JP4730738B2 - Air conditioner - Google Patents

Air conditioner Download PDF

Info

Publication number
JP4730738B2
JP4730738B2 JP2005371785A JP2005371785A JP4730738B2 JP 4730738 B2 JP4730738 B2 JP 4730738B2 JP 2005371785 A JP2005371785 A JP 2005371785A JP 2005371785 A JP2005371785 A JP 2005371785A JP 4730738 B2 JP4730738 B2 JP 4730738B2
Authority
JP
Japan
Prior art keywords
indoor
heat exchanger
valve
air conditioner
expansion valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005371785A
Other languages
Japanese (ja)
Other versions
JP2007170769A (en
Inventor
敦彦 横関
賢治 松村
進 中山
直樹 杉本
福治 塚田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Appliances Inc
Original Assignee
Hitachi Appliances Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Appliances Inc filed Critical Hitachi Appliances Inc
Priority to JP2005371785A priority Critical patent/JP4730738B2/en
Priority to ES06256498T priority patent/ES2335302T3/en
Priority to DE602006010312T priority patent/DE602006010312D1/en
Priority to EP06256498A priority patent/EP1801520B1/en
Priority to CN2006101725028A priority patent/CN1991276B/en
Publication of JP2007170769A publication Critical patent/JP2007170769A/en
Application granted granted Critical
Publication of JP4730738B2 publication Critical patent/JP4730738B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/50Control or safety arrangements characterised by user interfaces or communication
    • F24F11/52Indication arrangements, e.g. displays
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F3/00Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems
    • F24F3/12Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling
    • F24F3/14Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification
    • F24F3/153Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification with subsequent heating, i.e. with the air, given the required humidity in the central station, passing a heating element to achieve the required temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F3/00Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems
    • F24F3/12Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling
    • F24F3/14Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification
    • F24F2003/144Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification by dehumidification only
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/20Humidity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/023Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units
    • F25B2313/0232Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units with bypasses
    • F25B2313/02321Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units with bypasses during cooling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/023Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units
    • F25B2313/0234Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units in series arrangements
    • F25B2313/02343Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units in series arrangements during dehumidification
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/027Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means
    • F25B2313/02741Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means using one four-way valve
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/031Sensor arrangements
    • F25B2313/0314Temperature sensors near the indoor heat exchanger
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2513Expansion valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/02Humidity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/19Pressures
    • F25B2700/193Pressures of the compressor
    • F25B2700/1931Discharge pressures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2104Temperatures of an indoor room or compartment
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2115Temperatures of a compressor or the drive means therefor
    • F25B2700/21152Temperatures of a compressor or the drive means therefor at the discharge side of the compressor

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Human Computer Interaction (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Air Conditioning Control Device (AREA)
  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Description

本発明は、空気調和機に係り、特に、再熱除湿機能を備えた空気調和機に関する。   The present invention relates to an air conditioner, and more particularly to an air conditioner having a reheat dehumidifying function.

空気調和機は、圧縮機、室外熱交換器などを備えた室外機と、室内膨張弁、室内熱交換器などを備えた室内機を配管で接続して、冷媒を循環させることにより冷凍サイクルを形成している。このような空気調和機として、冷房運転モードにおいて、室内熱交換器で冷却除湿した空気を、室内温度付近まで再び加熱して室内に送風する、いわゆる再熱除湿機能を備えた空気調和機が知られている。再熱除湿機能は、室内膨張弁より上流側の室内機内に再熱器を設けることにより実現されている。つまり、室外熱交換器と再熱器をそれぞれ凝縮器として作用させることになるので、室内熱交換器で冷却除湿した空気を、再熱器で熱交換により室内温度付近まで再加熱するようにしている。また、再熱器をバイパスする配管と、配管を開閉する室内電磁弁を設けることにより、再熱除湿運転と、再熱除湿を伴わない冷房運転とを切り替えている。つまり、室内電磁弁を閉じた時は再熱器が凝縮器の一部として作用するので再熱除湿運転となり、室内電磁弁を開いた時には再熱器はバイパスされるので再熱除湿機能を伴わない冷房運転時となる。   An air conditioner connects an outdoor unit equipped with a compressor, an outdoor heat exchanger, and the like to an indoor unit equipped with an indoor expansion valve, an indoor heat exchanger, etc. by piping, and circulates a refrigerant to perform a refrigeration cycle. Forming. As such an air conditioner, there is known an air conditioner having a so-called reheat dehumidification function in which the air decooled and dehumidified by the indoor heat exchanger is reheated to near the room temperature and blown into the room in the cooling operation mode. It has been. The reheat dehumidification function is realized by providing a reheater in the indoor unit upstream of the indoor expansion valve. In other words, since the outdoor heat exchanger and the reheater each act as a condenser, the air cooled and dehumidified by the indoor heat exchanger is reheated to near the room temperature by heat exchange in the reheater. Yes. Further, by providing a pipe bypassing the reheater and an indoor electromagnetic valve for opening and closing the pipe, the reheat dehumidification operation and the cooling operation without reheat dehumidification are switched. In other words, when the indoor solenoid valve is closed, the reheater acts as a part of the condenser, so that the reheat dehumidification operation is performed. When the indoor solenoid valve is opened, the reheater is bypassed, which is accompanied by a reheat dehumidification function. There will be no cooling operation.

このような再熱除湿運転を行うことにより、冷えすぎを防いだ除湿を行うことができるが、室内が高い除湿負荷時には室内熱交換器の冷却能力が上がり、再熱器での再熱能力が不十分となる場合がある。   By performing such reheat dehumidification operation, it is possible to perform dehumidification while preventing overcooling, but the cooling capacity of the indoor heat exchanger increases when the room is under a high dehumidification load, and the reheat capacity of the reheater is reduced. It may be insufficient.

特許文献1には、室外熱交換器をバイパスする配管と、バイパス配管を流れる冷媒量を調整する調整弁を設けることが記載されている。これによれば、再熱除湿運転時に、室外熱交換器をバイパスする、高い比エンタルピを保った冷媒の流量を調整して再熱器に循環させるので、再熱器の再熱能力を調整して、きめ細かな湿度と温度の調整ができるとしている。   Patent Document 1 describes that a pipe that bypasses the outdoor heat exchanger and an adjustment valve that adjusts the amount of refrigerant flowing through the bypass pipe are described. According to this, during reheat dehumidification operation, the flow rate of the refrigerant with high specific enthalpy that bypasses the outdoor heat exchanger is adjusted and circulated to the reheater, so the reheat capacity of the reheater is adjusted. It is possible to finely adjust the humidity and temperature.

特開平7−294060JP-A-7-294060

しかしながら、特許文献1に記載の技術は、室外熱交換器をバイパスする配管や、バイパス配管を流れる冷媒量を調整するための調整弁などが必要となり冷媒循環路が複雑になる。また、再熱除湿機能を備えた空気調和機の従来の構成では、再熱除湿機能を伴わない冷房運転時に、再熱器に液冷媒が溜まることがあるため、冷凍サイクルに必要な冷媒量が増加する。これに対応して、冷凍サイクルに供給する冷媒量を増加させると、必要冷媒量が少ない暖房運転時などにおいては、余剰冷媒が発生し、起動時液圧縮などの圧縮機損傷の原因となる場合があり、信頼性が低下する。   However, the technique described in Patent Document 1 requires a piping for bypassing the outdoor heat exchanger, an adjustment valve for adjusting the amount of refrigerant flowing through the bypass piping, and the like, and the refrigerant circulation path becomes complicated. In addition, in the conventional configuration of an air conditioner having a reheat dehumidification function, liquid refrigerant may accumulate in the reheater during cooling operation without the reheat dehumidification function. To increase. Correspondingly, if the amount of refrigerant supplied to the refrigeration cycle is increased, excess refrigerant is generated during heating operation where the required amount of refrigerant is small, which may cause compressor damage such as liquid compression at startup. There is a decrease in reliability.

本発明は、簡素な構成で、再熱器の再熱能力を制御することを課題とする。また、冷房運転時における必要冷媒量を抑制して信頼性を向上させることを課題とする。   This invention makes it a subject to control the reheat capability of a reheater with simple structure. It is another object of the present invention to improve the reliability by suppressing the necessary amount of refrigerant during cooling operation.

上記課題を解決するため、本発明の空気調和機は、冷媒を循環させる配管に、アキュムレータ、圧縮機、四方弁及び室外熱交換器を備えた室外機と、第1の室内熱交換器、逆止弁、室内膨張弁、第2の室内熱交換器及び第1の室内熱交換器と逆止弁をバイパスする配管に設けられた室内電磁弁を備えた室内機とを設けて冷凍サイクルを形成してなる空気調和機において、再熱除湿運転時に、室内電磁弁が閉じた信号に基づいて、圧縮機の吐出側の冷媒温度を設定温度低下させる制御手段を設けたことを特徴とする。   In order to solve the above-described problems, an air conditioner of the present invention includes an outdoor unit including an accumulator, a compressor, a four-way valve, and an outdoor heat exchanger, a first indoor heat exchanger, A refrigeration cycle is formed by providing a stop valve, an indoor expansion valve, a second indoor heat exchanger, a first indoor heat exchanger, and an indoor unit provided with an indoor electromagnetic valve provided in a pipe bypassing the check valve The air conditioner thus configured is characterized in that a control means is provided for lowering the refrigerant temperature on the discharge side of the compressor based on a signal indicating that the indoor solenoid valve is closed during the reheat dehumidifying operation.

すなわち、圧縮機の吐出側の冷媒温度を低下させると、モリエル線図から明らかなように、アキュムレータには液冷媒の割合が多い湿り状態の冷媒が循環してくる。これにより、アキュムレータに液冷媒が貯留して、室外熱交換器を循環する冷媒量は減少するので、室外熱交換器は冷媒不足状態となる。これにより、室外熱交換器の出口の冷媒は気液2相状態となり、再熱器である第1の室内熱交換器でのエンタルピ差が増加するので、再熱器の再熱能力を向上することができる。つまり、室外熱交換器をバイパスする配管や、バイパス配管を流れる冷媒量を調整するための調整弁などを設けない簡素な構成で再熱器の再熱能力を制御することができる。   That is, when the refrigerant temperature on the discharge side of the compressor is lowered, as is apparent from the Mollier diagram, a wet refrigerant with a large proportion of liquid refrigerant circulates in the accumulator. As a result, liquid refrigerant is stored in the accumulator and the amount of refrigerant circulating through the outdoor heat exchanger is reduced, so that the outdoor heat exchanger is in a refrigerant shortage state. As a result, the refrigerant at the outlet of the outdoor heat exchanger becomes a gas-liquid two-phase state, and the enthalpy difference in the first indoor heat exchanger, which is a reheater, increases, thereby improving the reheat capability of the reheater. be able to. That is, the reheat capability of the reheater can be controlled with a simple configuration that does not include a pipe that bypasses the outdoor heat exchanger and an adjustment valve that adjusts the amount of refrigerant flowing through the bypass pipe.

また、圧縮機の吐出側の冷媒温度を設定温度低下させる制御手段を設けることに代えて、室内膨張弁の開度を大きくする制御手段を設けることでも上記課題を解決できる。   The above problem can also be solved by providing a control means for increasing the opening of the indoor expansion valve, instead of providing a control means for lowering the refrigerant temperature on the discharge side of the compressor.

すなわち、室内膨張弁の開度を大きくすることにより、室内膨張弁での冷媒の減圧量が小さくなるので、蒸発器である第2の室内熱交換器における蒸発圧力が高圧となり、蒸発温度は高くなる。これにより、第2の室内熱交換器で交換する熱量は小さくなり、アキュムレータに循環してくる冷媒は、液冷媒の割合が多い湿り状態の冷媒となる。その結果、上記と同様にアキュムレータには液冷媒が貯留して、室外熱交換器は冷媒不足状態となる。これにより、室外熱交換器の出口の冷媒は気液2相状態となり、再熱器である第1の室内熱交換器でのエンタルピ差が増加するので、再熱器の再熱能力を向上することができる。つまり、室外熱交換器をバイパスする配管や、バイパス配管を流れる冷媒量を調整するための調整弁などを設けない、簡素な構成で再熱器の再熱能力を制御することができる。   That is, by increasing the opening of the indoor expansion valve, the amount of pressure reduction of the refrigerant in the indoor expansion valve decreases, so the evaporation pressure in the second indoor heat exchanger, which is an evaporator, becomes high, and the evaporation temperature is high. Become. As a result, the amount of heat exchanged by the second indoor heat exchanger is reduced, and the refrigerant circulating in the accumulator becomes a wet refrigerant with a high proportion of liquid refrigerant. As a result, liquid refrigerant is stored in the accumulator as described above, and the outdoor heat exchanger is in a refrigerant shortage state. As a result, the refrigerant at the outlet of the outdoor heat exchanger becomes a gas-liquid two-phase state, and the enthalpy difference in the first indoor heat exchanger, which is a reheater, increases, thereby improving the reheat capability of the reheater. be able to. That is, it is possible to control the reheat capability of the reheater with a simple configuration that does not include a pipe that bypasses the outdoor heat exchanger and an adjustment valve that adjusts the amount of refrigerant flowing through the bypass pipe.

さらに、冷媒を循環させる配管に、アキュムレータ、圧縮機、四方弁、室外熱交換器及び室外膨張弁を備えた室外機と、第1の室内熱交換器、逆止弁、室内膨張弁、第2の室内熱交換器及び第1の室内熱交換器と逆止弁をバイパスする配管に設けられた室内電磁弁を備えた室内機とを設けて冷凍サイクルを形成してなる空気調和機において、再熱除湿運転時に、室内電磁弁が閉じた信号に基づいて、室内膨張弁の開度を制御し、冷房運転時に、室内電磁弁が開いた信号に基づいて、室外膨張弁の開度を制御する制御手段を設けた構成とすることができる。   In addition, an outdoor unit including an accumulator, a compressor, a four-way valve, an outdoor heat exchanger, and an outdoor expansion valve, a first indoor heat exchanger, a check valve, an indoor expansion valve, In the air conditioner formed by providing the indoor heat exchanger and the first indoor heat exchanger and an indoor unit provided with an indoor electromagnetic valve provided in a pipe bypassing the check valve to form a refrigeration cycle, During the heat dehumidifying operation, the opening degree of the indoor expansion valve is controlled based on the signal that the indoor electromagnetic valve is closed, and during the cooling operation, the opening degree of the outdoor expansion valve is controlled based on the signal that the indoor electromagnetic valve is opened. It can be set as the structure which provided the control means.

これによれば、室内電磁弁が開いている時は、第1の室内熱交換器はバイパスされて、再熱除湿を伴わない冷房運転となるが、冷媒の一部は第1の室内熱交換器側にも循環する。そこで、第1の室内熱交換器の上流側に設けられた室外膨張弁の開度を制御して冷媒を減圧することにより、第1の室内熱交換器には、低圧の気液2相状態となった冷媒の一部が循環することになる。つまり、このような構成とすることで、第1の室内熱交換器は、再熱器としてではなく、蒸発器として作用するので、液冷媒の滞留は生じない。したがって、冷房運転時における必要冷媒量を抑制して、信頼性を向上させることができる。   According to this, when the indoor solenoid valve is open, the first indoor heat exchanger is bypassed and the cooling operation without reheat dehumidification is performed, but a part of the refrigerant performs the first indoor heat exchange. It also circulates on the vessel side. Therefore, the first indoor heat exchanger has a low-pressure gas-liquid two-phase state by controlling the opening degree of the outdoor expansion valve provided upstream of the first indoor heat exchanger to depressurize the refrigerant. A part of the refrigerant thus circulated. That is, by setting it as such a structure, since a 1st indoor heat exchanger acts not as a reheater but as an evaporator, stagnation of a liquid refrigerant does not arise. Therefore, the required refrigerant amount during the cooling operation can be suppressed and the reliability can be improved.

本発明によれば、簡素な構成で、再熱器の再熱能力を制御することができ、また、冷房運転時における必要冷媒量を抑制して信頼性を向上させることができる。   According to the present invention, it is possible to control the reheat capability of the reheater with a simple configuration, and it is possible to improve the reliability by suppressing the necessary amount of refrigerant during the cooling operation.

以下、本発明を適用してなる空気調和機の実施形態を、図1〜図6を用いて説明する。図1は、本実施形態の空気調和機の構成を示す図である。図1に示すように、空気調和機1は、室外機2と、室内機3と、室外機2と室内機3を環状に接続するガス側接続配管4及び液側接続配管5で構成されている。   Hereinafter, an embodiment of an air conditioner to which the present invention is applied will be described with reference to FIGS. FIG. 1 is a diagram illustrating a configuration of an air conditioner according to the present embodiment. As shown in FIG. 1, the air conditioner 1 includes an outdoor unit 2, an indoor unit 3, a gas side connection pipe 4 and a liquid side connection pipe 5 that connect the outdoor unit 2 and the indoor unit 3 in a ring shape. Yes.

室外機2は、四方弁6と、アキュムレータ7と、圧縮機8と、室外熱交換器9と、室外膨張弁10とを冷媒を循環させる配管で接続して形成されている。また、圧縮機8の吐出側には、圧縮機吐出ガス温度センサ11と高圧圧力センサ12が設けられ、室外熱交換器9には、室外熱交換器9に室外空気を送風する室外送風機13が設けられている。   The outdoor unit 2 is formed by connecting a four-way valve 6, an accumulator 7, a compressor 8, an outdoor heat exchanger 9, and an outdoor expansion valve 10 with piping for circulating a refrigerant. Further, a compressor discharge gas temperature sensor 11 and a high pressure sensor 12 are provided on the discharge side of the compressor 8, and the outdoor heat exchanger 9 has an outdoor blower 13 for blowing outdoor air to the outdoor heat exchanger 9. Is provided.

室内機3は、第1の室内熱交換器15と、逆止弁16と、室内膨張弁17と、第2の室内熱交換器18とを冷媒を循環させる配管で接続して形成されている。また、第1の室内熱交換器15及び逆止弁16をバイパスする配管19が設けられており、配管19には、配管19を開閉する室内電磁弁20が設けられている。さらに、第2の室内熱交換器18には、第2の室内熱交換器18、第1の室内熱交換器15の順に室内空気を送風する室内送風機21が設けられている。また、第2の室内熱交換器18の室内空気吸い込み側には、室内空気温度センサ25と室内空気湿度センサ26が設けられており、第1の室内熱交換器15の室内空気吹出側には、室内吹出空気温度センサ27が設けられている。   The indoor unit 3 is formed by connecting a first indoor heat exchanger 15, a check valve 16, an indoor expansion valve 17, and a second indoor heat exchanger 18 with piping for circulating a refrigerant. . A pipe 19 that bypasses the first indoor heat exchanger 15 and the check valve 16 is provided. The pipe 19 is provided with an indoor electromagnetic valve 20 that opens and closes the pipe 19. Further, the second indoor heat exchanger 18 is provided with an indoor blower 21 that blows indoor air in the order of the second indoor heat exchanger 18 and the first indoor heat exchanger 15. An indoor air temperature sensor 25 and an indoor air humidity sensor 26 are provided on the indoor air suction side of the second indoor heat exchanger 18, and the indoor air blowing side of the first indoor heat exchanger 15 is provided on the indoor air blowing side. An indoor blowing air temperature sensor 27 is provided.

次に、アキュムレータ7の詳細について図2、図3を用いて説明する。図2は、アキュムレータ7の構成を示した図である。アキュムレータ7は、容器30と、容器30内に設けられた導入管31及びU字管32で構成されている。U字管32には、下部に油戻し穴33、上部に均圧穴34が設けられている。   Next, details of the accumulator 7 will be described with reference to FIGS. FIG. 2 is a diagram showing the configuration of the accumulator 7. The accumulator 7 includes a container 30 and an introduction pipe 31 and a U-shaped pipe 32 provided in the container 30. The U-shaped pipe 32 is provided with an oil return hole 33 at the lower part and a pressure equalizing hole 34 at the upper part.

冷凍サイクルを循環して、四方弁6から導入管31を通して容器30内に冷媒と潤滑油が戻ってくると、一旦、容器30の下部に冷媒に溶解した潤滑油が貯留される。U字管32は、上部のガス冷媒を流出させると共に、下部の潤滑油を油戻し穴33から吸込んで圧縮機8の吸入側に戻す。図3は、アキュムレータ7の運転特性の一例を示した図である。図3に示すように、冷媒循環量と液面の高さHLによって、圧縮機吸入側へ戻る冷媒のかわき度が変化する。すなわち、アキュムレータ7の入口の冷媒のかわき度が低い場合は、アキュムレータ7内に貯留される液冷媒が多くなり、逆にかわき度が高い場合は、アキュムレータ7に貯留される液冷媒は少なくなる。このように、アキュムレータ7の入口の冷媒状態によってアキュムレータ7内に貯留される冷媒量が決まる。   When the refrigerant and the lubricating oil return to the container 30 from the four-way valve 6 through the introduction pipe 31 through the refrigeration cycle, the lubricating oil dissolved in the refrigerant is temporarily stored in the lower portion of the container 30. The U-shaped pipe 32 causes the upper gas refrigerant to flow out and sucks the lower lubricating oil from the oil return hole 33 and returns it to the suction side of the compressor 8. FIG. 3 is a diagram showing an example of operation characteristics of the accumulator 7. As shown in FIG. 3, the degree of cooling of the refrigerant returning to the compressor suction side varies depending on the refrigerant circulation amount and the liquid level height HL. That is, when the degree of cooling of the refrigerant at the inlet of the accumulator 7 is low, the amount of liquid refrigerant stored in the accumulator 7 increases. Conversely, when the degree of cooling is high, the amount of liquid refrigerant stored in the accumulator 7 decreases. Thus, the amount of refrigerant stored in the accumulator 7 is determined by the refrigerant state at the inlet of the accumulator 7.

次に、冷房運転時の運転動作を説明する。冷房運転時には四方弁6を図1の実線のように切替え、圧縮機8の吐出側と室外熱交換器9、アキュムレータ7とガス側接続配管4を接続させる。これにより、圧縮機8から吐出される高圧ガス冷媒は、四方弁6を通過して室外熱交換器9で室外空気と熱交換して凝縮する。室外膨張弁10で減圧されて、低圧気液2相となった冷媒は、液側接続配管5を通過して、室内機3へ送られる。室内機3では、開放されている室内電磁弁20と、全開になっている室内膨張弁17を通過して、第2の室内熱交換器18に流入する。第2の室内熱交換器18で室内空気を冷却除湿して蒸発した冷媒は、ガス側接続配管4を通過して、再び室外機2へと戻り、四方弁6を介してアキュムレータ7から圧縮機8へと吸入されて、サイクルを一巡する。   Next, the operation during the cooling operation will be described. During the cooling operation, the four-way valve 6 is switched as indicated by the solid line in FIG. 1 to connect the discharge side of the compressor 8 to the outdoor heat exchanger 9, the accumulator 7, and the gas side connection pipe 4. Thereby, the high-pressure gas refrigerant discharged from the compressor 8 passes through the four-way valve 6 and is condensed by exchanging heat with outdoor air in the outdoor heat exchanger 9. The refrigerant that has been decompressed by the outdoor expansion valve 10 to become a low-pressure gas-liquid two phase passes through the liquid side connection pipe 5 and is sent to the indoor unit 3. In the indoor unit 3, the air passes through the opened indoor electromagnetic valve 20 and the fully opened indoor expansion valve 17 and flows into the second indoor heat exchanger 18. The refrigerant evaporated by cooling and dehumidifying the indoor air in the second indoor heat exchanger 18 returns to the outdoor unit 2 again through the gas-side connecting pipe 4, and is returned from the accumulator 7 to the compressor via the four-way valve 6. Inhaled to 8 and completes the cycle.

ここで、第1の室内熱交換器15には、冷媒の一部が流入するが、室外膨張弁10で減圧されて低圧状態となっているため、第1の室内熱交換器は蒸発器として作用する。これにより、冷媒はガス化して、液冷媒の滞留は生じないため、冷媒封入量を削減できる。その結果、圧縮機起動時の液戻りなどが生じないため、信頼性を向上することができる。   Here, a part of the refrigerant flows into the first indoor heat exchanger 15, but since the pressure is reduced by the outdoor expansion valve 10, the first indoor heat exchanger serves as an evaporator. Works. Thereby, since a refrigerant | coolant is gasified and the retention of a liquid refrigerant | coolant does not arise, the amount of refrigerant | coolants enclosure can be reduced. As a result, liquid return or the like at the time of starting the compressor does not occur, so that reliability can be improved.

次に、再熱除湿運転時の動作を説明する。再熱除湿運転時には冷房運転時と同じ向きに四方弁6を切替える。これにより、冷房と同様に圧縮機8から吐出された高圧ガス冷媒は、四方弁6を通過して、室外熱交換器9で室外空気と熱交換して凝縮する。室外膨張弁10は、全開になっているため、ほとんど減圧せずに室内機3へ送られる。室内機3では室内電磁弁20が閉じられているので、第1の室内熱交換器15に冷媒が流入する。第1の室内熱交換器15を循環する冷媒は、第2の室内熱交換器18で冷却された室内空気と熱交換して冷却される。つまり、第1の室内熱交換器15は、室内空気を加熱する再熱器として作用する。第1の室内熱交換器15で凝縮又は過冷却された冷媒は、室内膨張弁17で減圧されて、第2の室内熱交換器18に流入する。第2の室内熱交換器18を循環する冷媒は、室内空気と熱交換して加熱される。つまり、第2の室内熱交換器18は、室内空気を冷却・除湿する冷却器として作用する。第2の室内熱交換器18で室内空気により加熱された冷媒は、蒸発してガス側接続配管4を介して、室外機2へと戻される。室外機2では、四方弁6からアキュムレータ7を介して圧縮機8の吸入側配管に戻り、サイクルを一巡する。   Next, the operation during the reheat dehumidifying operation will be described. During the reheat dehumidifying operation, the four-way valve 6 is switched in the same direction as in the cooling operation. As a result, the high-pressure gas refrigerant discharged from the compressor 8 passes through the four-way valve 6 and is condensed by exchanging heat with outdoor air in the outdoor heat exchanger 9 as in the case of cooling. Since the outdoor expansion valve 10 is fully open, the outdoor expansion valve 10 is sent to the indoor unit 3 with almost no pressure reduction. In the indoor unit 3, the indoor electromagnetic valve 20 is closed, so that the refrigerant flows into the first indoor heat exchanger 15. The refrigerant circulating in the first indoor heat exchanger 15 is cooled by exchanging heat with the indoor air cooled by the second indoor heat exchanger 18. That is, the 1st indoor heat exchanger 15 acts as a reheater which heats indoor air. The refrigerant condensed or supercooled by the first indoor heat exchanger 15 is decompressed by the indoor expansion valve 17 and flows into the second indoor heat exchanger 18. The refrigerant circulating in the second indoor heat exchanger 18 is heated by exchanging heat with indoor air. That is, the 2nd indoor heat exchanger 18 acts as a cooler which cools and dehumidifies indoor air. The refrigerant heated by the indoor air in the second indoor heat exchanger 18 is evaporated and returned to the outdoor unit 2 through the gas side connection pipe 4. In the outdoor unit 2, the four-way valve 6 returns to the suction side piping of the compressor 8 via the accumulator 7, and the cycle is completed.

ここで、図4及び図5のモリエル線図を用いて再熱除湿運転時の運転状態の詳細を説明する。図4は、圧縮機吐出ガス温度を冷房運転時と同様に設定した場合の再熱除湿運転の冷凍サイクルを示す図である。ここで、アキュムレータのかわき度は0.95程度になるように室内膨張弁17の開度が制御されている。このときの圧縮機吐出ガス温度は、図6に示すように制御されている。つまり、圧縮機吐出ガス温度センサ11で検出される温度は、高圧圧力センサ12で検出される吐出ガス圧力の凝縮温度に対し、一定温度だけ高い温度になるように室内膨張弁17の開度により制御され、目標吐出ガス温度は以下の式で示される。   Here, the details of the operating state during the reheat dehumidifying operation will be described using the Mollier diagrams of FIGS. 4 and 5. FIG. 4 is a diagram showing a refrigeration cycle in a reheat dehumidifying operation when the compressor discharge gas temperature is set in the same manner as in the cooling operation. Here, the opening degree of the indoor expansion valve 17 is controlled so that the degree of accumulator clearance is about 0.95. The compressor discharge gas temperature at this time is controlled as shown in FIG. That is, the temperature detected by the compressor discharge gas temperature sensor 11 depends on the opening of the indoor expansion valve 17 so that the temperature is higher than the condensation temperature of the discharge gas pressure detected by the high pressure sensor 12 by a certain temperature. The target discharge gas temperature is controlled by the following equation.

(数1式)
Tdo=Tc(Pd)+SHa
Tdoは通常時目標吐出ガス温度であり、Tcは凝縮温度、Pdは吐出ガス圧力、SHaは通常吐出ガス過熱度である。
ここで、通常吐出ガス過熱度SHaは通常25〜40℃程度に設定される。また、通常時目標吐出ガス温度Tdoは圧縮機の信頼性確保のため、以下の式のように上限Tdomaxと下限Tdominが設定されている。
(Formula 1)
Tdo = Tc (Pd) + SHA
Tdo is the normal target discharge gas temperature, Tc is the condensation temperature, Pd is the discharge gas pressure, and SHa is the normal discharge gas superheat degree.
Here, the normal discharge gas superheat degree SHa is normally set to about 25 to 40 ° C. The normal target discharge gas temperature Tdo has an upper limit Tdomax and a lower limit Tdomin as shown in the following equations in order to ensure the reliability of the compressor.

(数2式)
Tdomin<Tdo<Tdomax
アキュムレータ7のかわき度が0.95程度になるように室内膨張弁17の開度を制御しているので、図3に示すように、アキュムレータ7内には液冷媒が溜まり込むことなく運転されるため、凝縮器である室外熱交換器9には必要冷媒量が供給される。このため、室外熱交換器9の出口では完全に凝縮した液冷媒状態となる。これにより、図4のモリエル線図に示すように再熱器である第1の室内熱交換器15でのエンタルピ差は小さくなり、再熱能力が小さくなる。
(Equation 2)
Tdomin <Tdo <Tdomax
Since the opening degree of the indoor expansion valve 17 is controlled so that the degree of cleaning of the accumulator 7 is about 0.95, as shown in FIG. 3, the liquid refrigerant is operated without accumulating in the accumulator 7. Therefore, the necessary amount of refrigerant is supplied to the outdoor heat exchanger 9 that is a condenser. For this reason, it becomes the liquid refrigerant | coolant state completely condensed at the exit of the outdoor heat exchanger 9. FIG. Thereby, as shown in the Mollier diagram of FIG. 4, the enthalpy difference in the 1st indoor heat exchanger 15 which is a reheater becomes small, and a reheat capability becomes small.

これに対し、図5のモリエル線図に示す再熱除湿運転の冷凍サイクルは、吐出ガス温度を通常よりも低く設定した場合の運転状態である。図6に示すように、目標吐出ガス設定温度は、以下の式で示される。   On the other hand, the refrigerating cycle of the reheat dehumidifying operation shown in the Mollier diagram of FIG. 5 is an operating state when the discharge gas temperature is set lower than normal. As shown in FIG. 6, the target discharge gas set temperature is expressed by the following equation.

(数3式)
Tdor=Tc(Pd)+SHb
Tdorは再熱除湿運転時目標吐出ガス温度であり、Tcは凝縮温度、Pdは吐出ガス圧力、SHbは再熱除湿時吐出ガス過熱度である。
また、上記と同様に、再熱除湿運転時目標吐出ガス温度Tdoは圧縮機の信頼性確保のため、以下の式のように上限Tdomaxと下限Tdominが設定されている。
(Formula 3)
Tdor = Tc (Pd) + SHb
Tdor is operated at the target discharge gas temperature reheat dehumidification, Tc is the condensation temperature, Pd denotes a discharge gas pressure, SHb is a gas superheat leaving Toki吐 humidity reheat removal.
Similarly to the above, an upper limit Tdomax and a lower limit Tdomin are set for the target discharge gas temperature Tdo during reheat dehumidification operation in order to ensure the reliability of the compressor, as in the following equation.

(数4式)
Tdomin<Tdor<Tdomax
ここで、再熱除湿運転時吐出ガス過熱度SHbは通常時時時吐出ガス過熱度SHaよりも低く設定されており、例えば15〜25℃程度に設定される。また、図4、図5のΔPLは、液側接続配管5における圧力損失を模擬的に示したものである。
(Formula 4)
Tdomin <Tdor <Tdomax
Here, the reheat dehumidifying operation discharge gas superheat degree SHb is set lower than the normal time discharge gas superheat degree SHa, and is set to about 15 to 25 ° C., for example. Further, ΔPL in FIGS. 4 and 5 schematically shows the pressure loss in the liquid side connection pipe 5.

このように吐出ガス温度を低く制御することにより、アキュムレータ7には湿り状態の冷媒が戻ってくるため、図3に示すアキュムレータ7の特性によりアキュムレータ7内には液冷媒が貯留される。これにより、室外熱交換器9は冷媒不足状態となるので室外熱交換器9の出口側の冷媒は気液2相状態となり、図5に示すように再熱器でのエンタルピ差が増加し再熱量が増加する。これにより、冷却能力を抑えると同時に、高除湿能力を発揮することができ、高い除湿負荷時にも、室温を下げすぎない低湿度を実現できる。   By controlling the discharge gas temperature to be low in this way, the wet refrigerant returns to the accumulator 7, so that the liquid refrigerant is stored in the accumulator 7 due to the characteristics of the accumulator 7 shown in FIG. Thereby, since the outdoor heat exchanger 9 is in a refrigerant shortage state, the refrigerant on the outlet side of the outdoor heat exchanger 9 is in a gas-liquid two-phase state, and the enthalpy difference in the reheater increases as shown in FIG. The amount of heat increases. As a result, the cooling capacity can be suppressed, and at the same time, the high dehumidifying capacity can be exhibited, and low humidity that does not excessively lower the room temperature can be realized even at a high dehumidifying load.

また、吐出ガス温度の制御目標値を室内空気温度センサ25と室内吹出空気温度センサ27の検出値に基づいて変化させることも可能である。この制御方法によると、例えば、吸込と吹出の空気温度差を一定に制御することが可能となり、必要な冷却量を制御することが可能となり、より精度の高い室温、湿度制御が可能となる。   Further, the control target value of the discharge gas temperature can be changed based on the detection values of the indoor air temperature sensor 25 and the indoor blown air temperature sensor 27. According to this control method, for example, it is possible to control the air temperature difference between the suction and the blowout to be constant, and it is possible to control the necessary cooling amount, and it is possible to control the room temperature and humidity with higher accuracy.

また、吐出ガス温度の制御目標値を室内空気湿度センサ26の検出値に基づいて変化させることも可能である。例えば、室温が設定温度に近く、室内湿度が設定湿度又は快適な湿度よりも大幅に高いときには、吸込と吹出の空気温度差が小さくなるように、吐出ガス温度を低く制御する。この制御方法によると、快適な湿度範囲への室内温湿度制御を行うことができる。   Further, the control target value of the discharge gas temperature can be changed based on the detection value of the indoor air humidity sensor 26. For example, when the room temperature is close to the set temperature and the indoor humidity is significantly higher than the set humidity or the comfortable humidity, the discharge gas temperature is controlled to be low so that the difference in air temperature between the suction and the blowout becomes small. According to this control method, indoor temperature / humidity control to a comfortable humidity range can be performed.

本実施形態の空気調和の構成を示す図1の中で、室内機3内に設置された逆止弁16は、暖房運転時に第1の室内熱交換器15への冷媒流入を防止して能力低下を抑える目的があるが、これは電磁弁やキャピラリなどの流体抵抗手段に代えることも可能である。また、暖房運転時に室内膨張弁17を全開とし、室外膨張弁10により減圧作用を実施させることで、室内電磁弁20の流通抵抗を低減でき、この場合には逆止弁16などの流通阻止手段を省くことも可能である。 In Figure 1 showing the structure of an air conditioner according to this embodiment, a check valve 16 installed in the indoor unit 3 is to prevent the refrigerant from flowing into the first indoor heat exchanger 15 during heating operation The purpose is to suppress a decrease in capacity, but this can be replaced by a fluid resistance means such as a solenoid valve or a capillary. Further, the indoor expansion valve 17 is fully opened during heating operation, and the outdoor expansion valve 10 performs a pressure reducing action, whereby the flow resistance of the indoor electromagnetic valve 20 can be reduced. In this case, the flow blocking means such as the check valve 16 is used. Can be omitted.

本実施形態の空気調和機の構成を示す図である。It is a figure which shows the structure of the air conditioner of this embodiment. 本実施形態のアキュムレータの構成を示した図である。It is the figure which showed the structure of the accumulator of this embodiment. 本実施形態のアキュムレータの運転特性を示した図である。It is the figure which showed the driving | running characteristic of the accumulator of this embodiment. 圧縮機吐出ガス温度を冷房運転時と同様に設定した場合の再熱除湿運転の冷凍サイクルを示す図である。It is a figure which shows the refrigerating cycle of the reheat dehumidification operation | movement when the compressor discharge gas temperature is set similarly to the time of air_conditionaing | cooling operation. 圧縮機吐出ガス温度を冷房運転時よりも低く設定した場合の再熱除湿運転の冷凍サイクルを示す図である。It is a figure which shows the refrigerating cycle of the reheat dehumidification operation | movement when compressor discharge gas temperature is set lower than the time of air_conditionaing | cooling operation. 圧縮機吐出ガス温度の設定値の概念を示す図である。It is a figure which shows the concept of the setting value of compressor discharge gas temperature.

符号の説明Explanation of symbols

1 空気調和機
2 室外機
3 室内機
6 四方弁
7 アキュムレータ
8 圧縮機
9 室外熱交換器
10 室外膨張弁
15 第1の室内熱交換器
16 逆止弁
17 室内膨張弁
18 第2の室内熱交換器
19 バイパス配管
20 室内電磁弁
DESCRIPTION OF SYMBOLS 1 Air conditioner 2 Outdoor unit 3 Indoor unit 6 Four-way valve 7 Accumulator 8 Compressor 9 Outdoor heat exchanger 10 Outdoor expansion valve 15 First indoor heat exchanger 16 Check valve 17 Indoor expansion valve 18 Second indoor heat exchange 19 Bypass piping 20 Indoor solenoid valve

Claims (5)

冷媒を循環させる配管に、アキュムレータ、圧縮機、四方弁及び室外熱交換器を備えた室外機と、第1の室内熱交換器、逆止弁、室内膨張弁、第2の室内熱交換器及び前記第1の室内熱交換器と前記逆止弁をバイパスする配管に設けられた室内電磁弁を備えた室内機とを設けて冷凍サイクルを形成してなる空気調和機において、再熱除湿運転時に、前記室内電磁弁が閉じた信号に基づいて、前記室内膨張弁の開度を設定開度大きくする制御手段を設けたことを特徴とする空気調和機。   An outdoor unit provided with an accumulator, a compressor, a four-way valve, and an outdoor heat exchanger, a first indoor heat exchanger, a check valve, an indoor expansion valve, a second indoor heat exchanger, In an air conditioner in which a refrigeration cycle is formed by providing the first indoor heat exchanger and an indoor unit provided with an indoor electromagnetic valve provided in a pipe bypassing the check valve, during reheat dehumidification operation An air conditioner comprising a control means for increasing the opening degree of the indoor expansion valve based on a signal indicating that the indoor electromagnetic valve is closed. 冷媒を循環させる配管に、アキュムレータ、圧縮機、四方弁、室外熱交換器及び室外膨張弁を備えた室外機と、第1の室内熱交換器、逆止弁、室内膨張弁、第2の室内熱交換器及び前記第1の室内熱交換器と前記逆止弁をバイパスする配管に設けられた室内電磁弁を備えた室内機とを設けて冷凍サイクルを形成してなる空気調和機において、再熱除湿運転時に、前記室内電磁弁が閉じた信号に基づいて、前記室内膨張弁の開度を設定開度大きく制御し、冷房運転時に、前記室内電磁弁が開いた信号に基づいて、前記室外膨張弁の開度を制御する制御手段を設けたことを特徴とする空気調和機。 An outdoor unit provided with an accumulator, a compressor, a four-way valve, an outdoor heat exchanger, and an outdoor expansion valve, a first indoor heat exchanger, a check valve, an indoor expansion valve, and a second indoor An air conditioner in which a refrigeration cycle is formed by providing a heat exchanger, the first indoor heat exchanger, and an indoor unit provided with an indoor electromagnetic valve provided in a pipe bypassing the check valve. Based on a signal that the indoor solenoid valve is closed during the heat dehumidifying operation, the opening degree of the indoor expansion valve is controlled to be larger than the set opening , and during the cooling operation, based on a signal that the indoor solenoid valve is opened, An air conditioner provided with a control means for controlling the opening degree of the expansion valve. 請求項1又は2に記載の空気調和機において、
前記制御手段は、前記室内膨張弁の開度を設定開度大きくして前記圧縮機の吐出冷媒温度の制御目標値を低下させ、前記制御目標値を、室内空気温度センサと室内吹出空気温度センサの検出値に基づいて吸込と吹出の空気温度差を一定にするように変化させることを特徴とする空気調和機。
In the air conditioner according to claim 1 or 2 ,
The control means increases the opening of the indoor expansion valve by a set opening to lower the control target value of the discharge refrigerant temperature of the compressor, and sets the control target value to an indoor air temperature sensor and an indoor blown air temperature sensor. An air conditioner characterized in that the air temperature difference between suction and blowout is changed to be constant based on the detected value.
請求項1又は2に記載の空気調和機において、
前記制御手段は、前記室内膨張弁の開度を設定開度大きくして前記圧縮機の吐出冷媒温度の制御目標値を低下させ、前記制御目標値を、室内空気湿度センサの検出値が設定湿度より高い場合に、吸込と吹出の空気温度差が小さくなるように変化させることを特徴とする空気調和機。
In the air conditioner according to claim 1 or 2 ,
The control means increases the opening of the indoor expansion valve by a set opening to decrease the control target value of the refrigerant discharge refrigerant temperature, and the detected value of the indoor air humidity sensor is set to the set humidity. An air conditioner characterized in that when it is higher, the air temperature difference between suction and blowing is changed to be small .
請求項1又は2に記載の空気調和機において、
前記逆止弁に代えて、電磁弁又はキャピラリを用いることを特徴とする空気調和機。
In the air conditioner according to claim 1 or 2 ,
An air conditioner using a solenoid valve or capillary instead of the check valve.
JP2005371785A 2005-12-26 2005-12-26 Air conditioner Expired - Fee Related JP4730738B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2005371785A JP4730738B2 (en) 2005-12-26 2005-12-26 Air conditioner
ES06256498T ES2335302T3 (en) 2005-12-26 2006-12-21 AIR CONDITIONER SYSTEM.
DE602006010312T DE602006010312D1 (en) 2005-12-26 2006-12-21 air conditioning
EP06256498A EP1801520B1 (en) 2005-12-26 2006-12-21 Air conditioning system
CN2006101725028A CN1991276B (en) 2005-12-26 2006-12-26 Air adjustor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005371785A JP4730738B2 (en) 2005-12-26 2005-12-26 Air conditioner

Publications (2)

Publication Number Publication Date
JP2007170769A JP2007170769A (en) 2007-07-05
JP4730738B2 true JP4730738B2 (en) 2011-07-20

Family

ID=37846368

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005371785A Expired - Fee Related JP4730738B2 (en) 2005-12-26 2005-12-26 Air conditioner

Country Status (5)

Country Link
EP (1) EP1801520B1 (en)
JP (1) JP4730738B2 (en)
CN (1) CN1991276B (en)
DE (1) DE602006010312D1 (en)
ES (1) ES2335302T3 (en)

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011048724A1 (en) * 2009-10-22 2011-04-28 ダイキン工業株式会社 Flow path switching valve, and air conditioner provided therewith
CN102645056A (en) * 2011-02-16 2012-08-22 广东美芝制冷设备有限公司 Refrigerating device for flammable refrigerant
JP5370551B1 (en) * 2012-07-31 2013-12-18 ダイキン工業株式会社 Container refrigeration equipment
JP6000053B2 (en) * 2012-10-15 2016-09-28 ジョンソンコントロールズ ヒタチ エア コンディショニング テクノロジー(ホンコン)リミテッド Air conditioner
CN102927715B (en) * 2012-10-31 2015-07-01 青岛海信日立空调系统有限公司 Multiple-on-line heat pump air-conditioning system and method for controlling multiple-on-line heat pump air-conditioning system
CN103017410B (en) * 2013-01-22 2016-09-21 北京丰联奥睿科技有限公司 A kind of heating-refrigerating heat-pipe heat-pump type combined cycle system
US9933170B2 (en) * 2014-08-11 2018-04-03 Lee Wa Wong Water-cooled split air conditioning system
CN105987430A (en) * 2015-02-05 2016-10-05 佛山市禾才科技服务有限公司 Household air conditioner and anti-condensation method thereof
GB2537105A (en) * 2015-03-30 2016-10-12 Mcgowan Gregory Air conditioning system
CN105115181B (en) * 2015-07-21 2018-06-26 上海海立电器有限公司 A kind of air-conditioning system
CN106885388B (en) * 2015-12-16 2018-07-27 上海海立电器有限公司 A kind of air-conditioning system
CN106885387A (en) * 2015-12-16 2017-06-23 上海日立电器有限公司 A kind of air-conditioning system
CN106885403B (en) * 2015-12-16 2018-11-02 上海海立电器有限公司 The air-conditioning system of sensible heat latent heat separation control
CN106885402B (en) * 2015-12-16 2019-01-29 上海海立电器有限公司 The air-conditioning system of sensible heat latent heat separation control
US10345003B2 (en) * 2016-05-02 2019-07-09 Lee Wa Wong Split-type air conditioning and heat pump system with energy efficient arrangement
EP3859231A4 (en) * 2018-09-25 2022-05-18 Toshiba Carrier Corporation Air conditioning device
CN109855184B (en) * 2019-01-23 2020-12-25 青岛海尔空调器有限总公司 Air conditioner and dehumidification control method thereof
CN110207330B (en) * 2019-06-04 2021-05-04 广东美的暖通设备有限公司 Air conditioner and control method and device thereof
CN112797657B (en) * 2019-10-28 2024-06-21 广东美的制冷设备有限公司 Air conditioner and control method thereof
JP7308975B2 (en) * 2019-12-12 2023-07-14 三菱電機株式会社 dehumidifier
NL2025130B1 (en) * 2020-03-13 2021-10-19 Air Supplies Holland B V Climate control unit and system comprising the same
CN114046612B (en) * 2021-11-02 2023-05-26 南京天加环境科技有限公司 Air conditioner/floor heating/floor cooling multi-system with double evaporating temperatures
JP7112787B1 (en) 2021-12-02 2022-08-04 株式会社Fhアライアンス air conditioning ventilation system
CN114263991B (en) * 2021-12-03 2024-01-30 雅凯热能技术(江苏)有限公司 Fresh air dehumidification system
WO2024122060A1 (en) * 2022-12-09 2024-06-13 三菱電機株式会社 Air conditioner

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01106865U (en) * 1988-01-12 1989-07-19
JPH0618074A (en) * 1992-07-01 1994-01-25 Fujitsu General Ltd Controlling method for air conditioner
JPH07294060A (en) * 1994-04-28 1995-11-10 Sanyo Electric Co Ltd Air conditioner
JP2002107000A (en) * 2000-09-29 2002-04-10 Fujitsu General Ltd Air conditioner
JP2002107001A (en) * 2000-09-29 2002-04-10 Mitsubishi Electric Corp Air conditioner
JP2003262429A (en) * 2002-03-06 2003-09-19 Mitsubishi Electric Corp Air conditioner and method of operating it
JP2005283058A (en) * 2004-03-31 2005-10-13 Hitachi Ltd Reheating dehumidifying type air conditioner

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB8721986D0 (en) * 1987-09-18 1987-10-28 Ici Plc Pyridine derivative
JP3884591B2 (en) * 1999-03-25 2007-02-21 三菱電機株式会社 Air conditioner
JP4288979B2 (en) * 2003-03-27 2009-07-01 三菱電機株式会社 Air conditioner, and operation control method of air conditioner
JP2005133976A (en) * 2003-10-28 2005-05-26 Hitachi Ltd Air-conditioner
JP2006194525A (en) * 2005-01-14 2006-07-27 Hitachi Ltd Multi-chamber type air conditioner
JP4544461B2 (en) * 2005-01-24 2010-09-15 日立アプライアンス株式会社 Air conditioner

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01106865U (en) * 1988-01-12 1989-07-19
JPH0618074A (en) * 1992-07-01 1994-01-25 Fujitsu General Ltd Controlling method for air conditioner
JPH07294060A (en) * 1994-04-28 1995-11-10 Sanyo Electric Co Ltd Air conditioner
JP2002107000A (en) * 2000-09-29 2002-04-10 Fujitsu General Ltd Air conditioner
JP2002107001A (en) * 2000-09-29 2002-04-10 Mitsubishi Electric Corp Air conditioner
JP2003262429A (en) * 2002-03-06 2003-09-19 Mitsubishi Electric Corp Air conditioner and method of operating it
JP2005283058A (en) * 2004-03-31 2005-10-13 Hitachi Ltd Reheating dehumidifying type air conditioner

Also Published As

Publication number Publication date
EP1801520A1 (en) 2007-06-27
EP1801520B1 (en) 2009-11-11
CN1991276A (en) 2007-07-04
DE602006010312D1 (en) 2009-12-24
JP2007170769A (en) 2007-07-05
CN1991276B (en) 2010-09-08
ES2335302T3 (en) 2010-03-24

Similar Documents

Publication Publication Date Title
JP4730738B2 (en) Air conditioner
JP3925545B2 (en) Refrigeration equipment
JP5125116B2 (en) Refrigeration equipment
JP4229188B2 (en) Air conditioner
JP4096934B2 (en) Refrigeration equipment
JP4039358B2 (en) Air conditioner
JP5472391B2 (en) Container refrigeration equipment
WO2018185841A1 (en) Refrigeration cycle device
JP2010164257A (en) Refrigerating cycle device and method of controlling the refrigerating cycle device
JP4668021B2 (en) Air conditioner
JP4462435B2 (en) Refrigeration equipment
JP2008082589A (en) Air conditioner
JP7003266B2 (en) Air conditioner
JP4206870B2 (en) Refrigeration cycle equipment
JP2008224210A (en) Air conditioner and operation control method of air conditioner
JP4550153B2 (en) Heat pump device and outdoor unit of heat pump device
JP2008051425A (en) Air conditioner
JP6267952B2 (en) Refrigeration cycle equipment
JP2007232265A (en) Refrigeration unit
JP4462436B2 (en) Refrigeration equipment
JP4599190B2 (en) Flow rate adjusting device and air conditioner
JP5213372B2 (en) Air conditioner
JP2009243842A (en) Operation method of multiple-type air conditioner and outdoor unit
JP5871723B2 (en) Air conditioner and control method thereof
JP4084915B2 (en) Refrigeration system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080111

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20080619

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20080826

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100330

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100531

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100928

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101126

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110322

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110412

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140428

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4730738

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees