JP5213372B2 - Air conditioner - Google Patents

Air conditioner Download PDF

Info

Publication number
JP5213372B2
JP5213372B2 JP2007179757A JP2007179757A JP5213372B2 JP 5213372 B2 JP5213372 B2 JP 5213372B2 JP 2007179757 A JP2007179757 A JP 2007179757A JP 2007179757 A JP2007179757 A JP 2007179757A JP 5213372 B2 JP5213372 B2 JP 5213372B2
Authority
JP
Japan
Prior art keywords
refrigerant
condenser
indoor
outdoor
cooler
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007179757A
Other languages
Japanese (ja)
Other versions
JP2009014322A (en
Inventor
啓三 福原
壮介 村瀬
文雄 松岡
裕章 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2007179757A priority Critical patent/JP5213372B2/en
Publication of JP2009014322A publication Critical patent/JP2009014322A/en
Application granted granted Critical
Publication of JP5213372B2 publication Critical patent/JP5213372B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

この発明は、室内外凝縮器への冷媒の流れを制御することで室内温度を調節する機能を有する空気調和機に関する。   The present invention relates to an air conditioner having a function of adjusting a room temperature by controlling a flow of a refrigerant to an indoor / outdoor condenser.

従来の空気調和機には、運転モードの切替えなどにより生じる余剰冷媒を溜めるための液溜めを設けたものがある(例えば特許文献1参照)。
余剰冷媒は、液溜めなどに保持しないと凝縮器部分に溜まる傾向にあり、そのため凝縮器を大きくするなどの対応をしないと、高圧圧力の上昇、吐出温度の上昇およびそれらに起因する性能低下や、圧縮機の故障の原因ともなる。
Some conventional air conditioners are provided with a liquid reservoir for accumulating excess refrigerant generated by switching operation modes or the like (see, for example, Patent Document 1).
Excess refrigerant tends to accumulate in the condenser unless it is held in a liquid reservoir, etc.Therefore, unless measures such as enlarging the condenser are taken, an increase in high-pressure pressure, an increase in discharge temperature and a decrease in performance caused by them. This may cause a compressor failure.

特開2003−262429号公報(第5項、第一図)Japanese Patent Laid-Open No. 2003-262429 (5th item, Fig. 1)

しかしながら、上記特許文献1に示したような液溜めを設けた空気調和機では、液溜めおよびその接続配管の分だけコストアップになり、さらに液溜めを設置した分だけ冷媒封入量をさらに増加させる必要があり、冷媒量増加分のコストアップを招くという課題があった。また、液溜めは高圧側容器であり、肉厚を確保する必要があるため、低圧容器であるアキュムレータなどに比較してコストが高くなる傾向がある。   However, in the air conditioner provided with a liquid reservoir as shown in the above-mentioned Patent Document 1, the cost is increased by the amount of the liquid reservoir and its connecting pipe, and the amount of refrigerant filled is further increased by the amount of the liquid reservoir installed. There is a problem that it is necessary and causes an increase in cost due to an increase in the amount of refrigerant. Further, since the liquid reservoir is a high-pressure side container and it is necessary to ensure the thickness, the cost tends to be higher than that of an accumulator or the like that is a low-pressure container.

この発明は上記のような課題を解決するためになされたもので、コストアップとなる液溜めを設けることなく、冷媒回路内の余剰冷媒を低圧容器に保持させるようにすることで、余剰冷媒による高圧上昇などの不具合の防止とコストアップの抑制を図ることを目的とする。   The present invention has been made to solve the above-described problems. By providing an extra refrigerant in the refrigerant circuit in the low-pressure vessel without providing a liquid reservoir that increases the cost, The purpose is to prevent problems such as high pressure rise and to suppress cost increase.

この発明に係る空気調和機は、圧縮機、凝縮器、絞り装置、冷却器、低圧側容器が順に配置された冷媒回路であって、前記凝縮器は室内凝縮器と室外凝縮器とからなり、前記室内凝縮器と前記室外凝縮器が並列の冷媒回路に構成されている冷媒回路と、前記冷媒回路の余剰冷媒を検知して、前記余剰冷媒を前記低圧側容器に保持させるように前記絞り装置の開度を制御する制御装置と、を備えた空気調和機において、前記室外凝縮器と前記冷却器とを利用して室内を冷却しながら除湿する冷却運転モードと、前記室内凝縮器と前記冷却器とを利用して室内を加熱しながら除湿する除湿運転モードとを有し、前記制御装置は、余剰冷媒が発生しない冷却運転モードでは前記冷却器の出口部の過熱度が一定となるようにする過熱度制御を行い、余剰冷媒が発生する除湿運転モードでは利用されている前記凝縮器の出口部の過冷却度が所定の値となるようにする過冷却制御を行うようにあらかじめ設定されているものである。   An air conditioner according to the present invention is a refrigerant circuit in which a compressor, a condenser, a throttling device, a cooler, and a low-pressure side container are sequentially arranged, and the condenser includes an indoor condenser and an outdoor condenser, The refrigerant circuit in which the indoor condenser and the outdoor condenser are configured in parallel refrigerant circuits, and the throttling device to detect the excess refrigerant in the refrigerant circuit and hold the excess refrigerant in the low-pressure side container. An air conditioner comprising: a control device for controlling an opening degree of the air-cooling apparatus; a cooling operation mode for dehumidifying the interior of the air conditioner while cooling the room using the outdoor condenser and the cooler; and the indoor condenser and the cooling And a dehumidifying operation mode for dehumidifying while heating the room using a cooler, and the control device is configured so that the degree of superheat at the outlet of the cooler is constant in the cooling operation mode in which excess refrigerant is not generated. Control the superheat Are those previously set to perform supercooling to allow supercooling of the outlet portion of the condenser in the drying mode of the refrigerant occurs are used becomes a predetermined value.

この発明の空気調和機は、冷媒回路の余剰冷媒を検知して、前記余剰冷媒を前記低圧側容器に保持させるように前記絞り装置の開度を制御する制御装置を備えているため、コストアップとなる液溜めを設けることなく、余剰冷媒による高圧上昇などの不具合の防止がはかれる。
また、室内凝縮器および/または室外凝縮器の出口側の高圧側冷媒回路から低圧側容器の入口側の低圧側冷媒回路に連通するバイパス回路と、冷媒回路の余剰冷媒を検知して、余剰冷媒を低圧側容器に保持させるようにバイパス回路を開閉する制御装置とを備えているため、コストアップとなる液溜めを設けることなく、余剰冷媒による高圧上昇などの不具合の防止がはかれる。
The air conditioner according to the present invention includes a control device that detects excess refrigerant in the refrigerant circuit and controls the opening of the expansion device so as to hold the excess refrigerant in the low-pressure side container. Therefore, it is possible to prevent problems such as an increase in high pressure due to excess refrigerant without providing a liquid reservoir.
A bypass circuit communicating from the high-pressure side refrigerant circuit on the outlet side of the indoor condenser and / or the outdoor condenser to the low-pressure side refrigerant circuit on the inlet side of the low-pressure side container; And a control device that opens and closes the bypass circuit so as to be held in the low-pressure side container, it is possible to prevent inconveniences such as an increase in high pressure due to excess refrigerant without providing a liquid reservoir that increases costs.

実施の形態1.
図1はこの発明の実施の形態1における空気調和機の冷媒回路図である。この冷媒回路は冷凍サイクル装置を構成しており、圧縮機1、室外用電磁弁2、室外凝縮器3、室外凝縮器3への冷媒逆流を防止する室外凝縮器用逆止弁4、絞り装置5、冷却器(蒸発器)6および低圧側容器(以下、アキュムレータという)7が順次冷媒配管11〜16で接続されている。また、圧縮機1と室外用電磁弁2との間から分岐し、室内用電磁弁8、室内凝縮器9、および室内凝縮器9への冷媒逆流を防止する室内凝縮器用逆止弁10が順次冷媒配管17、18で接続されて、絞り装置5で合流する冷媒回路を備えている。図1からわかるように、この冷媒回路において、凝縮器は室外凝縮器3と室内凝縮器9とからなり、それらの室外凝縮器3と室内凝縮器9は並列の冷媒回路を構成している。さらに、室外凝縮器3での冷媒凝縮を促進する室外送風機20と、冷却器6での冷媒蒸発と室内凝縮器9での冷媒凝縮を促進し室内空気を循環させる室内送風機21とを備えている。
Embodiment 1 FIG.
1 is a refrigerant circuit diagram of an air conditioner according to Embodiment 1 of the present invention. This refrigerant circuit constitutes a refrigeration cycle device, and includes a compressor 1, an outdoor solenoid valve 2, an outdoor condenser 3, an outdoor condenser check valve 4 for preventing a refrigerant backflow to the outdoor condenser 3, and a throttle device 5. A cooler (evaporator) 6 and a low-pressure vessel (hereinafter referred to as an accumulator) 7 are sequentially connected by refrigerant pipes 11 to 16. In addition, an indoor solenoid check valve 10, which branches from between the compressor 1 and the outdoor solenoid valve 2 and prevents the refrigerant backflow to the indoor condenser 9, and the indoor condenser 9, is sequentially provided. A refrigerant circuit connected by the refrigerant pipes 17 and 18 and joined by the expansion device 5 is provided. As can be seen from FIG. 1, in this refrigerant circuit, the condenser comprises an outdoor condenser 3 and an indoor condenser 9, and these outdoor condenser 3 and indoor condenser 9 constitute a parallel refrigerant circuit. Furthermore, an outdoor fan 20 that promotes refrigerant condensation in the outdoor condenser 3 and an indoor fan 21 that promotes refrigerant evaporation in the cooler 6 and refrigerant condensation in the indoor condenser 9 to circulate indoor air are provided. .

また、冷却器出口圧力センサ102、凝縮器出口圧力センサ103、冷却器出口温度センサ104、凝縮器出口温度センサ105、高圧圧力センサ107、低圧圧力センサ108、吐出温度センサ109を備えて、冷媒回路内の圧力状態や温度状態を検知できるようにしている。
これらの空気調和機を構成する各構成部のうち、室外ファン20と室外凝縮器3とは室外に配置され、それ以外は室内に配置されている。なお、以下では、冷媒配管11〜18をその冷媒配管の機能に応じて呼ぶこととし、冷媒配管11、12、17を吐出配管、冷媒配管13、14、18を液配管、冷媒配管15、16を吸入配管と呼ぶ。
The refrigerant circuit includes a cooler outlet pressure sensor 102, a condenser outlet pressure sensor 103, a cooler outlet temperature sensor 104, a condenser outlet temperature sensor 105, a high pressure sensor 107, a low pressure sensor 108, and a discharge temperature sensor 109. It is possible to detect the internal pressure state and temperature state.
Out of the constituent parts constituting these air conditioners, the outdoor fan 20 and the outdoor condenser 3 are arranged outdoors, and the others are arranged indoors. In the following, the refrigerant pipes 11 to 18 are called according to the function of the refrigerant pipe, the refrigerant pipes 11, 12, and 17 are discharge pipes, the refrigerant pipes 13, 14, and 18 are liquid pipes, and the refrigerant pipes 15 and 16 are connected. Is called a suction pipe.

図2は、図1の空気調和機の電気的構成を示すブロック図である。この空気調和機は、目標温度などの各種設定入力を行うための操作部100と、入力情報などの各種情報を記憶する記憶部101とを備える。また冷媒回路内の圧力や温度を検知する冷却器出口圧力センサ102と、凝縮器出口圧力センサ103と、冷却器出口温度センサ104と、凝縮器出口温度センサ105と、高圧圧力センサ107と、吐出温度センサ109とを備える。そしてそれらの各機器が、電気的又は光学的に制御装置106と接続されている。制御装置106は、CPUと、各種データを記憶するRAMと、後述の各運転モードの運転制御を行うためのプログラムなどを記憶するROM(何れも図示せず)とを備えており、ROM内のプログラムにしたがって、室外用電磁弁2、室内用電磁弁8、絞り装置5、室外送風機20および室内送風機21を適宜制御し、後述の冷却運転、除湿運転、中間運転および各種運転制御を行う。
なお、図2に示した各種センサは常に全てが使用されるわけではなく、制御態様に応じて選択的に使用される。
FIG. 2 is a block diagram showing an electrical configuration of the air conditioner of FIG. The air conditioner includes an operation unit 100 for inputting various settings such as a target temperature, and a storage unit 101 for storing various information such as input information. Also, a cooler outlet pressure sensor 102 for detecting the pressure and temperature in the refrigerant circuit, a condenser outlet pressure sensor 103, a condenser outlet temperature sensor 104, a condenser outlet temperature sensor 105, a high pressure sensor 107, and a discharge And a temperature sensor 109. Each of these devices is electrically or optically connected to the control device 106. The control device 106 includes a CPU, a RAM that stores various data, and a ROM (none of which is shown) that stores a program for performing operation control in each operation mode described below. According to the program, the outdoor solenoid valve 2, the indoor solenoid valve 8, the expansion device 5, the outdoor blower 20, and the indoor blower 21 are appropriately controlled to perform a cooling operation, a dehumidifying operation, an intermediate operation, and various operation controls described later.
Note that the various sensors shown in FIG. 2 are not always used, but are selectively used according to the control mode.

この空気調和機は、室外用電磁弁2と室内用電磁弁8の開閉を制御することで室外凝縮器3での放熱量を制御して、室内を除湿しながら温度調節を行うもので、具体的には冷却運転(室内を冷却しながら除湿する運転)、除湿運転(室内を加熱しながら除湿する運転)、中間運転(室内外での放熱量を制御することで室内を弱加熱、弱冷却又は室内温度を維持しながら除湿する運転)を行うことができるものである。以下、それらの各運転について順次説明する。   This air conditioner controls the heat release amount in the outdoor condenser 3 by controlling the opening and closing of the outdoor solenoid valve 2 and the indoor solenoid valve 8, and adjusts the temperature while dehumidifying the room. Specifically, cooling operation (operation to dehumidify while cooling the room), dehumidification operation (operation to dehumidify while heating the room), intermediate operation (weak heating and cooling the room by controlling the heat radiation inside and outside the room) Or the operation | movement which dehumidifies, maintaining indoor temperature). Hereinafter, each of these operations will be described sequentially.

<冷却運転>
冷却運転時は、室外用電磁弁2が開状態、室内用電磁弁8が閉状態にある。従って、圧縮機1から吐出された高温高圧ガス冷媒は、吐出配管11、12を経て室外凝縮器3に流入し、室外送風機20によって送風される室外空気と熱交換して放熱し、ガス冷媒は凝縮液化する。そして液配管13を経て絞り装置5で減圧されて気液二相冷媒となり冷却器6に入る。冷却器6に入った気液二相冷媒は、室内送風機21により送風される室内空気と熱交換して吸熱し、低温低圧ガス化して圧縮機1に戻る。ここで、室内送風機21により循環する空気は、冷却器6で低温低圧気液二相冷媒により冷却されて温度が低下して露点以下となり、冷却器6の表面で室内空気中の水分が結露し除湿される。つまり、室内空気は冷却されると同時に除湿される。
<Cooling operation>
During the cooling operation, the outdoor solenoid valve 2 is in the open state and the indoor solenoid valve 8 is in the closed state. Accordingly, the high-temperature and high-pressure gas refrigerant discharged from the compressor 1 flows into the outdoor condenser 3 through the discharge pipes 11 and 12, and dissipates heat by exchanging heat with the outdoor air blown by the outdoor blower 20, and the gas refrigerant is Condensed liquid. Then, the pressure is reduced by the expansion device 5 through the liquid pipe 13 and becomes a gas-liquid two-phase refrigerant and enters the cooler 6. The gas-liquid two-phase refrigerant that has entered the cooler 6 exchanges heat with the indoor air blown by the indoor blower 21 to absorb heat, is converted into low-temperature and low-pressure gas, and returns to the compressor 1. Here, the air circulated by the indoor blower 21 is cooled by the low-temperature low-pressure gas-liquid two-phase refrigerant in the cooler 6, the temperature is lowered to a dew point or less, and moisture in the indoor air is condensed on the surface of the cooler 6. Dehumidified. That is, the indoor air is cooled and dehumidified at the same time.

<除湿運転>
除湿運転時は、室外用電磁弁2が閉状態、室内用電磁弁8が開状態にある。従って、圧縮機1から吐出された高温高圧ガス冷媒は、吐出配管11、17を経て室内凝縮器9に流入し、室内送風機21によって送風される冷却器6を通過した室内空気と熱交換して放熱し、ガス冷媒は凝縮液化する。そして液配管18を経て絞り装置5で減圧されて気液二相冷媒となり冷却器6に入る。冷却器6に入った気液二相冷媒は、室内送風機21により送風される室内空気と熱交換して吸熱し、低温低圧ガス化して圧縮機1に戻る。ここで、室内送風機21により循環する空気は、冷却器6で低温低圧気液二相冷媒により冷却されて温度が低下して露点以下となり、冷却器6の表面で室内空気中の水分が結露し除湿される。その後、冷却器6を通過した空気は室内凝縮器9で高温高圧ガス冷媒により加熱され昇温し、相対湿度が低下する。このように、室外用電磁弁2を閉止し、冷凍サイクル内の放熱をすべて室内で行うことにより、理論上は圧縮機1の入力と空気中の水蒸気の凝縮潜熱分だけ室内を加熱する運転を行う。つまり、室内空気は加熱されると同時に除湿される。
<Dehumidifying operation>
During the dehumidifying operation, the outdoor solenoid valve 2 is closed and the indoor solenoid valve 8 is open. Accordingly, the high-temperature and high-pressure gas refrigerant discharged from the compressor 1 flows into the indoor condenser 9 through the discharge pipes 11 and 17, and exchanges heat with the indoor air that has passed through the cooler 6 blown by the indoor blower 21. Heat is dissipated and the gas refrigerant is condensed and liquefied. Then, the pressure is reduced by the expansion device 5 through the liquid pipe 18 and becomes a gas-liquid two-phase refrigerant and enters the cooler 6. The gas-liquid two-phase refrigerant that has entered the cooler 6 exchanges heat with the indoor air blown by the indoor blower 21 to absorb heat, is converted into low-temperature and low-pressure gas, and returns to the compressor 1. Here, the air circulated by the indoor blower 21 is cooled by the low-temperature low-pressure gas-liquid two-phase refrigerant in the cooler 6, the temperature is lowered to a dew point or less, and moisture in the indoor air is condensed on the surface of the cooler 6. Dehumidified. Thereafter, the air that has passed through the cooler 6 is heated by the high-temperature and high-pressure gas refrigerant in the indoor condenser 9 to increase the temperature, and the relative humidity decreases. In this way, by closing the outdoor solenoid valve 2 and performing all the heat radiation in the refrigeration cycle indoors, theoretically, the operation of heating the room by the amount of latent heat of condensation of the input of the compressor 1 and water vapor in the air is performed. Do. That is, the room air is heated and dehumidified at the same time.

<中間運転>
中間運転時は、室外用電磁弁2と室内用電磁弁8が共に開状態にある。従って、圧縮機1から吐出された高温高圧ガス冷媒は、吐出配管12を経て室外凝縮器3に流入する一方、吐出配管17を経て室内凝縮器9に流入する。そして、室外凝縮器3および室内凝縮器9で放熱・液化した冷媒は、液配管13および18を経て液配管14で合流する。そして、液配管14を経て絞り装置5で減圧されて気液二相冷媒となり冷却器6に入る。冷却器6で吸熱・ガス化して、吸入配管15、アキュムレータ7、および吸入配管16を経て圧縮機1に吸入される。かかる中間運転において、室外送風機20は室外温度や高圧圧力に応じてON-OFF制御を行うと共に、室内送風機21は常時ONする制御を行う。
<Intermediate operation>
During the intermediate operation, both the outdoor solenoid valve 2 and the indoor solenoid valve 8 are open. Accordingly, the high-temperature and high-pressure gas refrigerant discharged from the compressor 1 flows into the outdoor condenser 3 through the discharge pipe 12 and flows into the indoor condenser 9 through the discharge pipe 17. The refrigerant radiated and liquefied by the outdoor condenser 3 and the indoor condenser 9 merges in the liquid pipe 14 via the liquid pipes 13 and 18. Then, the pressure is reduced by the expansion device 5 through the liquid pipe 14 and becomes a gas-liquid two-phase refrigerant and enters the cooler 6. The heat is absorbed and gasified by the cooler 6 and is sucked into the compressor 1 through the suction pipe 15, the accumulator 7, and the suction pipe 16. In such an intermediate operation, the outdoor blower 20 performs ON-OFF control according to the outdoor temperature and high pressure, and the indoor blower 21 performs control to be always turned on.

次に、上記のようなモードを有する空気調和機において、余剰冷媒が発生する状況について整理する。中間運転時は、室外凝縮器3と室内凝縮器9を共に使用する運転であり冷却運転や除湿運転に比較して必要となる冷媒量が多くなる傾向にある。逆にいうと冷却運転時や除湿運転時には、余剰冷媒が発生することになる。例えば、中間運転から除湿運転に切替った場合は、室外用電磁弁2が閉されるが、液配管13は閉する電磁弁もなく開放状態であり、室外凝縮器3および液配管13内の冷媒が液配管14に幾分か流入する。一方、液配管14から液配管13へは室外凝縮器用逆止弁4により、また吐出配管11からは室外用電磁弁2の閉により、冷媒は室内から室外へは流出しない。その結果、除湿運転時には余剰冷媒が発生する。同様に冷却運転時も、除湿運転に対応した理由によって、余剰冷媒が発生する。   Next, in the air conditioner having the above-described mode, the situation where surplus refrigerant is generated will be organized. During the intermediate operation, the outdoor condenser 3 and the indoor condenser 9 are both used, and the amount of refrigerant required tends to increase compared to the cooling operation and the dehumidifying operation. Conversely, surplus refrigerant is generated during the cooling operation or the dehumidifying operation. For example, when switching from the intermediate operation to the dehumidifying operation, the outdoor solenoid valve 2 is closed, but the liquid pipe 13 is in an open state without a closing solenoid valve, and the inside of the outdoor condenser 3 and the liquid pipe 13 is closed. Some of the refrigerant flows into the liquid pipe 14. On the other hand, due to the outdoor condenser check valve 4 from the liquid pipe 14 to the liquid pipe 13 and the outdoor electromagnetic valve 2 being closed from the discharge pipe 11, the refrigerant does not flow out of the room to the outside. As a result, surplus refrigerant is generated during the dehumidifying operation. Similarly, during the cooling operation, surplus refrigerant is generated for the reason corresponding to the dehumidifying operation.

次にこの実施の形態1における絞り装置5の制御に関して説明する。一番冷媒が多く必要となる中間運転では、冷却器6出口部の過熱度が一定となるように絞り装置5を制御するいわゆる過熱度制御を行っている。ここで過熱度とは、冷却器出口温度センサ104で検知される温度(Ts)と冷却器出口圧力センサ102で検知される圧力の飽和温度(Te)の差(Ts−Te)で表され、冷却器6出口部の冷媒過熱度を表すものである。冷媒が一番多くなる中間運転では、周囲温度などの少しの変化で冷媒不足ぎみとなりやすい。冷媒不足状態では、後述の過冷却制御においては過冷却度を確保しようと絞り装置の開度は小さくなるが、過熱度制御では過熱度は目標より大きいため、小さくしようと絞り装置の開度は大きくなる。そこで中間運転では、絞り装置5の開度を小さくして能力低下を発生させないよう、過熱度制御をして、絞り装置5の開度を大きい状態で使用して能力確保する。   Next, the control of the diaphragm device 5 in the first embodiment will be described. In the intermediate operation that requires the largest amount of refrigerant, so-called superheat control is performed to control the expansion device 5 so that the superheat degree at the outlet of the cooler 6 is constant. Here, the degree of superheat is represented by the difference (Ts−Te) between the temperature detected by the cooler outlet temperature sensor 104 (Ts) and the saturation temperature (Te) of the pressure detected by the cooler outlet pressure sensor 102, This represents the degree of refrigerant superheat at the outlet of the cooler 6. In the intermediate operation with the largest amount of refrigerant, a slight change in ambient temperature or the like tends to cause a shortage of refrigerant. In the refrigerant shortage state, the degree of opening of the expansion device becomes small in order to secure the degree of supercooling in the below-described supercooling control, but in the degree of superheat control, the degree of superheat is larger than the target, so growing. Therefore, in the intermediate operation, the degree of superheat is controlled so that the opening degree of the expansion device 5 is reduced and the capacity is not reduced, and the opening degree of the expansion device 5 is used in a large state to secure the capacity.

一方、除湿運転では、所定のセンサにより検知される過冷却度などにより絞り装置5の開度を制御する。ここで過冷却度とは、凝縮器出口圧力センサ103で検知した圧力の飽和温度(Tc)と凝縮器出口温度センサ105で検知した温度(Tl)の差(Tc−Tl)のことで、室内凝縮器9の出口部の冷媒が凝縮完了後いくら過冷却されたかを表す。この実施の形態では、過冷却度の上昇を受けて、絞り装置5の開度を大きくして、冷却器6出口部での冷媒状態を二相状態とさせて、吸入配管15を経てアキュムレータ7に二相冷媒を流入させる。アキュムレータ7で二相冷媒は気液分離されて、液冷媒はアキュムレータ7に保持され、飽和ガス冷媒が吸入配管16を経て圧縮機1に戻る。以上のアキュムレータ7への液冷媒保持を、室内凝縮器9の出口部の過冷却度が規定値、例えば3Kとなるまで絞り装置5の開度を大きくして行う。つまり、制御装置106が、所定のセンサからの情報を得て算出した過冷却度を基に余剰冷媒の発生を検知(判断)した場合には、制御装置106は、目標の過冷却度となるように絞り装置5を制御するいわゆる過冷却制御を行う。   On the other hand, in the dehumidifying operation, the opening degree of the expansion device 5 is controlled by the degree of supercooling detected by a predetermined sensor. Here, the degree of supercooling refers to the difference (Tc−Tl) between the saturation temperature (Tc) of the pressure detected by the condenser outlet pressure sensor 103 and the temperature (Tl) detected by the condenser outlet temperature sensor 105. It represents how much the refrigerant at the outlet of the condenser 9 has been supercooled after completion of condensation. In this embodiment, in response to the increase in the degree of supercooling, the opening degree of the expansion device 5 is increased, the refrigerant state at the outlet of the cooler 6 is changed to the two-phase state, and the accumulator 7 is passed through the suction pipe 15. A two-phase refrigerant is allowed to flow into the. The two-phase refrigerant is separated into gas and liquid by the accumulator 7, the liquid refrigerant is held in the accumulator 7, and the saturated gas refrigerant returns to the compressor 1 through the suction pipe 16. The liquid refrigerant is held in the accumulator 7 by increasing the opening degree of the expansion device 5 until the degree of supercooling at the outlet of the indoor condenser 9 reaches a specified value, for example, 3K. That is, when the control device 106 detects (determines) the generation of excess refrigerant based on the degree of supercooling calculated by obtaining information from a predetermined sensor, the control device 106 has the target degree of supercooling. Thus, so-called supercooling control for controlling the expansion device 5 is performed.

以上説明したように実施の形態1によれば、制御装置106が、冷媒過冷却度を基に余剰冷媒を検知した場合に、絞り装置5をその過冷却度を基に制御してアキュムレータ7に余剰冷媒を保持させるため、液溜めを設けることなく、低コストで余剰冷媒を処理できる信頼性の高い空気調和機を得ることができる。   As described above, according to the first embodiment, when the control device 106 detects surplus refrigerant based on the refrigerant supercooling degree, the expansion device 5 is controlled based on the supercooling degree to the accumulator 7. Since the excess refrigerant is retained, a highly reliable air conditioner that can process the excess refrigerant at a low cost without providing a liquid reservoir can be obtained.

ところで上記においては、絞り装置5の制御を過冷却度により行うようにしたが、高圧圧力センサ107で検知された高圧圧力を基に制御することもできる。つまり、余剰冷媒が発生し過冷却度が大きくなると、室内凝縮器9で冷媒凝縮に活用できる伝熱面積が縮小して高圧圧力が上昇する。空気調和機の高圧圧力は低圧圧力が決まればほぼ空気調和機ごとに決定されるため、あらかじめ低圧圧力ごとの適正な高圧圧力の運転ポイントを記憶部101などに記憶させておき、制御装置106が、その高圧圧力に関して適正よりも大となる場合は余剰冷媒が発生したと判断して、適正となるまで絞り装置5の開度を大きくすることでも、上記と同様の効果を得ることができる。
また、制御装置106が、高圧圧力の上昇に伴う圧縮機吐出冷媒温度の上昇を吐出温度センサ109から情報を受け取り、その温度情報に基づいて余剰冷媒の発生を検知(判断)した場合には、その温度情報に基づいて絞り装置5の開度を大きくすることでも同様の効果を得ることができる。
In the above description, the throttle device 5 is controlled based on the degree of supercooling, but it can also be controlled based on the high pressure detected by the high pressure sensor 107. That is, when excess refrigerant is generated and the degree of supercooling is increased, the heat transfer area that can be utilized for refrigerant condensation in the indoor condenser 9 is reduced and the high pressure is increased. Since the high pressure of the air conditioner is determined for each air conditioner when the low pressure is determined, an appropriate high pressure operating point for each low pressure is stored in advance in the storage unit 101 and the control device 106 If the high pressure is higher than appropriate, it is determined that surplus refrigerant has been generated, and the same effect as described above can be obtained by increasing the opening of the expansion device 5 until it becomes appropriate.
In addition, when the control device 106 receives information from the discharge temperature sensor 109 that indicates an increase in the compressor discharge refrigerant temperature accompanying an increase in the high pressure, and detects (determines) the generation of excess refrigerant based on the temperature information, A similar effect can be obtained by increasing the opening of the expansion device 5 based on the temperature information.

さらに、絞り装置5に関して、余剰冷媒の発生する除湿運転は過冷却制御とし、余剰冷媒の発生しない中間運転は過熱度制御とする制御態様を、装置制御106にあらかじめ組み込んでおくことでも、上記と同様の効果を得ることができる。   Further, with respect to the expansion device 5, a control mode in which the dehumidifying operation in which the surplus refrigerant is generated is supercooling control and the intermediate operation in which the surplus refrigerant is not generated is superheat control is incorporated in the device control 106 in advance. Similar effects can be obtained.

なお、上記では除湿運転時の例を説明したが、冷却運転時でも余剰冷媒が発生した場合には、絞り装置5の開度を調整することで同様の効果を得ることができる。   In addition, although the example at the time of dehumidification operation was demonstrated above, when the excess refrigerant | coolant generate | occur | produces also at the time of cooling operation, the same effect can be acquired by adjusting the opening degree of the expansion apparatus 5. FIG.

参考の形態1
図3はこの発明の参考の形態1における空気調和機の冷媒回路図である。実施の形態1の図1との相違は、室外圧縮機3および室内圧縮機9の出口側(高圧側)から、アキュムレータ7の手前の吸入配管15(低圧側)へつながるバイパス回路を追加したことである。このバイパス回路は、バイパス配管31と、バイパス配管31の途中に配置され、室外凝縮器3や室内凝縮器9からの冷媒を吸入配管15へバイパスする冷媒回路を開閉するバイパス電磁弁32と、吸入配管15から液配管14への冷媒の逆流を防止するバイパス回路用逆止弁33とを備えている。なお、除湿運転だけを考慮すれば、室内凝縮器9の出口側(高圧側)から、アキュムレータ7の手前の吸入配管15(低圧側)へつながるバイパス回路を設ければよく、冷却運転だけを考慮すれば、室外凝縮器3の出口側(高圧側)から、アキュムレータ7の手前の吸入配管15(低圧側)へつながるバイパス回路を設ければよい。
図4は参考の形態1における空気調和機の電気的構成を示すブロック図である。実施の形態1の図2との相違は、制御装置106の制御対象に、バイパス電磁弁32が加えられている点である。
Reference form 1 .
FIG. 3 is a refrigerant circuit diagram of the air conditioner according to Embodiment 1 of the present invention. The difference from Embodiment 1 in FIG. 1 is that a bypass circuit connected from the outlet side (high pressure side) of the outdoor compressor 3 and the indoor compressor 9 to the suction pipe 15 (low pressure side) before the accumulator 7 is added. It is. This bypass circuit is arranged in the middle of the bypass pipe 31, the bypass pipe 31, the bypass solenoid valve 32 that opens and closes the refrigerant circuit that bypasses the refrigerant from the outdoor condenser 3 and the indoor condenser 9 to the suction pipe 15, and the suction A bypass circuit check valve 33 for preventing the refrigerant from flowing backward from the pipe 15 to the liquid pipe 14 is provided. If only the dehumidifying operation is considered, it is sufficient to provide a bypass circuit from the outlet side (high pressure side) of the indoor condenser 9 to the suction pipe 15 (low pressure side) before the accumulator 7, and only the cooling operation is considered. In this case, a bypass circuit connected from the outlet side (high pressure side) of the outdoor condenser 3 to the suction pipe 15 (low pressure side) before the accumulator 7 may be provided.
FIG. 4 is a block diagram showing an electrical configuration of the air conditioner according to the first embodiment . The difference from FIG. 2 of the first embodiment is that a bypass electromagnetic valve 32 is added to the control target of the control device 106.

次に参考の形態1の空気調和機における余剰冷媒の制御について説明する。実施の形態1で説明した通り、除湿運転で余剰冷媒が発生した場合は、室内凝縮器9の出口部に余剰冷媒が溜まり、過冷却度が上昇する。しかし、ここでも制御装置106が、所定のセンサからの情報を基に過冷却度の上昇を検知し、それを基に余剰冷媒の発生を検知(判断)した場合は、制御装置106がバイパス電磁弁32を開かせることで、その余剰冷媒をバイパス配管31および吸入配管15を介してアキュムレータ7に保持させる。 Next, control of excess refrigerant in the air conditioner of Reference Embodiment 1 will be described. As described in Embodiment 1, when surplus refrigerant is generated in the dehumidifying operation, surplus refrigerant accumulates at the outlet of the indoor condenser 9 and the degree of supercooling increases. However, in this case as well, when the control device 106 detects an increase in the degree of supercooling based on information from a predetermined sensor and detects (determines) the generation of surplus refrigerant based on this, the control device 106 detects that the bypass electromagnetic The surplus refrigerant is held in the accumulator 7 via the bypass pipe 31 and the suction pipe 15 by opening the valve 32.

参考の形態1においては、以上のように、制御装置106が余剰冷媒の発生を検知(判断)した場合に、バイパス電磁弁32を制御してバイパス回路を経由してアキュムレータ7に余剰冷媒を保持させるため、液溜めを設けることなく余剰冷媒を処理できる信頼性の高い空気調和機を得ることができる。 In the reference mode 1 , as described above, when the control device 106 detects (determines) the generation of excess refrigerant, the bypass electromagnetic valve 32 is controlled and the excess refrigerant is held in the accumulator 7 via the bypass circuit. Therefore, it is possible to obtain a highly reliable air conditioner that can process surplus refrigerant without providing a liquid reservoir.

なお、上記では過冷却度の検知によりバイパス電磁弁32の開閉を制御したものであるが、実施の形態1と同様に高圧圧力検知や圧縮機吐出冷媒温度検知によって余剰冷媒の発生を検知(判断)し、それらの高圧圧力や圧縮機吐出冷媒温度に基づいてバイパス電磁弁32の開閉を制御し、アキュムレータ7に冷媒を保持させるようにしても、同様の効果を得ることができる。   In the above description, the opening and closing of the bypass solenoid valve 32 is controlled by detecting the degree of supercooling. However, as in the first embodiment, the generation of excess refrigerant is detected (determined) by high-pressure pressure detection or compressor discharge refrigerant temperature detection. The same effect can be obtained by controlling the opening and closing of the bypass solenoid valve 32 based on the high pressure and the refrigerant discharge refrigerant temperature so that the accumulator 7 holds the refrigerant.

また、上記では除湿運転時の例を説明したが、冷却運転時でも余剰冷媒が発生した場合には、同様の運転制御をすることで、同様の効果を得ることができる。   Moreover, although the example at the time of a dehumidification operation was demonstrated above, when an excess refrigerant | coolant generate | occur | produces also at the time of cooling operation, the same effect can be acquired by performing the same operation control.

実施の形態
図5はこの発明の実施の形態における空気調和機の冷媒回路図である。実施の形態1の図1との相違は、室外凝縮器3と室内凝縮器9に対する共通の絞り装置5に代えて、室外凝縮器3と室内凝縮器9のそれぞれに絞り装置5a,5bを設けた点である。また、凝縮器出口圧力センサ103および凝縮器出口温度センサ105に代えて、室外凝縮器3と室内凝縮器9のそれぞれの出口部に、室外凝縮器出口圧力センサ103aおよび室外凝縮器出口温度センサ105aと、室内凝縮器出口圧力センサ103bおよび室内凝縮器出口温度センサ105bを設けた点でも実施の形態1の図1と相違している。
図6は実施の形態における空気調和機の電気的構成を示すブロック図である。実施の形態1の図2との相違は、制御装置106の制御対象が、凝縮器出口圧力センサ103に代わって室外および室内凝縮器出口圧力センサ103a,103bとなり、凝縮器出口温度センサ105に代わって室外および室内凝縮器出口圧力センサ105a,105bとなり、絞り装置5に代わって室外および室内絞り装置5a,5bとなっている点である。
Embodiment 2 FIG.
FIG. 5 is a refrigerant circuit diagram of an air conditioner according to Embodiment 2 of the present invention. The difference from FIG. 1 of the first embodiment is that, instead of the common expansion device 5 for the outdoor condenser 3 and the indoor condenser 9, expansion devices 5a and 5b are provided in the outdoor condenser 3 and the indoor condenser 9, respectively. It is a point. Further, instead of the condenser outlet pressure sensor 103 and the condenser outlet temperature sensor 105, the outdoor condenser outlet pressure sensor 103a and the outdoor condenser outlet temperature sensor 105a are provided at the outlet portions of the outdoor condenser 3 and the indoor condenser 9, respectively. 1 differs from FIG. 1 of the first embodiment also in that an indoor condenser outlet pressure sensor 103b and an indoor condenser outlet temperature sensor 105b are provided.
FIG. 6 is a block diagram showing an electrical configuration of the air conditioner according to the second embodiment. The difference from Embodiment 1 in FIG. 2 is that the control target of the control device 106 is the outdoor and indoor condenser outlet pressure sensors 103a and 103b instead of the condenser outlet pressure sensor 103, and the condenser outlet temperature sensor 105 is replaced. Thus, the outdoor and indoor condenser outlet pressure sensors 105a and 105b are used, and instead of the expansion device 5, the outdoor and indoor expansion devices 5a and 5b are used.

ここで、中間運転時の室外凝縮器3および室内凝縮器9での余剰冷媒の発生について、以下に説明する。
中間運転時には、室外凝縮器3と室内凝縮器9とを並列で使用するが、室外と室内で温度条件が相違する場合がある。例えば室内温度が低く、室外温度が高い場合には温度の低い室内凝縮器9に余剰冷媒が溜まる。冷媒は温度の高いところから低いところに移動する傾向にあり、室外と室内の温度差で室内により多くの冷媒が流入して室内凝縮器9に余剰冷媒が発生する。また、場合によってはその分だけ室外凝縮器3で冷媒不足ぎみとなる。つまり、室内凝縮器9に余剰冷媒が溜まるが、余剰冷媒が溜まった分だけ性能が悪化する。そのような性能低下を防止するために、余剰冷媒をアキュムレータ7で保持する方法について以下に説明する。
Here, the generation of excess refrigerant in the outdoor condenser 3 and the indoor condenser 9 during the intermediate operation will be described below.
During the intermediate operation, the outdoor condenser 3 and the indoor condenser 9 are used in parallel, but the temperature conditions may differ between the outdoor and indoor. For example, when the indoor temperature is low and the outdoor temperature is high, excess refrigerant accumulates in the indoor condenser 9 having a low temperature. The refrigerant tends to move from a high temperature to a low temperature, and a large amount of refrigerant flows into the room due to a temperature difference between the outdoor and indoor areas, and surplus refrigerant is generated in the indoor condenser 9. In some cases, the outdoor condenser 3 becomes insufficient in that amount. That is, excess refrigerant accumulates in the indoor condenser 9, but the performance deteriorates by the amount of excess refrigerant accumulated. In order to prevent such performance degradation, a method for holding the surplus refrigerant with the accumulator 7 will be described below.

例えば、室内温度が低く、室外温度が高い場合は、室内凝縮器9に余剰冷媒が溜まり結果として室内凝縮器9の過冷却度が上昇する。ここで、室内凝縮器9の過冷却度とは、室内凝縮器出口温度センサ105bで検知された温度(Tlb)と室内凝縮器出口圧力センサ103bで検知された圧力の飽和温度(Tcb)の差(Tcb−Tlb)であり、室外凝縮器3に比較して大きくなる。制御装置106は、所定のセンサから受け取った情報から過冷却度を算出し、その過冷却度を基に余剰冷媒の発生を検知(判断)する。制御装置106が余剰冷媒の発生と判断した場合には、絞り装置5bの開度を大きくする。例えば過冷却度が3Kとなるように絞り装置5bを制御する。それにより室内凝縮器9に溜まった余剰冷媒が追出されて適正過冷却度となり、空気調和機の能力が適正に維持される。   For example, when the indoor temperature is low and the outdoor temperature is high, excess refrigerant accumulates in the indoor condenser 9 and as a result, the degree of supercooling of the indoor condenser 9 increases. Here, the degree of supercooling of the indoor condenser 9 refers to the difference between the temperature (Tlb) detected by the indoor condenser outlet temperature sensor 105b and the saturation temperature (Tcb) of the pressure detected by the indoor condenser outlet pressure sensor 103b. (Tcb−Tlb), which is larger than that of the outdoor condenser 3. The control device 106 calculates the degree of supercooling from information received from a predetermined sensor, and detects (determines) the generation of excess refrigerant based on the degree of supercooling. When the control device 106 determines that surplus refrigerant is generated, the opening degree of the expansion device 5b is increased. For example, the expansion device 5b is controlled so that the degree of supercooling is 3K. As a result, the excess refrigerant accumulated in the indoor condenser 9 is expelled to have an appropriate degree of supercooling, and the capacity of the air conditioner is maintained appropriately.

以上の通り、室内外凝縮器9,3のそれぞれに個別に絞り装置を設けて制御することで室内外凝縮器9,3を共に有効活用して、性能の高い空気調和機を得ることができる。   As described above, it is possible to obtain a high-performance air conditioner by effectively using both the indoor and outdoor condensers 9 and 3 by individually controlling the indoor and outdoor condensers 9 and 3 by controlling the expansion devices. .

なお、上記では、室内が温度の室外より低い例を基に説明したが、室外の温度が室内より低い場合には室外凝縮器3に余剰冷媒が溜まる。その場合には、上記の制御態様に準じて絞り装置5aの開度を大きくして、室外凝縮器3に溜まった余剰冷媒を追出すことで、同様の効果を得ることができる。   In the above description, the room is described based on an example where the temperature is lower than the outdoor temperature. However, when the outdoor temperature is lower than the indoor temperature, excess refrigerant accumulates in the outdoor condenser 3. In that case, the same effect can be obtained by increasing the opening of the expansion device 5a in accordance with the above control mode and expelling excess refrigerant accumulated in the outdoor condenser 3.

実施の形態
実施の形態1、2及び参考の形態1では、運転モードが、冷却運転、除湿運転、中間運転の3モードある空気調和機について説明した。しかし、冷却運転と除湿運転の2モードの空気調和機においても余剰冷媒は発生する。そしてその場合にも、余剰冷媒をアキュムレータ7に保持することで、実施の形態1、2及び参考の形態1と同様の効果を得ることができる。
Embodiment 3 FIG.
In the first and second embodiments and the first embodiment , the air conditioner has three modes of operation modes, that is, a cooling operation, a dehumidifying operation, and an intermediate operation. However, surplus refrigerant is also generated in the two-mode air conditioner of the cooling operation and the dehumidifying operation. Also in that case, the same effect as in Embodiments 1 and 2 and Reference Embodiment 1 can be obtained by holding the excess refrigerant in the accumulator 7.

ここで、2運転モードの空気調和機における余剰冷媒の発生につき説明する。冷却運転と除湿運転とを比較した場合、一般的に冷却運転の方が必要となる冷媒量は多くなる。冷却運転においては、冷媒が一度室外に出た後、室内に再度戻る回路を通るため、吐出配管および液配管が室内だけの冷媒回路の除湿運転に比べて長くなる。空気調和機における室外機は、室内機設置の建物の屋上などに設置されることで吐出配管、液配管共に30m程度となることもあり、そのため冷却運転時に必要となる冷媒量が除湿運転で必要となる冷媒量に比較して多くなる。さらに、室外凝縮器に比較し室内凝縮器の方が容量を小さくできる場合が多い。凝縮器の容量は送風量を一定で考えた場合は凝縮器吸込空気温度により決定され、吸込み空気温度が高いほど大容量の凝縮器が必要となる。室内温度は人が出入りする環境を考慮して40℃以下が一般的であるのに対し、室外温度は43℃相当を考慮するのが一般的であり、さらに室内凝縮器の吸込み空気は冷却器で冷やされた後に導かれるためさらに低くなる。つまり、吐出・液配管分および凝縮器の容量差分により、除湿運転に比較して冷却運転の方が必要となる冷媒量は多くなる。   Here, generation | occurrence | production of the excess refrigerant | coolant in the air conditioner of 2 operation modes is demonstrated. When the cooling operation and the dehumidifying operation are compared, the amount of refrigerant generally required for the cooling operation increases. In the cooling operation, since the refrigerant once goes out of the room and then passes through a circuit that returns to the room again, the discharge pipe and the liquid pipe are longer than the dehumidifying operation of the refrigerant circuit only in the room. The outdoor unit in the air conditioner is installed on the roof of the building where the indoor unit is installed, so that both the discharge pipe and the liquid pipe may be about 30 m. Therefore, the amount of refrigerant required for the cooling operation is required for the dehumidifying operation. It becomes larger compared to the amount of refrigerant. Furthermore, the capacity of the indoor condenser is often smaller than that of the outdoor condenser. The capacity of the condenser is determined by the condenser intake air temperature when the amount of blown air is considered constant, and a higher capacity condenser is required as the intake air temperature is higher. The indoor temperature is generally 40 ° C. or less in consideration of the environment where people enter and exit, whereas the outdoor temperature is generally considered to be equivalent to 43 ° C. Further, the intake air of the indoor condenser is a cooler. Since it is guided after being cooled at, it becomes even lower. That is, the amount of refrigerant required for the cooling operation is larger than that of the dehumidifying operation due to the difference in capacity between the discharge / liquid piping and the condenser.

次に、以上のようにして発生した余剰冷媒を、アキュムレータ7で保持させる方法について以下説明する。上記の通り、2運転モードの空気調和機においても除湿運転時には余剰冷媒が発生する。このような場合にも、既に説明したように、制御装置106が、過冷却度、高圧圧力センサ107、若しくは吐出温度センサ109などを利用して余剰冷媒の発生を検知しており、冷媒回路内における余剰冷媒の発生を判断した場合には、制御装置106が絞り装置5の開度を大きくして、アキュムレータ7に余剰冷媒冷媒を保持させる。これにより実施の形態1、2及び参考の形態1と同様の効果を得ることができる。 Next, a method for holding the surplus refrigerant generated as described above by the accumulator 7 will be described below. As described above, surplus refrigerant is also generated during the dehumidifying operation in the air conditioner in the two operation mode. Even in such a case, as already described, the control device 106 detects the generation of surplus refrigerant using the degree of supercooling, the high pressure sensor 107, or the discharge temperature sensor 109, and the like in the refrigerant circuit. When it is determined that surplus refrigerant is generated in the controller, the control device 106 increases the opening degree of the expansion device 5 and causes the accumulator 7 to hold the surplus refrigerant refrigerant. Thereby, the same effects as those of the first and second embodiments and the reference embodiment 1 can be obtained.

なお、絞り装置5に関して、余剰冷媒の発生する除湿運転は過冷却制御とし、余剰冷媒の発生しない冷却運転は過熱度制御とする制御態様を、制御装置106にあらかじめ組み込んでおくことでも上記と同様の効果を得ることができる。   As for the expansion device 5, a control mode in which the dehumidifying operation in which the surplus refrigerant is generated is supercooling control and the cooling operation in which the surplus refrigerant is not generated is superheat control is also incorporated in the control device 106 in advance. The effect of can be obtained.

さらに、2運転モードの空気調和機においても、3運転モードの場合の参考の形態1や実施の形態2で説明したのと同様の構成をとることにより、アキュムレータ7に冷媒を保持させて、余剰冷媒に起因する各種課題を、液溜めを設けることなく解決することができる。 Further, in the air conditioner in the 2-operation mode, the refrigerant is held in the accumulator 7 by using the same configuration as that described in the reference embodiment 1 and the embodiment 2 in the case of the 3-operation mode, so that the surplus Various problems caused by the refrigerant can be solved without providing a liquid reservoir.

この発明の実施の形態1における空気調和機の冷媒回路図である。It is a refrigerant circuit figure of the air conditioner in Embodiment 1 of this invention. 実施の形態1における空気調和機の電気的構成を示すブロック図である。3 is a block diagram showing an electrical configuration of the air conditioner in Embodiment 1. FIG. この発明の参考の形態1における空気調和機の冷媒回路図である。It is a refrigerant circuit figure of the air conditioner in reference form 1 of this invention. 参考の形態1における空気調和機の電気的構成を示すブロック図である。It is a block diagram which shows the electric constitution of the air conditioner in the reference form 1 . この発明の実施の形態における空気調和機の冷媒回路図である。It is a refrigerant circuit figure of the air conditioner in Embodiment 2 of this invention. 実施の形態における空気調和機の電気的構成を示すブロック図である。6 is a block diagram showing an electrical configuration of an air conditioner according to Embodiment 2. FIG.

1 圧縮機、2 室外用電磁弁、3 室外凝縮器、4 室外凝縮器用逆止弁、5 絞り装置、5a 室外冷媒用絞り装置、5b 室内冷媒用絞り装置、6 冷却器、7 アキュムレータ、8 室内用電磁弁、9 室内凝縮器、10 室内凝縮器用逆止弁、11 吐出配管、12 吐出配管、13 液配管、14 液配管、15 吸入配管、16 吸入配管、17 吐出配管、18 液配管、20 室外送風機、21 室内送風機、31 バイパス配管、32 バイパス用電磁弁、33 バイパス回路用逆止弁、100 操作部、101 記憶部、102 冷却器出口圧力センサ、103 凝縮器出口圧力センサ、103a 室外凝縮器出口圧力センサ、103b 室内凝縮器出口圧力センサ、104 冷却器出口温度センサ、105 凝縮器出口温度センサ、105a 室外凝縮器出口温度センサ、105b 室内凝縮器出口温度センサ、106 制御装置、107 高圧圧力センサ、109 吐出温度センサ。   1 compressor, 2 outdoor solenoid valve, 3 outdoor condenser, 4 outdoor condenser check valve, 5 throttle device, 5a outdoor refrigerant throttle device, 5b indoor refrigerant throttle device, 6 cooler, 7 accumulator, 8 indoor Solenoid valve, 9 indoor condenser, 10 check valve for indoor condenser, 11 discharge pipe, 12 discharge pipe, 13 liquid pipe, 14 liquid pipe, 15 suction pipe, 16 suction pipe, 17 discharge pipe, 18 liquid pipe, 20 Outdoor blower, 21 Indoor blower, 31 Bypass piping, 32 Bypass solenoid valve, 33 Bypass circuit check valve, 100 Operation section, 101 Storage section, 102 Cooler outlet pressure sensor, 103 Condenser outlet pressure sensor, 103a Outdoor condensation Condenser outlet pressure sensor, 103b indoor condenser outlet pressure sensor, 104 cooler outlet temperature sensor, 105 condenser outlet temperature sensor, 105 The outdoor condenser outlet temperature sensor, 105b indoor condenser outlet temperature sensor, 106 control unit, 107 high-pressure sensor, 109 discharge temperature sensor.

Claims (4)

圧縮機、凝縮器、絞り装置、冷却器、低圧側容器が順に配置された冷媒回路であって、前記凝縮器は室内凝縮器と室外凝縮器とからなり、前記室内凝縮器と前記室外凝縮器が並列の冷媒回路に構成されている冷媒回路と、前記冷媒回路の余剰冷媒を検知して、前記余剰冷媒を前記低圧側容器に保持させるように前記絞り装置の開度を制御する制御装置と、を備えた空気調和機において、
前記室外凝縮器と前記冷却器とを利用して室内を冷却しながら除湿する冷却運転モードと、前記室内凝縮器と前記冷却器とを利用して室内を加熱しながら除湿する除湿運転モードとを有し、
前記制御装置は、余剰冷媒が発生しない冷却運転モードでは前記冷却器の出口部の過熱度が一定となるようにする過熱度制御を行い、余剰冷媒が発生する除湿運転モードでは利用されている前記凝縮器の出口部の過冷却度が所定の値となるようにする過冷却制御を行うようにあらかじめ設定されていることを特徴とする空気調和機。
A refrigerant circuit in which a compressor, a condenser, a throttling device, a cooler, and a low-pressure side container are sequentially arranged, and the condenser includes an indoor condenser and an outdoor condenser, and the indoor condenser and the outdoor condenser A refrigerant circuit configured as a parallel refrigerant circuit, and a control device that detects an excess refrigerant in the refrigerant circuit and controls an opening degree of the expansion device so as to hold the excess refrigerant in the low-pressure side container. In an air conditioner equipped with
A cooling operation mode for dehumidifying while cooling the room using the outdoor condenser and the cooler; and a dehumidifying operation mode for dehumidifying while heating the room using the indoor condenser and the cooler. Have
The control device performs superheat control so that the superheat degree of the outlet portion of the cooler is constant in the cooling operation mode in which surplus refrigerant is not generated, and is used in the dehumidification operation mode in which surplus refrigerant is generated. An air conditioner that is set in advance to perform supercooling control so that the degree of supercooling at the outlet of the condenser becomes a predetermined value.
前記室外凝縮器と前記室内凝縮器と前記冷却器とを利用して室内を弱加熱、弱冷却又は室内温度を維持しながら除湿する中間運転モードをさらに備える場合において、
前記制御装置は、余剰冷媒が発生しない中間運転モードでは前記冷却器の出口部の過熱度が一定となるようにする過熱度制御を行い、余剰冷媒が発生する除湿運転モードでは利用されている前記凝縮器の出口部の過冷却度が所定の値となるようにする過冷却制御を行うようにあらかじめ設定されていることを特徴とする請求項1記載の空気調和機。
In the case of further comprising an intermediate operation mode for dehumidifying the room while maintaining the room temperature by weakly heating the room, using the outdoor condenser, the indoor condenser and the cooler, or maintaining the indoor temperature,
The controller performs superheat control so that the superheat degree of the outlet of the cooler is constant in the intermediate operation mode in which no surplus refrigerant is generated, and is used in the dehumidifying operation mode in which surplus refrigerant is generated. The air conditioner according to claim 1, wherein the air conditioner is preset so as to perform supercooling control so that the degree of supercooling at the outlet of the condenser becomes a predetermined value.
前記室外凝縮器と前記室内凝縮器と前記冷却器とを利用して室内を弱加熱、弱冷却又は室内温度を維持しながら除湿する中間運転モードをさらに備える場合において、
前記制御装置は、余剰冷媒が発生しない中間運転モードでは前記冷却器の出口部の過熱度が一定となるようにする過熱度制御を行い、余剰冷媒が発生する冷却運転モードでは利用されている前記凝縮器の出口部の過冷却度が所定の値となるようにする過冷却制御を行うようにあらかじめ設定されていることを特徴とする請求項1記載の空気調和機。
In the case of further comprising an intermediate operation mode for dehumidifying the room while maintaining the room temperature by weakly heating the room, using the outdoor condenser, the indoor condenser and the cooler, or maintaining the indoor temperature,
The control device performs superheat degree control so that the superheat degree of the outlet portion of the cooler is constant in the intermediate operation mode in which no surplus refrigerant is generated, and is used in the cooling operation mode in which the surplus refrigerant is generated. The air conditioner according to claim 1, wherein the air conditioner is preset so as to perform supercooling control so that the degree of supercooling at the outlet of the condenser becomes a predetermined value.
前記絞り装置を前記室内凝縮器と前記室外凝縮器の出口にそれぞれ設け、
前記制御装置は各絞り装置の開度を個別に調整することを特徴とする請求項1〜3のいずれか一項に記載の空気調和機。
Providing the expansion device at the outlet of the indoor condenser and the outdoor condenser,
The air conditioner according to any one of claims 1 to 3, wherein the control device individually adjusts the opening degree of each expansion device.
JP2007179757A 2007-07-09 2007-07-09 Air conditioner Active JP5213372B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007179757A JP5213372B2 (en) 2007-07-09 2007-07-09 Air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007179757A JP5213372B2 (en) 2007-07-09 2007-07-09 Air conditioner

Publications (2)

Publication Number Publication Date
JP2009014322A JP2009014322A (en) 2009-01-22
JP5213372B2 true JP5213372B2 (en) 2013-06-19

Family

ID=40355434

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007179757A Active JP5213372B2 (en) 2007-07-09 2007-07-09 Air conditioner

Country Status (1)

Country Link
JP (1) JP5213372B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5333365B2 (en) * 2010-07-07 2013-11-06 ダイキン工業株式会社 Air conditioner
CN102478335A (en) * 2010-11-24 2012-05-30 珠海格力电器股份有限公司 Method and device for pressure control of refrigerating unit, and refrigerating system
CN103075831B (en) * 2013-01-21 2015-03-25 深圳市庄合地能产业科技有限公司 Novel air-cooled evaporation type composite refrigeration house refrigerating system
JP6521018B2 (en) * 2017-09-29 2019-05-29 ダイキン工業株式会社 Refrigeration system
WO2020021700A1 (en) * 2018-07-27 2020-01-30 三菱電機株式会社 Refrigeration cycle device
JP7046234B2 (en) * 2019-02-06 2022-04-01 三菱電機株式会社 Refrigeration cycle device

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63108159A (en) * 1986-10-24 1988-05-13 株式会社日立製作所 Refrigeration cycle for air conditioner
JP3541394B2 (en) * 1993-03-11 2004-07-07 三菱電機株式会社 Air conditioner
JP2970358B2 (en) * 1993-10-18 1999-11-02 ダイキン工業株式会社 Air conditioner
JP3646401B2 (en) * 1996-03-19 2005-05-11 ダイキン工業株式会社 Air conditioner
JP2000356420A (en) * 2000-01-01 2000-12-26 Mitsubishi Electric Corp System for circulating refrigerant
JP2001248920A (en) * 2000-03-06 2001-09-14 Mitsubishi Electric Corp Controller for refrigeration circuit
JP2005048963A (en) * 2003-05-30 2005-02-24 Sanyo Electric Co Ltd Heat pump device
JP2004361036A (en) * 2003-06-06 2004-12-24 Daikin Ind Ltd Air conditioning system
JP4668021B2 (en) * 2005-09-14 2011-04-13 三菱電機株式会社 Air conditioner

Also Published As

Publication number Publication date
JP2009014322A (en) 2009-01-22

Similar Documents

Publication Publication Date Title
US8459051B2 (en) Air conditioner and method of controlling the same
US6220041B1 (en) Method for determining a charging amount of refrigerant for an air conditioner, a method for controlling refrigerant for an air conditioner and an air conditioner
JP4730738B2 (en) Air conditioner
US10345021B2 (en) Active refrigerant charge compensation for refrigeration and air conditioning systems
JP3925545B2 (en) Refrigeration equipment
CN108027179B (en) Air conditioner
US20060218948A1 (en) Cooling and heating system
JP4668021B2 (en) Air conditioner
US8205464B2 (en) Refrigeration device
JP5213372B2 (en) Air conditioner
JP7003266B2 (en) Air conditioner
EP3483524A1 (en) Control device of multiple-type air conditioning device, multiple-type air conditioning device, method of controlling multiple-type air conditioning device, and computer program of controlling multiple-type air conditioning device
JP2006300370A (en) Air conditioner
US20100037647A1 (en) Refrigeration device
JP5164527B2 (en) Air conditioner
JP6246394B2 (en) Air conditioner
KR101414860B1 (en) Air conditioner and method of controlling the same
JP2006300371A (en) Air conditioner
JP2007232265A (en) Refrigeration unit
JP2013002749A (en) Air conditioning device
WO2021156901A1 (en) Refrigeration cycle device
KR20130090133A (en) Air conditoner
JP6404539B2 (en) Air conditioner
JP4012892B2 (en) Air conditioner
KR20180138487A (en) Air conditioner for carbon dioxide

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100118

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110921

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111004

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120529

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120711

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130129

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130226

R150 Certificate of patent or registration of utility model

Ref document number: 5213372

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160308

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250