JP2004251584A - Liquid receiver - Google Patents

Liquid receiver Download PDF

Info

Publication number
JP2004251584A
JP2004251584A JP2003044536A JP2003044536A JP2004251584A JP 2004251584 A JP2004251584 A JP 2004251584A JP 2003044536 A JP2003044536 A JP 2003044536A JP 2003044536 A JP2003044536 A JP 2003044536A JP 2004251584 A JP2004251584 A JP 2004251584A
Authority
JP
Japan
Prior art keywords
refrigerant
liquid
refrigerating machine
machine oil
outlet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003044536A
Other languages
Japanese (ja)
Inventor
Yoshikazu Kawabe
義和 川邉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2003044536A priority Critical patent/JP2004251584A/en
Publication of JP2004251584A publication Critical patent/JP2004251584A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/52Heat recovery pumps, i.e. heat pump based systems or units able to transfer the thermal energy from one area of the premises or part of the facilities to a different one, improving the overall efficiency

Abstract

<P>PROBLEM TO BE SOLVED: To solve the problem of the conventional liquid receiver in that refrigerator oil is not separated and recovered to heighten the possibility of causing heat transfer inhibition or lubrication failure of a compressor in an evaporator. <P>SOLUTION: This liquid receiver is composed of: a refrigerant container 101; an upper housing 111 where a refrigerant inlet pipe 103 as a refrigerant inlet is provided on the upper part of the refrigerant container 101, and an oil filter 102 as a filter means having micro-pores for filtering at a molecular level is connected to the refrigerant inlet pipe 103; and a lower housing 112. The liquid receiver is held in the refrigerant container 101, and in the refrigerant container 101, a liquid refrigerant outlet pipe 104 as a lower refrigerant outlet is provided at the bottom thereof, and a gas refrigerant outlet pipe 105 as an upper refrigerant outlet is provided at the upper part thereof. An oil outlet pipe 106 as a residual liquid outlet is provided extending from a liquid reservoir holding part of the lower housing 112 and penetrating the refrigerant container 101. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、冷凍サイクルやヒートポンプなどに使用され、液冷媒と冷媒ガスを分離し液冷媒を貯留するとともに、冷凍機油を分離回収することのできる受液器に関するものである。
【0002】
【従来の技術】
従来、蒸気圧縮式の冷凍サイクルやヒートポンプなどに使用される受液器は、凝縮器の下流側に連結して用いられる高圧受液器、および蒸発器に連結して用いられ低圧受液器とが一般的である(例えば非特許文献1参照)。
【0003】
高圧受液器は、横型または立形円筒状の圧力容器である。そして、圧力容器の上部から凝縮器で凝縮した液冷媒が導入され、圧力容器の液溜りから液冷媒を取り出す構造となっており、付属機器として液面計や安全弁、均圧弁、油抜弁などが取り付けられる。
【0004】
冷凍サイクルやヒートポンプの運転時における高圧受液器の役割は、冷媒系統内に空間的余裕をつくり、運転状態の変動によって液化冷媒が凝縮器に滞留する分を吸収することである。
【0005】
低圧受液器は、冷媒液循環方式の冷凍サイクルやヒートポンプにおいて、蒸発器へ冷媒液を送り、かつ、蒸発器から戻る冷媒液の一時的な液だめとする役割を持つ。
【0006】
【非特許文献1】
日本冷凍空調学会、「初級標準テキスト冷凍空調技術」、平成9年7月20日第2刷発行、P63
【0007】
【発明が解決しようとする課題】
しかしながら、前記従来の受液器においては、冷凍機油を分離回収する機能はなく、冷媒とともに圧縮機から吐出された冷凍機油は回収されずに循環し、圧縮機の吸入口から圧縮機へ戻る。冷媒中の冷凍機油は凝縮器や蒸発器の配管内面に油膜をつくり伝熱を阻害する。とりわけ、温度の低くなる蒸発器では冷凍機油の粘度が上昇し、滞留しやすため伝熱阻害が増しやすいうえ、冷凍機油の油量不足となり圧縮機の潤滑不良を起こす可能性も高くなるという課題がある。
【0008】
これを防止する方法として、油分離器を圧縮機の吐出口と凝縮器の間に設け、冷凍機油を分離する方法があるが、装置の大型化や部品点数の増加を招くという課題がある。
【0009】
本発明は、上記課題を解決するために、液冷媒と冷媒ガスを分離し液冷媒を貯留するとともに、冷凍機油を分離回収することで、冷凍サイクルあるいはヒートポンプの性能向上と、油分離器を使用せずとも圧縮機の潤滑不良を防止できる受液器を提供する。
【0010】
【課題を解決するための手段】
前記従来の課題を解決するため、本発明の受液器は、前記冷凍機油を濾過する濾過手段と、前記液冷媒を取り出す前記下部冷媒出口と、前記冷媒ガスを取り出す前記上部冷媒出口と前記濾過手段で生じた前記冷凍機油濃度の高い残留液を取り出す前記残留液出口とを備え、前記冷媒中の前記冷凍機油を分離回収し、冷凍機油による蒸発器の性能低下を防ぐとともに圧縮機の冷凍機油不足の発生を防ぐことができる。
【0011】
また、本発明の受液器は、残留液を冷媒ガスと混合して取り出すことにより配管の取り出し数を減らし、冷凍サイクルあるいはヒートポンプサイクルの構成の簡略化を図ることができる。
【0012】
また、本発明の受液器は、減圧膨張させた冷媒ガス、あるいは冷媒ガスと残留液の混合流体を、冷媒容器の内部で熱交換し加熱して取り出すことにより、冷媒ガスと残留液の混合流体中の液冷媒量を減らし、圧縮機への液戻りを防ぐことができる。
【0013】
【発明の実施の形態】
以下に、本発明の実施の形態について図面を参照しながら説明する。
【0014】
(実施の形態1)
図1に示す様に本発明の実施の形態1は、冷媒容器101と、冷媒入口である冷媒入口配管103が冷媒容器101の上部に設けられ、濾過手段であるオイルフィルター102は冷媒入口配管103と連結する上部ハウジング111と、下部ハウジング112とで冷媒容器101内に保持されている。さらに、冷媒容器101の底部には下部冷媒出口である液冷媒出口配管104が、上部には上部冷媒出口であるガス冷媒出口配管105が設けられ、下部ハウジング112の液溜りを保持する部分から冷媒容器101を貫通して残留液出口であるオイル出口配管106が設けられている。
【0015】
オイルフィルター102は、ナノ濾過膜に分類される、分子レベルで濾過が可能な微細孔を持った濾過膜を用いたフィルターで、冷媒と冷凍機油を高精度で分離する。こうした膜は、通常ある程度圧力を加える必要があり、膜を通過するのにともなって圧力損失が発生する。また、単位膜表面積あたりの流体通過量も少ないため、膜表面積を大きく採るために中空糸状の膜にし、束ねて使用されることが多い。
【0016】
分子の大きさは分子量と相関があり、分子量の大きなものほど分子の大きさは大きくなる。冷媒の分子量はR22が86.5、R32が52、R125が120、R134aが102であり、冷凍機油の分子量は油の種類や粘度グレードによってばらつきがあるが、通常合成油であれば300以上、鉱油では分布が広く、分子量100くらいの分子から数百以上の分子量の分子が含まれ300以上にピークを持つものが一般的である。
【0017】
従って、分子量200から300以上の分子を分離するようにすれば、冷媒と冷凍機油を分離することが可能である。分子量200の、分子の大きさの目安は0.5〜1nmであり、これに対応する膜を使用する。このような膜を使用すると、冷媒が液状態であっても冷凍機油と冷媒を分離することができるので、オイルセパレータの機能を持つ受液器を実現することができる。
【0018】
冷媒入口配管103から導入される導入流体107は、液冷媒とガス冷媒と冷凍機油の混合流体である。導入流体107は、オイルフィルター102により濾過され冷媒は通過し冷凍機油のみが残留し冷媒を含んだオイル110となって下部ハウジング112に滞留した後、オイル出口配管106から冷媒容器101の外に取り出される。オイルフィルター102を通過した冷媒は液冷媒108とガス冷媒109に分離し、液冷媒108は液冷媒出口配管104から、ガス冷媒109はガス冷媒出口配管105から冷媒容器101の外に取り出される。
【0019】
従って、液冷媒出口配管104から供給される液冷媒は冷凍機油をほとんど含まないため、蒸発器などに供給されても内壁を汚染することがなく、ガス冷媒出口配管105からは、冷却や吸熱に寄与の小さく、循環質量あたりの流動抵抗が大きいガス冷媒が回収されるため蒸発器における圧力損失を低減することができ、高い冷却能力あるいは吸熱能力を効率よく得ることができる。また、オイル出口配管106から冷凍機油が回収されるので、蒸発器に冷凍機油が溜まりこみ冷凍機油不足による圧縮機のトラブルも防止できる。
【0020】
(実施の形態2)
図2に示す様に、本発明の実施の形態2は、冷媒容器101と、冷媒入口である冷媒入口配管103が冷媒容器101の上部に設けられ、濾過手段であるオイルフィルター102は冷媒入口配管103と連結する上部ハウジング111と、下部ハウジング112とで冷媒容器101内に保持されている。さらに、冷媒容器101の底部には下部冷媒出口である液冷媒出口配管104が、上部には上部冷媒出口であるガス冷媒出口配管105が設けられ、下ハウジング112の液溜りを保持する部分から残留液出口であるオイル出口配管113が設けられている。オイル出口配管113は、ガス冷媒出口配管105に接続されており、冷媒と冷凍機油の混合流体115がオイルガス冷媒取出管114から取り出される。
【0021】
実施の形態2においては、実施の形態1と同様の作用効果に加え、オイル出口配管113がガス冷媒出口配管105に合流した後、オイルガス冷媒取出管114として冷媒容器101から取り出されるので接続すべき配管が減り、冷凍サイクルあるいは冷凍サイクルのシステムを組むのが容易となる。
【0022】
(実施の形態3)
図3に示す様に、本発明の実施の形態3は、冷媒容器101と、冷媒入口である冷媒入口配管103が冷媒容器101の上部に設けられ、濾過手段であるオイルフィルター102は冷媒入口配管103と連結する上部ハウジング111と、下部ハウジング112とで冷媒容器101内に保持されている。さらに、冷媒容器101の底部には下部冷媒出口である液冷媒出口配管104が、上部には上部冷媒出口であるガス冷媒出口配管105、絞り117が設けられ、下ハウジング112の液溜りを保持する部分から残留液出口であるオイル出口配管113が設けられている。オイル出口配管113は、ガス冷媒出口配管105、絞り117のに接続されており、熱交換器116で吸熱し、冷媒と冷凍機油の混合流体115がオイルガス冷媒取出管114から取り出される。
【0023】
実施の形態3においては、実施の形態2と同様の作用効果に加え、冷媒と冷凍機油の混合流体115が冷媒容器101内部で膨張の後吸熱してから取り出されるので、オイル110に含まれる液冷媒をガス化させることができ、冷凍サイクルやヒートポンプの圧縮機吸入への液戻りを防ぎ信頼性を向上させることができる。
【0024】
図4に示す様に、本発明の実施の形態4は、圧縮機201、四方弁202、室外熱交換器203、絞り204、逆止弁205HC、205LC、205HE、205LEからなる逆止弁ブリッジと、本発明の受液器206、膨張弁207、室内熱交換器208、アキュムレータ209で構成される空気調和機である。受液器206は逆止弁ブリッジの高圧側に接続された冷媒入口配管210から冷媒を導入し、冷凍機湯を取り除いた後の液冷媒を液冷媒出口配管211から逆止弁ブリッジの低圧側へ排出し、ガス冷媒と濾過後の残留液を混合したオイルガス冷媒取出配管212からアキュムレータ209へ戻す。
【0025】
図4は冷房状態の図を示しており、圧縮機201を出た冷媒は矢印213A、213B、213Cと流れ、受液器206からは、213DL、213Eと流れアキュムレータ209にたどり着く冷媒の流れと、213DGのように流れる冷凍機油と冷媒の混合流体の流れがある。アキュムレータ209からは、213Fのように圧縮機201へ戻る。このとき室外熱交換器203は凝縮器、室内熱交換器208は蒸発器となっている。暖房の場合には、四方弁202が切り替わり逆の流れとなるが受液器206は冷房の場合と同様の働きをする。
【0026】
本発明の受液器で使用したナノ濾過膜は、いくらかの圧力損失を生じるが、元来圧力が発生する室外熱交換器203と室内熱交換器208の間に取り付けているので空気調和機の性能を損なうことがない。
【0027】
また、冷凍機油を分離除去した後の液冷媒を室内熱交換器208、つまり蒸発器側へ流すので蒸発器内壁を汚染して熱交換性能を落とすことがなく、ガス冷媒と濾過後の残留冷凍機油はアキュムレータ209へ戻されるので、冷凍機油が蒸発器に溜まりこむことがなく、ガス冷媒を返すことになるので、圧縮機の潤滑不足や液戻りを防止し高い信頼性を得ることができる。
【0028】
図4に示した受液器206は実施の形態2あるいは実施の形態3に示した受液器に相当するが、実施の形態3に示す受液器の方が液戻りの発生を抑える効果は高く信頼性の点では優れている。また、実施の形態1の受液器についても、図1に示すガス冷媒出口配管105とオイル出口配管106をアキュムレータに戻す構造、あるいはガス冷媒出口配管105とオイル出口配管106を合流した後減圧膨張させ吸熱させる構造とすれば同様の効果が得られる。
【0029】
【発明の効果】
上記から明らかなように、本発明の受液器は、前記冷凍機油を濾過する濾過手段と、前記液冷媒を取り出す前記下部冷媒出口と、前記冷媒ガスを取り出す前記上部冷媒出口と前記濾過手段で生じた前記冷凍機油濃度の高い残留液を取り出す前記残留液出口とを備え、前記冷媒中の前記冷凍機油を分離回収するもので、この構成によれば、冷凍機油による蒸発器の性能低下を防ぐとともに圧縮機の冷凍機油不足の発生を防ぐという効果を奏する。
【0030】
また、本発明は、残留液を冷媒ガスと混合して取り出すことにより配管の取り出し数を減らすものであり、この構成によれば、本発明の受液器を用いた冷凍サイクルあるいはヒートポンプサイクルの構成の簡略化するという効果を奏する。
【0031】
また、本発明は、減圧膨張させた冷媒ガス、あるいは冷媒ガスと残留液の混合流体を、冷媒容器の内部で熱交換し加熱して取り出すものであり、この構成によれば、冷媒ガスと残留液の混合流体中の液冷媒量を減らし、圧縮機への液戻りを防ぐという効果を奏する。
【図面の簡単な説明】
【図1】本発明、一実施例を示す受液器の断面図
【図2】本発明、一実施例を示す受液器の断面図
【図3】本発明、一実施例を示す受液器の断面図
【図4】本発明、一実施例を示す空気調和機の概念図
【符号の説明】
101 冷媒容器
102 オイルフィルター
103 冷媒入口配管
104 液冷媒出口配管
105 ガス冷媒出口配管
106 オイル出口配管
[0001]
TECHNICAL FIELD OF THE INVENTION
TECHNICAL FIELD The present invention relates to a liquid receiver used for a refrigeration cycle, a heat pump, or the like, which can separate a liquid refrigerant and a refrigerant gas and store the liquid refrigerant, and can separate and collect a refrigerating machine oil.
[0002]
[Prior art]
Conventionally, a receiver used for a vapor compression refrigeration cycle, a heat pump, and the like is a high-pressure receiver connected to the downstream side of the condenser and a low-pressure receiver connected to the evaporator. Is common (for example, see Non-Patent Document 1).
[0003]
The high-pressure receiver is a horizontal or vertical cylindrical pressure vessel. Then, liquid refrigerant condensed by the condenser is introduced from the upper part of the pressure vessel, and the liquid refrigerant is taken out from the liquid pool of the pressure vessel.A liquid level gauge, safety valve, pressure equalizing valve, oil drain valve, etc. are attached as accessories. It is attached.
[0004]
The role of the high-pressure receiver during the operation of the refrigeration cycle or the heat pump is to create a space in the refrigerant system and to absorb the liquefied refrigerant remaining in the condenser due to a change in the operation state.
[0005]
The low-pressure receiver has a role of sending a refrigerant liquid to an evaporator and temporarily storing the refrigerant liquid returning from the evaporator in a refrigerant liquid circulation type refrigeration cycle or a heat pump.
[0006]
[Non-patent document 1]
Japan Refrigeration and Air Conditioning Society, "Introductory Standard Text Refrigeration and Air Conditioning Technology", July 20, 1997, second print, P63
[0007]
[Problems to be solved by the invention]
However, the conventional liquid receiver has no function of separating and recovering the refrigerating machine oil, and the refrigerating machine oil discharged from the compressor together with the refrigerant circulates without being recovered, and returns to the compressor from the suction port of the compressor. The refrigerating machine oil in the refrigerant forms an oil film on the inner surface of the pipe of the condenser or the evaporator, and inhibits heat transfer. In particular, in the evaporator where the temperature is low, the viscosity of the refrigerating machine oil increases, which tends to cause stagnation, which tends to increase the heat transfer inhibition, and also increases the possibility of insufficient lubrication of the refrigerating machine oil and poor lubrication of the compressor. There is.
[0008]
As a method for preventing this, there is a method in which an oil separator is provided between the discharge port of the compressor and the condenser to separate the refrigerating machine oil. However, there is a problem that the apparatus becomes large and the number of parts increases.
[0009]
The present invention solves the above problems by separating a liquid refrigerant and a refrigerant gas, storing the liquid refrigerant, and separating and recovering the refrigerating machine oil, thereby improving the performance of a refrigeration cycle or a heat pump, and using an oil separator. Provided is a liquid receiver that can prevent poor lubrication of a compressor without doing so.
[0010]
[Means for Solving the Problems]
In order to solve the above-mentioned conventional problems, a liquid receiver of the present invention includes a filtering unit for filtering the refrigerating machine oil, the lower refrigerant outlet for extracting the liquid refrigerant, the upper refrigerant outlet for extracting the refrigerant gas, and the filtration. Means for removing the residual liquid having a high concentration of the refrigerating machine oil generated by the means, for separating and recovering the refrigerating machine oil in the refrigerant, preventing the refrigerating machine oil from deteriorating due to the refrigerating machine oil, Shortage can be prevented from occurring.
[0011]
In the liquid receiver of the present invention, the number of pipes to be taken out can be reduced by mixing and taking out the residual liquid with the refrigerant gas, and the configuration of the refrigeration cycle or the heat pump cycle can be simplified.
[0012]
Further, the liquid receiver of the present invention is configured such that the refrigerant gas expanded under reduced pressure or the mixed fluid of the refrigerant gas and the residual liquid is heat-exchanged inside the refrigerant container, heated and taken out, thereby mixing the refrigerant gas and the residual liquid. The amount of liquid refrigerant in the fluid can be reduced, and liquid can be prevented from returning to the compressor.
[0013]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
[0014]
(Embodiment 1)
As shown in FIG. 1, in the first embodiment of the present invention, a refrigerant container 101 and a refrigerant inlet pipe 103 serving as a refrigerant inlet are provided at an upper portion of the refrigerant container 101, and an oil filter 102 serving as a filtering means is provided with a refrigerant inlet pipe 103. The upper housing 111 and the lower housing 112 that are connected to each other are held in the refrigerant container 101. Further, a liquid refrigerant outlet pipe 104 as a lower refrigerant outlet is provided at the bottom of the refrigerant container 101, and a gas refrigerant outlet pipe 105 as an upper refrigerant outlet is provided at the upper part. An oil outlet pipe 106, which is a residual liquid outlet, is provided through the container 101.
[0015]
The oil filter 102 is a filter using a filtration membrane, which is classified as a nanofiltration membrane and has micropores capable of filtering at a molecular level, and separates a refrigerant and a refrigerator oil with high accuracy. Such membranes usually require some pressure to be applied and a pressure loss occurs as they pass through the membrane. In addition, since the amount of fluid per unit membrane surface area is small, a hollow fiber membrane is often used in order to obtain a large membrane surface area, and used in a bundle.
[0016]
The size of the molecule has a correlation with the molecular weight, and the larger the molecular weight, the larger the size of the molecule. The molecular weight of the refrigerant is 86.5 for R22, 52 for R32, 120 for R125, and 102 for R134a. The molecular weight of the refrigerating machine oil varies depending on the type and viscosity grade of the oil. Mineral oils have a wide distribution and generally include molecules having a molecular weight of about 100 to several hundreds or more and have peaks at 300 or more.
[0017]
Therefore, if molecules having a molecular weight of 200 to 300 or more are separated, the refrigerant and the refrigerating machine oil can be separated. The standard of the size of a molecule having a molecular weight of 200 is 0.5 to 1 nm, and a film corresponding to this is used. When such a membrane is used, the refrigerating machine oil and the refrigerant can be separated even when the refrigerant is in a liquid state, so that a liquid receiver having an oil separator function can be realized.
[0018]
The introduced fluid 107 introduced from the refrigerant inlet pipe 103 is a mixed fluid of a liquid refrigerant, a gas refrigerant, and refrigerating machine oil. The introduced fluid 107 is filtered by the oil filter 102, the refrigerant passes therethrough, only the refrigerating machine oil remains, becomes the oil 110 containing the refrigerant, stays in the lower housing 112, and is taken out of the refrigerant container 101 from the oil outlet pipe 106. It is. The refrigerant that has passed through the oil filter 102 is separated into a liquid refrigerant 108 and a gas refrigerant 109, and the liquid refrigerant 108 is discharged from the liquid refrigerant outlet pipe 104 and the gas refrigerant 109 is discharged from the gas refrigerant outlet pipe 105 to the outside of the refrigerant container 101.
[0019]
Therefore, since the liquid refrigerant supplied from the liquid refrigerant outlet pipe 104 contains almost no refrigerating machine oil, even if supplied to an evaporator or the like, the liquid refrigerant does not contaminate the inner wall, and the gas refrigerant outlet pipe 105 provides cooling and heat absorption. Since a gas refrigerant having a small contribution and having a large flow resistance per circulating mass is recovered, the pressure loss in the evaporator can be reduced, and a high cooling capacity or heat absorbing capacity can be efficiently obtained. Further, since the refrigerating machine oil is collected from the oil outlet pipe 106, it is possible to prevent the refrigerating machine oil from accumulating in the evaporator and prevent the trouble of the compressor due to the shortage of the refrigerating machine oil.
[0020]
(Embodiment 2)
As shown in FIG. 2, the second embodiment of the present invention includes a refrigerant container 101 and a refrigerant inlet pipe 103 serving as a refrigerant inlet provided at an upper portion of the refrigerant container 101, and an oil filter 102 serving as a filtering means provided with a refrigerant inlet pipe. The upper housing 111 and the lower housing 112 that are connected to 103 are held in the refrigerant container 101. Further, a liquid refrigerant outlet pipe 104 as a lower refrigerant outlet is provided at the bottom of the refrigerant container 101, and a gas refrigerant outlet pipe 105 as an upper refrigerant outlet is provided at the upper part. An oil outlet pipe 113 serving as a liquid outlet is provided. The oil outlet pipe 113 is connected to the gas refrigerant outlet pipe 105, and a mixed fluid 115 of the refrigerant and the refrigerating machine oil is taken out from the oil / gas refrigerant outlet pipe 114.
[0021]
In the second embodiment, in addition to the same operation and effect as the first embodiment, after the oil outlet pipe 113 joins the gas refrigerant outlet pipe 105, the oil outlet pipe 113 is taken out from the refrigerant container 101 as the oil gas refrigerant outlet pipe 114, so that it is connected. The number of pipes to be reduced is reduced, and it is easy to construct a refrigeration cycle or a refrigeration cycle system.
[0022]
(Embodiment 3)
As shown in FIG. 3, a third embodiment of the present invention is configured such that a refrigerant container 101 and a refrigerant inlet pipe 103 serving as a refrigerant inlet are provided at an upper portion of the refrigerant container 101, and an oil filter 102 serving as a filtering means is provided with a refrigerant inlet pipe. The upper housing 111 and the lower housing 112 that are connected to 103 are held in the refrigerant container 101. Further, a liquid refrigerant outlet pipe 104 serving as a lower refrigerant outlet is provided at the bottom of the refrigerant container 101, and a gas refrigerant outlet pipe 105 serving as an upper refrigerant outlet and a throttle 117 are provided at the upper part, and a liquid pool of the lower housing 112 is held. An oil outlet pipe 113 which is a residual liquid outlet is provided from the portion. The oil outlet pipe 113 is connected to the gas refrigerant outlet pipe 105 and the throttle 117, absorbs heat in the heat exchanger 116, and takes out the mixed fluid 115 of the refrigerant and the refrigerating machine oil from the oil / gas refrigerant outlet pipe 114.
[0023]
In the third embodiment, in addition to the same operation and effect as in the second embodiment, since the mixed fluid 115 of the refrigerant and the refrigerating machine oil expands inside the refrigerant container 101 and absorbs heat and is taken out, the liquid contained in the oil 110 is removed. The refrigerant can be gasified, and the liquid can be prevented from returning to the suction of the compressor of the refrigeration cycle or the heat pump, and the reliability can be improved.
[0024]
As shown in FIG. 4, the fourth embodiment of the present invention includes a check valve bridge including a compressor 201, a four-way valve 202, an outdoor heat exchanger 203, a throttle 204, check valves 205HC, 205LC, 205HE, and 205LE. , An air conditioner including the liquid receiver 206, the expansion valve 207, the indoor heat exchanger 208, and the accumulator 209 of the present invention. The receiver 206 introduces refrigerant from the refrigerant inlet pipe 210 connected to the high pressure side of the check valve bridge, and removes the liquid refrigerant after removing the chiller water from the liquid refrigerant outlet pipe 211 to the low pressure side of the check valve bridge. And returned to the accumulator 209 from the oil / gas refrigerant outlet pipe 212 in which the gas refrigerant and the residual liquid after filtration are mixed.
[0025]
FIG. 4 shows a diagram in a cooling state, in which the refrigerant flowing out of the compressor 201 flows through arrows 213A, 213B, and 213C, and flows from the liquid receiver 206 into the accumulator 209 through 213DL and 213E. There is a mixed fluid flow of the refrigerating machine oil and the refrigerant flowing like 213DG. The accumulator 209 returns to the compressor 201 as indicated by 213F. At this time, the outdoor heat exchanger 203 is a condenser, and the indoor heat exchanger 208 is an evaporator. In the case of heating, the four-way valve 202 switches and flows in the opposite direction, but the liquid receiver 206 performs the same function as in the case of cooling.
[0026]
Although the nanofiltration membrane used in the receiver of the present invention causes some pressure loss, it is installed between the outdoor heat exchanger 203 and the indoor heat exchanger 208 where pressure is originally generated, so that the There is no loss of performance.
[0027]
Further, the liquid refrigerant after separating and removing the refrigerating machine oil flows to the indoor heat exchanger 208, that is, the evaporator side, so that the inner wall of the evaporator is not polluted and the heat exchange performance is not deteriorated. Since the machine oil is returned to the accumulator 209, the refrigerating machine oil does not accumulate in the evaporator and returns the gas refrigerant. Therefore, insufficient lubrication and liquid return of the compressor can be prevented, and high reliability can be obtained.
[0028]
The liquid receiver 206 shown in FIG. 4 corresponds to the liquid receiver described in Embodiment 2 or 3, but the liquid receiver described in Embodiment 3 has the effect of suppressing the occurrence of liquid return. Excellent in terms of reliability. The liquid receiver of the first embodiment also has a structure in which the gas refrigerant outlet pipe 105 and the oil outlet pipe 106 shown in FIG. 1 are returned to the accumulator, or a decompression expansion after the gas refrigerant outlet pipe 105 and the oil outlet pipe 106 are joined. A similar effect can be obtained by adopting a structure in which the heat is absorbed.
[0029]
【The invention's effect】
As is clear from the above, the liquid receiver of the present invention includes a filtering unit for filtering the refrigerating machine oil, a lower refrigerant outlet for extracting the liquid refrigerant, an upper refrigerant outlet for extracting the refrigerant gas, and the filtering unit. The residual liquid outlet for taking out the generated residual liquid having a high concentration of the refrigerating machine oil, wherein the refrigerating machine oil in the refrigerant is separated and recovered. According to this configuration, the performance of the evaporator due to the refrigerating machine oil is prevented from deteriorating. At the same time, it is possible to prevent the shortage of the refrigerating machine oil of the compressor.
[0030]
Further, the present invention is to reduce the number of pipes to be taken out by mixing and taking out the residual liquid with the refrigerant gas. According to this configuration, the configuration of a refrigeration cycle or a heat pump cycle using the liquid receiver of the present invention. Is simplified.
[0031]
Further, the present invention is to heat-exchange and heat the refrigerant gas expanded under reduced pressure or a mixed fluid of the refrigerant gas and the residual liquid inside the refrigerant container, and according to this configuration, the refrigerant gas and the residual liquid are removed. This has the effect of reducing the amount of liquid refrigerant in the liquid mixture and preventing liquid from returning to the compressor.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view of a liquid receiver showing one embodiment of the present invention. FIG. 2 is a cross-sectional view of a liquid receiver showing one embodiment of the present invention. FIG. 3 is a liquid receiver showing one embodiment of the present invention. FIG. 4 is a conceptual view of an air conditioner showing one embodiment of the present invention.
101 refrigerant container 102 oil filter 103 refrigerant inlet pipe 104 liquid refrigerant outlet pipe 105 gas refrigerant outlet pipe 106 oil outlet pipe

Claims (5)

冷媒容器と、冷媒および冷凍機油の混合流体を導入する冷媒入口と、前記冷凍機油を濾過する濾過手段と、前記冷媒容器の下部から前記冷凍機油を濾過した前記冷媒のうち液冷媒を取り出す下部冷媒出口と、前記冷媒容器の上部から前記冷凍機油を濾過した前記冷媒のうち冷媒ガスを取り出す上部冷媒出口と、前記濾過手段で生じた前記冷凍機油濃度の高い残留液を取り出す残留液出口とを備え、前記冷媒および冷凍機油の混合流体から、前記液冷媒と前記冷媒ガスを分離し、さらには前記冷凍機油も分離し取り出すことを特徴とする受液器。A refrigerant container, a refrigerant inlet for introducing a mixed fluid of refrigerant and refrigerating machine oil, a filtering means for filtering the refrigerating machine oil, and a lower refrigerant for extracting a liquid refrigerant from the refrigerant obtained by filtering the refrigerating machine oil from a lower part of the refrigerant container An outlet, an upper refrigerant outlet for extracting refrigerant gas from the refrigerant obtained by filtering the refrigerating machine oil from the upper part of the refrigerant container, and a residual liquid outlet for extracting the refrigerating machine oil-rich residual liquid generated by the filtering means. A liquid receiver that separates the liquid refrigerant and the refrigerant gas from the mixed fluid of the refrigerant and the refrigerating machine oil, and further separates and extracts the refrigerating machine oil. 前記残留液出口からの前記残留液を前記冷媒ガスと混合して取り出すことを特徴とする請求項1に記載の受液器。The liquid receiver according to claim 1, wherein the residual liquid from the residual liquid outlet is mixed with the refrigerant gas and taken out. 前記残留液を混合する前の前記冷媒ガス、あるいは前記冷媒ガスと前記残留液の混合流体を、減圧膨張させた後、前記冷媒容器の内部で熱交換を行い、前記冷媒容器から取り出すことを特徴とする請求項1または2に記載の受液器。The refrigerant gas before mixing the residual liquid, or a mixed fluid of the refrigerant gas and the residual liquid, after expanding under reduced pressure, performing heat exchange inside the refrigerant container, and taking out from the refrigerant container. The liquid receiver according to claim 1 or 2, wherein 前記濾過手段の分離粒子径が0.5nmから1.0nmであることを特徴とした請求項1から3に記載の受液器。4. The liquid receiver according to claim 1, wherein the filtration unit has a separation particle diameter of 0.5 nm to 1.0 nm. 5. 圧縮機、凝縮器、減圧手段、蒸発器が順次接続された冷凍サイクルまたはヒートポンプサイクルであって、前記冷媒入口が前記凝縮器出口もしくは中間圧力部に接続され、前記下部冷媒出口が前記蒸発器に、前記上部冷媒出口および残留液出口が前記圧縮機吸入口あるいは前記圧縮機の前に配したアキュムレータに接続されることを特徴とする請求項1から4に記載の受液器。A compressor, a condenser, a decompression means, a refrigeration cycle or a heat pump cycle in which an evaporator is sequentially connected, wherein the refrigerant inlet is connected to the condenser outlet or an intermediate pressure section, and the lower refrigerant outlet is connected to the evaporator. 5. The liquid receiver according to claim 1, wherein the upper refrigerant outlet and the residual liquid outlet are connected to the compressor inlet or an accumulator disposed in front of the compressor.
JP2003044536A 2003-02-21 2003-02-21 Liquid receiver Pending JP2004251584A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003044536A JP2004251584A (en) 2003-02-21 2003-02-21 Liquid receiver

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003044536A JP2004251584A (en) 2003-02-21 2003-02-21 Liquid receiver

Publications (1)

Publication Number Publication Date
JP2004251584A true JP2004251584A (en) 2004-09-09

Family

ID=33027204

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003044536A Pending JP2004251584A (en) 2003-02-21 2003-02-21 Liquid receiver

Country Status (1)

Country Link
JP (1) JP2004251584A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011044711A1 (en) * 2009-10-14 2011-04-21 Carrier Corporation Receiver with flow metering device
CN103673436A (en) * 2013-12-24 2014-03-26 上海交通大学 Gas-liquid separator with oil return and liquid discharging functions
CN104019591A (en) * 2014-06-21 2014-09-03 吉首大学 Novel ammonia refrigeration oil collector
CN105258415A (en) * 2015-10-15 2016-01-20 珠海格力电器股份有限公司 Oil returning device and control method thereof
JPWO2019021431A1 (en) * 2017-07-27 2020-03-19 三菱電機株式会社 Refrigeration cycle device
CN111298510A (en) * 2020-03-31 2020-06-19 新疆金雪驰科技股份有限公司 Lubricating oil filtration system
WO2020208736A1 (en) * 2019-04-10 2020-10-15 三菱電機株式会社 Refrigeration cycle device
JP2022188215A (en) * 2019-11-25 2022-12-20 パナソニック アプライアンシズ リフリジレーション デヴァイシズ シンガポール Sealed refrigerant compressor, and freezer/refrigerator using the same

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011044711A1 (en) * 2009-10-14 2011-04-21 Carrier Corporation Receiver with flow metering device
US9057548B2 (en) 2009-10-14 2015-06-16 Carrier Corporation Receiver with flow metering device
EP2470843A4 (en) * 2009-10-14 2015-11-11 Carrier Corp Receiver with flow metering device
CN103673436A (en) * 2013-12-24 2014-03-26 上海交通大学 Gas-liquid separator with oil return and liquid discharging functions
CN104019591A (en) * 2014-06-21 2014-09-03 吉首大学 Novel ammonia refrigeration oil collector
CN105258415B (en) * 2015-10-15 2017-11-24 珠海格力电器股份有限公司 A kind of oil return apparatus and its control method
CN105258415A (en) * 2015-10-15 2016-01-20 珠海格力电器股份有限公司 Oil returning device and control method thereof
JPWO2019021431A1 (en) * 2017-07-27 2020-03-19 三菱電機株式会社 Refrigeration cycle device
WO2020208736A1 (en) * 2019-04-10 2020-10-15 三菱電機株式会社 Refrigeration cycle device
JPWO2020208736A1 (en) * 2019-04-10 2021-10-21 三菱電機株式会社 Refrigeration cycle equipment
JP2022188215A (en) * 2019-11-25 2022-12-20 パナソニック アプライアンシズ リフリジレーション デヴァイシズ シンガポール Sealed refrigerant compressor, and freezer/refrigerator using the same
CN111298510A (en) * 2020-03-31 2020-06-19 新疆金雪驰科技股份有限公司 Lubricating oil filtration system
CN111298510B (en) * 2020-03-31 2021-07-27 新疆金雪驰科技股份有限公司 Lubricating oil filtration system

Similar Documents

Publication Publication Date Title
KR100750790B1 (en) Freezing apparatus installation method
EP1391667A2 (en) Converting a refrigerating system
US9874382B2 (en) Refrigeration system with full oil recovery
CN101311647B (en) Composite type full-liquid type heat converter for refrigerant circulation system
US5636520A (en) Method of removing an immiscible lubricant from an refrigeration system
JP2005030752A (en) Method of constructing refrigerating plant and refrigerating plant
JPH06221696A (en) Compression type freezer machine
JP2004251584A (en) Liquid receiver
KR20110097367A (en) Chiller
JP2010159952A (en) Device and method of separating refrigerant gas and non-condensable gas
JP4472200B2 (en) Refrigeration / air-conditioning apparatus and operation method thereof
JP4265369B2 (en) Refrigeration equipment construction method and refrigeration equipment
CN106524609A (en) Refrigerant purifying device
CN112041621B (en) Heat exchanger for refrigerating device
JP2009133566A (en) Gas-liquid separator
JP2003322436A (en) Refrigerating cycle device
JP4803234B2 (en) Pipe cleaning device
JP4298123B2 (en) Refrigeration equipment
KR100378531B1 (en) coolant and oil separating/ collecting device of turbo chiller
JP2005127563A (en) Refrigerating plant constructing method and refrigerating plant
WO2013131522A1 (en) Cooling system and a method for separation of oil
JP4425457B2 (en) Refrigeration cycle apparatus and operation method thereof
JP4061495B2 (en) Refrigeration equipment
KR20050075833A (en) Device of refrigeration cycle
WO2009157301A1 (en) Refrigeration cycle