてもよい。
その場合は、例えば、次のような制御も可能となる。
冷凍機油の粘度に大きな影響を及ぼす程の低い温度には蒸発温度が設定されていないとしても、制御部20により、バイパス経路15に冷媒が少し流れるようにバイパス弁16の開度を制御する。そして、蒸発温度が低温に設定されているとき、気液分離器14から圧縮機11への油戻り性の悪化が想定される条件に基づいて、バイパス経路15を流れる冷媒の流量が増えるように制御部20によりバイパス弁16を制御する。そうすると、気液分離器14に溜まっている混合溶液へとバイパス経路15を通じて混入する液冷媒の量が増え、それに伴い混合溶液における冷凍機油の濃度が低下するため、圧縮機11へと戻される混合溶液全体としての粘度増大を抑制して油戻り性の悪化を避けることができる。
The bypass valve 16 is not necessarily an open / close valve, and may be configured as a flow rate adjusting valve that adjusts the flow rate of the refrigerant flowing through the bypass path 15.
In that case, for example, the following control is also possible.
Even if the evaporating temperature is not set to a low temperature that greatly affects the viscosity of the refrigerating machine oil, the opening degree of the bypass valve 16 is controlled by the control unit 20 so that the refrigerant slightly flows in the bypass path 15. When the evaporation temperature is set to a low temperature, the flow rate of the refrigerant flowing through the bypass passage 15 is increased based on the condition that deterioration of the oil return property from the gas-liquid separator 14 to the compressor 11 is assumed. The control unit 20 controls the bypass valve 16. Then, the amount of liquid refrigerant mixed into the mixed solution accumulated in the gas-liquid separator 14 through the bypass path 15 increases, and the concentration of the refrigeration oil in the mixed solution decreases accordingly, so that the mixing returned to the compressor 11 is performed. The increase in viscosity of the entire solution can be suppressed, and deterioration of oil return can be avoided.

バイパス経路15を流れる冷媒流量を増やすバイパス措置は、所定時間毎に間欠的に、あるいは、圧縮機11における冷凍機油の液位や油過熱度が示す冷凍機油の戻り状況に応じて、油戻り性を改善する必要性が認められる場合にのみ限定して行うのが好ましい。
バイパスさせる冷媒の流量を増やしてから所定の時間が経過すれば、あるいは油戻り状況からバイパスの必要性がなくなれば、バイパス弁16の制御により、バイパス経路15を流れる冷媒の流量を減少させるのが好ましい。
The bypass measure for increasing the flow rate of the refrigerant flowing through the bypass path 15 is an oil return property intermittently every predetermined time or according to the return level of the refrigeration oil indicated by the level of the refrigeration oil in the compressor 11 and the degree of oil superheat. It is preferable to carry out the process only when there is a need for improvement.
If a predetermined time elapses after increasing the flow rate of the refrigerant to be bypassed or if there is no need for the bypass from the oil return situation, the flow rate of the refrigerant flowing through the bypass path 15 may be reduced by controlling the bypass valve 16. preferable.

上記各実施形態では、熱交換器12を経て減圧部13へと向かう冷媒の一部のみをバイパス経路15を通じて気液分離器14へと流入させているが、油戻り性を直ちに改善する必要がある場合には、熱交換器12を経て減圧部13へと向かう冷媒の全部を、バイパス経路15を通じて気液分離器14へと流入させることも許容される。この場合、バイパス弁16は、例えば、熱交換器12の出口側の主流から分岐するバイパス経路15の始端等に設けることができる。   In each of the above embodiments, only a part of the refrigerant that goes to the decompression unit 13 through the heat exchanger 12 is caused to flow into the gas-liquid separator 14 through the bypass path 15, but it is necessary to immediately improve the oil return property. In some cases, it is allowed to allow all of the refrigerant that passes through the heat exchanger 12 to the decompression unit 13 to flow into the gas-liquid separator 14 through the bypass path 15. In this case, the bypass valve 16 can be provided, for example, at the start end of the bypass path 15 branched from the main stream on the outlet side of the heat exchanger 12.

1〜3 冷凍ユニット
10 熱源回路
11 圧縮機
11A ハウジング
12 熱交換器
13 減圧部
14 気液分離器
15 バイパス経路
16 バイパス弁
20,22,24 制御部
21 圧力センサ
23 油面レベルセンサ
25 温度センサ
141 タンク
142 油戻し機構
142A ピックアップホール
231 第1油面レベルスイッチ
232 第2油面レベルスイッチ
A 熱利用先
1-3 Refrigeration unit 10 Heat source circuit 11 Compressor 11A Housing 12 Heat exchanger 13 Decompression unit 14 Gas-liquid separator 15 Bypass path 16 Bypass valves 20, 22, 24 Control unit 21 Pressure sensor 23 Oil level sensor 25 Temperature sensor 141 Tank 142 Oil return mechanism 142A Pickup hole 231 First oil level switch 232 Second oil level switch A Heat utilization destination

Claims (9)

冷媒を圧縮する圧縮機、前記冷媒と空気との間で熱交換させる熱交換器、および前記冷媒を減圧させる減圧部を含む冷媒回路を有し、前記減圧部を経た前記冷媒を熱利用先へと供給する冷凍ユニットであって、
前記熱利用先および前記圧縮機の間に介在する気液分離器と、
前記熱交換器を経て前記減圧部へと向かう前記冷媒の少なくとも一部を前記気液分離器へと流入させるバイパス経路と、
前記バイパス経路を開閉するか、あるいは前記バイパス経路を流れる前記冷媒の流量を調整するバイパス弁と、
前記バイパス弁を制御する制御部と、を備え、
前記気液分離器は、前記冷媒の液相に溶解した状態で内部に溜まった冷凍機油を回収して前記圧縮機へと戻す油戻し機構を有し、
前記冷媒の液相および前記冷凍機油の混合溶液の低温側二層分離温度が、前記冷凍ユニットに定められている規定蒸発温度の下限未満であり、
前記制御部は、前記冷凍機油の粘度増大による油戻り性の悪化が想定される所定の条件に基づいて前記バイパス弁を制御することで、前記バイパス経路を開くか、あるいは前記バイパス経路を流れる前記冷媒の流量を増やす、バイパス措置を行う、
ことを特徴とする冷凍ユニット。
A compressor that compresses the refrigerant; a heat exchanger that exchanges heat between the refrigerant and air; and a refrigerant circuit that includes a decompression unit that decompresses the refrigerant, and the refrigerant that has passed through the decompression unit is used as a heat utilization destination A refrigeration unit to supply
A gas-liquid separator interposed between the heat utilization destination and the compressor;
A bypass path through which at least a part of the refrigerant going to the decompression unit via the heat exchanger flows into the gas-liquid separator;
A bypass valve that opens and closes the bypass path or adjusts the flow rate of the refrigerant flowing through the bypass path;
A control unit for controlling the bypass valve,
The gas-liquid separator has an oil return mechanism that recovers refrigeration oil accumulated inside in a state dissolved in the liquid phase of the refrigerant and returns it to the compressor.
The low-temperature two-layer separation temperature of the liquid phase of the refrigerant and the mixed solution of the refrigerating machine oil is less than the lower limit of the prescribed evaporation temperature defined in the refrigeration unit;
The control unit opens the bypass path or flows through the bypass path by controlling the bypass valve based on a predetermined condition in which deterioration of oil return property due to an increase in the viscosity of the refrigerator oil is assumed. Increase the refrigerant flow rate, take bypass measures,
A refrigeration unit characterized by that.
前記条件に用いる指標は、前記圧縮機へと吸入される前記冷媒の圧力に対応する飽和温度であり、
前記制御部は、
前記飽和温度が規定値に対して低い場合に、前記バイパス弁を制御することで、前記バイパス措置を行う、
請求項1に記載の冷凍ユニット。
The index used for the condition is a saturation temperature corresponding to the pressure of the refrigerant sucked into the compressor,
The controller is
When the saturation temperature is lower than a specified value, the bypass measure is performed by controlling the bypass valve.
The refrigeration unit according to claim 1.
前記制御部は、
前記条件に基づいて、所定の時間毎に、前記バイパス措置を間欠的に行う、
請求項1または2に記載の冷凍ユニット。
The controller is
Based on the conditions, the bypass measure is intermittently performed at predetermined time intervals.
The refrigeration unit according to claim 1 or 2.
前記制御部は、
前記圧縮機へと吸入される前記冷媒の圧力に対応する飽和温度が規定値に対して低く、かつ前記圧縮機における前記冷凍機油の液位が規定液位に対して低い場合に、前記バイパス措置を行う、
請求項2または3に記載の冷凍ユニット。
The controller is
When the saturation temperature corresponding to the pressure of the refrigerant sucked into the compressor is lower than a specified value and the level of the refrigerating machine oil in the compressor is lower than the specified level, the bypass measure I do,
The refrigeration unit according to claim 2 or 3.
前記制御部は、
前記バイパス措置の開始から規定時間が経過したならば、あるいは、前記バイパス措置により前記圧縮機における前記冷凍機油の液位が少なくとも前記規定液位まで達したならば、
前記バイパス弁を制御することで、前記バイパス措置を終了する、
請求項4に記載の冷凍ユニット。
The controller is
If the specified time has elapsed from the start of the bypass measure, or if the level of the refrigerating machine oil in the compressor reaches at least the specified liquid level by the bypass measure,
By controlling the bypass valve, the bypass measure is terminated.
The refrigeration unit according to claim 4.
前記制御部は、
前記圧縮機へと吸入される前記冷媒の圧力に対応する飽和温度が規定値に対して低く、かつ前記圧縮機における前記冷凍機油の過熱度が規定過熱度に対して高い場合に、前記バイパス措置を行う、
請求項2、3、および5のいずれか一項に記載の冷凍ユニット。
The controller is
When the saturation temperature corresponding to the pressure of the refrigerant sucked into the compressor is lower than a specified value and the degree of superheat of the refrigerating machine oil in the compressor is higher than the specified superheat degree, the bypass measure I do,
The refrigeration unit according to any one of claims 2, 3, and 5.
前記制御部は、
前記バイパス措置の開始から規定時間が経過したならば、あるいは、前記バイパス措置により前記圧縮機における前記冷凍機油の過熱度が少なくとも規定過熱度にまで抑制されたならば、
前記バイパス弁を制御することで、前記バイパス措置を終了する、
請求項4または6に記載の冷凍ユニット。
The controller is
If the specified time has passed since the start of the bypass measure, or if the degree of superheat of the refrigerating machine oil in the compressor is suppressed to at least the specified superheat degree by the bypass measure,
By controlling the bypass valve, the bypass measure is terminated.
The refrigeration unit according to claim 4 or 6.
冷媒を圧縮する圧縮機、前記冷媒と空気との間で熱交換させる熱交換器、前記冷媒を減圧させる減圧部、および前記冷媒を蒸発させる蒸発器を有する冷凍システムであって、
前記蒸発器および前記圧縮機の間に介在する気液分離器と、
前記熱交換器を経て前記減圧部へと向かう前記冷媒の少なくとも一部を前記気液分離器へと流入させるバイパス経路と、
前記バイパス経路を開閉するか、あるいは前記バイパス経路を流れる前記冷媒の流量を調整するバイパス弁と、
前記バイパス弁を制御する制御部と、を備え、
前記気液分離器は、前記冷媒の液相に溶解した状態で内部に溜まった冷凍機油を回収して前記圧縮機へと戻す油戻し機構を有し、
前記冷媒の液相および前記冷凍機油の混合溶液の低温側二層分離温度が、前記冷凍システムに定められている規定蒸発温度の下限未満であり、
前記制御部は、前記冷凍機油の粘度増大による油戻り性の悪化が想定される所定の条件に基づいて前記バイパス弁を制御することで、前記バイパス経路を開くか、あるいは前記バイパス経路を流れる前記冷媒の流量を増やす、バイパス措置を行う、
ことを特徴とする冷凍システム。
A refrigeration system comprising a compressor that compresses a refrigerant, a heat exchanger that exchanges heat between the refrigerant and air, a decompression unit that depressurizes the refrigerant, and an evaporator that evaporates the refrigerant,
A gas-liquid separator interposed between the evaporator and the compressor;
A bypass path through which at least a part of the refrigerant going to the decompression unit via the heat exchanger flows into the gas-liquid separator;
A bypass valve that opens and closes the bypass path or adjusts the flow rate of the refrigerant flowing through the bypass path;
A control unit for controlling the bypass valve,
The gas-liquid separator has an oil return mechanism that recovers refrigeration oil accumulated inside in a state dissolved in the liquid phase of the refrigerant and returns it to the compressor.
The low-temperature two-layer separation temperature of the refrigerant liquid phase and the refrigerating machine oil mixed solution is less than the lower limit of the prescribed evaporation temperature defined in the refrigeration system,
The control unit opens the bypass path or flows through the bypass path by controlling the bypass valve based on a predetermined condition in which deterioration of oil return property due to an increase in the viscosity of the refrigerator oil is assumed. Increase the refrigerant flow rate, take bypass measures,
A refrigeration system characterized by that.
冷媒を圧縮する圧縮機、前記冷媒と空気との間で熱交換させる熱交換器、および前記冷媒を減圧させる減圧部を含む冷媒回路の制御方法であって、
前記冷媒回路は、前記減圧部を経た前記冷媒が供給される熱利用先および前記圧縮機の間に介在する気液分離器と、前記熱交換器を経て前記減圧部へと向かう前記冷媒の少なくとも一部を前記気液分離器へと流入させるバイパス経路と、前記バイパス経路を開閉するか、あるいは前記バイパス経路を流れる前記冷媒の流量を調整するバイパス弁と、を含んで構成されており、
冷凍機油の粘度増大による油戻り性の悪化が想定される所定の条件に基づいて、前記バイパス経路を開くか、あるいは前記バイパス経路を流れる前記冷媒の流量を増やすように前記バイパス弁を制御することで、
前記気液分離器に備えられた油戻し機構により、前記冷媒の液相に溶解した状態で前記気液分離器の内部に溜まった前記冷凍機油を回収して前記圧縮機へと戻す、
ことを特徴とする冷媒回路の制御方法。
A method of controlling a refrigerant circuit including a compressor that compresses a refrigerant, a heat exchanger that exchanges heat between the refrigerant and air, and a decompression unit that depressurizes the refrigerant,
The refrigerant circuit includes: a heat utilization destination to which the refrigerant having passed through the decompression unit is supplied; a gas-liquid separator interposed between the compressor; and at least the refrigerant that travels to the decompression unit through the heat exchanger A bypass path that allows a part to flow into the gas-liquid separator, and a bypass valve that opens and closes the bypass path or adjusts the flow rate of the refrigerant flowing through the bypass path,
Controlling the bypass valve so as to open the bypass path or increase the flow rate of the refrigerant flowing through the bypass path based on a predetermined condition in which deterioration of oil return property due to an increase in the viscosity of the refrigerating machine oil is assumed. so,
By the oil return mechanism provided in the gas-liquid separator, the refrigerating machine oil collected inside the gas-liquid separator in a state dissolved in the liquid phase of the refrigerant is recovered and returned to the compressor.
And a refrigerant circuit control method.
JP2017107271A 2017-05-31 2017-05-31 Refrigeration unit, refrigeration system and control method for refrigerant circuit Pending JP2018204805A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2017107271A JP2018204805A (en) 2017-05-31 2017-05-31 Refrigeration unit, refrigeration system and control method for refrigerant circuit
EP18175305.4A EP3410037A1 (en) 2017-05-31 2018-05-31 Refrigeration unit, refrigeration system, and method of controlling refrigerant circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017107271A JP2018204805A (en) 2017-05-31 2017-05-31 Refrigeration unit, refrigeration system and control method for refrigerant circuit

Publications (1)

Publication Number Publication Date
JP2018204805A true JP2018204805A (en) 2018-12-27

Family

ID=62492558

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017107271A Pending JP2018204805A (en) 2017-05-31 2017-05-31 Refrigeration unit, refrigeration system and control method for refrigerant circuit

Country Status (2)

Country Link
EP (1) EP3410037A1 (en)
JP (1) JP2018204805A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113339946A (en) * 2021-05-19 2021-09-03 广东Tcl智能暖通设备有限公司 Air conditioner operation control method and device, air conditioner and computer storage medium

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113551447B (en) * 2020-04-14 2023-03-21 青岛海尔空调器有限总公司 Compressor oil return control method and control system of air conditioning system in heating mode
CN117450693B (en) * 2023-12-25 2024-05-03 珠海格力电器股份有限公司 Compressor oil return control method and device, computer equipment and storage medium

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0579357U (en) 1992-03-19 1993-10-29 三菱重工業株式会社 Air conditioner
JPH085185A (en) * 1994-06-16 1996-01-12 Mitsubishi Electric Corp Refrigerating cycle system
JP3732907B2 (en) * 1996-12-12 2006-01-11 三洋電機株式会社 Air conditioner and refrigeration oil recovery method thereof
JP4295530B2 (en) * 2003-03-04 2009-07-15 東芝キヤリア株式会社 Air conditioner
JP5404110B2 (en) 2009-03-12 2014-01-29 三菱電機株式会社 Air conditioner
JP5842733B2 (en) * 2012-05-23 2016-01-13 ダイキン工業株式会社 Refrigeration equipment
WO2016194186A1 (en) * 2015-06-03 2016-12-08 三菱電機株式会社 Refrigeration cycle device and air-conditioning device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113339946A (en) * 2021-05-19 2021-09-03 广东Tcl智能暖通设备有限公司 Air conditioner operation control method and device, air conditioner and computer storage medium
CN113339946B (en) * 2021-05-19 2022-08-30 广东Tcl智能暖通设备有限公司 Air conditioner operation control method and device, air conditioner and computer storage medium

Also Published As

Publication number Publication date
EP3410037A1 (en) 2018-12-05

Similar Documents

Publication Publication Date Title
JP2020073838A (en) Refrigerant amount detection device
KR100846567B1 (en) Refrigerating apparatus
US20140290292A1 (en) Refrigerating and air-conditioning apparatus
WO2015045011A1 (en) Refrigeration cycle device
JP3861913B1 (en) Refrigeration equipment
JPWO2014068967A1 (en) Refrigeration equipment
CN110023692B (en) Refrigerating device
JP3852591B2 (en) Refrigeration cycle
JP2018204805A (en) Refrigeration unit, refrigeration system and control method for refrigerant circuit
JP5796619B2 (en) Air conditioner
JP2007322048A (en) Refrigerating device
JP2016205729A (en) Refrigeration cycle device
KR102017405B1 (en) Heat pump
JP2007064558A (en) Refrigeration air conditioner
JP2018173195A (en) Refrigerator
JP5934931B2 (en) Tank for refrigeration cycle apparatus and refrigeration cycle apparatus including the same
JP2009036508A (en) Supercooling system
JP2008082674A (en) Supercooling device
JP6615351B2 (en) Refrigeration cycle equipment
JP2020085269A (en) Refrigeration cycle device
JP4258030B2 (en) Refrigerant circulation device
JP2008082676A (en) Supercooling device
JP2009024998A (en) Supercooling device
JP5193450B2 (en) Supercooling device
JP2008082677A (en) Supercooling device