JP4225239B2 - Refrigeration cycle equipment - Google Patents

Refrigeration cycle equipment Download PDF

Info

Publication number
JP4225239B2
JP4225239B2 JP2004130580A JP2004130580A JP4225239B2 JP 4225239 B2 JP4225239 B2 JP 4225239B2 JP 2004130580 A JP2004130580 A JP 2004130580A JP 2004130580 A JP2004130580 A JP 2004130580A JP 4225239 B2 JP4225239 B2 JP 4225239B2
Authority
JP
Japan
Prior art keywords
refrigerant
receiver
hfc
expansion device
mineral oil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004130580A
Other languages
Japanese (ja)
Other versions
JP2005315435A (en
Inventor
宏明 坪江
進 中山
宏治 内藤
剛 遠藤
雅晴 今川
健一郎 加藤木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Appliances Inc
Original Assignee
Hitachi Appliances Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Appliances Inc filed Critical Hitachi Appliances Inc
Priority to JP2004130580A priority Critical patent/JP4225239B2/en
Publication of JP2005315435A publication Critical patent/JP2005315435A/en
Application granted granted Critical
Publication of JP4225239B2 publication Critical patent/JP4225239B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/18Refrigerant conversion

Landscapes

  • Compressor (AREA)

Description

本発明は、冷凍サイクルを利用した空気調和機、冷凍機などの冷凍サイクル装置に関し、特に、CFC系又はHCFC系冷媒と、冷凍機油として鉱油を用いたものからHFC系冷媒と、HFC用冷凍機油を用いたものに交換するものに好適である。   The present invention relates to a refrigeration cycle apparatus such as an air conditioner or a refrigerator using a refrigeration cycle, and in particular, a CFC or HCFC refrigerant, a refrigerant using mineral oil as a refrigerator oil, an HFC refrigerant, and an HFC refrigerator oil. It is suitable for the thing exchanged for the thing using.

CFC系冷媒またはHCFC系冷媒と、冷凍機油として鉱油を使用した空気調和機(旧機)から鉱油とは相溶性のないHFC系冷媒と、HFC用冷凍機油を使用した空気調和機(新機)に交換する際に室内機と室外機とを接続する接続配管を再利用すると、再利用される設配管を内には汚染物質(不純物)が残留する。この不純物は新機に使用したHFC系冷媒とは不溶、又は弱溶解成分である旧機に封入された冷凍機油(鉱油、アルキルベンゼンなど)、冷凍機油の酸化劣化反応物、酸化スケール、塩素系化合物などである。   CFC-type refrigerant or HCFC-type refrigerant, HFC-type refrigerant that is not compatible with mineral oil from an air conditioner that uses mineral oil as refrigerating machine oil (old machine), and an air-conditioner that uses HFC refrigerating machine oil (new machine) When the connection pipe that connects the indoor unit and the outdoor unit is reused when exchanging it, pollutants (impurities) remain in the reused installation pipe. This impurity is insoluble in the HFC refrigerant used in the new machine, or is a weakly soluble component of refrigerating machine oil (mineral oil, alkylbenzene, etc.) enclosed in the old machine, oxidative degradation reaction product of the refrigerating machine oil, oxidation scale, chlorine compound Etc.

上記の既設配管を利用する方法では、接続配管内に残留した不純物により新機内の冷凍機油が劣化する。さらに、冷媒に溶解しない成分が冷凍サイクル内の低温部分において、析出し冷凍サイクルが詰まり、空気調和機の信頼性を著しく損なう恐れがある。
そのため、既設配管を利用するに際して、接続配管内に残留した不純物を回収する洗浄運転を実施することが知られ、例えば特許文献1に記載されている。
In the method using the existing pipe, the refrigerating machine oil in the new machine deteriorates due to impurities remaining in the connection pipe. Furthermore, components that do not dissolve in the refrigerant may precipitate in the low temperature portion of the refrigeration cycle, clogging the refrigeration cycle, and may significantly impair the reliability of the air conditioner.
Therefore, it is known to perform a cleaning operation for collecting impurities remaining in the connection pipe when using the existing pipe, which is described in Patent Document 1, for example.

特開2000−9368号公報JP 2000-9368 A

上記従来技術においては、利用側熱交換器と圧縮機との間、ガス冷媒となる位置に異物捕捉手段を配置しているので、HFC用冷凍機油と気体異物は混合され、異物捕捉手段を何回か繰り返して通さなければならなかった。そのため、旧機から新機に入れ換えた後に接続配管内の洗浄運転を比較的に長い間に渡って、例えば1〜2時間位実施する必要があった。つまり、空気調和機の入れ換え工事、リニューアル工事の作業時間が長くならざるを得なかった。   In the above prior art, since the foreign matter trapping means is disposed between the user side heat exchanger and the compressor at a position that becomes a gas refrigerant, the refrigeration oil for HFC and the gaseous foreign matter are mixed, and the foreign matter trapping means is I had to pass through several times. Therefore, after replacing the old machine with the new machine, it is necessary to carry out the cleaning operation in the connection pipe for a relatively long time, for example, for about 1 to 2 hours. In other words, the work time for air conditioner replacement work and renewal work was inevitably long.

本発明の目的は、再利用した接続配管内に残留した不純物を効率良く回収することのできる冷凍サイクル装置を得ることにある。 An object of the present invention is to obtain a refrigeration cycle apparatus capable of efficiently collecting impurities remaining in a reused connection pipe.

上記課題を解決するために、本発明は、圧縮機、熱源機側熱交換器、第1の膨張装置、第2の膨張装置、利用側熱交換器を順次接続配管で連結してなり、CFC系冷媒またはHCFC系冷媒と、冷凍機油として鉱油を使用したものから、鉱油とは相溶性のないHFC系冷媒と、HFC系冷媒に溶解するHFC用冷凍機油を使用したものに交換する際に前記接続配管を再利用するようにした冷凍サイクル装置において、前記第1の膨張装置と第2の膨張装置との間に液冷媒を貯留するレシーバを設け、前記レシーバは、このレシーバ内に配置されると共に、HFC系冷媒に溶解したHFC用冷凍機油は通過しHFC系冷媒と相溶性のない鉱油は捕捉されるメッシュ数を有し、且つポリエステル、ポリプロピレンの少なくとも1つで構成された繊維性の材料であって、冷媒不溶成分又は冷媒に対して弱溶解成分の少なくともいずれかを捕捉するフィルタと、先端部が前記フィルタの下方に設定され、冷媒が導入出される2本の冷媒導入出管と、前記フィルタの下部に設けられ、前記2本の冷媒導入出管の間に配置された仕切板とを備え、前記圧縮機の始動時又は停止時の少なくともいずれかにおいて、前記レシーバ後流側となる前記第1の膨張装置又は第2の膨張装置を全閉あるいは全閉に近い小開度として運転するものである。 In order to solve the above-mentioned problems, the present invention comprises a compressor, a heat source unit side heat exchanger, a first expansion device, a second expansion device, and a use side heat exchanger sequentially connected by a connection pipe, When changing from a refrigerant that uses mineral oil as a refrigerating machine oil or an HCFC refrigerant to an HFC refrigerant that is not compatible with mineral oil, or that that uses a refrigerating machine oil for HFC that is soluble in the HFC refrigerant In the refrigeration cycle apparatus in which the connection pipe is reused, a receiver that stores liquid refrigerant is provided between the first expansion device and the second expansion device, and the receiver is disposed in the receiver. At the same time, the refrigerating machine oil for HFC dissolved in the HFC refrigerant passes through and the mineral oil that is not compatible with the HFC refrigerant has a mesh number to be captured, and is made of at least one of polyester and polypropylene. A refrigerant material that captures at least one of a refrigerant insoluble component or a weakly soluble component with respect to the refrigerant, and two refrigerant introductions in which the tip is set below the filter and the refrigerant is introduced and extracted An outlet pipe and a partition plate provided at a lower part of the filter and disposed between the two refrigerant introduction / exit pipes, at least at the time of starting or stopping the compressor, The first expansion device or the second expansion device on the flow side is operated at a fully closed position or a small opening degree close to a fully closed position.

また、上記のものにおいて、前記レシーバはキャップとボディとを溶接して製造されるもので、前記フィルタは前記レシーバの内壁面と間隔Δdを設けて配置されることが望ましい。 Further, in those described above, the receiver than those produced by welding the cap and body, before SL filter is desired to be disposed with the inner wall surface and spacing Δd of the receiver.

本発明によれば、第1の膨張装置と第2の膨張装置との間に液冷媒を貯留するレシーバを設け、前記レシーバは、このレシーバ内に配置されると共に、HFC系冷媒に溶解したHFC用冷凍機油は通過しHFC系冷媒と相溶性のない鉱油は捕捉されるメッシュ数を有し、且つポリエステル、ポリプロピレンの少なくとも1つで構成された繊維性の材料であって、冷媒不溶成分又は冷媒に対して弱溶解成分の少なくともいずれかを捕捉するフィルタと、先端部が前記フィルタの下方に設定され、冷媒が導入出される2本の冷媒導入出管と、前記フィルタの下部に設けられ、前記2本の冷媒導入出管の間に配置された仕切板とを備え、前記圧縮機の始動時又は停止時の少なくともいずれかにおいて、前記レシーバ後流側となる前記第1の膨張装置又は第2の膨張装置を全閉あるいは全閉に近い小開度とするように構成しているので、以下の効果がある。
(イ)接続配管に残っていた鉱油は液冷媒にほとんど溶解せず液冷媒よりも粘度が高いので、液冷媒が多く存在するレシーバ内で液冷媒から分離されてフィルタに引っかかり、毛細管現象により鉱油をフィルタで捕捉することができる。
(ロ)圧縮機の始動時又は停止時にレシーバ後流側となる膨張装置を全閉あるいは全閉に近い小開度とするようにしているので、圧縮機の始動時又は停止時にレシーバ内に液冷媒を回収して、フィルタに液冷媒と鉱油との混合液を確実に接触させることができ、この結果HFC系冷媒と相溶性のない鉱油をフィルタで効率よく捕捉できる効果がある。
(ハ)上記(イ)(ロ)の効果により、本発明によれば、既設配管の洗浄運転を特に必要とせず、リニューアル工事の作業時間を短縮することができる。
また、上記フィルタをレシーバ内壁面と間隔Δdを設けて配置した構成とすることにより、更に以下の効果も得られる。
(ニ)HFC系冷媒と相溶性のない鉱油を補足できるフィルタを内蔵したレシーバの溶接時に、レシーバ内壁面の温度がフィルタに伝わるのを抑制できるため、フィルタが熱で劣化して鉱油等の冷媒不溶成分を捕捉できなくなることを防止することができる。
According to the present invention, a receiver for storing a liquid refrigerant is provided between the first expansion device and the second expansion device, and the receiver is disposed in the receiver and is dissolved in the HFC-based refrigerant. Mineral oil that passes through the refrigerating machine oil and is incompatible with the HFC refrigerant has a mesh number to be captured, and is a fibrous material composed of at least one of polyester and polypropylene, and is a refrigerant insoluble component or refrigerant A filter that captures at least one of the weakly soluble components , a tip is set below the filter, two refrigerant introduction / exit pipes into which refrigerant is introduced and removed, and a lower part of the filter, And a partition plate disposed between the two refrigerant introduction / exit pipes, and the first expansion device which becomes the receiver downstream side at least at the time of starting or stopping of the compressor Alternatively, the second expansion device is configured to be fully closed or to have a small opening degree close to full closure, and thus has the following effects.
(B) The mineral oil remaining in the connection pipe is hardly dissolved in the liquid refrigerant and has a higher viscosity than the liquid refrigerant. Therefore, the mineral oil is separated from the liquid refrigerant in the receiver where the liquid refrigerant is present and is caught by the filter. Can be captured by a filter.
(B) Since the expansion device on the downstream side of the receiver at the time of starting or stopping the compressor is made to be fully closed or a small opening close to full closing, the liquid in the receiver at the time of starting or stopping the compressor The refrigerant can be recovered and the mixed liquid of liquid refrigerant and mineral oil can be reliably brought into contact with the filter. As a result, there is an effect that mineral oil that is not compatible with the HFC refrigerant can be efficiently captured by the filter.
(C) Due to the effects (A) and (B), according to the present invention, the cleaning operation of the existing piping is not particularly required, and the work time for the renewal work can be shortened.
Moreover, the following effects can also be obtained by adopting a configuration in which the filter is disposed with a distance Δd from the inner wall surface of the receiver.
(D) During welding of a receiver with a built-in filter that can supplement mineral oil that is not compatible with HFC-based refrigerant, the temperature of the inner wall of the receiver can be suppressed from being transmitted to the filter. It is possible to prevent the insoluble component from being trapped.

以下本発明の実施の形態について図を用いて説明する。
図1は一実施の形態による空気調和機のサイクル系統図を示し、図2は他の実施の形態によるサイクル系統図を示す。図3、図4は冷媒不溶成分を除去するフィルタを内蔵したレシーバ(不純物回収装置)の構成を示し、図5はHFC系冷媒とHFC用冷凍機油と鉱油共存下での鉱油分離特性を示す。
Embodiments of the present invention will be described below with reference to the drawings.
FIG. 1 shows a cycle system diagram of an air conditioner according to one embodiment, and FIG. 2 shows a cycle system diagram according to another embodiment. 3 and 4 show the configuration of a receiver (impurity recovery device) incorporating a filter for removing refrigerant insoluble components, and FIG. 5 shows mineral oil separation characteristics in the presence of HFC refrigerant, HFC refrigerating machine oil, and mineral oil.

図1、2、5を用いて、既設配管内に残留した冷媒不溶成分または冷媒に対して弱溶解成分を回収する方法について説明する。以下、既設配管内に残留した冷媒不溶成分としては鉱油と説明する。
CFCやHCFCを使った空気調和装置が老朽化した場合、空気調和装置を交換する。まず、CFCまたはHCFC冷媒を回収し、室外機40と室内機20を図1又は図2に示すものと交換する。液接続配管7とガス接続配管8は旧機のものを再利用する。室外機40には予めHFCが充填されているので、阻止弁6、9は閉じたまま室内機20、液接続配管7とガス接続配管を接続状態で真空引きをし、その後阻止弁6、の開弁とHFCの追加充填を実施する。
A method for recovering a refrigerant insoluble component remaining in an existing pipe or a weakly soluble component with respect to the refrigerant will be described with reference to FIGS. Hereinafter, the refrigerant insoluble component remaining in the existing piping will be described as mineral oil.
When the air conditioner using CFC or HCFC is aged, replace the air conditioner. First, CFC or HCFC refrigerant is collected, and the outdoor unit 40 and the indoor unit 20 are replaced with those shown in FIG. 1 or FIG. The liquid connection pipe 7 and the gas connection pipe 8 are reused from the old machine. Since the outdoor unit 40 is pre-filled with HFC, the block valves 6 and 9 are closed, and the indoor unit 20, the liquid connection pipe 7 and the gas connection pipe are evacuated, and then the block valve 6 is closed. Perform valve opening and additional filling of HFC.

冷房運転の場合、圧縮機1で圧縮された高温高圧のガス冷媒は圧縮機1から吐出され、ガス冷媒が四方弁2を経て、熱源機側熱交換器3へと流入し、ここで熱交換器して凝縮液化する。凝縮液化した冷媒は全開とされた第1の膨張装置4を通り、余剰冷媒はレシーバ5に貯留され、残りが阻止弁6、図1ではさらに不純物回収キット30を経て室内機20へ送られる。送られた液冷媒は、第2の膨張装置21へ流入し、ここで低圧まで減圧されて低圧二相状態となり、利用側熱交換器22で空気などの利用側媒体と熱交換して蒸発・ガス化する。その後、ガス冷媒は、阻止弁9、四方弁2、アキュムレ−タ10を経て圧縮機1へ戻る。   In the case of cooling operation, the high-temperature and high-pressure gas refrigerant compressed by the compressor 1 is discharged from the compressor 1, and the gas refrigerant flows into the heat source side heat exchanger 3 through the four-way valve 2, where heat exchange is performed. To condense. The condensed and liquefied refrigerant passes through the fully expanded first expansion device 4, and the excess refrigerant is stored in the receiver 5, and the remainder is sent to the indoor unit 20 through the blocking valve 6, and further through the impurity recovery kit 30 in FIG. 1. The sent liquid refrigerant flows into the second expansion device 21, where it is decompressed to a low pressure to become a low pressure two-phase state, and exchanges heat with the use side medium such as air in the use side heat exchanger 22 to evaporate / Gasify. Thereafter, the gas refrigerant returns to the compressor 1 through the blocking valve 9, the four-way valve 2, and the accumulator 10.

暖房運転の場合、圧縮機1で圧縮された高温高圧のガス冷媒はHFC用冷凍機油と共に圧縮機1から吐出され、四方弁2、阻止弁9を経て利用側熱交換器22へ流入し、ここで空気など利用側媒体と熱交換して凝縮液化する。凝縮液化した冷媒は不純物回収キット30、阻止弁6、レシーバ5へ流入し、第1の膨張装置4で減圧され熱源機側熱交換器3で空気・水などの熱源媒体と熱交換して蒸発・ガス化する。蒸発・ガス化した冷媒は四方弁2、アキュムレ−タ8を経て圧縮機1へ戻る。   In the case of heating operation, the high-temperature and high-pressure gas refrigerant compressed by the compressor 1 is discharged from the compressor 1 together with the refrigeration oil for HFC, and flows into the use side heat exchanger 22 through the four-way valve 2 and the blocking valve 9. Heat exchange with the use side medium such as air to condense. The condensed and liquefied refrigerant flows into the impurity recovery kit 30, the blocking valve 6, and the receiver 5, is decompressed by the first expansion device 4, and is evaporated by exchanging heat with a heat source medium such as air or water in the heat source unit side heat exchanger 3.・ Gasify. The evaporated and gasified refrigerant returns to the compressor 1 through the four-way valve 2 and the accumulator 8.

図5はHFC系冷媒とHFC用冷凍機油に対し、HFC系冷媒に不溶な成分である鉱油が約10%(=鉱油量/(HFC用冷凍機油量+鉱油量))混入した場合の鉱油の分離特性を示す。横軸は冷凍機油(HFC用冷凍機油+鉱油)への冷媒溶解度を示し、0%が冷凍機油(HFC用冷凍機油+鉱油)のみの場合を、100%が冷媒のみの場合を示す。縦軸は温度を示している。
つまり、鉱油はHFC系冷媒にはほとんど溶解せず、一方HFC用冷凍機油には溶解する。そして、鉱油はHFC用冷凍機油が多く存在する圧縮機内では分離せず、液冷媒が多く存在する液接続配管部7およびレシーバ5、図2ではレシーバ31b内で分離する。
フィルタ32aは不純物回収キット30、フィルタ32bはレシーバ31b内に設けられ、メッシュ数が比較的大きい繊維性の材料であり、その繊維の材質として、ポリエステル、ポリプロピレンの少なくとも1つで構成されている。
Fig. 5 shows the mineral oil when about 10% (= mineral oil amount / (HFC refrigerating machine oil amount + mineral oil amount)) is mixed with HFC refrigerant and HFC refrigerating machine oil. The separation characteristics are shown. The horizontal axis indicates the solubility of the refrigerant in the refrigeration oil (HFC refrigeration oil + mineral oil), where 0% is only the refrigeration oil (HFC refrigeration oil + mineral oil) and 100% is the refrigerant only. The vertical axis represents temperature.
That is, mineral oil hardly dissolves in the HFC refrigerant, while it dissolves in the HFC refrigerating machine oil. And mineral oil is not isolate | separated in the compressor in which many refrigeration oils for HFC exist, but isolate | separates in the liquid connection piping part 7 and receiver 5 in which many liquid refrigerants exist, and the receiver 31b in FIG.
The filter 32a is provided in the impurity recovery kit 30, and the filter 32b is a fiber material having a relatively large number of meshes. The fiber material is made of at least one of polyester and polypropylene.

液冷媒および液冷媒に溶解したHFC用冷凍機油は粘度が著しく低い液体であるのに対して、鉱油は液冷媒および液冷媒に溶解したHFC用冷凍機油に比べて粘度が著しく高い液体である。そのため、液冷媒および液冷媒に溶解したHFC用冷凍機油はフィルタ32a、32bを通過するのに対して、鉱油はメッシュ数の大きいフィルタ32a、32bの繊維間に引っかかり、その後毛細管現象により繊維内部へ捕捉される。
したがって、フィルタ32a、32bを液接続配管7またはレシーバ31b内に配置することで、圧縮機1内からHFC用冷凍機油ととも吐出された鉱油は液接続配管部7およびレシーバ31b内で分離し、その分離した鉱油のみをフィルタ32a、32bにて捕捉することが可能となる。
The liquid refrigerant and the HFC refrigerating machine oil dissolved in the liquid refrigerant are liquids with a remarkably low viscosity, whereas the mineral oil is a liquid having a remarkably higher viscosity than the liquid refrigerant and the HFC refrigerating machine oil dissolved in the liquid refrigerant. Therefore, the liquid refrigerant and the refrigeration oil for HFC dissolved in the liquid refrigerant pass through the filters 32a and 32b, whereas the mineral oil is caught between the fibers of the filters 32a and 32b having a large number of meshes, and then into the fibers by capillary action. Be captured.
Therefore, by arranging the filters 32a and 32b in the liquid connection pipe 7 or the receiver 31b, the mineral oil discharged together with the refrigeration oil for HFC from the compressor 1 is separated in the liquid connection pipe section 7 and the receiver 31b. Only the separated mineral oil can be captured by the filters 32a and 32b.

圧縮機1の形態として圧縮機1内の冷凍機油貯留部の圧力が高い高圧チャンバー方式、あるいは圧縮機1の吐出部にオイルセパレータを配置している場合には、圧縮機1内あるいはオイルセパレータ内に貯留した冷凍機油の温度は高温なる。一方、液接続配管部7およびレシーバ5、31bの温度はその温度よりも低くなる。そして、冷凍機油の劣化は、温度が上昇するほど促進し、さらにHFC用冷凍機油の劣化は既設配管内に残留した鉱油(劣化油)の混入量が多いほど劣化は促進するので、圧縮機1内あるいはオイルセパレータ内よりも低温の液接続配管部7およびレシーバ31bで鉱油を捕捉することにより、HFC用冷凍機油の劣化を抑制することができる。   When the compressor 1 is in the form of a high-pressure chamber system in which the pressure of the refrigerating machine oil reservoir in the compressor 1 is high, or when an oil separator is disposed in the discharge part of the compressor 1, the compressor 1 or the oil separator The temperature of the refrigeration oil stored in the tank becomes high. On the other hand, the temperature of the liquid connection pipe section 7 and the receivers 5 and 31b is lower than that temperature. The deterioration of the refrigerating machine oil is accelerated as the temperature rises, and the deterioration of the HFC refrigerating machine oil is further promoted as the mixing amount of the mineral oil (deteriorating oil) remaining in the existing pipe increases. By capturing the mineral oil with the liquid connection pipe section 7 and the receiver 31b, which are cooler than the inside or the oil separator, it is possible to suppress the deterioration of the refrigeration oil for HFC.

また、鉱油をフィルタ32a、32bに捕捉するためには、フィルタ32a、32bと鉱油とが接触する必要がある。そこで、圧縮機1の起動時および圧縮機の停止時に、不純物回収容器31aあるいはレシーバ31bの後流側の膨張装置(冷房運転時であれば21a、21b、暖房運転時であれば4)を全閉あるいは全閉に近い小開度に設定して運転することで、不純物回収容器31aあるいはレシーバ31b内に冷媒を回収する。これにより、フィルタ32a、32bにHFC系冷媒とHFC用冷凍機油と鉱油との混合液とを接触することができるので、不純物回収容器31a、およびレシーバ31b内においては鉱油のみが分離することから、鉱油のみを捕捉することができる。   Further, in order to capture the mineral oil in the filters 32a and 32b, the filters 32a and 32b need to be in contact with the mineral oil. Therefore, when the compressor 1 is started and when the compressor is stopped, the expansion device on the downstream side of the impurity recovery container 31a or the receiver 31b (21a, 21b in the cooling operation, 4 in the heating operation) is completely removed. The refrigerant is recovered in the impurity recovery container 31a or the receiver 31b by operating at a small opening close to or fully closed. As a result, the filter 32a, 32b can be contacted with the mixed liquid of the HFC refrigerant, HFC refrigerating machine oil, and mineral oil, so only the mineral oil is separated in the impurity recovery container 31a and the receiver 31b. Only mineral oil can be captured.

さらに、フィルタ32a、32bに対する流速が大きいほどフィルタ32a、32bの鉱油捕捉量は減少する。これは、一度フィルタ32a、32bに捕捉された鉱油が、冷媒の流体力によりフィルタ32a、32bの外に押し出されるからである。そして、不純物回収容器31aあるいはレシーバ31b内にHFC系冷媒とHFC用冷凍機油と鉱油の混合液を導入する冷媒導入出管34a、34b、35a、35bの管先端部の近傍であるほど、混合液の流入速度は大きいので、管先端部を下方に向けて、不純物回収容器31aあるいはレシーバ31b内に導入したHFC系冷媒とHFC用冷凍機油と鉱油の混合液がフィルタ32a、32bを通過した後に、不純物回収容器31aあるいはレシーバ31bから導出するようにする。これにより、不純物回収容器31aあるいはレシーバ31b内に導入した鉱油がフィルタ32a、32bを通過することなく、導出することを抑制することができる。   Furthermore, the amount of mineral oil captured by the filters 32a and 32b decreases as the flow velocity with respect to the filters 32a and 32b increases. This is because the mineral oil once captured by the filters 32a and 32b is pushed out of the filters 32a and 32b by the fluid force of the refrigerant. And the liquid mixture becomes so near that the pipe | tube front-end | tip part of the refrigerant | coolant inlet / outlet pipe | tube 34a, 34b, 35a, 35b which introduce | transduces the liquid mixture of HFC type refrigerant | coolant, HFC refrigerating machine oil, and mineral oil in the impurity collection container 31a or the receiver 31b. Since the inflow rate of the HFC refrigerant, HFC refrigerating machine oil and mineral oil introduced into the impurity recovery container 31a or the receiver 31b passes through the filters 32a and 32b with the pipe tip portion facing downward, Derived from the impurity recovery container 31a or the receiver 31b. Thereby, it can suppress that the mineral oil introduce | transduced in the impurity collection | recovery container 31a or the receiver 31b is derived | led-out, without passing filter 32a, 32b.

さらに、不純物回収容器31aあるいはレシーバ31b内に導入する冷媒導入出管34a、34b、35a、35bとフィルタ32a、32bとの空間を確保するとともに、不純物回収容器31aあるいはレシーバ31b内に冷媒導入出管34a、34b、35a、35bとの間に仕切板33a、33bを配置することが望ましい。   Further, the refrigerant introduction / exit pipes 34a, 34b, 35a, 35b introduced into the impurity collection container 31a or the receiver 31b and the filters 32a, 32b are secured, and the refrigerant introduction / exhaust pipe is provided in the impurity collection container 31a or the receiver 31b. It is desirable to arrange partition plates 33a and 33b between 34a, 34b, 35a and 35b.

次に図3および図4を用いて、液接続管に配置する不純物回収キット30aの不純物回収容器31aあるいはレシーバ31bに内蔵する冷媒不溶成分を除去するフィルタ32a、32bの設置方法について説明する。
製造時においてフィルタ32c、32dをパンチングメタル361c、362c、361d、362dで挟んだ後、キャップ371c、371d、371c、371dとボディ38c、38dとを溶接する。その際にボディ39c、39dの内壁面の温度がフィルタ32c、32dの最高使用温度を超える。よって、フィルタ32c、32dがボディ38c、38dの内壁面に接する構造であれば、フィルタ32c、32dが熱で劣化し、冷媒不溶成分を捕捉できなくなる。そのため、フィルタ32cの温度が最高使用温度以下となるようにボディ38cとフィルタ32cの間に所定の間隔Δdを設ける。あるいは、熱伝導性の低いセラミック、ガラスなどの断熱材39dを挿入し、ボディ38d内壁面の温度がフィルタに伝わるのを抑制する。
Next, a method of installing the filters 32a and 32b for removing the refrigerant insoluble components contained in the impurity recovery container 31a or the receiver 31b of the impurity recovery kit 30a disposed in the liquid connection pipe will be described with reference to FIGS.
At the time of manufacture, the filters 32c and 32d are sandwiched between punching metals 361c, 362c, 361d, and 362d, and then the caps 371c, 371d, 371c, and 371d are welded to the bodies 38c and 38d. At this time, the temperature of the inner wall surfaces of the bodies 39c and 39d exceeds the maximum operating temperature of the filters 32c and 32d. Therefore, if the filters 32c and 32d are in contact with the inner wall surfaces of the bodies 38c and 38d, the filters 32c and 32d are deteriorated by heat, and the refrigerant insoluble component cannot be captured. Therefore, a predetermined interval Δd is provided between the body 38c and the filter 32c so that the temperature of the filter 32c is equal to or lower than the maximum operating temperature. Alternatively, a heat insulating material 39d such as ceramic or glass having low thermal conductivity is inserted to suppress the temperature of the inner wall surface of the body 38d from being transmitted to the filter.

本発明による一実施の形態を示すサイクル系統図。The cycle system diagram which shows one embodiment by this invention. 本発明による他の実施の形態を示すサイクル系統図。The cycle system diagram which shows other embodiment by this invention. 一実施の形態によるレシーバ(不純物回収装置)の断面図。Sectional drawing of the receiver (impurity collection | recovery apparatus) by one Embodiment. 他の実施の形態によるレシーバ(不純物回収装置)の断面図。図。Sectional drawing of the receiver (impurity collection | recovery apparatus) by other embodiment. Figure. HFC系冷媒とHFC用冷凍機油と鉱油共存下での鉱油分離特性を示すグラフ。The graph which shows the mineral oil separation characteristic in the presence of HFC type refrigerant, HFC refrigerating machine oil, and mineral oil.

符号の説明Explanation of symbols

1…圧縮機、2…四方弁、3…熱源機側熱交換器、4…第1の膨張装置、21a、21b…第2の膨張装置、5、31b…レシーバ、6、9…阻止弁、7…液接続配管、8…ガス接続配管、10…アキュムレータ、20a、20b…室内機、22a、22b…利用側熱交換器、30a…不純物回収キット、31a…不純物回収容器、32a、32b、32c、32d…フィルタ、33a、33b、33c、33d…仕切板、34a、34b、34c、34d、34e、35a、35b、35c、35d…冷媒導入出管、361c、361d、371c、371d…パンチングメタル、371c、371d、372c、372d…キャップ、38c、38d…ボディ、39d…断熱材、40a、40b…室外機。
DESCRIPTION OF SYMBOLS 1 ... Compressor, 2 ... Four way valve, 3 ... Heat source machine side heat exchanger, 4 ... 1st expansion device, 21a, 21b ... 2nd expansion device, 5, 31b ... Receiver, 6, 9 ... Stop valve, DESCRIPTION OF SYMBOLS 7 ... Liquid connection piping, 8 ... Gas connection piping, 10 ... Accumulator, 20a, 20b ... Indoor unit, 22a, 22b ... Usage side heat exchanger, 30a ... Impurity collection kit, 31a ... Impurity collection container, 32a, 32b, 32c 32d ... Filter, 33a, 33b, 33c, 33d ... Partition plate, 34a, 34b, 34c, 34d, 34e, 35a, 35b, 35c, 35d ... Refrigerant inlet / outlet pipe, 361c, 361d, 371c, 371d ... Punching metal, 371c, 371d, 372c, 372d ... cap, 38c, 38d ... body, 39d ... heat insulating material, 40a, 40b ... outdoor unit.

Claims (2)

圧縮機、熱源機側熱交換器、第1の膨張装置、第2の膨張装置、利用側熱交換器を順次接続配管で連結してなり、CFC系冷媒またはHCFC系冷媒と、冷凍機油として鉱油を使用したものから、鉱油とは相溶性のないHFC系冷媒と、HFC系冷媒に溶解するHFC用冷凍機油を使用したものに交換する際に前記接続配管を再利用するようにした冷凍サイクル装置において、
前記第1の膨張装置と第2の膨張装置との間に液冷媒を貯留するレシーバを設け、
前記レシーバ
このレシーバ内に配置されると共に、HFC系冷媒に溶解したHFC用冷凍機油は通過しHFC系冷媒と相溶性のない鉱油は捕捉されるメッシュ数を有し、且つポリエステル、ポリプロピレンの少なくとも1つで構成された繊維性の材料であって、冷媒不溶成分又は冷媒に対して弱溶解成分の少なくともいずれかを捕捉するフィルタと、
先端部が前記フィルタの下方に設定され、冷媒が導入出される2本の冷媒導入出管と、
前記フィルタの下部に設けられ、前記2本の冷媒導入出管の間に配置された仕切板とを備え、
前記圧縮機の始動時又は停止時の少なくともいずれかにおいて、前記レシーバ後流側となる前記第1の膨張装置又は第2の膨張装置を全閉あるいは全閉に近い小開度とすること
を特徴とする冷凍サイクル装置。
Compressor, heat source side heat exchanger, first expansion device, second expansion device, utilization side heat exchanger are connected in order by connecting piping, CFC refrigerant or HCFC refrigerant and mineral oil as refrigerating machine oil Refrigeration cycle equipment that reuses the above-mentioned connecting pipes when replacing the ones using HFC refrigerants that are not compatible with mineral oil and ones that use refrigeration oils for HFCs that are soluble in HFC refrigerants In
Providing a receiver for storing liquid refrigerant between the first expansion device and the second expansion device ;
The receiver is
The mineral oil that is disposed in the receiver and that is not compatible with the HFC refrigerant passes through the HFC refrigerating machine oil dissolved in the HFC refrigerant and has a mesh number to be captured, and is at least one of polyester and polypropylene. A configured fibrous material that captures at least one of a refrigerant insoluble component or a weakly soluble component with respect to a refrigerant ; and
Two refrigerant introduction / exit pipes, each of which has a distal end set below the filter and into which refrigerant is introduced;
A partition plate provided at a lower portion of the filter and disposed between the two refrigerant introduction / exit pipes;
At least one of when the compressor is started or stopped, the first expansion device or the second expansion device on the downstream side of the receiver is fully closed or has a small opening degree close to full closing. A refrigeration cycle device.
請求項1に記載のものにおいて、前記レシーバはキャップとボディとを溶接して製造されるもので、前記フィルタは前記レシーバの内壁面と間隔Δdを設けて配置されることを特徴とする冷凍サイクル装置。 2. The refrigeration cycle according to claim 1, wherein the receiver is manufactured by welding a cap and a body, and the filter is disposed with an interval Δd from an inner wall surface of the receiver. apparatus.
JP2004130580A 2004-04-27 2004-04-27 Refrigeration cycle equipment Expired - Fee Related JP4225239B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004130580A JP4225239B2 (en) 2004-04-27 2004-04-27 Refrigeration cycle equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004130580A JP4225239B2 (en) 2004-04-27 2004-04-27 Refrigeration cycle equipment

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2008136171A Division JP4743906B2 (en) 2008-05-26 2008-05-26 Refrigeration cycle equipment

Publications (2)

Publication Number Publication Date
JP2005315435A JP2005315435A (en) 2005-11-10
JP4225239B2 true JP4225239B2 (en) 2009-02-18

Family

ID=35443058

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004130580A Expired - Fee Related JP4225239B2 (en) 2004-04-27 2004-04-27 Refrigeration cycle equipment

Country Status (1)

Country Link
JP (1) JP4225239B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4370478B2 (en) * 2007-03-28 2009-11-25 日立アプライアンス株式会社 Refrigeration cycle equipment
JP5107652B2 (en) * 2007-10-03 2012-12-26 日立アプライアンス株式会社 Refrigeration cycle equipment
JP4743906B2 (en) * 2008-05-26 2011-08-10 日立アプライアンス株式会社 Refrigeration cycle equipment

Also Published As

Publication number Publication date
JP2005315435A (en) 2005-11-10

Similar Documents

Publication Publication Date Title
EP1391667A2 (en) Converting a refrigerating system
EP2667120B1 (en) Refrigeration cycle apparatus
JP2014032007A (en) Refrigeration cycle device
JP4225239B2 (en) Refrigeration cycle equipment
JP4370478B2 (en) Refrigeration cycle equipment
WO2015125252A1 (en) Refrigerant cycle device
JP4743906B2 (en) Refrigeration cycle equipment
JP4114011B2 (en) Refrigeration cycle apparatus and receiver used therefor
JP5107652B2 (en) Refrigeration cycle equipment
JP4694406B2 (en) Air conditioner and manufacturing method thereof
JP2000329432A (en) Method for operating refrigerating cycle device
JP3223773U (en) Cleaning equipment for existing refrigerant piping
JP4186764B2 (en) Refrigeration equipment
JP2003322436A (en) Refrigerating cycle device
JP4517834B2 (en) How to use existing refrigerant piping
JP4425457B2 (en) Refrigeration cycle apparatus and operation method thereof
JP3700723B2 (en) Refrigeration equipment
JP2008202909A (en) Refrigerating apparatus and method of removing foreign matter in the apparatus
JP4060786B2 (en) Refrigeration air conditioner
JP2007163024A (en) Method of cleaning inside of duct, apparatus for collecting impurity, and method of implementation
JPWO2005052472A1 (en) Refrigeration equipment
JP2004308934A (en) Freezing apparatus and method of washing piping
JP2003065636A (en) Operation method for freezing cycle apparatus
JP5926710B2 (en) Pipeline cleaning method for air conditioning system and pipe cleaning apparatus used therefor
JP5119629B2 (en) Refrigeration equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050726

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060424

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071106

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080325

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080526

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20080619

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20080709

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081111

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111205

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4225239

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111205

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121205

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131205

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees