JP4114011B2 - Refrigeration cycle apparatus and receiver used therefor - Google Patents

Refrigeration cycle apparatus and receiver used therefor Download PDF

Info

Publication number
JP4114011B2
JP4114011B2 JP2004179067A JP2004179067A JP4114011B2 JP 4114011 B2 JP4114011 B2 JP 4114011B2 JP 2004179067 A JP2004179067 A JP 2004179067A JP 2004179067 A JP2004179067 A JP 2004179067A JP 4114011 B2 JP4114011 B2 JP 4114011B2
Authority
JP
Japan
Prior art keywords
filter
refrigerant
receiver
heat exchanger
tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004179067A
Other languages
Japanese (ja)
Other versions
JP2006002986A (en
Inventor
雅晴 今川
剛 遠藤
信一郎 永松
進 中山
宏明 坪江
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2004179067A priority Critical patent/JP4114011B2/en
Publication of JP2006002986A publication Critical patent/JP2006002986A/en
Application granted granted Critical
Publication of JP4114011B2 publication Critical patent/JP4114011B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Compressor (AREA)

Description

本発明は、冷凍サイクルを利用した空気調和機、冷凍機などの冷凍サイクル装置及びそれに用いられるレシーバに関し、特に、CFC系又はHCFC系冷媒と、冷凍機油として鉱油を用いたものからHFC系冷媒と、HFC用冷凍機油を用いたものに交換するものに好適である。   The present invention relates to a refrigeration cycle apparatus such as an air conditioner and a refrigeration cycle using a refrigeration cycle, and a receiver used therefor, and in particular, a CFC or HCFC refrigerant, and a refrigerant using mineral oil as a refrigerator oil to an HFC refrigerant. It is suitable for those that are replaced with those using refrigeration oil for HFC.

CFC系冷媒またはHCFC系冷媒と、冷凍機油として鉱油を使用した空気調和機(旧機)から鉱油とは相溶性のないHFC系冷媒と、HFC用冷凍機油を使用した空気調和機(新機)に交換する際に室内機と室外機とを接続する接続配管を再利用すると、再利用される接続配管内には汚染物質(不純物)が残留する。この不純物は新機に使用したHFC系冷媒とは不溶、又は弱溶解成分である旧機に封入された冷凍機油(鉱油、アルキルベンゼンなど)、冷凍機油の酸化劣化反応物、酸化スケール、塩素系化合物などである。   CFC-type refrigerant or HCFC-type refrigerant, HFC-type refrigerant that is not compatible with mineral oil from an air conditioner that uses mineral oil as refrigerating machine oil (old machine), and an air-conditioner that uses HFC refrigerating machine oil (new machine) When the connection pipe that connects the indoor unit and the outdoor unit is reused when the replacement is performed, pollutants (impurities) remain in the reused connection pipe. This impurity is insoluble in the HFC refrigerant used in the new machine, or is a weakly soluble component of refrigerating machine oil (mineral oil, alkylbenzene, etc.) enclosed in the old machine, oxidative degradation reaction product of the refrigerating machine oil, oxidation scale, chlorine compound Etc.

上記の既設配管を利用する方法では、接続配管内に残留した不純物により新機内の冷凍機油が劣化する。さらに、冷媒に溶解しない成分が冷凍サイクル内の低温部分において、析出し冷凍サイクルが詰まり、空気調和機の信頼性を著しく損なう恐れがある。
そのため、既設配管を利用するに際して、接続配管内に残留した不純物を回収する洗浄運転を実施することが知られ、例えば特許文献1に記載されている。
In the method using the existing pipe, the refrigerating machine oil in the new machine deteriorates due to impurities remaining in the connection pipe. Furthermore, components that do not dissolve in the refrigerant may precipitate in the low temperature portion of the refrigeration cycle, clogging the refrigeration cycle, and may significantly impair the reliability of the air conditioner.
Therefore, it is known to perform a cleaning operation for collecting impurities remaining in the connection pipe when using the existing pipe, which is described in Patent Document 1, for example.

特開2000−9368号公報JP 2000-9368 A

上記従来技術においては、利用側熱交換器と圧縮機との間、ガス冷媒となる位置に異物補足手段を配置しているので、HFC用冷凍機油と気体異物は混合され、異物補足手段を何回か繰り返して通さなければならなかった。そのため、旧機から新機に入れ換えた後に接続配管内の洗浄運転を比較的に長い間に渡って、例えば1〜2時間位実施する必要があった。つまり、空気調和機の入れ換え工事、リニューアル工事の作業時間が長くならざるを得なかった。また、特にビル用マルチの空気調和機の場合、冷媒配管は施工されている配管長が長いだけでなく、主管のほか複数台接続された室内ユニットへの枝管が多いなど複雑で冷凍機油の回収が困難であった。   In the above prior art, the foreign matter capturing means is disposed between the user side heat exchanger and the compressor at a position that becomes a gas refrigerant. I had to pass through several times. Therefore, after replacing the old machine with the new machine, it is necessary to carry out the cleaning operation in the connection pipe for a relatively long time, for example, for about 1 to 2 hours. In other words, the work time for air conditioner replacement work and renewal work was inevitably long. In particular, in the case of multi air conditioners for buildings, the refrigerant pipes are not only long, but they are complex and contain many branch pipes to indoor units connected to multiple units. Recovery was difficult.

本発明の目的は、再利用した接続配管内に残留した不純物をタンク内で効率良く回収し、リニューアル工事を短時間で可能とすると共に、信頼性及び性能を向上することにある。   An object of the present invention is to efficiently collect impurities remaining in a reused connection pipe in a tank, enable renewal work in a short time, and improve reliability and performance.

また、他の目的は、不純物を回収するタンクの構造を簡単にし、生産性が良く、小型でコンパクトなものにすることにある。   Another object of the present invention is to simplify the structure of a tank for collecting impurities, to improve productivity, to be small and compact.

上記課題を解決するために、本発明は、圧縮機、熱源機側熱交換器、膨張装置、利用側熱交換器を順次接続した冷凍サイクル装置において、前記熱源機側熱交換器から前記利用側熱交換器に至る間で液冷媒を貯留するレシーバと、前記レシーバ内に設けられるフィルタと、前記レシーバの底部に向かって前記フィルタよりも先端が突き出すように配置され、冷媒を導入又は導出する冷媒出入口配管と、前記冷媒出入口配管の前記先端に設けられたストレーナとを備え、前記フィルタはその上下を板状で角部が折り曲げられたツメを有するオサエイタで挟み込まれ、前記ツメのバネ性によって前記フィルタは前記レシーバ内に内壁と間隙を持って配置されていることを特徴とするものである。 In order to solve the above problems, the present invention provides a refrigeration cycle apparatus in which a compressor, a heat source machine side heat exchanger, an expansion device, and a use side heat exchanger are sequentially connected, from the heat source machine side heat exchanger to the use side. A receiver that stores liquid refrigerant while reaching the heat exchanger, a filter that is provided in the receiver, and a refrigerant that is arranged so that the tip protrudes from the filter toward the bottom of the receiver and introduces or leads out the refrigerant. An inlet / outlet pipe and a strainer provided at the tip of the refrigerant inlet / outlet pipe, and the filter is sandwiched by an oscillator having a plate-like top and bottom and a corner bent, and the spring property of the claw The filter is arranged in the receiver with a gap from the inner wall .

また、上記のものにおいて、前記フィルタは、前記冷媒出入口配管の配管方向に、同一形状で薄板の円板状の物が複数枚積層されて構成され、かつこの積層する員数は、前記レシーバの容量またはレシーバに内蔵するフィルタの必要容量に応じて決定されていることことが望ましい Further, in the above, the filter is configured by laminating a plurality of thin disk-like objects having the same shape in the piping direction of the refrigerant inlet / outlet pipe, and the number of the laminated layers is the capacity of the receiver. Or it is desirable that it is determined according to the required capacity of the filter built in the receiver .

さらに、本発明の他の特徴は、圧縮機、熱源機側熱交換器、膨張装置、利用側熱交換器を順次接続した冷凍サイクル装置の液冷媒を貯留し、内部にフィルタを有するレシーバであって、冷媒を導入又は導出する一組の冷媒出入口配管とレシーバの上部キャップとを有する第1組部品と、フィルタを複数枚積層しその上下を板状で角部が折り曲げられたツメを有するオサエイタで挟み込まれた第2組部品と、レシーバの下部キャップとボディを溶接した第3組部品とを組み立てて構成されると共に、前記オサエイタが有するツメのバネ性によって前記フィルタは前記レシーバ内に内壁と間隙を持って配置されていることにある。 Furthermore, another feature of the present invention is a receiver that stores liquid refrigerant of a refrigeration cycle device in which a compressor, a heat source device side heat exchanger, an expansion device, and a use side heat exchanger are sequentially connected, and has a filter inside. And a first assembly part having a pair of refrigerant inlet / outlet pipes for introducing or deriving the refrigerant and an upper cap of the receiver, and an oscillator that has a plurality of filters stacked and plate-like upper and lower tabs and corners bent. And a third assembled part in which the lower cap of the receiver and the body are welded together, and the filter has an inner wall in the receiver due to the spring property of the claw of the oscillator. It exists in being arranged with a gap .

本発明によれば、液冷媒となる位置のタンク内に粘度の差を利用してフィルタによって鉱油を捕捉するようにしたので、鉱油の捕捉を確実にし、HFC用冷凍機油の劣化を抑制することができる。   According to the present invention, since the mineral oil is captured by the filter using the difference in viscosity in the tank at the position that becomes the liquid refrigerant, the mineral oil is reliably captured, and the deterioration of the refrigeration oil for HFC is suppressed. Can do.

また、不純物を回収するタンクにフィルタを内蔵するにあたって、冷媒出入口配管がフィルタを貫通するようにしたので、タンクの構造が簡単になり、タンク及び冷凍サイクル装置としても生産性が良く、小型でコンパクトなものにすることができる。   In addition, when the filter is built in the tank that collects impurities, the refrigerant inlet / outlet piping penetrates the filter, so the structure of the tank is simplified, the productivity of the tank and refrigeration cycle equipment is good, and it is compact and compact. Can be made.

以下、本発明の実施の形態について図を用いて説明する。
既設配管内に残留した冷媒不溶成分または冷媒に対して弱溶解成分を回収する方法について説明する。以下、既設配管内に残留した冷媒不溶成分としては鉱油と説明する。
CFCやHCFCを使った空気調和装置が老朽化した場合、空気調和装置である室外機と室内機とを交換する。つまり、CFCまたはHCFC冷媒を回収し、室外機11または室外機11と室内機20を図7に示すものと交換する。液接続配管7とガス接続配管8は旧機のものを再利用する。室外機11には予めHFCが充填されているので、阻止弁6、9は閉じたまま室内機20、液接続配管7とガス接続配管8を接続状態で真空引きをし、その後阻止弁6、または阻止弁6、9の開弁とHFCの追加充填を実施する。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
A method for recovering the refrigerant insoluble component remaining in the existing piping or the weakly soluble component with respect to the refrigerant will be described. Hereinafter, the refrigerant insoluble component remaining in the existing piping will be described as mineral oil.
When an air conditioner using a CFC or HCFC is aged, the outdoor unit and the indoor unit that are air conditioners are exchanged. That is, the CFC or HCFC refrigerant is recovered, and the outdoor unit 11 or the outdoor unit 11 and the indoor unit 20 are replaced with those shown in FIG. The liquid connection pipe 7 and the gas connection pipe 8 are reused from the old machine. Since the outdoor unit 11 is preliminarily filled with HFC, the block valves 6 and 9 are closed and the indoor unit 20, the liquid connection pipe 7 and the gas connection pipe 8 are evacuated, and then the blocking valve 6 and 9 are closed. Alternatively, the stop valves 6 and 9 are opened and the HFC is additionally charged.

冷房運転の場合、圧縮機1で圧縮された高温高圧のガス冷媒は圧縮機1から吐出され、ガス冷媒が四方弁2を経て、熱源機側熱交換器3へと流入し、ここで熱交換して凝縮液化する。凝縮液化した冷媒は全開とされた第1の膨張装置4を通り、余剰冷媒はタンク5に貯留され、残りが阻止弁6を経て室内機20へ送られる。送られた液冷媒は、第2の膨張装置21へ流入し、ここで低圧まで減圧されて低圧二相状態となり、利用側熱交換器22で空気などの利用側媒体と熱交換して蒸発・ガス化する。その後、ガス冷媒は、阻止弁9、四方弁2、アキュムレ−タ10を経て圧縮機1へ戻る。   In the case of cooling operation, the high-temperature and high-pressure gas refrigerant compressed by the compressor 1 is discharged from the compressor 1, and the gas refrigerant flows into the heat source side heat exchanger 3 through the four-way valve 2, where heat exchange is performed. To condense. The condensed and liquefied refrigerant passes through the fully expanded first expansion device 4, the excess refrigerant is stored in the tank 5, and the remaining is sent to the indoor unit 20 through the blocking valve 6. The sent liquid refrigerant flows into the second expansion device 21, where it is decompressed to a low pressure to become a low pressure two-phase state, and exchanges heat with the use side medium such as air in the use side heat exchanger 22 to evaporate / Gasify. Thereafter, the gas refrigerant returns to the compressor 1 through the blocking valve 9, the four-way valve 2, and the accumulator 10.

暖房運転の場合、圧縮機1で圧縮された高温高圧のガス冷媒はHFC用冷凍機油と共に圧縮機1から吐出され、四方弁2、阻止弁9を経て利用側熱交換器22へ流入し、ここで空気など利用側媒体と熱交換して凝縮液化する。凝縮液化した冷媒は、阻止弁6、タンク5へ流入し、第1の膨張装置4で減圧され熱源機側熱交換器3で空気・水などの熱源媒体と熱交換して蒸発・ガス化する。蒸発・ガス化した冷媒は四方弁2、アキュムレ−タ10を経て圧縮機1へ戻る。   In the case of heating operation, the high-temperature and high-pressure gas refrigerant compressed by the compressor 1 is discharged from the compressor 1 together with the refrigeration oil for HFC, and flows into the use side heat exchanger 22 through the four-way valve 2 and the blocking valve 9. Heat exchange with the use side medium such as air to condense. The condensed and liquefied refrigerant flows into the blocking valve 6 and the tank 5, is decompressed by the first expansion device 4, and is evaporated and gasified by exchanging heat with a heat source medium such as air and water in the heat source unit side heat exchanger 3. . The evaporated and gasified refrigerant returns to the compressor 1 through the four-way valve 2 and the accumulator 10.

鉱油はHFC系冷媒(R410Aなど)にはほとんど溶解せず、一方HFC用冷凍機油(エーテル油など)には溶解する。そして、鉱油はHFC用冷凍機油が多く存在する圧縮機1内では分離せず、液冷媒が多く存在する液接続配管部7およびタンク(レシーバ)5内で分離する。   Mineral oil hardly dissolves in HFC-based refrigerants (such as R410A), while it dissolves in refrigeration oils for HFC (such as ether oil). And mineral oil is not isolate | separated in the compressor 1 with many HFC refrigerating machine oil, but isolate | separated within the liquid connection piping part 7 and tank (receiver) 5 with many liquid refrigerants.

タンク5内には、フィルタ54が設けられ、メッシュ数が比較的大きい繊維性の材料であり、その繊維の材質として、ポリエステル、ポリプロピレンの少なくとも1つで構成されている。液冷媒および液冷媒に溶解したHFC用冷凍機油は粘度が低い液体であるのに対して、鉱油は液冷媒および液冷媒に溶解したHFC用冷凍機油に比べて粘度が著しく高い液体である。そのため、液冷媒および液冷媒に溶解したHFC用冷凍機油はフィルタ54を通過するのに対して、鉱油はメッシュ数の大きいフィルタ54の繊維間に引っかかり、その後毛細管現象により繊維内部へ捕捉される。また、冷凍機油に劣化した鉱油が混入すると冷凍機油の劣化は促進され、温度が高いほどその劣化は加速される傾向にありますが、フィルタ54を配置したタンク5内で鉱油を分離、捕捉することで劣化した鉱油を高温の圧縮機内から分離することができ、冷凍機油の劣化を抑制してシステムとしての信頼性を高めることができる。   A filter 54 is provided in the tank 5 and is a fibrous material having a relatively large number of meshes. The fiber is made of at least one of polyester and polypropylene. The liquid refrigerant and the HFC refrigerating machine oil dissolved in the liquid refrigerant are liquids having a low viscosity, whereas the mineral oil is a liquid having a significantly higher viscosity than the liquid refrigerant and the HFC refrigerating machine oil dissolved in the liquid refrigerant. Therefore, the liquid refrigerant and the refrigeration oil for HFC dissolved in the liquid refrigerant pass through the filter 54, whereas the mineral oil is caught between the fibers of the filter 54 having a large mesh number, and is then trapped inside the fibers by capillary action. In addition, when deteriorated mineral oil is mixed in the refrigerating machine oil, the deterioration of the refrigerating machine oil is accelerated, and the higher the temperature, the more the deterioration tends to be accelerated. However, the mineral oil is separated and captured in the tank 5 in which the filter 54 is disposed. It is possible to separate the mineral oil deteriorated in the above from the high-temperature compressor, and to suppress the deterioration of the refrigerating machine oil, thereby improving the reliability of the system.

図10は、タンク5を組み立てる手順を示し、下右図及び図1はタンク5が組み立てられた状態を示している。   FIG. 10 shows a procedure for assembling the tank 5, and the lower right diagram and FIG. 1 show a state where the tank 5 is assembled.

まず、図10の上左図のようにタンク上部のキャップ53b、冷媒出入口配管51、ストレーナ52を一体の纏め部品、上右図のようにフィルタ54の積層を一体の纏め部品とし、つぎに下左図のようにタンク5のボディ53a、タンク5下部のキャップ53cを一体の纏め部品とする。そして、一体纏め部品を3点にしてからタンク5を組み立てているので、ボディ53aの中にフィルタ54を内蔵する前にボディ53aとタンク5下部のキャップ53cの溶接を実施することができ、フィルタ54の繊維が熱で劣化することを防ぐことができる。また、フィルタ54を一体の纏め部品点数が3点となるまで部品として組付けないでおくことにより、フィルタ54の汚れ、不要水分の吸湿による劣化を防止できる、より一層、信頼性が向上し、組立時の扱いが容易となり、生産性も向上できる。   First, the cap 53b, the refrigerant inlet / outlet pipe 51, and the strainer 52 are integrated together as shown in the upper left diagram of FIG. 10, and the stack of the filters 54 is integrated together as shown in the upper right diagram. As shown in the left figure, the body 53a of the tank 5 and the cap 53c at the bottom of the tank 5 are used as an integral assembly part. Since the tank 5 is assembled after the three integrated parts are assembled, the body 53a and the cap 53c under the tank 5 can be welded before the filter 54 is built in the body 53a. It is possible to prevent the 54 fibers from being deteriorated by heat. Also, by not assembling the filter 54 as a component until the number of integrated integrated parts becomes 3, the filter 54 can be prevented from being deteriorated due to dirt and moisture absorption, and the reliability is further improved. Handling during assembly is easy and productivity can be improved.

図2は、タンク5の平面図、図3はフィルタ54がタンク5内で層状に構成されている状態を示し、フィルタ54は、冷媒出入口配管51の配管方向に同一形状、円板状の物を積層する。この積層する員数は、タンク5の容量またはタンク5に内蔵するフィルタ54の必要容量に合わせて決定される。したがって、同一形状のフィルタ54の要素で異なる容量に対応する事ができ、フィルタ54の量産性が向上され、低価格化を図ることができる。   FIG. 2 is a plan view of the tank 5, and FIG. 3 shows a state in which the filter 54 is configured in a layered manner in the tank 5, and the filter 54 is a disc-shaped object having the same shape in the piping direction of the refrigerant inlet / outlet pipe 51. Are stacked. The number of layers to be stacked is determined according to the capacity of the tank 5 or the required capacity of the filter 54 built in the tank 5. Therefore, it is possible to cope with different capacities by the elements of the filter 54 having the same shape, and the mass productivity of the filter 54 can be improved and the price can be reduced.

図6は、タンク5内に積層されたフィルタ54を収納するオサエイタ55を示しており、図2の平面図に示すようにオサエイタ55は、上方から見て四角形状で、その頂点がボディ53aの内周に4個所が接触するように折り曲げられ、バネ性を持ってそれぞれ固定されている。したがって、フィルタ54の上下に設けられたオサエイタ55にてフィルタ54が輸送による振動及び冷凍サイクルの圧力変動等があっても上下及び横方向に動かないように固定される。また、オサエイタ55により、フィルタ54が上下方向に動かないように防振されるので、フィルタ54繊維の破壊、解れが防止され、信頼性が向上する。   FIG. 6 shows an oscillator 55 for storing the filters 54 stacked in the tank 5. As shown in the plan view of FIG. 2, the oscillator 55 is rectangular when viewed from above, and the apex of the body 53 a is shown. It is bent so that four points are in contact with the inner periphery, and each is fixed with springiness. Therefore, the filter 54 is fixed so that it does not move in the vertical and horizontal directions even if there are vibrations due to transportation, pressure fluctuations in the refrigeration cycle, and the like by the oscillators 55 provided above and below the filter 54. Further, since the filter 54 is vibrated to prevent the filter 54 from moving in the vertical direction, breakage and unraveling of the filter 54 fibers are prevented, and reliability is improved.

また、冷媒出入口配管51配管形状が変形してもフィルタ54がボディ53aと接触することが無く、組立中においても同様にボディ53aとの接触を避けることができ、生産性の向上を図ることができる。そして、フィルタ54とオサエイタ55との接触部がツメとしてバネ性を持っているので、フィルタ54とボディ53aとの隙間を均一にすることが容易となる。   In addition, even if the shape of the refrigerant inlet / outlet pipe 51 is deformed, the filter 54 does not come into contact with the body 53a. Similarly, contact with the body 53a can be avoided during assembly, and productivity can be improved. it can. And since the contact part of the filter 54 and the oscillator 55 has a spring property as a nail | claw, it becomes easy to make the clearance gap between the filter 54 and the body 53a uniform.

図4は、冷媒出入口配管51の先端に取り付けられたメッシュ構造のストレーナ52部位の拡大図を示し、冷媒出入口配管51側に対して先端部が小さくなる先細り形状とされている。そして、冷媒出入口配管51の配管内径は、冷凍サイクルが想定している冷媒循環量等から必要な内径(内面積)を決定するが、メッシュ構造の面積、スクリーン部開口面積は、冷媒出入口配管51の内面積に対して3倍以上となるようにし、ストレーナ52が冷媒出入口配管51より露出(突き出した)形状としている。これにより、フィルタ54の繊維が目詰まりした場合においても機器に必要な循環量が確保できる。   FIG. 4 shows an enlarged view of a mesh-structured strainer 52 portion attached to the tip of the refrigerant inlet / outlet pipe 51, and has a tapered shape where the tip becomes smaller than the refrigerant inlet / outlet pipe 51 side. The pipe inner diameter of the refrigerant inlet / outlet pipe 51 determines a necessary inner diameter (inner area) from the refrigerant circulation amount assumed by the refrigeration cycle, etc. The area of the mesh structure and the screen opening area are determined by the refrigerant inlet / outlet pipe 51. The strainer 52 is exposed (protruded) from the refrigerant inlet / outlet pipe 51 so as to be three times or more the inner area of the refrigerant. Thereby, even when the fibers of the filter 54 are clogged, the amount of circulation necessary for the device can be secured.

また、冷凍サイクルの運転状態に合わせて余剰の冷媒がタンク5内に液状態で溜まることにより、冷凍サイクルが安定するようになっているが、このとき液冷媒は、タンク5の底部より溜まる。そこで、ストレーナ52をタンク5の最下部に設け、液冷媒の溜まりこみにより、ストレーナ52のメッシュ部位にフィルタ54の繊維が目詰まりした場合においても、フィルタ54の繊維が液冷媒の液面高さにより、液面へ浮上するようにする。つまり、ストレーナ52が液冷媒の液面高さより、下にあるように配置して、フィルタ54の繊維がストレーナ52から冷媒液により取り除かれ、ストレーナ52の目詰まりした場合に起きる冷媒流れ圧力損失による性能低下を防止する。   Further, surplus refrigerant accumulates in the liquid state in the tank 5 in accordance with the operation state of the refrigeration cycle, so that the refrigeration cycle is stabilized. At this time, the liquid refrigerant accumulates from the bottom of the tank 5. Therefore, even when the strainer 52 is provided at the lowermost part of the tank 5 and the fibers of the filter 54 are clogged in the mesh portion of the strainer 52 due to the accumulation of the liquid refrigerant, the fibers of the filter 54 are at the liquid level of the liquid refrigerant. To rise to the liquid level. That is, due to the refrigerant flow pressure loss that occurs when the strainer 52 is disposed below the liquid level of the liquid refrigerant and the fibers of the filter 54 are removed from the strainer 52 by the refrigerant liquid and the strainer 52 is clogged. Prevent performance degradation.

さらに、冷媒出入口配管51の先端に、フィルタ54の繊維より目の細かい網状のメッシュストレーナとなるストレーナ52を取り付けているので、フィルタ54の繊維が解れたとしても、タンク5の外に放出されず、繊維が冷媒と供に流出し、冷凍サイクルの途中で詰まることがなく、空気調和機としての信頼性を損なうことがない。   In addition, since a strainer 52 that is a mesh mesh strainer having a finer mesh than the fibers of the filter 54 is attached to the tip of the refrigerant inlet / outlet pipe 51, even if the fibers of the filter 54 are released, they are not discharged out of the tank 5. The fibers do not flow out together with the refrigerant and are not clogged in the middle of the refrigeration cycle, so that the reliability as an air conditioner is not impaired.

冷媒に使用する耐圧容器構造として、ボディ53aとキャップ53b、53cの組立は溶接により結合される。そして、溶接温度は、非常に高温となるため、フィルタ54の最高使用温度を超え、フィルタ54の繊維を熱で劣化し、冷媒不溶成分を捕捉できなくなる。そこで、溶接により高温となるボディ53aのタンク5内面温度上昇が、フィルタ54の最高使用温度以下となるようにボディ53aとフィルタ54の間に所定の間隔を設けるようにする。
図5は、フィルタ54を冷媒出入口配管51の関係を示す斜視図であり、フィルタ54に穴が2箇所設けられ、冷媒出入口配管51が挿入されて、フィルタ54を貫通するようになっている。そして、フィルタ54の直径は、タンク5の内径よりも小さくされ、オサエイタ55で固定されるので、ボディ53aとは非接触となる位置に固定されている。
As a pressure vessel structure used for the refrigerant, the assembly of the body 53a and the caps 53b and 53c is joined by welding. And since welding temperature becomes very high temperature, it exceeds the maximum use temperature of filter 54, the fiber of filter 54 deteriorates with heat, and it becomes impossible to capture a refrigerant insoluble component. Therefore, a predetermined interval is provided between the body 53a and the filter 54 so that the temperature increase in the inner surface of the tank 5 of the body 53a, which becomes high due to welding, becomes equal to or lower than the maximum operating temperature of the filter 54.
FIG. 5 is a perspective view showing the relationship between the refrigerant 54 and the refrigerant inlet / outlet pipe 51. The filter 54 is provided with two holes, and the refrigerant inlet / outlet pipe 51 is inserted to penetrate the filter 54. The diameter of the filter 54 is smaller than the inner diameter of the tank 5 and is fixed by the oscillator 55, so that the filter 54 is fixed at a position where it is not in contact with the body 53a.

また、フィルタ54に貫通穴を開けるのに替えて、その形状を図8のように切り欠き部を2箇所設けても良い。これによれば、図8の矢印に示すように冷媒出入口配管51を組み立てれば良いので、作業性が改善される。さらに、図9に示すように、オサエイタ55に替えて、板状の部材56、57とし、フィルタ54を四角柱状として、さらに板状の部材57に対して板状の部材56が直交するように配置して挟み込みフィルタ54を固定しても良い。これによれば、フィルタ54の形状が簡単となり、組立も容易であるため、低価格化するのに都合が良い。   Further, instead of opening the through hole in the filter 54, the shape may be provided with two notches as shown in FIG. According to this, workability is improved because the refrigerant inlet / outlet pipe 51 may be assembled as shown by the arrows in FIG. Further, as shown in FIG. 9, instead of the oscillator 55, plate-like members 56 and 57 are formed, the filter 54 is formed into a quadrangular prism shape, and the plate-like member 56 is orthogonal to the plate-like member 57. The sandwiching filter 54 may be fixed by arranging. This simplifies the shape of the filter 54 and facilitates assembly, which is convenient for reducing the price.

以上、フィルタ54はタンク5内に配置することで、圧縮機1内からHFC用冷凍機油ととも吐出された鉱油は液接続配管部7およびタンク5内で分離し、その分離した鉱油のみをフィルタ54にて捕捉することが可能となる。圧縮機1の形態として圧縮機1内の冷凍機油貯留部の圧力が高い高圧チャンバー方式、あるいは圧縮機1の吐出部にオイルセパレータを配置している場合には、圧縮機1内あるいはオイルセパレータ内に貯留した冷凍機油の温度は高温なる。一方、液接続配管部7およびタンク5の温度はその温度よりも低くなる。そして、冷凍機油の劣化は、温度が上昇するほど促進し、さらにHFC用冷凍機油の劣化は既設配管内に残留した鉱油(劣化油)の混入量が多いほど劣化は促進するので、圧縮機1内あるいはオイルセパレータ内よりも低温のタンク5で鉱油を捕捉することにより、HFC用冷凍機油の劣化を抑制することができる。   As described above, by arranging the filter 54 in the tank 5, the mineral oil discharged from the compressor 1 together with the refrigerating machine oil for HFC is separated in the liquid connection pipe section 7 and the tank 5, and only the separated mineral oil is filtered. It becomes possible to capture at 54. When the compressor 1 is in the form of a high-pressure chamber system in which the pressure of the refrigerating machine oil reservoir in the compressor 1 is high, or when an oil separator is disposed in the discharge part of the compressor 1, the compressor 1 or the oil separator The temperature of the refrigeration oil stored in the tank becomes high. On the other hand, the temperature of the liquid connection piping part 7 and the tank 5 becomes lower than that temperature. The deterioration of the refrigerating machine oil is accelerated as the temperature rises, and the deterioration of the HFC refrigerating machine oil is further promoted as the mixing amount of the mineral oil (deteriorating oil) remaining in the existing pipe increases. By capturing the mineral oil in the tank 5 that is cooler than the inside or the oil separator, it is possible to suppress the deterioration of the refrigeration oil for HFC.

また、タンク5に設けられた冷媒出入口配管51の先端部にフィルタ繊維より微細な目のストレーナ52を設けた(冷媒の流れ方向が特定できる場合においては、出口側となる配管先端部にストレーナを設ける)ので、フィルタの繊維が解れた場合においても、フィルタ繊維により冷凍サイクルの詰まり、効率の低下など、冷凍サイクルの信頼性を著しく低下させることがない。さらに、フィルタ自身を全てストレーナにより包み込むことでも良い。   Further, a strainer 52 finer than the filter fiber is provided at the tip of the refrigerant inlet / outlet pipe 51 provided in the tank 5 (if the flow direction of the refrigerant can be specified, a strainer is provided at the pipe tip on the outlet side. Therefore, even when the fiber of the filter is broken, the reliability of the refrigeration cycle is not significantly reduced by the filter fiber, such as clogging of the refrigeration cycle and a decrease in efficiency. Further, the entire filter itself may be wrapped with a strainer.

さらに、ストレーナ表面積は、解れたフィルタ繊維がストレーナ部位で溜まった場合においても冷媒出入口配管と同等以上の流路が確保できるよう冷媒出入口配管の内面積比3倍以上とし、ストレーナの配置をタンク最下部に配置したので、解れたフィルタ繊維がストレーナ部位に過大に溜まった場合においても、タンク内の液冷媒によりフィルタ繊維が冷媒液面上に浮上し、ストレーナの目詰まりが防止できる。   In addition, the strainer surface area should be at least three times the internal area ratio of the refrigerant inlet / outlet pipe so that a flow path equal to or greater than that of the refrigerant inlet / outlet pipe can be secured even when undissolved filter fibers accumulate at the strainer site. Since it is arranged at the lower part, even when the undissolved filter fiber is excessively accumulated in the strainer part, the filter fiber floats on the refrigerant liquid surface by the liquid refrigerant in the tank, and the strainer can be prevented from being clogged.

さらに、タンク5内の冷媒出入口配管51がフィルタ54を貫通する構造とし、タンク5のボディに直接接触しないので、タンク製作時のボディとキャップ部の溶接作業による熱がフィルタに直接フィルタ54に加わらないため、熱によるフィルタ54の信頼性低下を防止でき、溶接工程におけるフィルタ54に対する温度管理も容易となり、生産性を向上、容易にタンクを製作できる。そして、冷媒出入口配管51を貫通させるフィルタの形状としては、丸穴および切り欠きでもよく、2本の配管によりフィルタを挟み込み固定することによっても、タンク5を構成する外郭容器部分のボディに直接接触しないようにできる。   Furthermore, since the refrigerant inlet / outlet pipe 51 in the tank 5 penetrates the filter 54 and does not directly contact the body of the tank 5, heat from the welding operation of the body and the cap portion at the time of manufacturing the tank is directly applied to the filter 54. Therefore, it is possible to prevent a decrease in the reliability of the filter 54 due to heat, and it becomes easy to manage the temperature of the filter 54 in the welding process. The shape of the filter that penetrates the refrigerant inlet / outlet pipe 51 may be a round hole or a notch, or may be in direct contact with the body of the outer container portion constituting the tank 5 by sandwiching and fixing the filter by two pipes. You can avoid it.

さらに、同一形状のフィルタを複数枚積層することでボディ長手方向の寸法変更によりタンク容量が変る場合においても、フィルタ積層枚数調整により、異なる容量を同一形状のフィルタ部品を使用枚数により任意のフィルタ容量が選択でき、タンク取り付け構造およびフィルタ部品を共用化できる。   Furthermore, even when the tank capacity changes due to the change in the longitudinal dimension of the body by stacking multiple filters of the same shape, the filter capacity can be adjusted to adjust the number of filter parts of the same shape. The tank mounting structure and filter parts can be shared.

さらに、フィルタ54を固定するオサエイタ55の形状は、タンク5のボディに対して3個所または4個所での部分接触となる形状をしているので、フィルタ54の取り付け位置が中心に保持しやすく、タンク5の組立時において、ボディとフィルタ54の隙間を均一に管理すること、タンク5へのフィルタを挿入すること、が容易にできる。   Furthermore, since the shape of the oscillator 55 that fixes the filter 54 is a shape that makes partial contact with the body of the tank 5 at three or four locations, the attachment position of the filter 54 can be easily held at the center, When the tank 5 is assembled, it is possible to easily manage the gap between the body and the filter 54 and insert the filter into the tank 5.

本発明の一実施の形態によるレシーバ(タンク)の正面図。The front view of the receiver (tank) by one embodiment of the present invention. 図1の上面より見た平面図。The top view seen from the upper surface of FIG. 本発明の一実施の形態によるレシーバ(タンク)側断面図。The receiver (tank) side sectional view by one embodiment of the present invention. 一実施の形態による冷媒出入口配管の先端部の拡大図。The enlarged view of the front-end | tip part of the refrigerant | coolant entrance / exit piping by one Embodiment. 一実施の形態によるフィルタ取り付け部の斜視図。The perspective view of the filter attachment part by one Embodiment. 一実施の形態によるオサエイタを示すレシーバ(タンク)正面図。The receiver (tank) front view which shows the oscillator by one Embodiment. 本発明による−実施の形態を示すサイクル系統図。FIG. 4 is a cycle diagram illustrating an embodiment according to the present invention. 他の実施の形態によるフィルタ取り付け部を示す斜視図。The perspective view which shows the filter attachment part by other embodiment. さらに、他の実施の形態によるフィルタ取り付け部を示す斜視図。Furthermore, the perspective view which shows the filter attachment part by other embodiment. 一実施の形態によるレシーバ(タンク)の組み立て方を示す組立説明図。The assembly explanatory view showing how to assemble a receiver (tank) by one embodiment.

符号の説明Explanation of symbols

1…圧縮機、2…四方弁、3…熱源機側熱交換器、4…第一の膨張装置、5…タンク、6、9…阻止弁、7…液接続配管、8…ガス接続配管、10…アキュムレータ、11…室外機、20a,20b…室内機、21a,21b…第2の膨張装置、22a,22b…利用側熱交換器、51a,51b…冷媒出入口配管、52a,52b…ストレーナ、53a…ボディ、53b,53c…キャップ、54…フィルタ、55a,55b…オサエイタ、56…シキリイタ、57…固定板。
DESCRIPTION OF SYMBOLS 1 ... Compressor, 2 ... Four-way valve, 3 ... Heat source machine side heat exchanger, 4 ... 1st expansion device, 5 ... Tank, 6, 9 ... Stop valve, 7 ... Liquid connection piping, 8 ... Gas connection piping, DESCRIPTION OF SYMBOLS 10 ... Accumulator, 11 ... Outdoor unit, 20a, 20b ... Indoor unit, 21a, 21b ... Second expansion device, 22a, 22b ... Use side heat exchanger, 51a, 51b ... Refrigerant inlet / outlet piping, 52a, 52b ... Strainer, 53a ... Body, 53b, 53c ... Cap, 54 ... Filter, 55a, 55b ... Oscillator, 56 ... Thunder, 57 ... Fixing plate.

Claims (3)

圧縮機、熱源機側熱交換器、膨張装置、利用側熱交換器を順次接続した冷凍サイクル装置において、
前記熱源機側熱交換器から前記利用側熱交換器に至る間で液冷媒を貯留するレシーバと、
前記レシーバ内に設けられるフィルタと、
前記レシーバの底部に向かって前記フィルタよりも先端が突き出すように配置され、冷媒を導入又は導出する冷媒出入口配管と、
前記冷媒出入口配管の前記先端に設けられたストレーナとを備え、
前記フィルタはその上下を板状で角部が折り曲げられたツメを有するオサエイタで挟み込まれ、前記ツメのバネ性によって前記フィルタは前記レシーバ内に内壁と間隙を持って配置される
ことを特徴とする冷凍サイクル装置。
In the refrigeration cycle apparatus in which the compressor, the heat source side heat exchanger, the expansion device, and the use side heat exchanger are connected in sequence,
A receiver for storing liquid refrigerant between the heat source unit side heat exchanger and the use side heat exchanger;
A filter provided in the receiver;
A refrigerant inlet / outlet pipe for introducing or leading out a refrigerant, which is arranged so that a tip protrudes from the filter toward the bottom of the receiver;
A strainer provided at the tip of the refrigerant outlet pipe ,
The filter is sandwiched by an oscillator having tabs whose upper and lower sides are bent and corners are bent, and the filter is disposed in the receiver with an inner wall and a gap by the spring property of the tabs. Refrigeration cycle equipment.
請求項1に記載のものにおいて、前記フィルタは、前記冷媒出入口配管の配管方向に、同一形状で薄板の円板状の物が複数枚積層されて構成され、かつこの積層する員数は、前記レシーバの容量またはレシーバに内蔵するフィルタの必要容量に応じて決定されていることを特徴とする冷凍サイクル装置。 2. The filter according to claim 1, wherein the filter is configured by laminating a plurality of thin disk-like objects having the same shape in the piping direction of the refrigerant inlet / outlet pipe, and the number of the laminated layers is determined by the receiver. Or a required capacity of a filter built in the receiver . 圧縮機、熱源機側熱交換器、膨張装置、利用側熱交換器を順次接続した冷凍サイクル装置の液冷媒を貯留し、内部にフィルタを有するレシーバであって、
冷媒を導入又は導出する一組の冷媒出入口配管と前記レシーバの上部キャップとを有する第1組部品と、
前記フィルタを複数枚積層しその上下を板状で角部が折り曲げられたツメを有するオサエイタで挟み込まれた第2組部品と、
前記レシーバの下部キャップとボディを溶接した第3組部品と、
を組み立てて構成されると共に、前記オサエイタが有するツメのバネ性によって前記フィルタは前記レシーバ内に内壁と間隙を持って配置されていることを特徴とするレシーバ。
A receiver that stores a liquid refrigerant of a refrigeration cycle device in which a compressor, a heat source device side heat exchanger, an expansion device, and a use side heat exchanger are sequentially connected, and has a filter therein,
A first assembled part having a set of refrigerant inlet / outlet pipes for introducing or deriving the refrigerant and an upper cap of the receiver;
A second assembled part sandwiched by an oscillator having a claw in which a plurality of the filters are stacked and the upper and lower sides thereof are plate-like and the corners are bent ;
A third assembled part in which the lower cap and body of the receiver are welded ;
And the filter is arranged in the receiver with an inner wall and a gap by the spring property of the claw of the oscillator .
JP2004179067A 2004-06-17 2004-06-17 Refrigeration cycle apparatus and receiver used therefor Expired - Fee Related JP4114011B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004179067A JP4114011B2 (en) 2004-06-17 2004-06-17 Refrigeration cycle apparatus and receiver used therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004179067A JP4114011B2 (en) 2004-06-17 2004-06-17 Refrigeration cycle apparatus and receiver used therefor

Publications (2)

Publication Number Publication Date
JP2006002986A JP2006002986A (en) 2006-01-05
JP4114011B2 true JP4114011B2 (en) 2008-07-09

Family

ID=35771526

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004179067A Expired - Fee Related JP4114011B2 (en) 2004-06-17 2004-06-17 Refrigeration cycle apparatus and receiver used therefor

Country Status (1)

Country Link
JP (1) JP4114011B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105436686A (en) * 2015-11-17 2016-03-30 东莞市金瑞五金制品有限公司 Manufacturing method for liquid storage tank

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4694406B2 (en) * 2006-04-13 2011-06-08 日立アプライアンス株式会社 Air conditioner and manufacturing method thereof
JP5303106B2 (en) * 2006-07-26 2013-10-02 日立アプライアンス株式会社 Air conditioner and air conditioner construction method using existing refrigerant piping
JP2010032104A (en) * 2008-07-29 2010-02-12 Hitachi Appliances Inc Air conditioner
JP2010032105A (en) * 2008-07-29 2010-02-12 Hitachi Appliances Inc Air conditioner
WO2022230101A1 (en) * 2021-04-28 2022-11-03 三菱電機株式会社 Liquid receiver and refrigeration cycle device

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5438954U (en) * 1977-08-23 1979-03-14
JPH02114881U (en) * 1989-02-28 1990-09-13
JPH0882463A (en) * 1994-09-14 1996-03-26 Calsonic Corp Liquid tank
JPH08327187A (en) * 1995-05-29 1996-12-13 Matsushita Electric Ind Co Ltd Air conditioner
JP4374755B2 (en) * 2000-09-08 2009-12-02 アイシン精機株式会社 Heat pump system
JP2004066191A (en) * 2002-08-09 2004-03-04 Daicel Chem Ind Ltd Filter and filtering method using the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105436686A (en) * 2015-11-17 2016-03-30 东莞市金瑞五金制品有限公司 Manufacturing method for liquid storage tank

Also Published As

Publication number Publication date
JP2006002986A (en) 2006-01-05

Similar Documents

Publication Publication Date Title
CN104024782B (en) Heat exchanger and refrigerating plant
AU2012353397A1 (en) Refrigeration Apparatus
JP4114011B2 (en) Refrigeration cycle apparatus and receiver used therefor
EP2667120B1 (en) Refrigeration cycle apparatus
JP2009192152A (en) Strainer for air conditioner
US20140360223A1 (en) Refrigeration apparatus
TW201243258A (en) Oil separator
JP2010156534A (en) Refrigeration cycle device
CN1325007A (en) Liquid-storage device of air-conditioner
EP1975527B1 (en) Refrigeration cycle apparatus
JP4225239B2 (en) Refrigeration cycle equipment
JP2007292340A (en) Oil separator and compressor for cold storage unit-type refrigerating machine
JP4694406B2 (en) Air conditioner and manufacturing method thereof
CN112041621B (en) Heat exchanger for refrigerating device
JP2004251584A (en) Liquid receiver
US9091470B2 (en) Cooling system and a method for separation of oil
JP2003322436A (en) Refrigerating cycle device
JP2000146369A (en) Air conditioner
JP2009085577A (en) Refrigeration cycle device
JP2008051374A (en) Gas-liquid separator
KR101319671B1 (en) Air conditioner
KR102536383B1 (en) Device including a refrigerant cycle
JP2008196847A (en) Refrigerating cycle apparatus
JP5119629B2 (en) Refrigeration equipment
JP3700723B2 (en) Refrigeration equipment

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060424

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071106

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071225

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080318

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080331

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110425

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4114011

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110425

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

SZ03 Written request for cancellation of trust registration

Free format text: JAPANESE INTERMEDIATE CODE: R313Z03

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110425

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120425

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120425

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130425

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140425

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees