JP2004132597A - Pipe cleaning device and pipe cleaning method - Google Patents

Pipe cleaning device and pipe cleaning method Download PDF

Info

Publication number
JP2004132597A
JP2004132597A JP2002296875A JP2002296875A JP2004132597A JP 2004132597 A JP2004132597 A JP 2004132597A JP 2002296875 A JP2002296875 A JP 2002296875A JP 2002296875 A JP2002296875 A JP 2002296875A JP 2004132597 A JP2004132597 A JP 2004132597A
Authority
JP
Japan
Prior art keywords
refrigerant
pipe
connection pipe
cleaning
liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002296875A
Other languages
Japanese (ja)
Inventor
Hiroaki Tsuboe
坪江 宏明
Susumu Nakayama
中山 進
Hiroshi Yasuda
安田 弘
Kensaku Kokuni
小国 研作
Koji Naito
内藤 宏治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2002296875A priority Critical patent/JP2004132597A/en
Publication of JP2004132597A publication Critical patent/JP2004132597A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/18Refrigerant conversion

Landscapes

  • Cleaning In General (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a pipe cleaning device and pipe cleaning method for a refrigeration cycle improved in the reliablity of a refrigeration unit by reducing the quantity of refrigerator oil left in an existing pipe to suppress the deterioration of the refrigerator oil sealed in an outdoor machine to be newly connected. <P>SOLUTION: This pipe cleaning device 40a for refrigeration cycle performs the cleaning of the refrigeration unit having a refrigeration cycle connected by a liquid connecting pipe 65 and a gas connecting pipe 68 by circulating a refrigerant in the liquid connecting pipe 65 and gas connecting pipe 68. The pipe cleaning device 40a has a vapor compression refrigeration cycle formed by successively connecting a refrigerant compressor 1a, an air heat exchanger 2, a pressure reducing device 7 and an evaporator 4b, and a foreign matter separation device 11 arranged between the evaporator 4b and the refrigerant compressor 1a. The cleaning refrigerant condensed by the air heat exchanger 2 is circulated in the liquid connecting pipe 65 and gas connecting pipe 68. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、冷凍サイクルを利用した空気調和機や冷凍機を含む冷凍装置に使用する接続配管を洗浄する配管洗浄装置及び配管洗浄方法に関する。
【0002】
【従来の技術】
空気調和機及び冷凍機を含む冷凍装置の配管の洗浄方法として、既設の冷凍装置とは別の冷凍サイクルにより、冷凍装置に使用している冷媒と同じ冷媒を用いて配管を洗浄し、配管内に残った配管の切断時に生じた切り粉やバリ取りかすや配管の溶接作業で配管内表面に生じた酸化皮膜(酸化銅)などの塵や、配管内に残留した水分を取り除くために、洗浄冷媒中に混入した前記塵や水分を、配管洗浄用循環ポンプと阻止弁の間の接続パイプに配設したフィルターにより取り除くことが知られ、例えば特開2001−183035号公報に記載されている。
【特許文献1】
特開2001−183035号公報
【0003】
【発明が解決しようとする課題】
上記従来技術においては、洗浄冷媒中に冷凍機油が溶解した際に、洗浄冷媒と冷凍機油とを分離しておらず、既設配管内に残留した冷凍機油を取り除くには、新品の洗浄冷媒を別途用意する必要がある。室内機が複数台接続するマルチ式の空気調和機や配管長が長いシステムであって、既設配管内に残留する冷凍機油の量が多い場合では、配管内の洗浄状態によっては100kg以上の新品の洗浄冷媒が必要とされる。
【0004】
本発明の目的は、既設配管内に残留する冷凍機油の量を低減して新規に接続する室外機に封入された冷凍機油の劣化を抑制し、冷凍装置の信頼性を向上した冷凍サイクルの配管洗浄装置及び配管洗浄方法を提供することにある。
【0005】
【課題を解決するための手段】
上記課題を解決するために、本発明は、液接続配管及びガス接続配管で接続された冷凍サイクルを有する冷凍装置に対して、冷媒を前記液接続配管及びガス接続配管内に循環させて洗浄を行う冷凍サイクルの配管洗浄装置において、前記配管洗浄装置は、冷媒圧縮機、空気熱交換器、減圧装置、蒸発器が順次連結されて蒸気圧縮冷凍サイクルが構成され、前記蒸発器と前記冷媒圧縮機との間に異物分離装置が配置され、前記空気熱交換器によって凝縮された洗浄冷媒を前記液接続配管及びガス接続配管内に循環させるものである。
【0006】
また、上記のものにおいて、前記冷媒圧縮機の吐出側に油分離器を配置し、該油分離器で分離した冷凍機油を前記冷媒圧縮機の吸入側に導出することが望ましい。
さらに、上記のものにおいて、空気熱交換器により凝縮した洗浄冷媒の一部は液バイパス回路用減圧装置を介して、前記冷媒圧縮機の吸入側に導入されることが望ましい。
さらに、前記空気熱交換器で凝縮された冷媒と、前記液接続配管及びガス接続配管を通って前記減圧装置により減圧された後の冷媒との間で熱交換を行う液−ガス熱交換器を設けたことが望ましい。
【0007】
さらに、本発明は、液接続配管及びガス接続配管で接続された冷凍サイクルを有する冷凍装置に対して、冷媒を前記液接続配管及びガス接続配管内に循環させて洗浄を行う冷凍サイクルの配管洗浄方法であって、前記液接続配管及びガス接続配管に、冷媒圧縮機、空気熱交換器、減圧装置、蒸発器が順次連結され、前記蒸発器と前記冷媒圧縮機との間に異物分離装置が配置された配管洗浄装置及び該配管洗浄装置に回収ボンベを接続し、前記冷媒圧縮機より吐出した高温高圧冷媒を前記空気熱交換器で凝縮し前記回収ボンベ内に導入する冷媒回収運転を行い、回収された液冷媒を前記液接続配管及びガス接続配管に流出して循環させ、前記配管洗浄装置内に流入し、流入した冷媒を前記減圧装置で減圧して前記蒸発器で蒸発させ、前記異物分離装置を介して前記冷媒圧縮機へ吸入させる配管洗浄運転を行うものである。
【0008】
【発明の実施の形態】
以下本発明の実施の形態について図を用いて説明する。
図1は、一実施の形態によるサイクル系統図を示し、図5は図1のものを用いて配管洗浄運転を行うときのサイクル系統図、同じく図7は冷媒回収運転時のサイクル系統図を示している。
【0009】
冷凍装置を運転した後に、配管には冷媒圧縮機から冷媒とともに吐出した冷凍機油が残留する。残留した冷凍機油は長期間立つと劣化し、冷凍機油の全酸価や過酸価物価が上昇する。長期間冷凍装置を運転した後の既設の配管を流用して室外機のみまたは室外機及び室内機を新品に交換した場合、既設の配管内に残留した劣化油の影響により、新品の室外機に封入されていた冷凍機油も劣化が加速され、冷媒圧縮機の摺動部の化学磨耗が促進される。さらには銅メッキ現象の発生、モータ材の絶縁不良などにより冷媒圧縮機が故障し、本来の製品寿命以下となる恐れもある。
さらに、長期間運転した冷凍装置に封入された冷媒がHCFC−22であって、新規に接続する室外機に封入された冷媒がHFC系冷媒(例えばR−410A、R−407C)の場合、既設配管に残留するHCFC−22用の冷凍機油は、HFC系冷媒には溶解しないのでキャピラリ等で詰まり、より信頼性を低下する。
【0010】
図1の配管洗浄装置40aは、冷媒圧縮機1a内の冷凍機油量を、冷媒圧縮機1aの外部から見ることができるように、冷媒圧縮機1aに油面計10を配置している。冷媒圧縮機1aは冷媒とともに冷媒圧縮機1a内の冷凍機油も吐出する。そのため冷媒圧縮機1a内の冷凍機油は、冷媒圧縮機1aの吸入側より供給されない限り、無くなるので、冷媒圧縮機1aの摺動部に給油できなくなり、摺動部が焼付き、冷媒圧縮機1aが故障する。配管洗浄装置40aでは、冷媒圧縮機1aの吸入側に異物分離装置8を配置し、異物分離装置8で冷凍機油を分離するので、冷媒圧縮機1aには冷凍機油が戻ってこない。そこで、油面計10から冷媒圧縮機1a内の冷凍機油量を確認し、冷凍機油が規定量以下となったら給油口24より冷凍機油を追加する。
【0011】
図5ないし図8を参照して一実施の形態による配管洗浄装置について説明する。
冷媒としてCFCやHCFC系冷媒を充填した既設の室外機41、既設の室内機42a、42bとそれぞれを接続する液接続配管65及びガス接続配管68により構成した冷凍装置内の冷媒を回収した後、配管洗浄装置40aを接続する。室外機41内に冷媒を回収するポンプダウン運転を実施した後、あるいは、実施することなく、液接続配管65及びガス接続配管68及び室内機42a、42bの冷媒を空の回収ボンベ50に回収する。図8は、空の回収ボンベ50内に冷媒を回収する際の冷凍装置と配管洗浄装置との接続状態を示し、室外機41の液阻止弁64あるいはガス阻止弁69に併設したサービス口641あるいは691と配管洗浄装置40aの阻止弁6とを接続配管56aを用いて接続する(図8では、一例としてガス阻止弁69側のサービス口691と配管洗浄装置40aの阻止弁6とを接続している)。
【0012】
回収ボンベ50は、予め回収ボンベ50内の空気を除くため真空引きを実施し、真空引きした回収ボンベ50のガス側接続口51と配管洗浄装置40aの接続口31とを、回収ボンベ50の液側接続口52と配管洗浄装置40aの接続口23(33)とを、チャージホース53、54を用いて接続する。
【0013】
次に、配管洗浄装置40aの冷媒回収運転を行い、この時の冷媒の流れについて説明する。
配管洗浄装置40aの阻止弁5は閉じた状態で、阻止弁6は開いた状態で、電磁弁20は閉じた状態で運転する。冷媒圧縮機1aより吐出した高温高圧冷媒は、空気熱交換器2で凝縮し、高圧の液冷媒または気液二相冷媒となる。冷媒圧縮機1aが運転した後、電磁弁23を開けることで高圧の液冷媒または気液二相冷媒は回収ボンベ50内に導入される。また、冷媒圧縮機1aの吸入側は低圧となることから、既設の冷凍装置内の冷媒はサービス口691、接続配管56a、阻止弁6を介して配管洗浄装置40a内に導入される。
【0014】
冷媒回収運転の時間を短縮するために、配管洗浄装置40aの電磁弁21を開け、回収ボンベ50のガス側接続口51から、回収ボンベ50内のガス相を配管洗浄装置40a内に回収してもよい。
冷媒回収運転のとき既設の室内機42a、42bの構成部品である減圧装置71a、71bは全開の状態とする。もし減圧装置71a、71bを全開の状態に設定できないときは、サービス口691のみならず、サービス口641からも冷媒を回収する。
【0015】
以上のような冷媒回収運転を実施した後、既設の液接続配管65及びガス接続配管68の洗浄運転を実施する。この配管洗浄運転時の配管洗浄装置40aと冷媒回収後の既設冷凍装置との接続方法について説明する。
冷媒回収運転の際、室外機41内に冷媒を回収するポンプダウン運転を実施した場合は液阻止弁64及びガス阻止弁69を全閉とした後、液接続配管65及びガス接続配管68と液阻止弁64及びガス阻止弁69とを分離する。分離した液接続配管65及びガス接続配管68とは、接続配管55、56を介して配管洗浄装置40aの阻止弁5、6に接続する。室内機42a、42bの減圧装置71a、71bを全開の状態にすることが可能ならば、室内機42a、42bを液接続配管65及びガス接続配管68に接続した状態で、減圧装置71a、71bを全開の状態に設定できないときは、室内機42a、42bを液接続配管65及びガス接続配管68から取り外し、液接続配管65及びガス接続配管68を開閉弁67a、67bを備えたバイパス枝管66a、66bを用いて接続する。この状態では、洗浄すべき液接続配管65及びガス接続配管68には洗浄冷媒が封入されていない。配管洗浄運転を実施するには、洗浄冷媒を液接続配管65及びガス接続配管68に封入したのち実施する。洗浄冷媒の封入方法及び配管洗浄運転時における洗浄冷媒の流れについて図8を参照して説明する。
【0016】
洗浄冷媒としては洗浄すべき液接続配管65及びガス接続配管68内に残留する冷凍装置で使用していた冷凍機油と相溶性を有する冷媒を選定する。冷凍装置で使用していた冷媒と冷凍機油の間に相溶性があるならば、洗浄冷媒として冷凍装置で使用していた冷媒を用いても良い。
室外機41内に冷媒を回収するポンプダウン運転を実施せず、冷凍装置内に冷媒を全て回収ボンベ50内に回収した場合は、図8の通り、冷媒を回収済みの回収ボンベ50内のガス側接続口51と配管洗浄装置40aの接続口31とを、回収ボンベ50の液側接続口52と配管洗浄装置40aの接続口23(33)とを、チャージホース53、54を用いて接続する。
【0017】
洗浄運転前に、液接続配管65及びガス接続配管68内は真空引きを実施する。配管洗浄装置40aの阻止弁5及び阻止弁6は開いた状態で、電磁弁21は閉じた状態で運転する。この状態で電磁弁23を開けると、回収ボンベ50中の冷媒は液接続配管65及びガス接続配管68内及び配管洗浄装置40a内に流入する。その後冷媒圧縮機1aを始動し、電磁弁20を開けることで、冷媒圧縮機1aより吐出した高圧の冷媒が回収ボンベ50のガス側接続口51より導入され、回収ボンベ50内の圧力が配管洗浄装置40aの接続口23(33)の圧力よりも高くなり、回収ボンベ50内の液冷媒は全て液接続配管65及びガス接続配管68内及び配管洗浄装置40a内に流出する。
【0018】
冷媒圧縮機1aより吐出された高温高圧冷媒は空気熱交換器2で凝縮され、高圧の液冷媒または気液二相冷媒となり液−ガス熱交換器4(プレート熱交換器、または2重管熱交換器)に流入する。そして、冷媒は液−ガス熱交換器4で熱交換された後、接続配管55を介して、洗浄すべき液接続配管65及びガス接続配管68内を循環し、液接続配管65及びガス接続配管68内に残留する異物(主として冷凍装置で使用していた冷凍機油)を洗浄冷媒中に溶解した後、接続配管56を介して、阻止弁6より配管洗浄装置40a内に流入する。その後、洗浄冷媒は減圧装置7により減圧され、液−ガス熱交換器4の蒸発側4bで蒸発しガス単相となる。
【0019】
ガス単相の洗浄冷媒と洗浄冷媒中に溶解していた異物は、異物分離装置8に導入され、ガス単相の洗浄冷媒の密度よりも重い異物は、重力により異物分離装置8の下方に沈殿(11)し、洗浄冷媒から分離される。異物の混入していないガス単相の洗浄冷媒は冷媒圧縮機1aの吸入側へ導出される。
【0020】
以上のように洗浄すべき液接続配管65及びガス接続配管68内には、絶えず異物の混入していない洗浄能力の高い洗浄冷媒が循環するので、配管洗浄装置40aの洗浄能力を高い水準で維持することが可能となる。また、冷媒圧縮機1aに供給される冷媒は、異物を分離した後の冷媒であるので、配管洗浄装置40aに封入した冷凍機油と異物とが混合することがないので、信頼性を向上できる。
液−ガス熱交換器4を、凝縮側4aの出口の冷媒を気液二相状態となるようなでの熱交換量に設定すれば、洗浄運転時の洗浄冷媒の封入量を削減することが可能となる。
【0021】
室外機41内に冷媒を回収するポンプダウン運転を実施した場合、回収ボンベ50内に回収した冷媒のみでは、洗浄冷媒として不足する恐れがあり、室外機41内の液阻止弁64及びガス阻止弁69に併設したサービス口641、691以外に設置されたサービス口と配管洗浄装置40aの接続口22(32)とを、さらにサービス口とは別のサービス口と配管洗浄装置40aの接続口31とをチャージホースを介して接続する。これにより、室外機41内に回収した冷媒を液接続配管65、ガス接続配管68内及び配管洗浄装置40a内に流出することが可能となり、洗浄冷媒の不足を防ぐことができる。
室外機41内の液阻止弁64及びガス阻止弁69に併設したサービス口641、691以外に設置されたサービス口がない場合は、液阻止弁64及びガス阻止弁69側の液接続配管65及びガス接続配管68との接続口を封止栓で封止した後、液阻止弁64及びガス阻止弁69を開け、サービス口641、691と配管洗浄装置40aの接続口22(32)、31とをチャージホースを介して接続することが良い。
【0022】
洗浄運転が終了したら図8に示すように、液接続配管65及びガス接続配管68内の洗浄冷媒を回収ボンベ50に回収する。(冷媒回収運転時の冷媒の流れについては、冷凍装置からの冷媒回収運転時の流れと同様である。)
以上の洗浄運転及び冷媒回収運転の一連の作業を自動化することが良く、洗浄運転であれば、洗浄すべき液接続配管65及びガス接続配管68の配管総長に応じた必要洗浄時間を予め求めておき、洗浄時間をタイマ等で設定しておけば良い。冷媒回収運転であれば、低圧側圧力を圧力測定装置で監視しておき、要求される最低限の圧力となった時点で冷媒回収運転を終了する。
【0023】
図2の配管洗浄装置40bは、他の実施の形態を示し、冷媒圧縮機1bの吐出側に油分離器12を配置したものである。冷媒圧縮機1bから吐出した冷凍機油は、油分離器12により分離され、冷凍機油はガス冷媒の密度よりも大きいので、重力により油分離器12の下方に沈殿(13)する。分離した冷凍機油13は、返油回路14により冷媒圧縮機1bの吸入側に戻される。油分離器12から冷媒圧縮機1bの吸入側に戻される冷凍機油の量は返油回路用キャピラリ14aの絞り量により調整することができ、冷媒圧縮機1b内の冷凍機油の油面が異常に上昇することを抑える。これにより、冷媒圧縮機1b内の冷凍機油が無くならない、あるいは冷媒圧縮機1b内の冷凍機油がの著しく減少することを抑えることができるので、配管洗浄装置40bのメンテナンス時間を低減し、信頼性を向上できる。
【0024】
図3の配管洗浄装置40cは、さらに他の実施の形態を示し、液−ガス熱交換器4の凝縮側4aと阻止弁5との間から、液単相冷媒または気液二相冷媒を、液バイパス回路用キャピラリ15aを備えた液バイパス回路15を介して冷媒圧縮機1bの吸入側に戻すものであり、これにより、冷媒圧縮機1b温度の異常上昇を抑えることができる。
【0025】
図4の配管洗浄装置40dは、さらに他の実施の形態を示し、空気熱交換器2を凝縮器2a、蒸発器2bとしてそれぞれ独立にしたもので、より効率を向上できる。
【0026】
【発明の効果】
以上説明したように、本発明によれば、既設の冷凍装置に封入された冷媒のみ、もしくは若干の洗浄冷媒を別途用意することで、既設配管内に残留した冷凍機油の量を低減し、新規に接続する室外機に封入された冷凍機油の劣化を抑制し、することで、冷凍装置の信頼性を向上することができる。
【図面の簡単な説明】
【図1】本発明による一実施の形態の配管洗浄装置を示すサイクル系統図。
【図2】他の実施の形態の配管洗浄装置を示すサイクル系統図。
【図3】さらに、他の実施の形態の配管洗浄装置を示すサイクル系統図。
【図4】さらに、他の実施の形態の配管洗浄装置を示すサイクル系統図。
【図5】室外機のみを接続して配管洗浄運転をするときのサイクル系統図。
【図6】
室外機と室内機を接続して配管洗浄運転をするときのサイクル系統図。
【図7】室外機のみを接続して冷媒回収運転をするときのサイクル系統図。
【図8】
室外機と室内機を接続して冷媒回収運転をするときのサイクル系統図。
【符号の説明】
1a、1b、1c…冷媒圧縮機、2、2a、2b…空気熱交換器、3、3a、3b…送風装置、4…液−ガス熱交換器、4a…凝縮器、4b…蒸発器、5、6…阻止弁、7…減圧装置(キャピラリ)、8…異物分離装置、12…油分離器、31、32、33…接続ポート、40a、40b、40c、40d…配管洗浄装置、41…室外機、42a、42b…室内機、50…冷媒回収ボンベ、51…ガス側接続口、52…液側接続口、53、54…チャージホース、55、56、56a…接続配管、64…液阻止弁、641…液阻止弁サービス口、65…液接続配管、68…ガス接続配管、69…ガス阻止弁、691…ガス阻止弁サービス口。
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a pipe cleaning apparatus and a pipe cleaning method for cleaning a connection pipe used for a refrigerating apparatus including an air conditioner and a refrigerator using a refrigerating cycle.
[0002]
[Prior art]
As a method for cleaning the piping of a refrigeration system including an air conditioner and a refrigerator, a refrigeration cycle different from the existing refrigeration system is used to clean the piping using the same refrigerant as the refrigerant used for the refrigeration system, and to clean the inside of the piping. Cleaning to remove dust such as swarf generated at the time of cutting the pipe remaining on the pipe, debris, and oxide film (copper oxide) generated on the inner surface of the pipe during welding of the pipe, and water remaining in the pipe It is known that the dust and moisture mixed in the refrigerant are removed by a filter disposed in a connection pipe between a circulating pump for cleaning pipes and a check valve, which is described in, for example, JP-A-2001-183035.
[Patent Document 1]
JP 2001-183035 A
[Problems to be solved by the invention]
In the above prior art, when the refrigerating machine oil is dissolved in the cleaning refrigerant, the cleaning refrigerant and the refrigerating machine oil are not separated, and in order to remove the refrigerating machine oil remaining in the existing piping, a new cleaning refrigerant must be separately added. It is necessary to prepare. In the case of a multi-type air conditioner with multiple indoor units connected or a system with a long piping length, where the amount of refrigerating machine oil remaining in the existing piping is large, depending on the washing condition in the piping, a new 100 kg or more A cleaning refrigerant is required.
[0004]
An object of the present invention is to reduce the amount of refrigerating machine oil remaining in an existing pipe, suppress deterioration of refrigerating machine oil enclosed in a newly connected outdoor unit, and improve the reliability of a refrigerating apparatus in a refrigerating cycle pipe. A cleaning apparatus and a pipe cleaning method are provided.
[0005]
[Means for Solving the Problems]
In order to solve the above problems, the present invention provides a refrigeration apparatus having a refrigeration cycle connected by a liquid connection pipe and a gas connection pipe, and circulates a refrigerant through the liquid connection pipe and the gas connection pipe to perform cleaning. In the pipe cleaning apparatus for a refrigeration cycle to be performed, the pipe cleaning apparatus includes a refrigerant compressor, an air heat exchanger, a decompression device, and an evaporator that are sequentially connected to form a vapor compression refrigeration cycle, and the evaporator and the refrigerant compressor And a foreign matter separating device is disposed between the liquid connecting pipe and the gas connecting pipe to circulate the cleaning refrigerant condensed by the air heat exchanger.
[0006]
Further, in the above, it is preferable that an oil separator is arranged on the discharge side of the refrigerant compressor, and the refrigerating machine oil separated by the oil separator is led out to the suction side of the refrigerant compressor.
Further, in the above, it is preferable that a part of the washing refrigerant condensed by the air heat exchanger is introduced into the suction side of the refrigerant compressor via the liquid bypass circuit pressure reducing device.
Further, a liquid-gas heat exchanger that performs heat exchange between the refrigerant condensed in the air heat exchanger and the refrigerant that has been depressurized by the decompression device through the liquid connection pipe and the gas connection pipe. It is desirable to provide.
[0007]
Further, the present invention provides a refrigeration cycle pipe cleaning method for circulating a refrigerant through the liquid connection pipe and the gas connection pipe for cleaning the refrigerating apparatus having the refrigeration cycle connected by the liquid connection pipe and the gas connection pipe. A method, wherein a refrigerant compressor, an air heat exchanger, a decompression device, and an evaporator are sequentially connected to the liquid connection pipe and the gas connection pipe, and a foreign matter separation device is provided between the evaporator and the refrigerant compressor. A recovery tank is connected to the disposed pipe cleaning apparatus and the pipe cleaning apparatus, and a refrigerant recovery operation is performed in which the high-temperature and high-pressure refrigerant discharged from the refrigerant compressor is condensed by the air heat exchanger and introduced into the recovery cylinder. The collected liquid refrigerant flows out and circulates into the liquid connection pipe and the gas connection pipe, flows into the pipe cleaning device, depressurizes the inflowing refrigerant by the decompression device, evaporates the refrigerant by the evaporator, and removes the foreign matter. Minute And performs pipe cleaning operation and to be taken into the refrigerant compressor via a device.
[0008]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
1 shows a cycle system diagram according to one embodiment, FIG. 5 shows a cycle system diagram when performing a pipe washing operation using the one shown in FIG. 1, and FIG. 7 shows a cycle system diagram during a refrigerant recovery operation. ing.
[0009]
After operating the refrigerating device, the refrigerating machine oil discharged together with the refrigerant from the refrigerant compressor remains in the piping. The remaining refrigerating machine oil deteriorates after standing for a long time, and the total acid value and peracid value of the refrigerating machine oil increase. If only the outdoor unit or the outdoor unit and indoor unit are replaced with new ones by diverting the existing piping after operating the refrigeration system for a long time, the new outdoor unit may be replaced by a new one due to the effect of the deteriorated oil remaining in the existing piping. The deterioration of the enclosed refrigerating machine oil is accelerated, and the chemical wear of the sliding portion of the refrigerant compressor is promoted. Further, the refrigerant compressor may fail due to the occurrence of a copper plating phenomenon, poor insulation of the motor material, and the like, and the life of the refrigerant compressor may be shortened.
Further, when the refrigerant sealed in the refrigeration apparatus that has been operated for a long time is HCFC-22 and the refrigerant sealed in the newly connected outdoor unit is an HFC-based refrigerant (for example, R-410A, R-407C), the existing refrigerant is used. The refrigeration oil for HCFC-22 remaining in the piping is not dissolved in the HFC-based refrigerant, so it is clogged with a capillary or the like, and the reliability is further reduced.
[0010]
In the pipe cleaning device 40a of FIG. 1, the oil level gauge 10 is arranged in the refrigerant compressor 1a so that the amount of oil in the refrigerant compressor 1a can be seen from outside the refrigerant compressor 1a. The refrigerant compressor 1a discharges refrigerating machine oil in the refrigerant compressor 1a together with the refrigerant. Therefore, the refrigerating machine oil in the refrigerant compressor 1a is lost unless it is supplied from the suction side of the refrigerant compressor 1a, so that the sliding part of the refrigerant compressor 1a cannot be refueled, and the sliding part seizes and the refrigerant compressor 1a Breaks down. In the pipe cleaning device 40a, the foreign matter separating device 8 is arranged on the suction side of the refrigerant compressor 1a, and the refrigerating machine oil is separated by the foreign matter separating device 8, so that the refrigerating machine oil does not return to the refrigerant compressor 1a. Therefore, the refrigerating machine oil amount in the refrigerant compressor 1a is confirmed from the oil level gauge 10, and when the refrigerating machine oil becomes equal to or less than the specified amount, the refrigerating machine oil is added from the oil supply port 24.
[0011]
A pipe cleaning device according to an embodiment will be described with reference to FIGS.
After recovering the refrigerant in the refrigeration system configured by the existing outdoor unit 41 filled with CFC or HCFC-based refrigerant as the refrigerant, the liquid connection pipe 65 and the gas connection pipe 68 that connect the existing indoor units 42a and 42b, respectively, The pipe cleaning device 40a is connected. After or without performing the pump-down operation for collecting the refrigerant in the outdoor unit 41, the refrigerant in the liquid connection pipe 65 and the gas connection pipe 68 and the refrigerant in the indoor units 42a and 42b is collected in the empty collection cylinder 50. . FIG. 8 shows a connection state between the refrigeration apparatus and the pipe cleaning apparatus when the refrigerant is collected in the empty collection cylinder 50, and the service port 641 provided along with the liquid prevention valve 64 or the gas prevention valve 69 of the outdoor unit 41 or 691 and the blocking valve 6 of the pipe cleaning device 40a are connected using the connection pipe 56a (in FIG. 8, for example, the service port 691 on the gas blocking valve 69 side is connected to the blocking valve 6 of the pipe cleaning device 40a. There).
[0012]
The collection cylinder 50 is evacuated in advance to remove air from the collection cylinder 50, and the gas-side connection port 51 of the evacuated collection cylinder 50 and the connection port 31 of the pipe cleaning device 40 a are connected to the liquid of the collection cylinder 50. The side connection port 52 and the connection port 23 (33) of the pipe cleaning device 40a are connected using charge hoses 53 and 54.
[0013]
Next, the refrigerant recovery operation of the pipe cleaning device 40a is performed, and the flow of the refrigerant at this time will be described.
The pipe cleaning device 40a operates with the blocking valve 5 closed, the blocking valve 6 opened, and the solenoid valve 20 closed. The high-temperature and high-pressure refrigerant discharged from the refrigerant compressor 1a is condensed in the air heat exchanger 2 and becomes a high-pressure liquid refrigerant or a gas-liquid two-phase refrigerant. After the operation of the refrigerant compressor 1 a, the high-pressure liquid refrigerant or the gas-liquid two-phase refrigerant is introduced into the recovery cylinder 50 by opening the electromagnetic valve 23. Further, since the suction side of the refrigerant compressor 1a has a low pressure, the refrigerant in the existing refrigeration system is introduced into the pipe cleaning device 40a via the service port 691, the connection pipe 56a, and the blocking valve 6.
[0014]
In order to shorten the time of the refrigerant recovery operation, the solenoid valve 21 of the pipe cleaning device 40a is opened, and the gas phase in the recovery cylinder 50 is recovered from the gas side connection port 51 of the recovery cylinder 50 into the pipe cleaning device 40a. Is also good.
During the refrigerant recovery operation, the pressure reducing devices 71a and 71b, which are components of the existing indoor units 42a and 42b, are fully opened. If the pressure reducing devices 71a and 71b cannot be set to the fully opened state, the refrigerant is collected not only from the service port 691 but also from the service port 641.
[0015]
After performing the refrigerant recovery operation as described above, a cleaning operation of the existing liquid connection pipe 65 and gas connection pipe 68 is performed. A method of connecting the pipe cleaning device 40a during the pipe cleaning operation to the existing refrigeration device after the refrigerant is recovered will be described.
During the refrigerant recovery operation, when a pump-down operation for recovering the refrigerant in the outdoor unit 41 is performed, the liquid blocking valve 64 and the gas blocking valve 69 are fully closed, and then the liquid connecting pipe 65 and the gas connecting pipe 68 are connected to the liquid. The blocking valve 64 and the gas blocking valve 69 are separated. The separated liquid connection pipe 65 and gas connection pipe 68 are connected to the blocking valves 5 and 6 of the pipe cleaning device 40a via the connection pipes 55 and 56. If the decompression devices 71a, 71b of the indoor units 42a, 42b can be fully opened, the decompression devices 71a, 71b are connected with the indoor units 42a, 42b connected to the liquid connection pipe 65 and the gas connection pipe 68. When it cannot be set to the fully opened state, the indoor units 42a and 42b are removed from the liquid connection pipe 65 and the gas connection pipe 68, and the liquid connection pipe 65 and the gas connection pipe 68 are connected to bypass branch pipes 66a having on-off valves 67a and 67b. 66b. In this state, the cleaning refrigerant is not sealed in the liquid connection pipe 65 and the gas connection pipe 68 to be cleaned. In order to perform the pipe cleaning operation, the cleaning refrigerant is sealed in the liquid connection pipe 65 and the gas connection pipe 68 and then performed. The method of charging the cleaning refrigerant and the flow of the cleaning refrigerant during the pipe cleaning operation will be described with reference to FIG.
[0016]
As the cleaning refrigerant, a refrigerant compatible with the refrigerating machine oil used in the refrigerating machine remaining in the liquid connection pipe 65 and the gas connection pipe 68 to be cleaned is selected. If there is compatibility between the refrigerant used in the refrigeration apparatus and the refrigerating machine oil, the refrigerant used in the refrigeration apparatus may be used as the cleaning refrigerant.
When the pump-down operation for collecting the refrigerant in the outdoor unit 41 is not performed and all the refrigerant is collected in the collection cylinder 50 in the refrigerating apparatus, as shown in FIG. 8, the gas in the collection cylinder 50 in which the refrigerant has been collected is collected. The connection port 51 is connected to the connection port 31 of the pipe cleaning device 40a, and the liquid connection port 52 of the recovery cylinder 50 and the connection port 23 (33) of the pipe cleaning device 40a are connected by using charge hoses 53, 54. .
[0017]
Before the cleaning operation, the insides of the liquid connection pipe 65 and the gas connection pipe 68 are evacuated. The pipe cleaning device 40a operates with the blocking valves 5 and 6 open and the solenoid valve 21 closed. When the electromagnetic valve 23 is opened in this state, the refrigerant in the recovery cylinder 50 flows into the liquid connection pipe 65 and the gas connection pipe 68 and into the pipe cleaning device 40a. Thereafter, by starting the refrigerant compressor 1a and opening the solenoid valve 20, the high-pressure refrigerant discharged from the refrigerant compressor 1a is introduced from the gas side connection port 51 of the recovery cylinder 50, and the pressure in the recovery cylinder 50 is reduced by pipe cleaning. The pressure becomes higher than the pressure of the connection port 23 (33) of the device 40a, and all the liquid refrigerant in the recovery cylinder 50 flows out into the liquid connection pipe 65 and the gas connection pipe 68 and into the pipe cleaning device 40a.
[0018]
The high-temperature and high-pressure refrigerant discharged from the refrigerant compressor 1a is condensed in the air heat exchanger 2 and becomes a high-pressure liquid refrigerant or a gas-liquid two-phase refrigerant. The liquid-gas heat exchanger 4 (plate heat exchanger or double-tube heat exchanger) Exchanger). Then, after the refrigerant is heat-exchanged in the liquid-gas heat exchanger 4, the refrigerant circulates through the connection pipe 55 in the liquid connection pipe 65 and the gas connection pipe 68 to be cleaned, and the liquid connection pipe 65 and the gas connection pipe After the foreign matter (refrigerating machine oil mainly used in the refrigerating machine) remaining in the 68 is dissolved in the washing refrigerant, the foreign matter flows into the pipe washing device 40a from the blocking valve 6 through the connection pipe 56. Thereafter, the pressure of the cleaning refrigerant is reduced by the decompression device 7, and the refrigerant is evaporated on the evaporation side 4b of the liquid-gas heat exchanger 4 to become a gas single phase.
[0019]
The gas single-phase cleaning refrigerant and the foreign substances dissolved in the cleaning refrigerant are introduced into the foreign substance separation device 8, and the foreign substances heavier than the density of the gas single-phase cleaning refrigerant precipitate under the foreign substance separation device 8 by gravity. (11) It is separated from the cleaning refrigerant. The gas single-phase cleaning refrigerant containing no foreign matter is led out to the suction side of the refrigerant compressor 1a.
[0020]
As described above, in the liquid connection pipe 65 and the gas connection pipe 68 to be cleaned, the cleaning refrigerant having a high cleaning ability without any contamination is constantly circulated, so that the cleaning ability of the pipe cleaning device 40a is maintained at a high level. It is possible to do. In addition, since the refrigerant supplied to the refrigerant compressor 1a is a refrigerant after foreign matter is separated, the foreign matter does not mix with the refrigerating machine oil sealed in the pipe cleaning device 40a, so that reliability can be improved.
If the liquid-gas heat exchanger 4 is set to an amount of heat exchange such that the refrigerant at the outlet of the condensing side 4a is in a gas-liquid two-phase state, the amount of cleaning refrigerant sealed during the cleaning operation can be reduced. It becomes possible.
[0021]
When the pump-down operation for collecting the refrigerant in the outdoor unit 41 is performed, the refrigerant collected in the collection cylinder 50 alone may be insufficient as the cleaning refrigerant, and the liquid blocking valve 64 and the gas blocking valve in the outdoor unit 41 may be insufficient. A service port provided in addition to the service ports 641 and 691 attached to 69 and the connection port 22 (32) of the pipe cleaning device 40a, and a service port different from the service port and the connection port 31 of the pipe cleaning device 40a. Is connected via a charge hose. Thereby, the refrigerant collected in the outdoor unit 41 can flow out into the liquid connection pipe 65, the gas connection pipe 68, and the pipe cleaning device 40a, and shortage of the cleaning refrigerant can be prevented.
If there is no service port provided other than the service ports 641 and 691 provided in the outdoor unit 41 along with the liquid blocking valve 64 and the gas blocking valve 69, the liquid connecting pipe 65 on the liquid blocking valve 64 and the gas blocking valve 69 side and After sealing the connection port with the gas connection pipe 68 with a sealing plug, the liquid blocking valve 64 and the gas blocking valve 69 are opened, and the service ports 641 and 691 and the connection ports 22 (32) and 31 of the pipe cleaning device 40 a are connected. Is connected via a charge hose.
[0022]
When the cleaning operation is completed, the cleaning refrigerant in the liquid connection pipe 65 and the gas connection pipe 68 is recovered in the recovery cylinder 50 as shown in FIG. (The flow of the refrigerant during the refrigerant recovery operation is the same as the flow during the refrigerant recovery operation from the refrigerating device.)
It is preferable to automate a series of operations of the cleaning operation and the refrigerant recovery operation described above. In the case of the cleaning operation, a required cleaning time according to the total length of the liquid connection pipe 65 and the gas connection pipe 68 to be cleaned is obtained in advance. The cleaning time may be set by a timer or the like. In the case of the refrigerant recovery operation, the low pressure side pressure is monitored by the pressure measuring device, and the refrigerant recovery operation is terminated when the required minimum pressure is reached.
[0023]
A pipe cleaning device 40b of FIG. 2 shows another embodiment, in which an oil separator 12 is arranged on the discharge side of a refrigerant compressor 1b. The refrigerating machine oil discharged from the refrigerant compressor 1b is separated by the oil separator 12, and the refrigerating machine oil is settled below the oil separator 12 by gravity (13) because the refrigerating machine oil is larger in density than the gas refrigerant. The separated refrigerating machine oil 13 is returned to the suction side of the refrigerant compressor 1b by the oil return circuit 14. The amount of the refrigerating machine oil returned from the oil separator 12 to the suction side of the refrigerant compressor 1b can be adjusted by the throttle amount of the oil return circuit capillary 14a, and the oil level of the refrigerating machine oil in the refrigerant compressor 1b becomes abnormal. Suppress the rise. As a result, the refrigerating machine oil in the refrigerant compressor 1b is not lost, or the refrigerating machine oil in the refrigerant compressor 1b can be prevented from being significantly reduced. Therefore, the maintenance time of the pipe cleaning device 40b can be reduced, and the reliability can be reduced. Can be improved.
[0024]
The pipe cleaning device 40c in FIG. 3 shows still another embodiment, in which a liquid single-phase refrigerant or a gas-liquid two-phase refrigerant is supplied from between the condensing side 4a of the liquid-gas heat exchanger 4 and the blocking valve 5, The refrigerant is returned to the suction side of the refrigerant compressor 1b via the liquid bypass circuit 15 having the liquid bypass circuit capillary 15a, whereby an abnormal rise in the temperature of the refrigerant compressor 1b can be suppressed.
[0025]
The pipe cleaning device 40d of FIG. 4 shows still another embodiment, in which the air heat exchanger 2 is independently provided as a condenser 2a and an evaporator 2b, so that the efficiency can be further improved.
[0026]
【The invention's effect】
As described above, according to the present invention, the amount of the refrigerating machine oil remaining in the existing piping is reduced by separately preparing only the refrigerant sealed in the existing refrigerating device or a small amount of the cleaning refrigerant. Thus, deterioration of the refrigerating machine oil sealed in the outdoor unit connected to the refrigerating machine can be suppressed and the reliability of the refrigerating apparatus can be improved.
[Brief description of the drawings]
FIG. 1 is a cycle system diagram showing a pipe cleaning apparatus according to an embodiment of the present invention.
FIG. 2 is a cycle system diagram showing a pipe cleaning apparatus according to another embodiment.
FIG. 3 is a cycle system diagram showing a pipe cleaning apparatus according to another embodiment.
FIG. 4 is a cycle system diagram showing a pipe cleaning apparatus according to another embodiment.
FIG. 5 is a cycle system diagram when a pipe cleaning operation is performed by connecting only an outdoor unit.
FIG. 6
FIG. 3 is a cycle system diagram when a pipe cleaning operation is performed by connecting an outdoor unit and an indoor unit.
FIG. 7 is a cycle system diagram when a refrigerant recovery operation is performed by connecting only an outdoor unit.
FIG. 8
FIG. 3 is a cycle system diagram when a refrigerant recovery operation is performed by connecting an outdoor unit and an indoor unit.
[Explanation of symbols]
1a, 1b, 1c: Refrigerant compressor, 2, 2a, 2b: Air heat exchanger, 3, 3a, 3b: Blower, 4: Liquid-gas heat exchanger, 4a: Condenser, 4b: Evaporator, 5 6, blocking valve, 7: pressure reducing device (capillary), 8: foreign matter separating device, 12: oil separator, 31, 32, 33 ... connection port, 40a, 40b, 40c, 40d: pipe cleaning device, 41: outdoor , 42a, 42b ... indoor unit, 50 ... refrigerant collection cylinder, 51 ... gas side connection port, 52 ... liquid side connection port, 53, 54 ... charge hose, 55, 56, 56a ... connection pipe, 64 ... liquid check valve Reference numeral 641 denotes a liquid blocking valve service port, 65 denotes a liquid connecting pipe, 68 denotes a gas connecting pipe, 69 denotes a gas blocking valve, and 691 denotes a gas blocking valve service port.

Claims (5)

液接続配管及びガス接続配管で接続された冷凍サイクルを有する冷凍装置に対して、冷媒を前記液接続配管及びガス接続配管内に循環させて洗浄を行う冷凍サイクルの配管洗浄装置において、
前記配管洗浄装置は、冷媒圧縮機、空気熱交換器、減圧装置、蒸発器が順次連結されて蒸気圧縮冷凍サイクルが構成され、前記蒸発器と前記冷媒圧縮機との間に異物分離装置が配置され、前記空気熱交換器によって凝縮された冷媒を前記液接続配管及びガス接続配管内に循環させることを特徴とする配管洗浄装置。
For a refrigeration apparatus having a refrigeration cycle connected by a liquid connection pipe and a gas connection pipe, in a refrigeration cycle pipe cleaning apparatus for cleaning by circulating a refrigerant through the liquid connection pipe and the gas connection pipe,
In the pipe cleaning device, a refrigerant compressor, an air heat exchanger, a decompression device, and an evaporator are sequentially connected to form a vapor compression refrigeration cycle, and a foreign matter separation device is disposed between the evaporator and the refrigerant compressor. And a refrigerant condensed by the air heat exchanger is circulated in the liquid connection pipe and the gas connection pipe.
請求項1に記載のものにおいて、前記冷媒圧縮機の吐出側に油分離器を配置し、該油分離器で分離した冷凍機油を前記冷媒圧縮機の吸入側に導出することを特徴とする配管洗浄装置。2. The piping according to claim 1, wherein an oil separator is arranged on a discharge side of the refrigerant compressor, and refrigeration oil separated by the oil separator is led to a suction side of the refrigerant compressor. 3. Cleaning equipment. 請求項1に記載のものにおいて、前記空気熱交換器により凝縮した洗浄冷媒の一部は液バイパス回路用減圧装置を介して、前記冷媒圧縮機の吸入側に導入されることを特徴とする配管洗浄装置。2. The piping according to claim 1, wherein a part of the washing refrigerant condensed by the air heat exchanger is introduced into the suction side of the refrigerant compressor via a pressure reducing device for a liquid bypass circuit. Cleaning equipment. 請求項1に記載のものにおいて、前記空気熱交換器で凝縮された冷媒と、前記液接続配管及びガス接続配管を通って前記減圧装置により減圧された後の冷媒との間で熱交換を行う液−ガス熱交換器を設けたことを特徴とする配管洗浄装置。2. The heat exchanger according to claim 1, wherein heat is exchanged between the refrigerant condensed in the air heat exchanger and the refrigerant that has been depressurized by the decompression device through the liquid connection pipe and the gas connection pipe. A pipe cleaning device provided with a liquid-gas heat exchanger. 液接続配管及びガス接続配管で接続された冷凍サイクルを有する冷凍装置に対して、冷媒を前記液接続配管及びガス接続配管内に循環させて洗浄を行う冷凍サイクルの配管洗浄方法であって、
前記液接続配管及びガス接続配管に、冷媒圧縮機、空気熱交換器、減圧装置、蒸発器が順次連結され、前記蒸発器と前記冷媒圧縮機との間に異物分離装置が配置された配管洗浄装置及び該配管洗浄装置に回収ボンベを接続し、前記冷媒圧縮機より吐出した高温高圧冷媒を前記空気熱交換器で凝縮し前記回収ボンベ内に導入する冷媒回収運転を行い、
回収された液冷媒を前記液接続配管及びガス接続配管に流出して循環させ、前記配管洗浄装置内に流入し、流入した冷媒を前記減圧装置で減圧して前記蒸発器で蒸発させ、前記異物分離装置を介して前記冷媒圧縮機へ吸入させる配管洗浄運転を行うことを特徴とする配管洗浄方法。
For a refrigeration apparatus having a refrigeration cycle connected by a liquid connection pipe and a gas connection pipe, a refrigeration cycle pipe cleaning method of circulating a refrigerant through the liquid connection pipe and the gas connection pipe to perform cleaning.
A pipe cleaning in which a refrigerant compressor, an air heat exchanger, a decompression device, and an evaporator are sequentially connected to the liquid connection pipe and the gas connection pipe, and a foreign matter separation device is disposed between the evaporator and the refrigerant compressor. A recovery cylinder is connected to the apparatus and the pipe cleaning device, and a refrigerant recovery operation is performed in which the high-temperature and high-pressure refrigerant discharged from the refrigerant compressor is condensed by the air heat exchanger and introduced into the recovery cylinder.
The collected liquid refrigerant flows out and circulates into the liquid connection pipe and the gas connection pipe, flows into the pipe cleaning device, depressurizes the inflowing refrigerant by the decompression device, evaporates the refrigerant by the evaporator, and removes the foreign matter. A pipe cleaning method comprising performing a pipe cleaning operation of causing a suction to the refrigerant compressor through a separation device.
JP2002296875A 2002-10-10 2002-10-10 Pipe cleaning device and pipe cleaning method Pending JP2004132597A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002296875A JP2004132597A (en) 2002-10-10 2002-10-10 Pipe cleaning device and pipe cleaning method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002296875A JP2004132597A (en) 2002-10-10 2002-10-10 Pipe cleaning device and pipe cleaning method

Publications (1)

Publication Number Publication Date
JP2004132597A true JP2004132597A (en) 2004-04-30

Family

ID=32286714

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002296875A Pending JP2004132597A (en) 2002-10-10 2002-10-10 Pipe cleaning device and pipe cleaning method

Country Status (1)

Country Link
JP (1) JP2004132597A (en)

Similar Documents

Publication Publication Date Title
JP5871880B2 (en) Refrigeration cycle equipment
JP4120221B2 (en) Refrigerant and oil recovery operation method, and refrigerant and oil recovery control device
JP3882841B2 (en) Air conditioner, heat source unit, and method of updating air conditioner
JP4605784B2 (en) Engine-driven heat pump having an operation mode for cleaning the connecting pipe between the outdoor unit and the indoor unit, and its operation method
WO2004090442A1 (en) Refrigeration device
JP2004263885A (en) Cleaning method of refrigerant pipe, renewing method of air conditioner and air conditioner
JP2001201215A (en) Method and apparatus for removing refrigerating machine oil
JP2004132597A (en) Pipe cleaning device and pipe cleaning method
JP2004044901A (en) Freezing equipment and refrigerant charging method for freezing equipment
JP2003021436A (en) Pipeline cleaning method, air conditioner and renewal method thereof
JP4186764B2 (en) Refrigeration equipment
JP3704608B2 (en) Piping cleaning method, piping cleaning device and refrigeration equipment
JP2007225184A (en) Method for recovering refrigerating machine oil
JP4803234B2 (en) Pipe cleaning device
JP3933079B2 (en) Refrigeration apparatus and piping cleaning method thereof
JP2007085643A (en) Cleaning method for air conditioning system, and outdoor unit used therein
JP3700723B2 (en) Refrigeration equipment
JP2004278859A (en) Piping flushing device and piping flushing method
JP2003194437A (en) Bottom oil recovery method
JP2004333121A (en) Method for updating air conditioner, and air conditioner
JP3835365B2 (en) Refrigeration apparatus and piping cleaning method for refrigeration apparatus
JP2004219016A (en) Air conditioning system
JP2008202909A (en) Refrigerating apparatus and method of removing foreign matter in the apparatus
JP2005009839A (en) Freezing device
JP4295136B2 (en) Piping cleaning device and piping cleaning method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040715

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050614

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050628

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050811

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050906