JP5107652B2 - Refrigeration cycle equipment - Google Patents

Refrigeration cycle equipment Download PDF

Info

Publication number
JP5107652B2
JP5107652B2 JP2007259859A JP2007259859A JP5107652B2 JP 5107652 B2 JP5107652 B2 JP 5107652B2 JP 2007259859 A JP2007259859 A JP 2007259859A JP 2007259859 A JP2007259859 A JP 2007259859A JP 5107652 B2 JP5107652 B2 JP 5107652B2
Authority
JP
Japan
Prior art keywords
filter
refrigerant
refrigeration cycle
mineral oil
pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007259859A
Other languages
Japanese (ja)
Other versions
JP2009085577A (en
Inventor
宏明 坪江
憲一 中村
進 中山
信一郎 永松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Appliances Inc
Original Assignee
Hitachi Appliances Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Appliances Inc filed Critical Hitachi Appliances Inc
Priority to JP2007259859A priority Critical patent/JP5107652B2/en
Publication of JP2009085577A publication Critical patent/JP2009085577A/en
Application granted granted Critical
Publication of JP5107652B2 publication Critical patent/JP5107652B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Compressor (AREA)

Description

本発明は、冷凍サイクルを利用した空気調和機、冷凍機などの冷凍サイクル装置に関し、特に、CFC系又はHCFC系冷媒と、冷凍機油として鉱油を用いたものから、HFC系冷媒と、HFC用冷凍機油を用いたものに交換するものに好適である。   The present invention relates to a refrigeration cycle apparatus such as an air conditioner and a refrigeration machine using a refrigeration cycle, and in particular, from a CFC or HCFC refrigerant and a mineral oil as a refrigeration oil, to an HFC refrigerant and a refrigeration for HFC. It is suitable for those that are exchanged for those using machine oil.

CFC系冷媒またはHCFC系冷媒と、冷凍機油として鉱油を使用した空気調和機(旧機)から鉱油とは相溶性のないHFC系冷媒と、HFC用冷凍機油を使用した空気調和機(新機)に交換する際に室内機と室外機とを接続する接続配管を再利用すると、再利用される接続配管の内部には汚染物質(不純物)が残留している。この不純物は新機に使用したHFC系冷媒とは不溶、又は弱溶解成分である旧機に封入された冷凍機油(鉱油、アルキルベンゼンなど)、冷凍機油の酸化劣化反応物、塩素系化合物などである。   CFC-type refrigerant or HCFC-type refrigerant, HFC-type refrigerant that is not compatible with mineral oil from an air conditioner that uses mineral oil as refrigerating machine oil (old machine), and an air-conditioner that uses HFC refrigerating machine oil (new machine) When the connection pipe that connects the indoor unit and the outdoor unit is reused when the replacement is performed, pollutants (impurities) remain in the reused connection pipe. This impurity is insoluble in the HFC refrigerant used in the new machine or is a weakly soluble component such as refrigerating machine oil (mineral oil, alkylbenzene, etc.), oxidative degradation reaction products of refrigeration oil, chlorinated compounds, etc. .

上記不純物に対して何も対策を施さず既設の接続配管を利用すると、接続配管内に残留した不純物により新機内の冷凍機油が劣化する。さらに、冷媒に溶解しない成分が冷凍サイクル内の低温部分において、析出し冷凍サイクルが詰まり、空気調和機の信頼性を著しく損なう恐れがある。   If no measures are taken against the impurities and the existing connection pipe is used, the refrigerating machine oil in the new machine deteriorates due to the impurities remaining in the connection pipe. Furthermore, components that do not dissolve in the refrigerant may precipitate in the low temperature portion of the refrigeration cycle, clogging the refrigeration cycle, and may significantly impair the reliability of the air conditioner.

そのため、既設配管を利用するに際して、接続配管内に残留した不純物を回収する洗浄運転を実施することが知られ、例えば特許文献1に記載されている。また、冷凍サイクルの運転中に不純物を回収するとして特許文献1,2に記載されている。   Therefore, it is known to perform a cleaning operation for collecting impurities remaining in the connection pipe when using the existing pipe, which is described in Patent Document 1, for example. Patent Documents 1 and 2 describe that impurities are recovered during operation of the refrigeration cycle.

特開2000−9368号公報JP 2000-9368 A 特開2005−315435号公報JP 2005-315435 A 特開2005−214542号公報JP-A-2005-214542

上記特許文献1においては、利用側熱交換器と圧縮機との間、ガス冷媒となる位置に異物捕捉手段を配置して、不純物の混合したHFC用冷凍機油を、異物捕捉手段に何回か繰り返して通さなければならなかった。そのため、旧機から新機に入れ換えた後に接続配管内の洗浄運転を比較的に長い間に渡って、例えば1〜2時間位実施する必要があった。つまり、空気調和機の入れ換え工事、リニューアル工事の作業時間が長くならざるを得なかった。   In the above-mentioned Patent Document 1, a foreign matter catching means is disposed between the use side heat exchanger and the compressor at a position that becomes a gas refrigerant, and the HFC refrigerating machine oil mixed with impurities is applied to the foreign matter catching means several times. I had to pass through it repeatedly. Therefore, after replacing the old machine with the new machine, it is necessary to carry out the cleaning operation in the connection pipe for a relatively long time, for example, for about 1 to 2 hours. In other words, the work time for air conditioner replacement work and renewal work was inevitably long.

また、特許文献2においては、不純物回収容器(図9参照)に内蔵したフィルタにより、冷凍サイクルの稼動時に液冷媒の全量をフィルタを経由して既存配管の不純物を捕捉しているが、フィルタの介在により液冷媒の流通抵抗が増加し、冷凍サイクルの動作ポイントがリニューアルによる新機のHFC用冷凍機油を使用した空気調和機の動作ポイントと合わず、調整に多大の手間を要する。因みに、新規の空気調和機はフィルタのない状態での動作ポイントが設定されている。更に、冷凍サイクル使用中にフィルタの目詰まりにより流通抵抗が次第に増加し、冷凍サイクルの動作ポイントが変化し、その調整に多大の手間を要する。   Further, in Patent Document 2, a filter built in an impurity recovery container (see FIG. 9) captures impurities in the existing pipe through the filter for the entire amount of liquid refrigerant during operation of the refrigeration cycle. The flow resistance of the liquid refrigerant increases due to the interposition, and the operation point of the refrigeration cycle does not match the operation point of the air conditioner using the new HFC refrigerating machine oil by renewal, which requires a great deal of adjustment. Incidentally, the operating point in the state without a filter is set for the new air conditioner. Furthermore, the flow resistance gradually increases due to clogging of the filter during use of the refrigeration cycle, the operating point of the refrigeration cycle changes, and a great deal of labor is required for the adjustment.

特許文献3においては、フィルタに並列にバイパス管を接続して、不純物でのフィルタの目詰まりによる液冷媒の圧力損失の増大を抑えている。しかしながら、フィルタの目詰まりを遅らせているだけで、いずれ目詰まりが起って不純物の補足能力が低下すると、液冷媒がほとんどバイパス管を通過し、不純物を捕捉出来なくなる。また、フィルタ内に一旦貯留された不純物が液冷媒の圧力で再度液冷媒中に流出する恐れがある。更に上記のような経過においては、フィルタとバイパス管からなる並列回路の流通抵抗が変化することになり、冷凍サイクル全体の動作ポイントが変化して不安定となり、冷凍能力が悪化するか、これを防止するための調整に多大な手間を必要としていた。   In Patent Document 3, a bypass pipe is connected in parallel with the filter to suppress an increase in the pressure loss of the liquid refrigerant due to the filter being clogged with impurities. However, if the clogging of the filter is delayed and the trapping ability of the impurities is reduced, the liquid refrigerant almost passes through the bypass pipe and cannot capture the impurities. Further, the impurities once stored in the filter may flow out again into the liquid refrigerant at the pressure of the liquid refrigerant. Furthermore, in the process as described above, the flow resistance of the parallel circuit composed of the filter and the bypass pipe will change, the operating point of the entire refrigeration cycle will change and become unstable, and the refrigeration capacity will deteriorate. It took a lot of effort to make adjustments to prevent it.

本発明の目的は、前記従来技術に鑑み、旧冷凍サイクル装置の旧接続配管を再利用してリニューアルの効率を上げるために、新冷凍サイクル装置の運転中の旧接続配管内の残留不純物の捕捉能力を長期間維持すると共に、新冷凍サイクル装置の運転での運転状態の変化を抑制して、動作ポイントの調整なしで高い冷凍能力を維持できるようにした、冷凍サイクル装置を提供することにある。   An object of the present invention is to capture residual impurities in the old connection pipe during operation of the new refrigeration cycle apparatus in order to increase the efficiency of the renewal by reusing the old connection pipe of the old refrigeration cycle apparatus in view of the prior art. To provide a refrigeration cycle apparatus capable of maintaining a high refrigeration capacity without adjusting the operating point while maintaining the capacity for a long period of time and suppressing a change in the operating state in the operation of the new refrigeration cycle apparatus. .

上記課題を解決するため、本発明は、圧縮機、熱源機側熱交換器、第1の膨張装置、第2の膨張装置、利用側熱交換器を順次連結してなる冷凍サイクル装置において、前記第1の膨張装置と第2の膨張装置との間に、冷媒不溶成分又は冷媒に対して弱溶解成分の少なくともいずれかを捕捉するフィルタを収納した捕捉容器を設け、前記捕捉容器内に流体を導入出する流体導入出管の先端部を前記フィルタの下方に配置し、前記捕捉容器の下方に並列接続されたバイパス配管を配置するとともに、該バイパス配管から上方に向かうように前記流体導入出管を配置し、さらに、前記バイパス配管の流通抵抗を、前記流体導入出管の流通抵抗よりも大きくなるように構成し、前記圧縮機を駆動した冷凍サイクルの運転において、常に前記バイパス配管と前記流体導入出管に分流して液冷媒を流すことを特徴とする。 In order to solve the above problems, the present invention provides a refrigeration cycle apparatus in which a compressor, a heat source apparatus side heat exchanger, a first expansion apparatus, a second expansion apparatus, and a use side heat exchanger are sequentially connected. Provided between the first expansion device and the second expansion device is a capture container containing a filter that captures at least one of the refrigerant insoluble component or the weakly soluble component with respect to the refrigerant, and fluid is contained in the capture container. The tip of the fluid introduction / exit pipe to be introduced / disposed is disposed below the filter, a bypass pipe connected in parallel below the capture container is disposed , and the fluid introduction / exit pipe is directed upward from the bypass pipe was placed, further, the flow resistance of the bypass pipe, and configured to be larger than flow resistance of the fluid inlet and outlet pipe, the operation of the refrigeration cycle of driving the compressor, always the bypass arrangement And diverted into the fluid inlet and outlet pipe and wherein the flow of the liquid refrigerant.

また、前記流体導入出管は、前記捕捉容器内のフィルタの下方と前記バイパス配管を連通するように、前記捕捉容器の下部と前記バイパス配管の間に配置されている。   The fluid introduction / extraction pipe is disposed between the lower part of the capture container and the bypass pipe so as to communicate the lower part of the filter in the capture container and the bypass pipe.

また、前記冷凍サイクル装置の運転中に、前記捕捉容器内が液冷媒にて充填されるように液冷媒を流通させる。   Further, during the operation of the refrigeration cycle apparatus, the liquid refrigerant is circulated so that the inside of the capture container is filled with the liquid refrigerant.

また、前記冷凍サイクル装置の運転中に、前記液冷媒の流れによって前記フィルタによって捕捉された前記冷媒不溶成分又は冷媒に対して弱溶解成分の少なくともいずれかを、液冷媒の水面付近に貯留するように構成される。   Further, during operation of the refrigeration cycle apparatus, at least one of the refrigerant insoluble component captured by the filter by the liquid refrigerant flow or the weakly soluble component with respect to the refrigerant is stored near the water surface of the liquid refrigerant. Configured.

また、前記冷凍サイクル装置の運転中に、前記フィルタが液冷媒に水没するように前記フィルタが配置され、前記フィルタによって捕捉された前記冷媒不溶成分又は冷媒に対して弱溶解成分の少なくともいずれかを、前記フィルタより上方の液冷媒の水面付近に貯留するように構成される。   In addition, during the operation of the refrigeration cycle apparatus, the filter is arranged so that the filter is submerged in the liquid refrigerant, and at least one of the refrigerant insoluble component or the weakly soluble component captured by the filter The liquid refrigerant above the filter is stored near the water surface.

また、前記捕捉容器は、フィルタ下方の領域を少なくとも2つに分ける仕切板を備え、一方の領域に前記流体導入管が接続され、他方の領域に前記流体導出管が接続され、前記流体導入管から流入した液冷媒が前記一方の領域から前記フィルタ内に上昇しながら進入し、このフィルタ内を通過した液冷媒が前記他方の領域を介して前記流体導出管に排出されるように構成される。   In addition, the capture container includes a partition plate that divides the region below the filter into at least two regions, the fluid introduction tube is connected to one region, the fluid outlet tube is connected to the other region, and the fluid introduction tube The liquid refrigerant that has flowed in from the one region enters the filter while rising, and the liquid refrigerant that has passed through the filter is discharged to the fluid outlet pipe through the other region. .

また、前記捕捉容器は、冷凍サイクル運転中に液冷媒の通過によってフィルタに捕捉された冷媒不溶成分又は冷媒に対して弱溶解成分を、その浮力によりフィルタ内で上昇させて液冷媒の水面付近に貯留させる。   Further, the capture container raises a refrigerant insoluble component or a weakly soluble component with respect to the refrigerant trapped by the passage of the liquid refrigerant during the refrigeration cycle operation in the filter by its buoyancy and near the water surface of the liquid refrigerant. Store.

また、前記バイパス配管の流通抵抗を、前記流体導入出管の流通抵抗よりも大きく設定している。   Further, the flow resistance of the bypass pipe is set larger than the flow resistance of the fluid introduction / exit pipe.

また、前記フィルタは、セルロース、ポリプロピレン、ポリエステルの少なくとも1つからなるエレメントを有して形成される。   Further, the filter is formed having an element made of at least one of cellulose, polypropylene, and polyester.

また、前記捕捉容器内に流入出する冷媒の流量比が、機器の信頼性を確保する上で決定した所定値以上になるように、前記バイパス配管と前記流体導入出管の管径を設定している。   In addition, the pipe diameters of the bypass pipe and the fluid inlet / outlet pipe are set so that the flow rate ratio of the refrigerant flowing into and out of the trapping container is equal to or greater than a predetermined value determined for ensuring the reliability of the equipment. ing.

本発明によれば、新冷凍サイクル装置の運転中に旧接続配管内の残留不純物を捕捉するに際し、捕捉能力を長期間維持して捕捉を確実に実行でき、HFC用冷凍機油の劣化を抑制することができる。   According to the present invention, when trapping residual impurities in the old connection pipe during operation of the new refrigeration cycle apparatus, the trapping capability can be maintained for a long period of time and the trapping can be performed reliably, and deterioration of the refrigeration oil for HFC is suppressed. be able to.

また、新冷凍サイクル装置の運転での冷凍サイクルの運転状態の変化を最低限に抑制して、動作ポイントの調整なしで高い冷凍能力を維持できる。   Moreover, the change of the driving | running state of the refrigerating cycle by the driving | operation of a new refrigerating cycle apparatus can be suppressed to the minimum, and a high refrigerating capacity can be maintained without adjustment of an operating point.

以下本発明の実施の形態について図を用いて説明する。なお、旧機に封入された冷凍機油としては鉱油として説明する。   Embodiments of the present invention will be described below with reference to the drawings. The refrigerating machine oil sealed in the old machine will be described as mineral oil.

図1は、第1実施例の空気調和機のサイクル系統図を示し、図2は、第2実施例のサイクル系統図を示し、図3は不適切な構成による空気調和機のサイクル系統図を示す。図4及び図5及び図10は捕捉容器の断面図を示し、図6はHFC系冷媒とHFC用冷凍機油と鉱油共存下での鉱油分離特性を示す。図7は鉱油捕捉容器部の流量比と鉱油捕捉量比率との関係を示し、図8は空調機運転時間と劣化指標との関係を示す。図9は従来の形態による空気調和機のサイクル系統図を示す。   FIG. 1 shows a cycle system diagram of the air conditioner of the first embodiment, FIG. 2 shows a cycle system diagram of the second embodiment, and FIG. 3 shows a cycle system diagram of the air conditioner having an inappropriate configuration. Show. 4, 5, and 10 show cross-sectional views of the trapping container, and FIG. 6 shows mineral oil separation characteristics in the presence of HFC refrigerant, HFC refrigerating machine oil, and mineral oil. FIG. 7 shows the relationship between the flow rate ratio of the mineral oil trapping container and the mineral oil trapping amount ratio, and FIG. 8 shows the relationship between the air conditioner operating time and the deterioration index. FIG. 9 shows a cycle system diagram of an air conditioner according to a conventional embodiment.

図1、2、6、7、8を用いて、既設配管内に残留した冷媒不溶成分または冷媒に対して弱溶解成分を回収する方法について説明する。以下、既設配管内に残留した冷媒不溶成分としては鉱油として説明する。
CFCやHCFCを使った空気調和装置が老朽化した場合、空気調和装置を交換する。まず、CFCまたはHCFC冷媒を回収し、新機としての室外機30と室内機40a、40bを図1又は図2に示すものと交換する。液接続配管7、8a、8bとガス接続配管11a、11b、12は旧機のものを再利用する。室外機30には予めHFCが充填されているので、阻止弁6、13は閉じたまま室内機30、液接続配管7、8a、8bとガス接続配管11a、11b、12を接続状態で真空引きをし、その後HFCの追加充填と阻止弁6、13の開弁とを実施する。
A method for recovering a refrigerant insoluble component remaining in an existing pipe or a weakly soluble component with respect to the refrigerant will be described with reference to FIGS. Hereinafter, the refrigerant insoluble component remaining in the existing pipe will be described as mineral oil.
When the air conditioner using CFC or HCFC is aged, replace the air conditioner. First, the CFC or HCFC refrigerant is recovered, and the outdoor unit 30 and the indoor units 40a and 40b as new units are replaced with those shown in FIG. The liquid connection pipes 7, 8a, 8b and the gas connection pipes 11a, 11b, 12 are reused from the old machine. Since the outdoor unit 30 is filled with HFC in advance, the indoor unit 30, the liquid connection pipes 7, 8a, 8b and the gas connection pipes 11a, 11b, 12 are evacuated while the blocking valves 6 and 13 are closed. After that, additional charging of HFC and opening of the stop valves 6 and 13 are performed.

冷房運転の場合、圧縮機1で圧縮された高温高圧のガス冷媒は圧縮機1から吐出され、ガス冷媒が四方弁2を経て、熱源機側熱交換器3へと流入し、ここで熱交換器して凝縮液化する。凝縮液化した冷媒は全開とされた第1の膨張装置4を通り、阻止弁6を通り、室内機40a、40bへ送られる。送られた液冷媒は、第2の膨張装置9a、9bへ流入し、ここで低圧まで減圧されて低圧二相状態となり、利用側熱交換器10a、10bで空気などの利用側媒体と熱交換して蒸発・ガス化する。その後、ガス冷媒は阻止弁13、四方弁2を経て圧縮機1へ戻る。また、余剰冷媒は図1ではレシーバ5に、図2ではアキュムレータ14に貯留され、冷凍サイクルの運転圧力、温度が正常な状態に保たれる。   In the case of cooling operation, the high-temperature and high-pressure gas refrigerant compressed by the compressor 1 is discharged from the compressor 1, and the gas refrigerant flows into the heat source side heat exchanger 3 through the four-way valve 2, where heat exchange is performed. To condense. The condensed and liquefied refrigerant passes through the fully expanded first expansion device 4, passes through the blocking valve 6, and is sent to the indoor units 40 a and 40 b. The sent liquid refrigerant flows into the second expansion devices 9a and 9b, where the liquid refrigerant is decompressed to a low pressure to be in a low-pressure two-phase state, and exchanges heat with a use-side medium such as air in the use-side heat exchangers 10a and 10b. Then evaporate and gasify. Thereafter, the gas refrigerant returns to the compressor 1 through the blocking valve 13 and the four-way valve 2. Further, the surplus refrigerant is stored in the receiver 5 in FIG. 1 and in the accumulator 14 in FIG. 2, and the operating pressure and temperature of the refrigeration cycle are maintained in a normal state.

暖房運転の場合、圧縮機1で圧縮された高温高圧のガス冷媒はHFC用冷凍機油と共に圧縮機1から吐出され、四方弁2、阻止弁13を経て利用側熱交換器10a、10bへ流入し、ここで空気など利用側媒体と熱交換して凝縮液化する。凝縮液化した冷媒は、阻止弁6、レシーバ5へ流入し、第1の膨張装置4で減圧され熱源機側熱交換器3で空気・水などの熱源媒体と熱交換して蒸発・ガス化する。蒸発・ガス化した冷媒は四方弁2を経て圧縮機1へ戻る。   In the heating operation, the high-temperature and high-pressure gas refrigerant compressed by the compressor 1 is discharged from the compressor 1 together with the refrigeration oil for HFC, and flows into the use side heat exchangers 10a and 10b through the four-way valve 2 and the blocking valve 13. Here, heat is exchanged with the use side medium such as air to condense and liquefy. The condensed and liquefied refrigerant flows into the stop valve 6 and the receiver 5, is decompressed by the first expansion device 4, and is evaporated and gasified by exchanging heat with a heat source medium such as air and water in the heat source unit side heat exchanger 3. . The evaporated and gasified refrigerant returns to the compressor 1 through the four-way valve 2.

図6はHFC系冷媒とHFC用冷凍機油に対し、HFC系冷媒に不溶な成分である鉱油が約10%(=鉱油量/(HFC用冷凍機油量+鉱油量))混入した場合の鉱油の分離特性を示す。横軸は冷凍機油(HFC用冷凍機油+鉱油)への冷媒溶解度を示し、0%が冷凍機油(HFC用冷凍機油+鉱油)のみの場合を、100%が冷媒のみの場合を示す。縦軸は温度を示している。
つまり、鉱油はHFC系冷媒にはほとんど溶解せず、一方HFC用冷凍機油には溶解する。従って、鉱油はHFC用冷凍機油が多く存在する圧縮機内では分離せず(溶解している)、液冷媒が多く存在する熱源機側熱交換器3から液阻止弁6までの液配管部及び液接続配管部7、8a、8bおよびレシーバ5内で分離する(溶解しない)。
FIG. 6 shows the mineral oil when about 10% (= mineral oil amount / (HFC refrigerating machine oil amount + mineral oil amount)) of mineral oil that is insoluble in the HFC refrigerant is mixed with the HFC refrigerant and the HFC refrigerant oil. The separation characteristics are shown. The horizontal axis indicates the solubility of the refrigerant in the refrigeration oil (HFC refrigeration oil + mineral oil), where 0% is only the refrigeration oil (HFC refrigeration oil + mineral oil) and 100% is the refrigerant only. The vertical axis represents temperature.
That is, mineral oil hardly dissolves in the HFC refrigerant, while it dissolves in the HFC refrigerating machine oil. Accordingly, the mineral oil is not separated (dissolved) in the compressor in which a large amount of refrigeration oil for HFC is present, and the liquid pipe section and the liquid from the heat source side heat exchanger 3 to the liquid blocking valve 6 in which a large amount of liquid refrigerant is present. It isolate | separates in the connection piping part 7, 8a, 8b and the receiver 5 (it does not melt | dissolve).

そこで、図1、図2に示すように、鉱油が分離している液配管部に鉱油捕捉容器50を設置している。鉱油捕捉容器50内にはフィルタ51が設けられ、フィルタ51はメッシュ数が比較的大きい繊維性の材料であり、その繊維の材質として、セルロース、ポリエステル、ポリプロピレンの少なくとも1つで構成されている。   Therefore, as shown in FIGS. 1 and 2, a mineral oil trapping container 50 is installed in a liquid piping portion where the mineral oil is separated. A filter 51 is provided in the mineral oil trapping container 50, and the filter 51 is a fibrous material having a relatively large number of meshes. The fiber material is made of at least one of cellulose, polyester, and polypropylene.

フィルタ51は、その上方に液冷媒が満たされる上部領域60と、その下方に仕切板54により2つに分けられた第1領域61と、第2領域62が設けられるように、前記鉱油捕捉容器50内に設置される。前記領域61と62にはそれぞれ冷媒導入管52と冷媒導出管53の上方端が接続され、両管52、53の下方端がバイパス配管55に連通して接続される。バイパス配管55は、第1の膨張装置4から液阻止弁6までの液配管部に介在する形で接続される。冷凍サイクル装置の運転中は、冷媒が鉱油捕捉容器50の上部領域60まで満たされる(上部に空間があっても良い)ように充填され、フィルタ51は液冷媒に水没した形となる。   The filter 51 includes the upper region 60 filled with the liquid refrigerant above, the first region 61 divided into two by the partition plate 54 below, and the second region 62 below the mineral oil capturing container. 50. The upper ends of the refrigerant introduction pipe 52 and the refrigerant outlet pipe 53 are connected to the regions 61 and 62, respectively, and the lower ends of both the pipes 52 and 53 are connected to the bypass pipe 55. The bypass pipe 55 is connected so as to be interposed in the liquid pipe section from the first expansion device 4 to the liquid blocking valve 6. During operation of the refrigeration cycle apparatus, the refrigerant is filled up to the upper region 60 of the mineral oil capturing container 50 (there may be a space above), and the filter 51 is submerged in the liquid refrigerant.

冷凍サイクル装置の運転のうち冷房運転の場合、液冷媒が第1の膨張装置4から液阻止弁6の方向に液配管部内を流れ、バイパス配管55と前記冷媒導入管52に分流する。分流した液冷媒は、前記冷媒導入管52から前記第1領域61に流入し、フィルタ51内を矢印のように上昇通過してフィルタ51の上方の前記上部領域60に抜け出る(一部横矢印のようにフィルタ内を流れるものもある)。更に液冷媒はこの上部領域60から矢印のようにフィルタ51内を下降通過して前記第2領域62に達し、冷媒導出管53から液阻止弁6の方向の液配管部に流れる。暖房運転の場合は、冷媒の流れが上記と逆となる。   In the cooling operation of the operation of the refrigeration cycle apparatus, the liquid refrigerant flows from the first expansion device 4 toward the liquid blocking valve 6 in the liquid pipe portion, and is divided into the bypass pipe 55 and the refrigerant introduction pipe 52. The divided liquid refrigerant flows into the first region 61 from the refrigerant introduction pipe 52, passes upward through the filter 51 as indicated by an arrow, and escapes to the upper region 60 above the filter 51 (partly with a horizontal arrow). Some flow through the filter as well). Further, the liquid refrigerant passes through the filter 51 downward from the upper area 60 as shown by the arrow, reaches the second area 62, and flows from the refrigerant outlet pipe 53 to the liquid piping section in the direction of the liquid blocking valve 6. In the case of heating operation, the refrigerant flow is opposite to the above.

液冷媒および液冷媒に溶解したHFC用冷凍機油は粘度が著しく低い液体であるのに対して、鉱油は液冷媒および液冷媒に溶解したHFC用冷凍機油に比べて粘度が著しく高い液体である。そのため、液冷媒および液冷媒に溶解したHFC用冷凍機油はフィルタ51を通過するのに対して、鉱油はメッシュ数の大きいフィルタ51の繊維間に引っかかり、その後毛細管現象により繊維内部へ捕捉される。   The liquid refrigerant and the HFC refrigerating machine oil dissolved in the liquid refrigerant are liquids with a remarkably low viscosity, whereas the mineral oil is a liquid having a remarkably higher viscosity than the liquid refrigerant and the HFC refrigerating machine oil dissolved in the liquid refrigerant. Therefore, the liquid refrigerant and the refrigeration oil for HFC dissolved in the liquid refrigerant pass through the filter 51, whereas the mineral oil is caught between the fibers of the filter 51 having a large mesh number, and is then trapped inside the fibers by capillary action.

鉱油は、液冷媒より比重が小さいので、フィルタ51の繊維内部に捕捉された後、その浮力により次第にフィルタ51内を上昇し、フィルタ51を上方へ抜け出て前記上部領域60の液冷媒中を浮上し水面付近に浮遊して貯留される。この状態では鉱油が浮力の作用で再度フィルタ51に取り込まれることが無いため、フィルタ51が鉱油によって目詰まりを起すことが無く、フィルタ51での冷媒の流通抵抗は増加しない。   Since the mineral oil has a specific gravity smaller than that of the liquid refrigerant, the mineral oil is trapped inside the fiber of the filter 51 and then gradually rises in the filter 51 due to its buoyancy. The mineral oil escapes upward and floats in the liquid refrigerant in the upper region 60. It floats near the water surface and is stored. In this state, since the mineral oil is not taken into the filter 51 again by the action of buoyancy, the filter 51 is not clogged by the mineral oil, and the flow resistance of the refrigerant in the filter 51 does not increase.

また、冷媒導入出管52、53は、下方から捕捉容器50に接続しているので、管の長さが短くて済み、流通抵抗をより小さく出来る。更に、前記第1の膨張装置4から液阻止弁6の方向に液配管部内を流れる液冷媒がバイパス管55にも分流するため、液配管部内の流通抵抗をより小さく出来る。   Further, since the refrigerant introduction / extraction pipes 52 and 53 are connected to the capture container 50 from below, the pipe length can be shortened and the flow resistance can be further reduced. Furthermore, since the liquid refrigerant flowing in the liquid pipe part from the first expansion device 4 toward the liquid blocking valve 6 is also divided into the bypass pipe 55, the flow resistance in the liquid pipe part can be further reduced.

したがって、前記第1の膨張装置4から液阻止弁6の方向に液配管部に、鉱油捕捉容器50とバイパス管55を並列に配置することで、液冷媒の流通抵抗を増加させることなく、圧縮機1内からHFC用冷凍機油と共に吐出された鉱油がのうち、鉱油のみをフィルタ51で確実に捕捉でき、しかも、補足能力を長期間維持することができる。これは、新冷凍サイクル装置が、旧接続配管に接続されても冷凍サイクルの運転状態の変化が少なく、その後、長期間運転されても冷凍サイクルの運転状態の変化が少ないことを意味し、従って、従来のような運転状態の変化に伴う装置の調整が不要で、高い冷凍能力が維持できる。   Therefore, by arranging the mineral oil catching container 50 and the bypass pipe 55 in parallel in the liquid piping portion from the first expansion device 4 to the liquid blocking valve 6, compression is performed without increasing the flow resistance of the liquid refrigerant. Of the mineral oil discharged together with the HFC refrigerating machine oil from inside the machine 1, only the mineral oil can be reliably captured by the filter 51, and the supplementary ability can be maintained for a long period of time. This means that even if the new refrigeration cycle apparatus is connected to the old connection pipe, there is little change in the operating state of the refrigeration cycle, and even if it is operated for a long time thereafter, there is little change in the operating state of the refrigeration cycle. Therefore, the adjustment of the apparatus accompanying the change in the operating state as in the prior art is unnecessary, and a high refrigeration capacity can be maintained.

圧縮機1の形態として圧縮機1内の冷凍機油貯留部の圧力が高い高圧チャンバー方式、あるいは圧縮機1の吐出部にオイルセパレータを配置している場合には、圧縮機1内あるいはオイルセパレータ内に貯留した冷凍機油の温度は高温なる。一方、鉱油捕捉容器50の温度はその温度よりも低くなる。そして、冷凍機油の劣化は、温度が上昇するほど促進し、さらにHFC用冷凍機油の劣化は既設配管内に残留した鉱油(劣化油)の混入量が多いほど劣化は促進するので、圧縮機1内あるいはオイルセパレータ内よりも低温の鉱油捕捉容器50で鉱油を捕捉することにより、HFC用冷凍機油の劣化を抑制することができる。   When the compressor 1 is in the form of a high-pressure chamber system in which the pressure of the refrigerating machine oil reservoir in the compressor 1 is high, or when an oil separator is disposed in the discharge part of the compressor 1, the compressor 1 or the oil separator The temperature of the refrigeration oil stored in the tank becomes high. On the other hand, the temperature of the mineral oil capturing container 50 is lower than that temperature. The deterioration of the refrigerating machine oil is accelerated as the temperature rises, and the deterioration of the HFC refrigerating machine oil is further promoted as the mixing amount of the mineral oil (deteriorating oil) remaining in the existing pipe increases. By capturing the mineral oil in the mineral oil capturing container 50 at a lower temperature than the inside or the oil separator, it is possible to suppress deterioration of the refrigeration oil for HFC.

フィルタ51は、図9に示すように既存のレシーバ5内に設置しても、鉱油を捕捉可能である。しかし、リニューアル専用機を開発するにあたり、ベースとなる冷凍装置内にレシーバ5が有る場合と無い場合があり、有る冷凍装置では、冷媒導入出管52、53を含むレシーバ5の圧力損失分の増加が見込まれる。そのため、レシーバ5の有無によって冷凍サイクルの動作ポイントが異なって制御方法が異なるため、両者の制御方法に対応するために開発工数が多大となる。   Even if the filter 51 is installed in the existing receiver 5 as shown in FIG. 9, it can capture mineral oil. However, in developing a renewal dedicated machine, there may or may not be a receiver 5 in the base refrigeration apparatus. In some refrigeration apparatuses, an increase in the pressure loss of the receiver 5 including the refrigerant introduction / exit pipes 52 and 53 is achieved. Is expected. For this reason, the operating point of the refrigeration cycle differs depending on the presence or absence of the receiver 5, and the control method is different. Therefore, the development man-hours are large in order to cope with both control methods.

本実施例では、鉱油捕捉容器50内に流体が導入出する冷媒導入出管52、53をバイパス配管55にて接続し、鉱油捕捉容器50及びバイパス配管55を液配管部に配置することにより、圧力損失の増加分を最小限に抑えることが可能であって、動作ポイントが変わらないため、冷凍サイクル装置の一つの制御方法で対応可能となる。   In the present embodiment, the refrigerant introduction / exit pipes 52 and 53 through which the fluid is introduced into and extracted from the mineral oil capturing container 50 are connected by the bypass pipe 55, and the mineral oil capturing container 50 and the bypass pipe 55 are arranged in the liquid piping section. Since the increase in pressure loss can be minimized and the operating point does not change, one control method for the refrigeration cycle apparatus can be used.

鉱油捕捉容器50内のガス冷媒は、鉱油捕捉容器50とその雰囲気との熱交換によって凝縮し、鉱油捕捉容器50内は液冷媒にて満たされる。そのため、鉱油捕捉容器50内を液冷媒にて満たした状態であっても、ベースの冷凍装置と運転点(動作ポイント)が同じになるような冷媒量に設定することが望ましい。例えば、ベースの冷凍装置の液配管、液接続配管7、8a、8b内が液単相であるならば、鉱油捕捉容器50を取り付けたリニューアル専用機においては、鉱油捕捉容器50内の冷媒量分だけ多く封入しておくことが望ましい。   The gas refrigerant in the mineral oil trapping container 50 is condensed by heat exchange between the mineral oil trapping container 50 and its atmosphere, and the mineral oil trapping container 50 is filled with liquid refrigerant. Therefore, it is desirable to set the refrigerant amount so that the operating point (operating point) is the same as that of the base refrigeration apparatus even when the mineral oil capturing container 50 is filled with the liquid refrigerant. For example, if the liquid piping of the base refrigeration apparatus and the liquid connection piping 7, 8 a, 8 b are in a liquid single phase, the renewal dedicated machine with the mineral oil capture container 50 attached has an amount of refrigerant in the mineral oil capture container 50. It is desirable to enclose as much as possible.

また、鉱油捕捉容器50内は、液冷媒にて満たされることで、フィルタ51全体にHFC系冷媒とHFC用冷凍機油と鉱油との混合液とを接触することができるので、鉱油捕捉容器50内においては、鉱油のみをフィルタ51全体を用いて効率的に分離して捕捉することができる。   Moreover, since the inside of the mineral oil capturing container 50 is filled with the liquid refrigerant, the mixed liquid of the HFC refrigerant, the HFC refrigerating machine oil, and the mineral oil can be brought into contact with the entire filter 51. In, only mineral oil can be efficiently separated and captured using the entire filter 51.

さらに、フィルタ51に対する流速が大きいほどフィルタ51の鉱油捕捉量は減少する。これは、一度フィルタ51に捕捉された鉱油が、冷媒の流体力によりフィルタ51の外に押し出されるからである。そのため、鉱油捕捉容器50内に流体を導入出する流体導入出管52、53のそれぞれの先端部がフィルタ51の下方に配置することにより、フィルタ51が流体の流れ方向を遮らないことや、先に分離された鉱油がフィルタ51の上端付近またはフィルタ51を抜け出た上方に捕捉されて、流体の流れる領域に無いことから、流体力によるフィルタ51外部への鉱油の流出を抑制することができる。   Furthermore, the larger the flow rate with respect to the filter 51, the smaller the amount of mineral oil captured by the filter 51. This is because the mineral oil once captured by the filter 51 is pushed out of the filter 51 by the fluid force of the refrigerant. For this reason, the tips of the fluid inlet / outlet pipes 52 and 53 for introducing and discharging the fluid into / from the mineral oil capturing container 50 are arranged below the filter 51, so that the filter 51 does not obstruct the fluid flow direction. The mineral oil thus separated is captured near the upper end of the filter 51 or above the filter 51 and is not in the fluid flowing region, so that the outflow of the mineral oil to the outside of the filter 51 due to the fluid force can be suppressed.

また、鉱油捕捉容器50に対して並列にバイパス配管55を配置することで、鉱油捕捉容器50内に流入する流量を抑えることができるので、フィルタ51からの鉱油の導出の抑制に有効である。   In addition, since the bypass pipe 55 is arranged in parallel with the mineral oil trapping container 50, the flow rate flowing into the mineral oil trapping container 50 can be suppressed, which is effective in suppressing the derivation of the mineral oil from the filter 51.

次に、バイパス配管55を有する鉱油捕捉容器50内に配置したフィルタ51の鉱油捕捉量について説明する。図7に全流量207〜218kg/hにおいて、鉱油捕捉容器内に鉱油を一定量一回導入した場合の、鉱油捕捉容器部流量比(=鉱油捕捉部流量/全流量)と鉱油捕捉容器流量比100%時のフィルタ51での鉱油捕捉量を100%としたときの鉱油捕捉量比率を示す。図7から鉱油捕捉容器部流量比が小さくなるほど、鉱油捕捉量比率が小さくなる、つまりフィルタ51での鉱油の捕捉速度が遅くなることがわかる。   Next, the mineral oil trapping amount of the filter 51 disposed in the mineral oil trapping container 50 having the bypass pipe 55 will be described. FIG. 7 shows the flow rate ratio of the mineral oil catching container (= mineral oil catching part flow rate / total flow rate) and the mineral oil catching container flow rate ratio when the mineral oil is introduced once into the mineral oil catching container at a total flow rate of 207 to 218 kg / h. The ratio of the amount of mineral oil captured when the amount of mineral oil captured by the filter 51 at 100% is 100% is shown. It can be seen from FIG. 7 that the smaller the mineral oil trapping container flow rate ratio is, the smaller the mineral oil trapping ratio is, that is, the slower the mineral oil trapping speed at the filter 51.

図8に空調機の運転時間(機器の生涯運転時間)と、新機内に封入した冷凍機油(新油)の劣化指標の関係を示す。前記のように鉱油捕捉部50の流量比が小さいほど、フィルタ51での鉱油の捕捉速度が遅くなることから、劣化した鉱油を温度の高い圧縮機1内あるいはオイルセパレータ内により多く残留する時間が長くなるため、新油の劣化を促進する。そのため、空調機運転時間が、ある所定時間において、新油の劣化指標の限界値以下となる鉱油捕捉部流量比:b[%]以上に設定する必要がある。ここで所定時間とは、例えば機器のメンテナンス周期にあたる時間、あるいは製品の設計寿命を示す。   FIG. 8 shows the relationship between the operating time of the air conditioner (lifetime operating time of the equipment) and the deterioration index of the refrigerating machine oil (new oil) enclosed in the new machine. As described above, the smaller the flow rate ratio of the mineral oil trapping section 50, the slower the trapping speed of the mineral oil in the filter 51. Therefore, the amount of time that the deteriorated mineral oil remains in the compressor 1 or the oil separator having a higher temperature remains. Because it becomes longer, it promotes the deterioration of new oil. Therefore, the operation time of the air conditioner needs to be set to a mineral oil trapping portion flow rate ratio: b [%] or more that is equal to or less than the limit value of the deterioration index of the new oil at a predetermined time. Here, the predetermined time indicates, for example, the time corresponding to the maintenance cycle of the device or the design life of the product.

以上より、鉱油捕捉容器50内に流入出する冷媒の流量比が、機器の信頼性を確保する上で決定した所定値(鉱油捕捉部流量比:b[%])以上になるように、バイパス配管55と流体導入出管52、53を設定する必要がある。   From the above, the bypass ratio is set so that the flow rate ratio of the refrigerant flowing into and out of the mineral oil catching container 50 is equal to or greater than the predetermined value (mineral oil catching portion flow rate ratio: b [%]) determined for ensuring the reliability of the equipment. It is necessary to set the pipe 55 and the fluid introduction / exit pipes 52 and 53.

鉱油捕捉容器50内に流入する流量は、バイパス配管55と流体導入出管52、53及び鉱油捕捉容器50との圧力損失の関係により決まる。バイパス配管55と流体導入出管52、53の配管の内径が等しい場合、例えば、図3のようにバイパス配管55に対して流体導入出管52、53の長さが著しく長いと、鉱油捕捉容器50内のガス冷媒は、鉱油捕捉容器50とその雰囲気との熱交換によって凝縮し、鉱油捕捉容器50内は液冷媒にて満たされはするが、バイパス配管55と流体導入出管52、53との合流部の圧力損失が等しくなることから、鉱油捕捉容器50側には殆ど冷媒が流れない。そのため、鉱油捕捉容器50内のフィルタ51には鉱油は殆ど捕捉されない。   The flow rate flowing into the mineral oil trapping container 50 is determined by the relationship of the pressure loss between the bypass pipe 55, the fluid introduction / exit pipes 52 and 53, and the mineral oil trapping container 50. When the inner diameters of the bypass pipe 55 and the fluid introduction / exit pipes 52 and 53 are equal, for example, if the fluid introduction / exit pipes 52 and 53 are significantly longer than the bypass pipe 55 as shown in FIG. The gas refrigerant in 50 is condensed by heat exchange between the mineral oil trapping container 50 and its atmosphere, and the mineral oil trapping container 50 is filled with the liquid refrigerant, but the bypass pipe 55 and the fluid inlet / outlet pipes 52, 53 Therefore, the refrigerant hardly flows to the mineral oil capturing container 50 side. Therefore, the mineral oil is hardly captured by the filter 51 in the mineral oil capturing container 50.

そこで、バイパス配管55を、鉱油捕捉容器50の下方に配置することで、流体導入出管52、53の長さを短く設定して、管による圧力損失を出来るだけ小さくすることできるので、鉱油捕捉部流量比をb[%]以上になるように設定することが可能である。   Therefore, by disposing the bypass pipe 55 below the mineral oil capturing container 50, the length of the fluid introduction / exit pipes 52 and 53 can be set short, and the pressure loss due to the pipe can be made as small as possible. It is possible to set the partial flow rate ratio to be not less than b [%].

同様に、鉱油捕捉部流量比をb[%]以上になるように、バイパス配管55の抵抗を、流体導入出管52、53の抵抗よりも大きく設定してもよい。例えば、バイパス配管55の内径を、流体導入出管52、53の内径よりも細く設定するか、あるいは、バイパス配管55に流量調整弁を配置するとよい。   Similarly, the resistance of the bypass pipe 55 may be set to be larger than the resistance of the fluid introduction / exit pipes 52 and 53 so that the flow rate ratio of the mineral oil capturing part is equal to or greater than b [%]. For example, the inner diameter of the bypass pipe 55 may be set smaller than the inner diameter of the fluid introduction / exit pipes 52 and 53, or a flow rate adjusting valve may be disposed in the bypass pipe 55.

また、鉱油捕捉容器50の構成として、本発明の第3実施例として図4に示すように鉱油捕捉容器50を横置きとすることで、バイパス配管55の長さを長く取ることができ、鉱油捕捉部流量比をb[%]以上とする流体導入出管52、53の設計自由度が増加する。この例では鉱油捕捉容器50内で液冷媒の水面の上にフィルタ51の上端が突出しているので、捕捉された鉱油は浮力によりフィルタ51の上端部となる液冷媒の水面上に浮遊した形で貯留される。従って、貯留された鉱油は、液冷媒の流通の妨げとならず、流通抵抗を増加させない。   Further, as a configuration of the mineral oil capturing container 50, as shown in FIG. 4 as a third embodiment of the present invention, the mineral oil capturing container 50 is placed horizontally so that the length of the bypass pipe 55 can be increased. The degree of freedom in designing the fluid inlet / outlet pipes 52 and 53 with a trapping portion flow rate ratio of b [%] or more increases. In this example, since the upper end of the filter 51 protrudes above the surface of the liquid refrigerant in the mineral oil capturing container 50, the captured mineral oil floats on the surface of the liquid refrigerant serving as the upper end of the filter 51 by buoyancy. Stored. Therefore, the stored mineral oil does not hinder the flow of the liquid refrigerant and does not increase the flow resistance.

さらに、本発明の第4実施例として図5に示すように、バイパス配管55を鉱油捕捉容器50内に設置することで、鉱油捕捉部流量比をb[%]以上になるように流体導入出管52、53の長さ(バイパス管55より上に突出している部分)を短く設定することが可能である。   Furthermore, as shown in FIG. 5 as a fourth embodiment of the present invention, by installing a bypass pipe 55 in the mineral oil catching container 50, the fluid introduction / extraction is performed so that the flow rate ratio of the mineral oil catching portion becomes b [%] or more. The lengths of the pipes 52 and 53 (portions protruding above the bypass pipe 55) can be set short.

本発明の第1実施例の空気調和機のサイクル系統図。The cycle system diagram of the air conditioner of 1st Example of this invention. 本発明の第2実施例の空気調和機のサイクル系統図。The cycle system diagram of the air conditioner of 2nd Example of this invention. 不適切な構成による空気調和機のサイクル系統図。Cycle system diagram of an air conditioner with an inappropriate configuration. 本発明の第3実施例の鉱油捕捉容器の断面図。Sectional drawing of the mineral oil capture | acquisition container of 3rd Example of this invention. 本発明の第4実施例の鉱油捕捉容器の断面図。Sectional drawing of the mineral oil capture | acquisition container of 4th Example of this invention. HFC系冷媒とHFC用冷凍機油と鉱油共存下での鉱油分離特性の説明図。Explanatory drawing of the mineral oil separation characteristic in the presence of HFC refrigerant, HFC refrigerating machine oil, and mineral oil. 鉱油捕捉容器部の流量比と鉱油捕捉量比率との関係のグラフ。The graph of the relationship between the flow rate ratio of a mineral oil capture container part and a mineral oil capture amount ratio. 空調機の運転時間と新機内に封入した冷凍機油の劣化指標の関係のグラフ。The graph of the relationship between the operating time of an air conditioner and the deterioration index of the refrigerating machine oil enclosed in the new machine. 従来例による空気調和機のサイクル系統図。The cycle system diagram of the air conditioner by a prior art example.

符号の説明Explanation of symbols

1…圧縮機、2…四方弁、3…熱源機側熱交換器、4…第1の膨張装置、5…レシーバ、9a、9b…第2の膨張装置、7、8a、8b…液接続配管、10a、10b…利用側熱交換器、11a、11b、12…ガス接続配管、6、13…阻止弁、14…アキュムレータ、30…室外機、40a、40b…室内機、50…鉱油捕捉容器、51…フィルタ、52、53…流体導入出管、54…仕切板、55…バイパス配管、60…上部領域、61…第1領域(一方の領域)、62…第2領域(他方の領域)。   DESCRIPTION OF SYMBOLS 1 ... Compressor, 2 ... Four-way valve, 3 ... Heat source side heat exchanger, 4 ... 1st expansion device, 5 ... Receiver, 9a, 9b ... 2nd expansion device, 7, 8a, 8b ... Liquid connection piping DESCRIPTION OF SYMBOLS 10a, 10b ... Usage side heat exchanger, 11a, 11b, 12 ... Gas connection piping, 6, 13 ... Stop valve, 14 ... Accumulator, 30 ... Outdoor unit, 40a, 40b ... Indoor unit, 50 ... Mineral oil capture container, DESCRIPTION OF SYMBOLS 51 ... Filter, 52, 53 ... Fluid inlet / outlet pipe, 54 ... Partition plate, 55 ... Bypass piping, 60 ... Upper area | region, 61 ... 1st area | region (one area | region), 62 ... 2nd area | region (other area | region).

Claims (8)

圧縮機、熱源機側熱交換器、第1の膨張装置、第2の膨張装置、利用側熱交換器を順次連結してなる冷凍サイクル装置において、
前記第1の膨張装置と第2の膨張装置との間に、冷媒不溶成分又は冷媒に対して弱溶解成分の少なくともいずれかを捕捉するフィルタを収納した捕捉容器を設け、
前記捕捉容器内に流体を導入出する流体導入出管の先端部を前記フィルタの下方に配置し、
前記捕捉容器の下方に並列接続されたバイパス配管を配置するとともに、該バイパス配管から上方に向かうように前記流体導入出管を配置し、さらに、前記バイパス配管の流通抵抗を、前記流体導入出管の流通抵抗よりも大きくなるように構成し、
前記圧縮機を駆動した冷凍サイクルの運転において、常に前記バイパス配管と前記流体導入出管に分流して液冷媒を流すことを特徴とする冷凍サイクル装置。
In the refrigeration cycle apparatus formed by sequentially connecting the compressor, the heat source machine side heat exchanger, the first expansion device, the second expansion device, and the use side heat exchanger,
Provided between the first expansion device and the second expansion device is a capture container that houses a filter that captures at least one of a refrigerant insoluble component or a weakly soluble component with respect to the refrigerant,
The distal portion of the fluid inlet and outlet pipe which exits introducing a fluid is arranged below the filter to the capture vessel,
A bypass pipe connected in parallel below the trapping container is disposed, the fluid introduction / exit pipe is disposed upward from the bypass pipe, and the flow resistance of the bypass pipe is further reduced by the fluid introduction / exit pipe. Configured to be greater than the distribution resistance of
In the operation of the refrigeration cycle in which the compressor is driven, the refrigeration cycle apparatus is characterized in that the liquid refrigerant is always divided into the bypass pipe and the fluid introduction / exit pipe.
流体導入出管は、前記捕捉容器内のフィルタの下方と前記バイパス配管を連通するように、前記捕捉容器の下部と前記バイパス配管の間に配置されたことを特徴とする請求項1に記載の冷凍サイクル装置。   The fluid introduction / exit pipe is disposed between a lower portion of the capture container and the bypass pipe so as to communicate the lower side of the filter in the capture container and the bypass pipe. Refrigeration cycle equipment. 前記冷凍サイクル装置の運転中に、前記捕捉容器内が液冷媒にて充填されるように液冷媒を流通させることを特徴とする請求項1又は請求項2に記載の冷凍サイクル装置。   3. The refrigeration cycle apparatus according to claim 1, wherein during the operation of the refrigeration cycle apparatus, the liquid refrigerant is circulated so that the inside of the capture container is filled with the liquid refrigerant. 前記冷凍サイクル装置の運転中に、前記液冷媒の流れによって前記フィルタによって捕捉された前記冷媒不溶成分又は冷媒に対して弱溶解成分の少なくともいずれかを、液冷媒の水面付近に貯留するように構成されたことを特徴とする請求項1から請求項3のいずれかに記載の冷凍サイクル装置。   During operation of the refrigeration cycle device, at least one of the refrigerant insoluble component or the weakly soluble component with respect to the refrigerant captured by the filter by the flow of the liquid refrigerant is stored near the water surface of the liquid refrigerant. The refrigeration cycle apparatus according to any one of claims 1 to 3, wherein the refrigeration cycle apparatus is provided. 前記捕捉容器内に、フィルタ上方に上部領域を備えると共に、前記冷凍サイクル装置の運転中に、前記フィルタが液冷媒に水没するように前記フィルタが配置され、前記フィルタによって捕捉された前記冷媒不溶成分又は冷媒に対して弱溶解成分の少なくともいずれかを、前記フィルタ上方の上部領域の液冷媒に貯留するように構成されたことを特徴とする請求項1から請求項4のいずれかに記載の冷凍サイクル装置。   The refrigerant insoluble component captured in the capture container is provided with an upper region above the filter, and the filter is disposed so that the filter is submerged in the liquid refrigerant during operation of the refrigeration cycle apparatus. The refrigeration according to any one of claims 1 to 4, wherein at least one of weakly soluble components with respect to the refrigerant is stored in a liquid refrigerant in an upper region above the filter. Cycle equipment. 前記捕捉容器は、フィルタ下方の領域を少なくとも2つに分ける仕切板を備え、一方の領域に前記流体導入管が接続され、他方の領域に前記流体導出管が接続され、前記流体導入管から流入した液冷媒が前記一方の領域から前記フィルタ内に上昇しながら進入し、このフィルタ内を通過した液冷媒が前記他方の領域を介して前記流体導出管に排出されるように構成されたことを特徴とする請求項1から請求項5のいずれかに記載の冷凍サイクル装置。   The capture container includes a partition plate that divides the region below the filter into at least two regions, the fluid introduction tube is connected to one region, the fluid outlet tube is connected to the other region, and flows from the fluid introduction tube. The liquid refrigerant that has entered the filter enters the filter while rising from the one region, and the liquid refrigerant that has passed through the filter is discharged to the fluid outlet pipe through the other region. The refrigeration cycle apparatus according to any one of claims 1 to 5, characterized in that: 前記フィルタは、セルロース、ポリプロピレン、ポリエステルの少なくとも1つからなるエレメントを有して形成されることを特徴とする請求項1から請求項6のいずれかに記載の冷凍サイクル装置。 The refrigeration cycle apparatus according to any one of claims 1 to 6, wherein the filter has an element made of at least one of cellulose, polypropylene, and polyester . 前記捕捉容器内に流入出する冷媒の流量比が、機器の信頼性を確保する上で決定した所定値以上になるように、前記バイパス配管と前記流体導入出管の管径を設定したことを特徴とする請求項1から請求項7のいずれかに記載の冷凍サイクル装置。 The pipe diameters of the bypass pipe and the fluid inlet / outlet pipe are set so that the flow rate ratio of the refrigerant flowing into and out of the capture container is equal to or greater than a predetermined value determined for ensuring the reliability of the device. The refrigeration cycle apparatus according to any one of claims 1 to 7 , wherein the refrigeration cycle apparatus is characterized in that:
JP2007259859A 2007-10-03 2007-10-03 Refrigeration cycle equipment Active JP5107652B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007259859A JP5107652B2 (en) 2007-10-03 2007-10-03 Refrigeration cycle equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007259859A JP5107652B2 (en) 2007-10-03 2007-10-03 Refrigeration cycle equipment

Publications (2)

Publication Number Publication Date
JP2009085577A JP2009085577A (en) 2009-04-23
JP5107652B2 true JP5107652B2 (en) 2012-12-26

Family

ID=40659227

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007259859A Active JP5107652B2 (en) 2007-10-03 2007-10-03 Refrigeration cycle equipment

Country Status (1)

Country Link
JP (1) JP5107652B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021111605A1 (en) * 2019-12-05 2021-06-10 三菱電機株式会社 Refrigeration cycle device

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10300286A (en) * 1996-11-25 1998-11-13 Mitsubishi Electric Corp Sludge capturing device, manufacture thereof and refrigerating air-conditioning apparatus equipped with sludge capturing device
JP2000146369A (en) * 1998-11-06 2000-05-26 Hitachi Ltd Air conditioner
JP4472200B2 (en) * 2001-03-19 2010-06-02 三菱電機株式会社 Refrigeration / air-conditioning apparatus and operation method thereof
JP4128796B2 (en) * 2002-04-25 2008-07-30 三菱電機株式会社 Refrigeration cycle equipment
JP2005214542A (en) * 2004-01-30 2005-08-11 Hitachi Ltd Refrigeration device
JP4225239B2 (en) * 2004-04-27 2009-02-18 日立アプライアンス株式会社 Refrigeration cycle equipment

Also Published As

Publication number Publication date
JP2009085577A (en) 2009-04-23

Similar Documents

Publication Publication Date Title
EP1391667B1 (en) Converting a refrigerating system
EP0952407B1 (en) A refrigeration cycle device
EP2667120B1 (en) Refrigeration cycle apparatus
JP5871880B2 (en) Refrigeration cycle equipment
JP4169875B2 (en) Refrigeration cycle equipment
JP5107652B2 (en) Refrigeration cycle equipment
EP1975527B1 (en) Refrigeration cycle apparatus
JP4061494B2 (en) Connection pipe cleaning method, refrigerating device renewal method, and freezing device
JP4225239B2 (en) Refrigeration cycle equipment
KR100598997B1 (en) Refrigeration apparatus
JP4114011B2 (en) Refrigeration cycle apparatus and receiver used therefor
JP4186764B2 (en) Refrigeration equipment
JP4743906B2 (en) Refrigeration cycle equipment
JP2008202909A (en) Refrigerating apparatus and method of removing foreign matter in the apparatus
EP1215453B1 (en) Refrigeration cycle system, and method of operating the same
JP4517834B2 (en) How to use existing refrigerant piping
JP3700723B2 (en) Refrigeration equipment
JP4061495B2 (en) Refrigeration equipment
JP4176413B2 (en) Operation method of refrigeration cycle apparatus
JP2007163024A (en) Method of cleaning inside of duct, apparatus for collecting impurity, and method of implementation
JP5119629B2 (en) Refrigeration equipment
JP2003139444A (en) Refrigerant replacement method for air conditioner, cleaner, and air conditioner
JP2004308934A (en) Freezing apparatus and method of washing piping
JPWO2005052472A1 (en) Refrigeration equipment
KR20110067698A (en) An oil recovery structure in a refrigerator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091214

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110725

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110802

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110928

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120214

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120416

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120925

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121004

R150 Certificate of patent or registration of utility model

Ref document number: 5107652

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151012

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250