JP4668021B2 - Air conditioner - Google Patents

Air conditioner Download PDF

Info

Publication number
JP4668021B2
JP4668021B2 JP2005266261A JP2005266261A JP4668021B2 JP 4668021 B2 JP4668021 B2 JP 4668021B2 JP 2005266261 A JP2005266261 A JP 2005266261A JP 2005266261 A JP2005266261 A JP 2005266261A JP 4668021 B2 JP4668021 B2 JP 4668021B2
Authority
JP
Japan
Prior art keywords
refrigerant
outdoor
compressor
air conditioner
indoor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005266261A
Other languages
Japanese (ja)
Other versions
JP2007078242A (en
Inventor
啓三 福原
裕章 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2005266261A priority Critical patent/JP4668021B2/en
Publication of JP2007078242A publication Critical patent/JP2007078242A/en
Application granted granted Critical
Publication of JP4668021B2 publication Critical patent/JP4668021B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Air Conditioning Control Device (AREA)

Description

この発明は、室内外に凝縮器をもつ空気調和機において室内外の冷媒分布を適正に保持し、冷媒不足による不具合を解消する空気調和機に関するものである。   The present invention relates to an air conditioner that appropriately maintains a refrigerant distribution indoors and outdoors in an air conditioner having a condenser both indoors and outdoors and solves problems due to a lack of refrigerant.

従来より、圧縮機、室外熱交換器(凝縮器)、気液分離器、第1の膨張弁及び第1の室内熱交換器(蒸発器)、アキュムレータが順次配管で接続され、さらに、気液分離器の第1の膨張弁とは反対側に二方弁、第2の室内熱交換器及び第2の膨張弁が順次配管で接続されて第1の膨張弁に合流する冷凍サイクルを備えた空気調和機がある(例えば特許文献1参照)。   Conventionally, a compressor, an outdoor heat exchanger (condenser), a gas-liquid separator, a first expansion valve, a first indoor heat exchanger (evaporator), and an accumulator are sequentially connected by piping. On the opposite side of the separator from the first expansion valve, a two-way valve, a second indoor heat exchanger, and a second expansion valve are sequentially connected to each other by piping so that a refrigeration cycle that joins the first expansion valve is provided. There exists an air conditioner (for example, refer patent document 1).

上記従来の空気調和機では、凝縮器が室内外に設けられており、室内外の温度が季節や室内の被冷却物により変化し、回路内の冷媒が一方の凝縮器に滞留する、いわゆる寝込み現象が発生する。このように寝込み現象が発生すると、他方の凝縮器側が冷媒不足となり、低圧の低下による運転能力不足や、圧縮機からの吐出温度上昇による圧縮機の短寿命化を招くなどの不具合が生じたり、保護器が作動して停止するなどの不都合があった。   In the conventional air conditioner described above, a condenser is provided indoors and outdoors, the indoor and outdoor temperatures change depending on the season and indoor objects to be cooled, and the refrigerant in the circuit stays in one condenser. The phenomenon occurs. When the stagnation phenomenon occurs in this way, the other condenser side becomes insufficient in refrigerant, resulting in problems such as insufficient operating capacity due to low pressure drop and shortened compressor life due to increased discharge temperature from the compressor, There were inconveniences such as the protector operating and stopping.

これらの不都合を回避するため、多量の冷媒を回路内に封入することで、一方の凝縮器へ少々の冷媒寝込みがあっても運転回路内に冷媒不足が生じないようにする方法があるが、この方法では、圧縮機への液バックが生じる恐れがあり、圧縮機へのダメージが大きくなる課題があった。また、冷媒を大量に封入することで冷媒分のコストアップを招き、さらに、万が一、大気放出が生じた場合の環境への影響が懸念されるという問題もある。   In order to avoid these disadvantages, there is a method to prevent a shortage of refrigerant in the operation circuit even if a small amount of refrigerant stagnates in one condenser by enclosing a large amount of refrigerant in the circuit, In this method, there is a possibility that liquid back to the compressor may occur, and there is a problem that damage to the compressor is increased. In addition, encapsulating a large amount of refrigerant causes an increase in the cost of the refrigerant, and there is also a problem that there is a concern about the environmental impact in the event of atmospheric release.

また、従来の空気調和機には、運転モードの切替えにより生じる余剰冷媒を溜めるための液溜めを設けたものがある(例えば特許文献2参照)。   Some conventional air conditioners are provided with a liquid reservoir for accumulating surplus refrigerant generated by switching the operation mode (see, for example, Patent Document 2).

特開平5−240486号公報(第4頁、第1図)JP-A-5-240486 (page 4, FIG. 1) 特開2003−262429号公報(第5頁、第1図)Japanese Unexamined Patent Publication No. 2003-262429 (page 5, FIG. 1)

上記従来の寝込み現象に起因した冷媒不足を解消すべく、冷媒を多量に封入するようにした技術では、運転回路内に冷媒が過剰にある状態となり、高圧の上昇による性能低下、最悪の場合は高圧保護が作動して運転が異常停止する可能性があるなどの各種課題があった。   In the technology in which a large amount of refrigerant is sealed in order to eliminate the shortage of refrigerant due to the conventional stagnation phenomenon, there is an excessive amount of refrigerant in the operation circuit, resulting in performance degradation due to an increase in high pressure. There were various problems such as the possibility that the high-pressure protection was activated and the operation could be stopped abnormally.

また、特許文献2の液溜めを設けた技術では、液溜め及びその接続配管分のコストアップを招いてしまう。また、液溜めを設置した分だけ冷媒封入量をさらに増加させる必要があり、冷媒分のコストアップが生じ、コストアップスパイラルの現象が発生する。また、液バック時の圧縮機へのダメージも大きくなり、大気放出時の環境への影響がさらに懸念されるなどの各種課題があった。   Moreover, in the technique which provided the liquid reservoir of patent document 2, the cost increase for a liquid reservoir and its connection piping will be caused. Further, it is necessary to further increase the amount of refrigerant filled by the amount of the liquid reservoir installed, resulting in an increase in the cost of the refrigerant and a cost-up spiral phenomenon. Moreover, the damage to the compressor at the time of liquid back also became large, and there were various problems such as concern about the environmental impact at the time of air release.

この発明は上記のような課題を解決するためになされたもので、冷媒の増量や液溜めの設置を行うことなく、寝込み現象に伴う冷凍サイクル内の冷媒不足を解消し、液バックによる圧縮機ダメージの低減を図り、また、高圧上昇による性能低下や最悪の場合の高圧保護などの異常停止を回避でき、更に、コストメリットのある空気調和機を得ることを目的とする。   The present invention has been made to solve the above-described problems, and eliminates the shortage of refrigerant in the refrigeration cycle caused by the stagnation phenomenon without increasing the amount of refrigerant or installing a liquid reservoir, and a compressor based on liquid back An object is to obtain an air conditioner that can reduce damage, avoid an abnormal stop such as performance degradation due to an increase in high pressure or a high-pressure protection in the worst case, and have cost merit.

この発明に係る空気調和機は、圧縮機と、室外用電磁弁と、室外凝縮器と、絞り装置と、冷却器とを順次冷媒配管で接続し、さらに、圧縮機と室外用電磁弁との間から分岐し、室内用電磁弁及び室内凝縮器を順次冷媒配管で接続して絞り装置に合流する冷凍サイクルと、室外用電磁弁と室内用電磁弁とを制御して圧縮機の準備運転を行う制御部を備え、制御部は、室外用電磁弁を開、室内用電磁弁を閉として圧縮機を運転する室外冷媒回収運転を行った後、室外用電磁弁を開、室内用電磁弁を開として圧縮機を運転する室内冷媒回収運転を、準備運転として行い、冷凍サイクルの高圧側に液溜めを設けることなく、準備運転を行うことで冷凍サイクル内の冷媒不足を解消するものである。 In the air conditioner according to the present invention, a compressor, an outdoor solenoid valve, an outdoor condenser, a throttling device, and a cooler are sequentially connected by a refrigerant pipe, and further, the compressor and the outdoor solenoid valve The compressor is prepared for operation by controlling the refrigeration cycle that branches off from the interior, sequentially connects the indoor solenoid valve and the indoor condenser with refrigerant piping, and joins the expansion device, and the outdoor solenoid valve and the indoor solenoid valve. and a control unit for performing, the control unit, the solenoid valve for the outdoor opening, after the solenoid valve chamber were outdoor refrigerant recovery operation for driving the compressor is closed, the solenoid valve for the outdoor open, solenoid valve chamber The refrigerant recovery in the refrigeration cycle is eliminated by performing the preparatory operation without providing a liquid reservoir on the high-pressure side of the refrigeration cycle. .

この発明によれば、冷媒の増量や冷凍サイクルの高圧側への液溜めの設置を行うことなく、圧縮機の準備運転を行うことで冷凍サイクル内の冷媒不足を解消することができる。したがって、冷凍サイクル内の冷媒不足に起因する各種課題を解決することが可能な空気調和機を得ることが可能となる。   According to the present invention, the shortage of refrigerant in the refrigeration cycle can be solved by performing the preparatory operation of the compressor without increasing the amount of refrigerant or installing a liquid reservoir on the high pressure side of the refrigeration cycle. Therefore, it is possible to obtain an air conditioner that can solve various problems caused by a shortage of refrigerant in the refrigeration cycle.

実施の形態1.
図1は、この発明の実施の形態1の空気調和機の冷媒回路図である。
空気調和機は、圧縮機1、室外用電磁弁2、室外凝縮器3、室外凝縮器3への冷媒逆流による溜まり込みを防止する室外凝縮器用逆止弁4、絞り装置5及び冷却器(蒸発器)6が順次冷媒配管10〜14で接続され、更に、圧縮機1と室外用電磁弁2との間から分岐され、室内用電磁弁7、室内凝縮器8及びこの室内凝縮器8への冷媒逆流による溜まり込みを防止する室内凝縮器用逆止弁9が順次冷媒配管15、16で接続されて絞り装置5に合流する冷凍サイクルを備えている。また、室外凝縮器3での冷媒凝縮を促進する室外ファン20と、冷却器6での冷媒蒸発及び室内凝縮器8での冷媒凝縮を促進する共用の室内ファン21とを備えている。この室内ファン21により、室内空気は冷却器6を通過した後、室内凝縮器8を通過して空気調和機から室内へと吹き出されるようになっている。これら空気調和機を構成する各構成部のうち、室外ファン20と室外凝縮器3とは室外に設置され、それ以外は室内に設置されている。なお、以下では、冷媒配管10〜16を、その冷媒配管の機能に応じて呼ぶこととし、冷媒配管10,11,15を吐出配管、冷媒配管12,13、16を液配管、冷媒配管14を吸入配管14と呼ぶ。
Embodiment 1 FIG.
1 is a refrigerant circuit diagram of an air conditioner according to Embodiment 1 of the present invention.
The air conditioner includes a compressor 1, an outdoor solenoid valve 2, an outdoor condenser 3, an outdoor condenser check valve 4 that prevents the refrigerant from flowing into the outdoor condenser 3, a throttle device 5, and a cooler (evaporation) 6) are sequentially connected by refrigerant pipes 10 to 14, and further branched from between the compressor 1 and the outdoor electromagnetic valve 2, and are connected to the indoor electromagnetic valve 7, the indoor condenser 8, and the indoor condenser 8 The indoor condenser check valve 9 for preventing accumulation due to the refrigerant reverse flow is connected to the refrigerant pipes 15 and 16 in order, and is provided with a refrigeration cycle that joins the expansion device 5. An outdoor fan 20 that promotes refrigerant condensation in the outdoor condenser 3 and a common indoor fan 21 that promotes refrigerant evaporation in the cooler 6 and refrigerant condensation in the indoor condenser 8 are provided. The indoor fan 21 allows the room air to pass through the cooler 6 and then through the indoor condenser 8 to be blown out from the air conditioner. Of each component constituting the air conditioner, the outdoor fan 20 and the outdoor condenser 3 are installed outdoors, and the others are installed indoors. In the following description, the refrigerant pipes 10 to 16 are referred to according to the function of the refrigerant pipe, the refrigerant pipes 10, 11, and 15 are discharge pipes, the refrigerant pipes 12, 13, and 16 are liquid pipes, and the refrigerant pipe 14 is used. This is called the suction pipe 14.

図2は、図1の空気調和機の電気的構成を示すブロック図である。
空気調和機は、目標温度等の各種設定入力を行うための操作部100、室外温度センサ101、記憶部102と、マイクロコンピュータで構成された制御部103とを備えている。制御部103は、CPUと、各種データを記憶するRAMと、後述の各運転モードの運転制御を行うためのプログラム等を記憶するROM(何れも図示せず)とを備えており、ROM内のプログラムに従って室外用電磁弁2、室内用電磁弁7、絞り装置5、室内ファン21及び室外ファン20を適宜制御し、後述の準備運転、冷房運転、除湿運転及び中間運転の各種運転制御を行う。
FIG. 2 is a block diagram showing an electrical configuration of the air conditioner of FIG.
The air conditioner includes an operation unit 100 for inputting various settings such as a target temperature, an outdoor temperature sensor 101, a storage unit 102, and a control unit 103 configured by a microcomputer. The control unit 103 includes a CPU, a RAM that stores various data, and a ROM (none of which is shown) that stores a program for performing operation control in each operation mode described below. According to the program, the outdoor solenoid valve 2, the indoor solenoid valve 7, the expansion device 5, the indoor fan 21 and the outdoor fan 20 are appropriately controlled to perform various operation controls of a preparation operation, a cooling operation, a dehumidifying operation and an intermediate operation which will be described later.

この空気調和機は、室外用電磁弁2と室内用電磁弁7の開閉を行うことで室外凝縮器3での放熱量を制御し、室内を除湿しながら温度調節を行うもので、具体的には、冷房運転(室内を冷却しながら除湿する運転)、除湿運転(室内を加熱しながら除湿をする運転)、中間運転(室内外での放熱量を制御することで室内を弱加熱、弱冷却又は室内温度を維持しながら除湿をする運転)を行うことができるものである。以下、各運転について順次説明する。   This air conditioner controls the heat radiation amount in the outdoor condenser 3 by opening and closing the outdoor electromagnetic valve 2 and the indoor electromagnetic valve 7, and adjusts the temperature while dehumidifying the room. Are cooling operation (operation to dehumidify while cooling the room), dehumidification operation (operation to dehumidify while heating the room), intermediate operation (weak heating and cooling the room by controlling the amount of heat radiation inside and outside the room) Or the operation | movement which dehumidifies, maintaining indoor temperature). Hereinafter, each operation will be described sequentially.

<冷房運転>
まず、この冷房運転の際には、室外用電磁弁2が開状態、室内用電磁弁7が閉状態にある。圧縮機1から吐出された高温高圧ガス冷媒は、吐出配管10,11を経て室外凝縮器3に流入し、室外ファン20によって送風される室外空気と熱交換して放熱する。これによりガス冷媒が凝縮液化する。そして、液配管12を経て絞り装置5で減圧されて気液二相冷媒となり冷却器6に入る。冷却器6に入った気液二相冷媒は、室内ファン21から送風される室内空気と熱交換して吸熱し、冷房作用を行う。そして、ガス状態となった冷媒は吸入配管14を経て圧縮機1に戻る。このサイクルが繰り返し行われて室内が冷却される。
<Cooling operation>
First, during the cooling operation, the outdoor electromagnetic valve 2 is in an open state and the indoor electromagnetic valve 7 is in a closed state. The high-temperature and high-pressure gas refrigerant discharged from the compressor 1 flows into the outdoor condenser 3 through the discharge pipes 10 and 11, and dissipates heat by exchanging heat with outdoor air blown by the outdoor fan 20. Thereby, the gas refrigerant is condensed and liquefied. Then, the pressure is reduced by the expansion device 5 through the liquid pipe 12 to become a gas-liquid two-phase refrigerant and enters the cooler 6. The gas-liquid two-phase refrigerant that has entered the cooler 6 exchanges heat with the indoor air blown from the indoor fan 21 and absorbs heat, thereby performing a cooling operation. Then, the refrigerant in the gas state returns to the compressor 1 through the suction pipe 14. This cycle is repeated to cool the room.

<除湿運転>
まず、この除湿運転の際には、室外用電磁弁2が閉状態、室内用電磁弁7が開状態にある。圧縮機1から吐出された高温高圧ガス冷媒は、吐出配管15を経て室内凝縮器8に流入する。ここで冷媒は、室内ファン21によって循環する室内空気と熱交換して放熱する。これによりガス冷媒が凝縮液化する。そして、液配管16及び室内凝縮器用逆止弁9を経て絞り装置5に入り、ここで減圧されて気液二相冷媒となり冷却器6に入る。冷却器6に入った気液二相冷媒は、室内ファン21から送風される室内空気と熱交換して吸熱し、低温低圧ガス冷媒となり圧縮機1に戻る。ここで、室内ファン21により循環する室内空気は、冷却器6で低温低圧気液二相冷媒により冷却され、冷却器6の表面で室内空気中の水分が結露し除湿される。その後、室内凝縮器8で高温高圧ガス冷媒により加熱され昇温し、相対湿度が低下する。このように、室外用電磁弁2を閉止し、室外ファン20をOFFして冷凍サイクル内の放熱はすべて室内で行うことにより、冷却器6で冷却された空気が室内凝縮器8で加熱されて、理論上は圧縮機1の入力分と水蒸気の凝縮潜熱分だけ室内を加熱する運転を行う。
<Dehumidifying operation>
First, during the dehumidifying operation, the outdoor electromagnetic valve 2 is in a closed state and the indoor electromagnetic valve 7 is in an open state. The high-temperature and high-pressure gas refrigerant discharged from the compressor 1 flows into the indoor condenser 8 through the discharge pipe 15. Here, the refrigerant radiates heat by exchanging heat with indoor air circulated by the indoor fan 21. Thereby, the gas refrigerant is condensed and liquefied. Then, it enters the expansion device 5 via the liquid pipe 16 and the indoor condenser check valve 9, where it is decompressed and becomes a gas-liquid two-phase refrigerant and enters the cooler 6. The gas-liquid two-phase refrigerant that has entered the cooler 6 exchanges heat with the indoor air blown from the indoor fan 21 and absorbs heat to return to the compressor 1 as a low-temperature low-pressure gas refrigerant. Here, the indoor air circulated by the indoor fan 21 is cooled by the low-temperature low-pressure gas-liquid two-phase refrigerant in the cooler 6, and moisture in the indoor air is condensed on the surface of the cooler 6 to be dehumidified. Thereafter, the indoor condenser 8 is heated by the high-temperature high-pressure gas refrigerant to increase the temperature, and the relative humidity decreases. In this way, the outdoor solenoid valve 2 is closed, the outdoor fan 20 is turned off, and all heat radiation in the refrigeration cycle is performed indoors, so that the air cooled by the cooler 6 is heated by the indoor condenser 8. Theoretically, an operation is performed in which the room is heated by the input of the compressor 1 and the condensation latent heat of water vapor.

<中間運転>
まず、この中間運転の際には、室外用電磁弁2と室内用電磁弁7の両方が開状態にある。圧縮機1から吐出された高温高圧ガス冷媒は、室内用電磁弁7及び室外用電磁弁2が開することで吐出配管15を経て室内凝縮器8に流入する一方、吐出配管11を経て室外凝縮器3に流入する。そして、室内凝縮器8及び室外凝縮器3のそれぞれで放熱・液化し、液配管16及び12を経て液配管13で合流する。そして、液配管12を経て絞り装置5で減圧されて気液二相冷媒となり冷却器6に入る。そして、吸熱・ガス化して吸入配管14を得て圧縮機1に戻る。かかる中間運転において、制御部103は室外ファン20で検出された室外温度に応じて室外ファン20をONOFF制御する(すなわち室外温度が予め設定された温度より低い場合にはOFF、高い場合にはONとする)と共に、室内ファン21を常時ONする制御を行う。なお、室外ファン20のONOFF制御は、高圧側の圧力に応じて制御するようにしてもよい。
<Intermediate operation>
First, during this intermediate operation, both the outdoor solenoid valve 2 and the indoor solenoid valve 7 are in an open state. The high-temperature and high-pressure gas refrigerant discharged from the compressor 1 flows into the indoor condenser 8 through the discharge pipe 15 when the indoor electromagnetic valve 7 and the outdoor electromagnetic valve 2 are opened, and condenses outside through the discharge pipe 11. Flows into the vessel 3. Then, heat is radiated and liquefied in each of the indoor condenser 8 and the outdoor condenser 3, and merges in the liquid pipe 13 through the liquid pipes 16 and 12. Then, the pressure is reduced by the expansion device 5 through the liquid pipe 12 to become a gas-liquid two-phase refrigerant and enters the cooler 6. Then, the heat is absorbed and gasified to obtain the suction pipe 14 and return to the compressor 1. In such an intermediate operation, the control unit 103 performs ON / OFF control of the outdoor fan 20 according to the outdoor temperature detected by the outdoor fan 20 (that is, OFF when the outdoor temperature is lower than a preset temperature, and ON when the outdoor temperature is higher). And control to always turn on the indoor fan 21. Note that the ON / OFF control of the outdoor fan 20 may be controlled according to the pressure on the high pressure side.

以下、この発明の特徴部分の説明を行う。本例の空気調和機は、冷媒の増量や従来設けられていた液溜めの設置を行うことなく、所定のタイミングで準備運転を行うことにより、冷凍サイクル内の冷媒不均一を解消し、冷媒不足による前述の各種課題を解決しようとするものである。   Hereafter, the characteristic part of this invention is demonstrated. The air conditioner of this example eliminates the refrigerant non-uniformity in the refrigeration cycle by performing a preparatory operation at a predetermined timing without increasing the amount of refrigerant or installing a liquid reservoir that has been provided in the past. It is intended to solve the various problems described above.

ここで、準備運転の詳細を説明するに先立ち、冷媒不足が生じる状況について整理する。例えば、空気調和機を長期間停止した場合などは、室内外の温度差により室外又は室内の凝縮器に冷媒寝込みが生じる。すなわち、冷媒は高温側(高圧側)から低温側(低圧側)に圧力差で移動すること及び低温になると粘性が高くなることに起因し、低温側の凝縮器に対して冷媒の寝込み現象が発生する。このように室内外の温度バランスが悪く、空気調和機の長期間停止により低温側の凝縮器に冷媒が寝込んだ状態で運転再開を行う場合に冷媒不足が発生することがある。   Here, prior to explaining the details of the preparatory operation, the situation in which refrigerant shortage occurs will be organized. For example, when the air conditioner is stopped for a long period of time, refrigerant stagnation occurs in the outdoor or indoor condenser due to a temperature difference between the indoor and outdoor environments. That is, the refrigerant moves due to a pressure difference from the high temperature side (high pressure side) to the low temperature side (low pressure side) and increases in viscosity at low temperatures, so that the refrigerant stagnation phenomenon occurs on the low temperature side condenser. appear. Thus, when the temperature balance between the indoor and outdoor is poor and the operation is restarted in a state where the refrigerant is trapped in the condenser on the low temperature side due to the long-term stop of the air conditioner, a shortage of refrigerant may occur.

具体的には、例えば冬場で室外温度が0℃程度と低く、室内は乾燥用途などのために30℃程度と高い場合には、温度の低い室外凝縮器3側に多量の冷媒が寝込み、室内凝縮器8の冷媒が不足ぎみとなることがある。このような状態で除湿運転の指令が発せられると、冷媒の寝込みのある室外凝縮器3の回路が閉であるため室外凝縮器3に寝込んだ冷媒を回収できないまま運転せざるを得ず、除湿運転回路を循環する冷媒量が不足する。   Specifically, for example, when the outdoor temperature is as low as about 0 ° C. in winter and the room is as high as about 30 ° C. for drying applications, a large amount of refrigerant stagnates on the low-temperature outdoor condenser 3 side. The refrigerant in the condenser 8 may become insufficient. When a command for dehumidifying operation is issued in such a state, the circuit of the outdoor condenser 3 where the refrigerant has stagnation is closed, and the refrigerant that has fallen into the outdoor condenser 3 must be operated without being recovered, and the dehumidifying operation is performed. The amount of refrigerant circulating in the operating circuit is insufficient.

また、例えば夏場で室外が35℃程度と高く室内が種子保管の用途など10℃程度と低い場合の長期停止からの運転再開の場合では、室内凝縮器8に冷媒が寝込み室外凝縮器3の冷媒が不足ぎみとなることがある。このような状態で冷却運転の指令が発せられると、冷媒の寝込みのある室内凝縮器8の回路が閉であるため室内凝縮器8に寝込んだ冷媒を回収できないまま運転せざるを得ず、冷却運転回路を循環する冷媒量が不足する。   Further, for example, in the case of resuming operation from a long-term stop when the outdoor temperature is high at about 35 ° C. in summer and the indoor temperature is low at about 10 ° C., such as for seed storage, the refrigerant falls into the indoor condenser 8 and the refrigerant of the outdoor condenser 3. May become deficient. When a cooling operation command is issued in such a state, the circuit of the indoor condenser 8 where the refrigerant is stagnating is closed, and the refrigerant that has fallen into the indoor condenser 8 has to be operated without being recovered. The amount of refrigerant circulating in the operating circuit is insufficient.

また、この発明の空気調和機は前述の通り運転モードが3種類あり、室内の温度及び湿度により運転モードが切り替わる。例えば、室外温度が高く室内温度が低い状態で除湿運転を行っている時は、低温のために冷媒寝込みが生じやすい室内凝縮器8の回路が開状態で運転を行うため冷媒不足とはなり難い。この状態から、例えば室内扉の開閉などで室内の温度が上昇した場合、続いて冷却指令が発せられる場合がある。このような場合、冷媒寝込みのある室内凝縮器8の回路が閉であるため冷却運転回路での冷媒不足が発生する。   Moreover, the air conditioner of this invention has three types of operation modes as above-mentioned, and an operation mode changes with indoor temperature and humidity. For example, when the dehumidifying operation is performed in a state where the outdoor temperature is high and the indoor temperature is low, the refrigerant is unlikely to be short because the circuit of the indoor condenser 8 that is likely to stagnate the refrigerant due to low temperature is operated. . From this state, for example, when the indoor temperature rises due to, for example, opening / closing of the indoor door, a cooling command may be issued. In such a case, since the circuit of the indoor condenser 8 where the refrigerant stagnates is closed, a refrigerant shortage occurs in the cooling operation circuit.

また、例えば、室外温度が低く、室内温度が高い条件で冷却運転を行っている時は、低温のために冷媒寝込みが生じやすい室外凝縮器3の回路が開状態で運転を行うため冷媒不足とはなり難い。この状態から、例えば室内扉の開閉などで室内の温度が低下した場合、続いて除湿指令が発せられる場合がある。このような場合、冷媒寝込みのある室外凝縮器3の回路が閉であるため除湿運転回路では冷媒不足が発生する。   In addition, for example, when the cooling operation is performed under a condition where the outdoor temperature is low and the indoor temperature is high, the refrigerant is insufficient because the circuit of the outdoor condenser 3 that is likely to cause refrigerant stagnation due to low temperature is operated in an open state. It's hard to fall. From this state, for example, when the indoor temperature drops due to opening / closing of an indoor door, a dehumidification command may be issued subsequently. In such a case, since the circuit of the outdoor condenser 3 where the refrigerant stagnation is closed, the refrigerant is insufficient in the dehumidifying operation circuit.

さらにまた、同一の運転モードを長期間継続した場合も、電磁弁2,7のわずかな漏れが連続することにより室内凝縮器8又は室外凝縮器3に冷媒が寝込むことがある。室内温度が高く室外温度が低い状態で除湿運転を行っていても、上記の運転開始時又は運転モード切替時に冷媒不足を招いていなければ冷媒不足とはならない。しかし、冷媒不足のない状態で除湿運転を何時間も継続して行っている間に、例えば室外用電磁弁2が弁漏れなどで少量づつ冷媒が漏れた場合、温度の低い室外凝縮器3に冷媒が寝込むことがある。この場合、結果として運転回路内が冷媒不足状態となる。   Furthermore, even when the same operation mode is continued for a long time, the refrigerant may stagnate in the indoor condenser 8 or the outdoor condenser 3 due to the slight leakage of the solenoid valves 2 and 7 continuing. Even if the dehumidifying operation is performed in a state where the indoor temperature is high and the outdoor temperature is low, the refrigerant does not become insufficient unless the refrigerant is insufficient at the start of operation or when the operation mode is switched. However, if the outdoor solenoid valve 2 leaks little by little due to valve leakage or the like while the dehumidifying operation is continued for hours without the refrigerant shortage, the low-temperature outdoor condenser 3 is The refrigerant may fall asleep. In this case, as a result, the operation circuit is in a refrigerant shortage state.

例えば逆に、室内温度が低く室外温度が高い状態で冷却運転を行っていても上記の運転開始時又は運転モード切替時に冷媒不足を招いていなければ冷媒不足とはならない。しかし、その冷媒不足のない状態で冷却運転を何時間も継続して行っている間に、例えば室内用電磁弁7が弁漏れなどで少量づつ冷媒が漏れた場合、温度の低い室内凝縮器8へ冷媒が寝込むことがある。この場合、結果として運転回路内が冷媒不足状態となる。   For example, conversely, even if the cooling operation is performed in a state where the indoor temperature is low and the outdoor temperature is high, the refrigerant does not become insufficient unless the refrigerant is insufficient at the start of the operation or when the operation mode is switched. However, if the refrigerant leaks little by little, for example, because the indoor electromagnetic valve 7 leaks while the cooling operation is continued for hours without the lack of refrigerant, the indoor condenser 8 having a low temperature is used. The refrigerant may fall asleep. In this case, as a result, the operation circuit is in a refrigerant shortage state.

以上のように、圧縮機起動時、運転モード切替時、同一運転モード継続時に冷媒不足となることから、これらのタイミングで冷媒回収を実施する。冷媒回収運転としては、室外凝縮器3に寝込んだ冷媒を回収する運転と室内凝縮器8に寝込んだ冷媒を回収する2パターンある。本例では、どちらに冷媒寝込みが起こりやすいかを判断せずに室内凝縮器8の冷媒回収のみならず室外凝縮器3の冷媒回収も合わせて実施することとし、この一連の冷媒回収運転を総じて準備運転と呼ぶ。以下、その準備運転について説明する。   As described above, since the refrigerant becomes insufficient when the compressor is started, when the operation mode is switched, and when the same operation mode is continued, the refrigerant is collected at these timings. As the refrigerant recovery operation, there are two patterns of an operation of recovering the refrigerant sleeping in the outdoor condenser 3 and a recovery of the refrigerant sleeping in the indoor condenser 8. In this example, the refrigerant recovery of the indoor condenser 8 as well as the refrigerant recovery of the outdoor condenser 3 is performed together without determining which of the refrigerant stagnation is likely to occur. This is called preparatory operation. Hereinafter, the preparation operation will be described.

準備運転は、圧縮機起動時、運転モード切替時、同一運転モード継続時に自動的に実施するもので、第1の所定時間(例えば2分)、室外冷媒回収運転としての冷却運転を実施した後に、室内冷媒回収運転としての中間運転を第2の所定時間(ここでは、第1の所定時間と同様の2分とする)実施する。ここで、通常、室内よりも室外の方が温度が低く、室外凝縮器3への冷媒寝込みが生じやすい傾向がある。このことを鑑み、準備運転ではまず室外凝縮器3への冷媒寝込みを回収するための冷却運転を行う。例えば室外温度が低い状態での長期間の停止からの運転指令では、室外凝縮器3への冷媒寝込みが非常に多いことから、除湿運転はもちろんのことながら中間運転を行っても冷媒を回収しきれず、低圧低下を繰り返す結果となる可能性がある。したがって、最初に冷却運転を実施することは有効である。   The preparatory operation is automatically performed when the compressor is started, when the operation mode is switched, and when the same operation mode is continued. After the first predetermined time (for example, 2 minutes), the cooling operation as the outdoor refrigerant recovery operation is performed. Then, the intermediate operation as the indoor refrigerant recovery operation is performed for a second predetermined time (here, 2 minutes, which is the same as the first predetermined time). Here, normally, the temperature outside the room is lower than the room, and the refrigerant stagnation into the outdoor condenser 3 tends to occur. In view of this, in the preparatory operation, first, a cooling operation for recovering the refrigerant stagnation in the outdoor condenser 3 is performed. For example, in an operation command from a long-term stop when the outdoor temperature is low, the refrigerant stagnates in the outdoor condenser 3 so much that the refrigerant can be recovered even during intermediate operation as well as dehumidification operation. May result in repeated low pressure drops. Therefore, it is effective to perform the cooling operation first.

ところで、前述の冷媒不足が生じる状況の説明において、夏場で室外が35℃程度と高く室内が10℃程度と低い場合の長期停止からの運転再開の場合、室内凝縮器8側に冷媒が寝込んで室外凝縮器3の冷媒側の不足ぎみとなる。このため、準備運転で最初に冷却運転を行うと、この冷却運転の間、冷媒不足のまま運転することになる。しかしながら、この準備運転における冷房運転は、冷房指令時の場合と異なり短時間の運転であるため、冷媒不足による諸問題を引き起こすことはない。   By the way, in the description of the situation where the above-described refrigerant shortage occurs, in the case of resuming operation from a long-term stop in the summer when the outdoor temperature is high at about 35 ° C. and the indoor temperature is low at about 10 ° C., the refrigerant falls into the indoor condenser 8 side. This is a shortage on the refrigerant side of the outdoor condenser 3. For this reason, when the cooling operation is first performed in the preparation operation, the operation is performed while the refrigerant is insufficient during the cooling operation. However, the cooling operation in this preparation operation is a short-time operation unlike the case of the cooling command, and thus does not cause various problems due to the lack of refrigerant.

次に中間運転を実施する。中間運転を実施することにより、室内凝縮器8に溜まり込んでいた冷媒を回収することができる。ここで、室外寝込みが多い場合の中間運転では室外凝縮器3の冷媒はほとんど動かず室外凝縮器3の冷媒については回収できない。これは、室外側は、延長配管もあり圧力損失が高く室内より冷媒が流れにくく、また、室内の温度範囲は5℃程度〜40℃程度であるのに対し、室外の温度範囲が−5℃程度〜43℃程度と広いためである。これに対し、室内寝込みが多い場合の中間運転では、このような延長配管の圧力損失の影響が少なく室内凝縮器8の冷媒を効率良く回収することが可能である。また、冷房運転に続いて中間運転を実施する理由としては、中間運転は室内外ともにそこそこ温度が高い場合などの室内凝縮器8と室外凝縮器3の冷媒量を均等化する効果があり、冷媒が過剰となることによる高圧上昇を回避でき、冷媒寝込みによる冷媒不足以外にも対処するためである。   Next, an intermediate operation is performed. By performing the intermediate operation, the refrigerant that has accumulated in the indoor condenser 8 can be recovered. Here, in the intermediate operation when there is a lot of outdoor stagnation, the refrigerant in the outdoor condenser 3 hardly moves and the refrigerant in the outdoor condenser 3 cannot be recovered. This is because there is an extension pipe on the outdoor side and the pressure loss is high and it is difficult for the refrigerant to flow from the room. The indoor temperature range is about 5 ° C to 40 ° C, whereas the outdoor temperature range is -5 ° C. This is because it is as wide as about ~ 43 ° C. On the other hand, in the intermediate operation when there is a large amount of indoor stagnation, the refrigerant in the indoor condenser 8 can be efficiently recovered with little influence of the pressure loss of the extension pipe. The reason why the intermediate operation is performed after the cooling operation is that the intermediate operation has an effect of equalizing the refrigerant amounts of the indoor condenser 8 and the outdoor condenser 3 when the temperature is moderately high both indoors and outdoors. This is to prevent an increase in the high pressure due to the excessive amount of water and to deal with other than the shortage of the refrigerant due to the refrigerant stagnation.

以上説明したように実施の形態1によれば、圧縮機起動時、運転モード切替時及び同一運転モード継続時といった必要時に準備運転を実施することで冷媒を多量に封入することなくかつ液溜めを設けることなく冷媒分布を改善できる。その結果、以下の効果を得ることができる。
(1)液バックを防止して信頼性の高い空気調和機を得ることができる。
(2)高圧の上昇による性能低下や最悪の場合の高圧保護などの異常停止を回避できる。
(3)冷媒の多量封入や液溜めが不要なため、コストメリットが高い。
As described above, according to the first embodiment, the preparatory operation is performed when necessary, such as when the compressor is started, when the operation mode is switched, and when the same operation mode is continued, so that the liquid can be stored without enclosing a large amount of refrigerant. The refrigerant distribution can be improved without providing it. As a result, the following effects can be obtained.
(1) A liquid air back can be prevented and a highly reliable air conditioner can be obtained.
(2) It is possible to avoid an abnormal stop such as a performance degradation due to an increase in high pressure or a high-pressure protection in the worst case.
(3) Since there is no need to enclose a large amount of refrigerant or to store a liquid, cost merit is high.

また、上記では圧縮機起動時、運転モード切替時及び同一運転モード継続時に準備運転を行うようにしたが、冷媒不足を検知した時に実施するようにしても良い。すなわち、冷媒不足時は低圧低下、吐出温度上昇などが生じるため、圧縮機1の吸入側の圧力を検出する低圧検知手段又は/及び圧縮機1の吐出温度を検出する吐出温度検知手段を設け、低圧圧力低下時又は/及び吐出温度上昇時に実施するようにしてもよい。具体的な制御としては、開発試験時などの冷媒不足のない正常なデータを正常運転範囲として制御部103内に記憶させておきその範囲を逸脱した場合に準備運転を実施するよう制御するようにすればよい。   In the above description, the preparatory operation is performed when the compressor is started, when the operation mode is switched, and when the same operation mode is continued. However, the preparatory operation may be performed when a refrigerant shortage is detected. That is, when the refrigerant is insufficient, a low pressure drop, a discharge temperature rise, etc. occur, so a low pressure detection means for detecting the pressure on the suction side of the compressor 1 and / or a discharge temperature detection means for detecting the discharge temperature of the compressor 1 are provided. You may make it implement at the time of a low-pressure pressure fall or / and discharge temperature rise. As specific control, normal data without a shortage of refrigerant at the time of a development test or the like is stored in the control unit 103 as a normal operation range, and control is performed so as to perform a preparatory operation when the range deviates. do it.

なお、準備運転は、圧縮機起動時、運転モード切替時、同一運転モード継続時及び冷媒不足検知時の全てのタイミングで行うようにしてもよいし、何れか1又は2以上のタイミングで行うようにしてもよい。   The preparatory operation may be performed at all timings when the compressor is started, when the operation mode is switched, when the same operation mode is continued, and when the refrigerant shortage is detected, or at any one or more timings. It may be.

また、上記では、準備運転の冷房運転及び中間運転のそれぞれの運転時間は、室内外の温度条件によらず、予め決定された時間(本例ではどちらも2分)としたが、室内外に温度センサを設け、室内外の温度関係に応じて変えるようにしても良い。すなわち、例えば室内温度が高く室外温度が低い条件では、室外への冷媒寝込みが多いことから冷却運転の時間を長くし、また逆に、室内温度が低く、室外温度が高い条件では、室内への冷媒寝込みが多いことから中間運転を長くするようにするなどしても良い。このように制御することで、実際の設置環境に応じて効率的且つ効果的に冷媒回収を行うことができる。その結果、上記と同様の効果をより確実に得ることが期待できる。   In addition, in the above, the operation time of the cooling operation and the intermediate operation in the preparation operation is set to a predetermined time (both 2 minutes in this example) regardless of the indoor and outdoor temperature conditions. A temperature sensor may be provided and changed according to the temperature relationship between the room and the outside. That is, for example, under conditions where the indoor temperature is high and the outdoor temperature is low, the refrigerant stagnates outside, so the cooling operation time is lengthened. Conversely, when the indoor temperature is low and the outdoor temperature is high, Since there is much refrigerant stagnation, the intermediate operation may be lengthened. By controlling in this way, it is possible to efficiently and effectively recover the refrigerant according to the actual installation environment. As a result, it can be expected that the same effect as described above can be obtained more reliably.

また、室内又は室外のどちらかのみに温度センサを設け、その温度センサの検出結果に応じて準備運転の冷房運転及び中間運転のそれぞれの運転時間を制御するようにしてもよい。例えば室内のみに温度センサを設けた場合は、室内温度が例えば15℃以下では室内への冷媒寝込みが多いと判断して中間運転の時間を長くし、室内温度が例えば25℃以上では室外への冷媒寝込みが多いと判断して冷却運転の時間を長くしたりしてもよい。一方、室外のみに温度センサを設けた場合は、室外温度が例えば15℃以下では室外への冷媒寝込みが多いと判断して冷却運転の時間を長くし、室外温度が例えば25℃以上では室内への冷媒寝込みが多いと判断して中間運転の時間を長くしたりしてもよい。   Alternatively, a temperature sensor may be provided only in the room or outdoors, and the operation time of each of the cooling operation and the intermediate operation in the preparation operation may be controlled according to the detection result of the temperature sensor. For example, when a temperature sensor is provided only in the room, it is determined that there is much refrigerant stagnation in the room when the room temperature is, for example, 15 ° C. or less, and the intermediate operation time is lengthened. The cooling operation time may be lengthened by judging that the refrigerant stagnation is large. On the other hand, when the temperature sensor is provided only outside, if the outdoor temperature is, for example, 15 ° C. or less, it is determined that there is much refrigerant stagnation outside the room, and the cooling operation time is extended. It may be determined that there is a lot of refrigerant stagnation, and the intermediate operation time may be lengthened.

さらに、圧縮機1として、運転周波数を可変できる周波数可変型圧縮機(以下、インバーター圧縮機という)を搭載した場合は、インバーター圧縮機1の運転周波数を操作することで冷媒回収の効率化を図ることができる。つまり、インバーター圧縮機1の運転周波数を上げて冷媒の流速を上昇させることで、より早く冷媒を回収することが可能となる。準備運転は、本来の操作部100から指令された運転の前に行う運転であるため、準備運転は短かければ短いほど好ましい。このため、インバーター圧縮機1を搭載することによって冷媒回収を早めて効率よく冷媒回収ができるようになると、室内の温湿度を目標値に早く近づけることができるため効果的である。なお、この実施の形態1では運転回路の切替を電磁弁にて行うものを例として記載したが、四方弁などにて切り替えるものでも同様の効果をもたらす。   Further, when a variable frequency compressor (hereinafter referred to as an inverter compressor) capable of varying the operating frequency is mounted as the compressor 1, the efficiency of refrigerant recovery is improved by operating the operating frequency of the inverter compressor 1. be able to. That is, by increasing the operating frequency of the inverter compressor 1 and increasing the flow rate of the refrigerant, the refrigerant can be recovered more quickly. Since the preparation operation is an operation performed before the operation instructed from the original operation unit 100, the shorter the preparation operation, the better. For this reason, when the inverter compressor 1 is installed and the refrigerant recovery is accelerated and the refrigerant can be recovered efficiently, the temperature and humidity in the room can be brought close to the target value quickly, which is effective. In the first embodiment, the operation circuit is switched by an electromagnetic valve as an example. However, switching by a four-way valve or the like brings about the same effect.

実施の形態2.
図3は、この発明の実施の形態2における空気調和機の冷媒回路図である。実施の形態2の空気調和機は、図1に示した実施の形態1の空気調和機に、更に、液配管12から圧縮機1の吸入側の吸入配管14にバイパスするバイパス回路を構成するバイパス管31と、バイパス管31の開閉を制御するバイパス電磁弁32と、吸入配管14から液配管12への冷媒の逆流を防止するバイパス回路用逆止弁33とを設けたもので、その他の構成は図1に示した実施の形態1と同様である。
Embodiment 2. FIG.
FIG. 3 is a refrigerant circuit diagram of an air conditioner according to Embodiment 2 of the present invention. The air conditioner according to the second embodiment further includes a bypass circuit that bypasses the liquid pipe 12 to the suction pipe 14 on the suction side of the compressor 1 in addition to the air conditioner according to the first embodiment shown in FIG. A pipe 31, a bypass solenoid valve 32 that controls the opening and closing of the bypass pipe 31, and a bypass circuit check valve 33 that prevents the refrigerant from flowing backward from the suction pipe 14 to the liquid pipe 12. Is the same as that of the first embodiment shown in FIG.

実施の形態2は、実施の形態1と基本的には同様であるので、ここでは実施の形態2が実施の形態1と相違する部分を中心に説明し、重複する説明は省略する。
室外凝縮器3に冷媒寝込みがある状態からの起動に際し、例えば少量の冷媒漏れなどの何らかのイレギュラーな事態が発生した場合、準備運転で十分に冷媒の回収が行えない場合がある。実施の形態2は、このような場合に対処できるようにしたもので、液配管12から吸入配管14へ冷媒をバイパスするバイパス回路を設けて冷媒をバイパスすることにより室外凝縮器3の冷媒を室内へ回収しやすくするようにしたものである。
Since the second embodiment is basically the same as the first embodiment, here, the second embodiment will be described with a focus on the differences from the first embodiment, and a duplicate description will be omitted.
When the outdoor condenser 3 is started from a state in which the refrigerant stagnates, for example, if an irregular situation such as a small amount of refrigerant leakage occurs, the refrigerant may not be sufficiently recovered in the preparation operation. The second embodiment is designed to cope with such a case. By providing a bypass circuit for bypassing the refrigerant from the liquid pipe 12 to the suction pipe 14 to bypass the refrigerant, the refrigerant in the outdoor condenser 3 is placed indoors. It is designed to facilitate recovery.

具体的動作としては、制御部103が、準備運転の冷却運転中にバイパス電磁弁32を開とする。これにより、絞り装置5及び冷却器6を介して吸入配管14に達する回路と並列にバイパス回路ができるため、絞り装置5及び冷却器6を介して吸入配管14に達する回路のみの場合に比べてより速く冷媒を室内へ回収することができる。   As a specific operation, the control unit 103 opens the bypass solenoid valve 32 during the cooling operation of the preparation operation. As a result, a bypass circuit can be formed in parallel with the circuit that reaches the suction pipe 14 via the expansion device 5 and the cooler 6, so that compared with the case of only the circuit that reaches the suction pipe 14 via the expansion device 5 and the cooler 6. The refrigerant can be recovered into the room faster.

ところで、準備運転の中間運転時では、室外用電磁弁2は開状態であり、室外温度が低く室内温度が高い状態にある場合には、室外ファン20がOFF状態でも冷媒は室外凝縮器3に少量は溜り込む。また、中間運転時では、上述したように冷媒のほとんどは室内凝縮器8に流入し室外凝縮器3では冷媒はほとんど動かない。正常に運転回路内に冷媒のある状態では、何らかの理由で室外凝縮器3に溜まり込む冷媒が少し増えても運転回路の冷媒不足に至ることはないが、何らかのイレギュラー(例えば少量の冷媒漏れなど)時は室外凝縮器3への溜り込みで室内凝縮器8を通過する冷媒量が不足することが考えられる。   By the way, during the intermediate operation of the preparatory operation, the outdoor solenoid valve 2 is in an open state, and when the outdoor temperature is low and the indoor temperature is high, the refrigerant flows into the outdoor condenser 3 even when the outdoor fan 20 is OFF. A small amount accumulates. Further, during the intermediate operation, most of the refrigerant flows into the indoor condenser 8 as described above, and the refrigerant hardly moves in the outdoor condenser 3. In a state where the refrigerant is normally in the operation circuit, even if the refrigerant accumulated in the outdoor condenser 3 increases for some reason, there is no shortage of refrigerant in the operation circuit, but some irregularity (for example, a small amount of refrigerant leakage, etc.) ), The amount of refrigerant passing through the indoor condenser 8 due to accumulation in the outdoor condenser 3 may be insufficient.

その対応として、この実施の形態2では、準備運転の中間運転中にもバイパス電磁弁32を開とすることで室外凝縮器3に溜まり込んだ冷媒を室内へ回収することができる。通常、室外温度が低い状態での中間運転では、前述の通り室外ファン20をOFFとしているが、その状態が長時間継続すると室外凝縮器3及び液配管12内の冷媒圧力は外気温度相当に飽和する。例えば、外気が−5℃であれば−5℃相当の圧力に飽和する。一方で吸入配管14内の冷媒は蒸発温度飽和圧力となり、例えば0℃相当となる。その場合、室外凝縮器3及び液配管12より吸入配管14の方が圧力が高く、室外凝縮器3に溜まり込んだ冷媒を液配管12から吸入配管14に移動させることはできない。しかし、準備運転の中間運転は準備運転の冷却運転に続けて行うもので、冷却運転時の冷媒が必ず室外凝縮器3を流れることにより準備運転の中間運転時は室外凝縮器3及び液配管12内の冷媒圧力は外気温度相当に飽和することなく、高い圧力を維持したままのため蒸発温度飽和圧力以上を維持し、少量の溜り込み冷媒もバイパス管31を通って確実に回収することができる。   As a countermeasure, in the second embodiment, the refrigerant accumulated in the outdoor condenser 3 can be recovered indoors by opening the bypass solenoid valve 32 even during the intermediate operation of the preparation operation. Normally, in the intermediate operation in a state where the outdoor temperature is low, the outdoor fan 20 is turned off as described above. However, if this state continues for a long time, the refrigerant pressure in the outdoor condenser 3 and the liquid pipe 12 is saturated to the outside air temperature. To do. For example, if the outside air is −5 ° C., it is saturated to a pressure corresponding to −5 ° C. On the other hand, the refrigerant in the suction pipe 14 has an evaporation temperature saturation pressure, for example, equivalent to 0 ° C. In that case, the suction pipe 14 has a higher pressure than the outdoor condenser 3 and the liquid pipe 12, and the refrigerant accumulated in the outdoor condenser 3 cannot be moved from the liquid pipe 12 to the suction pipe 14. However, the intermediate operation of the preparatory operation is performed following the cooling operation of the preparatory operation, and the refrigerant during the cooling operation always flows through the outdoor condenser 3, so that the outdoor condenser 3 and the liquid pipe 12 are used during the intermediate operation of the preparatory operation. The internal refrigerant pressure does not saturate corresponding to the outside air temperature, and maintains a high pressure, so that the refrigerant temperature is maintained above the evaporation temperature saturation pressure, and a small amount of accumulated refrigerant can be reliably recovered through the bypass pipe 31. .

以上説明したように実施の形態2によれば、実施の形態1と同様の作用効果が得られるとともに、準備運転と合わせて液配管12の冷媒を圧縮機1の吸入側にバイパスするバイパス運転を行うようにしたので、何らかのイレギュラー(例えば少量の冷媒漏れなど)な事態により室外凝縮器3に寝込んだ冷媒を十分に冷媒が回収しにくい場合も、確実に冷媒回収が可能となる。   As described above, according to the second embodiment, the same operation and effect as in the first embodiment can be obtained, and the bypass operation for bypassing the refrigerant in the liquid pipe 12 to the suction side of the compressor 1 in combination with the preparation operation. Therefore, even when it is difficult to recover the refrigerant that has fallen into the outdoor condenser 3 due to some irregular situation (for example, a small amount of refrigerant leakage), the refrigerant can be reliably recovered.

実施の形態3.
図4は、この発明の実施の形態3の空気調和機における冷媒回路図である。実施の形態3の空気調和機は、図1に示した実施の形態1の空気調和機の絞り装置5として電子式膨張弁41を使用したもので、その他の構成は図1に示した実施の形態1と同様である。ここで、電子膨張弁とは、その開度を電気信号により行うもので、吸入配管14でのスーパーヒートでのみ開度を制御する温度式膨張弁に比べると、例えば圧縮機1の起動の信号や準備運転開始の信号などいかなる信号によってもいかなる開度にも制御できるという利点がある。
Embodiment 3 FIG.
FIG. 4 is a refrigerant circuit diagram of the air conditioner according to Embodiment 3 of the present invention. The air conditioner of the third embodiment uses an electronic expansion valve 41 as the throttle device 5 of the air conditioner of the first embodiment shown in FIG. 1, and other configurations are the same as those shown in FIG. This is the same as the first embodiment. Here, the electronic expansion valve is an electric signal whose opening is determined by an electrical signal. Compared with a temperature expansion valve that controls the opening only by superheat in the suction pipe 14, for example, a signal for starting the compressor 1 is used. There is an advantage that it can be controlled to any opening degree by any signal such as a signal for starting a preparatory operation.

かかる特徴を有する電子式膨張弁41を搭載した実施の形態3の動作を説明する。なお、実施の形態3は、実施の形態1と基本的には同様であるので、ここでは実施の形態3が実施の形態1と相違する部分を中心に説明し、重複する説明は省略する。室内温度が低く、室外温度が高い条件では室内凝縮器8に冷媒寝込みが発生する可能性が高い。このように室内凝縮器8に寝込んだ冷媒を効率良く回収すべく、実施の形態3では、準備運転の開始時又は準備運転の中間運転開始時に、電子式膨張弁41の開度を、予め設定された所定開度になるように制御するか、又は予め設定された所定量だけ開度を開くように制御する。ここで、所定開度とは、被冷却環境の温度が例えば25℃と高く、湿度が例えば80%と高い状態で適正となる開度であり、通常の運転状態での適正な開度に比べ大きな開度である。したがって、準備運転の開始時又は準備運転の中間運転開始時には、電子式膨張弁41の開度は、通常状態よりも開き気味の開度に調節されることになる。このように電子式膨張弁41の開度を開き気味とすることにより、主に室内凝縮器8に寝込んだ冷媒を回収することができる。   The operation of the third embodiment equipped with the electronic expansion valve 41 having such characteristics will be described. Note that the third embodiment is basically the same as the first embodiment, and therefore, here, the third embodiment will be described with a focus on the differences from the first embodiment, and a duplicate description will be omitted. Under conditions where the indoor temperature is low and the outdoor temperature is high, there is a high possibility that the refrigerant will stagnate in the indoor condenser 8. In the third embodiment, the opening degree of the electronic expansion valve 41 is set in advance at the start of the preparatory operation or at the start of the intermediate operation of the preparatory operation in order to efficiently collect the refrigerant stagnated in the indoor condenser 8 in this manner. The predetermined opening is controlled, or the opening is controlled by a predetermined amount set in advance. Here, the predetermined opening is an opening that is appropriate when the temperature of the environment to be cooled is as high as 25 ° C. and the humidity is as high as 80%, for example, and is compared with an appropriate opening in a normal operation state. Large opening. Therefore, at the start of the preparatory operation or the intermediate operation of the preparatory operation, the opening degree of the electronic expansion valve 41 is adjusted to an opening degree that is more open than in the normal state. Thus, by opening the opening of the electronic expansion valve 41, it is possible to recover mainly the refrigerant that has fallen into the indoor condenser 8.

すなわち、電子式膨張弁41の開度を開き気味とすることで、電子式膨張弁41でせき止められていた冷媒を回収することができる。ここで、室外凝縮器3は延長配管での圧力損失もあり電子式膨張弁41の開度調整だけでは少量しか回収できない。その一方、室内凝縮器8は延長配管もなく、その分圧力損失もない。したがって、電子式膨張弁41の開度調整だけで容易に室内凝縮器8に寝込んだ冷媒を回収することが可能となる。   That is, by opening the opening of the electronic expansion valve 41, it is possible to recover the refrigerant blocked by the electronic expansion valve 41. Here, the outdoor condenser 3 also has a pressure loss in the extension pipe, and only a small amount can be recovered only by adjusting the opening of the electronic expansion valve 41. On the other hand, the indoor condenser 8 has no extension piping and no pressure loss. Therefore, it is possible to easily collect the refrigerant that has fallen into the indoor condenser 8 only by adjusting the opening degree of the electronic expansion valve 41.

なお、準備運転の開始時と準備運転の中間運転開始時のどちらにおいて電子式膨張弁41の開度を開き気味とするかは空気調和機の機種特性によって異なる。すなわち、室外凝縮器3に冷媒が溜まりやすい傾向がある機種の場合は中間運転開始時とする。   Note that whether the opening of the electronic expansion valve 41 is opened or not at the start of the preparatory operation or the intermediate operation of the preparatory operation is different depending on the model characteristics of the air conditioner. In other words, in the case of a model in which the refrigerant tends to accumulate in the outdoor condenser 3, the intermediate operation is started.

以上説明したように実施の形態3によれば、実施の形態1と同様の作用効果が得られるとともに、準備運転の開始時又は準備運転の中間運転開始時に電子式膨張弁41の開度を開き気味にするようにしたので、室内凝縮器8に寝込んだ冷媒の回収能力を高めることが可能となる。   As described above, according to the third embodiment, the same effect as that of the first embodiment can be obtained, and the opening degree of the electronic expansion valve 41 is opened at the start of the preparatory operation or at the start of the intermediate operation of the preparatory operation. Since it is made to feel light, it becomes possible to enhance the recovery capability of the refrigerant that has fallen into the indoor condenser 8.

実施の形態4.
図5は、この発明の実施の形態4の空気調和機における冷媒回路図である。実施の形態4の空気調和機は、図1に示した実施の形態1の空気調和機において、圧縮機1の吸入側に液冷媒が戻るのを阻止するアキュムレータ51を冷凍サイクルの低圧側、具体的には冷却器6と圧縮機1との間に設け、アキュムレータ51と圧縮機1とを吸入配管42で接続したものであり、その他の構成は図1に示した実施の形態1と同様である。
Embodiment 4 FIG.
FIG. 5 is a refrigerant circuit diagram of an air conditioner according to Embodiment 4 of the present invention. The air conditioner of the fourth embodiment is the same as the air conditioner of the first embodiment shown in FIG. 1 except that the accumulator 51 that prevents the liquid refrigerant from returning to the suction side of the compressor 1 is provided on the low pressure side of the refrigeration cycle. Specifically, it is provided between the cooler 6 and the compressor 1, and the accumulator 51 and the compressor 1 are connected by a suction pipe 42, and the other configuration is the same as that of the first embodiment shown in FIG. is there.

実施の形態4は、実施の形態1と基本的には同様であるので、ここでは実施の形態4が実施の形態1と相違する部分を中心に説明し、重複する説明は省略する。
準備運転において、室外凝縮器3又は/及び室内凝縮器8から回収した冷媒は吸入配管14を通ってアキュムレータ51に流入する。通常、冷媒回収運転としての準備運転では多量の冷媒を回収してくるため、一時的に冷却器6で全冷媒を蒸発させることができず、一部液冷媒のままアキュムレータ51に流入する。アキュムレータ51内に流入した冷媒は気液分離され、ガス冷媒のみが圧縮機1に吸入される。つまり、準備運転時に液バック運転があった場合でも圧縮機ダメージを軽減することができる。また、冷媒を熱交換器に溜り込ませることなくアキュムレータ51にて保持できるため、冷媒不足に対処できることになる。つまり、液溜め的な機能も果たすことになる。
Since the fourth embodiment is basically the same as the first embodiment, here, the fourth embodiment will be described with a focus on the differences from the first embodiment, and a duplicate description will be omitted.
In the preparatory operation, the refrigerant recovered from the outdoor condenser 3 and / or the indoor condenser 8 flows into the accumulator 51 through the suction pipe 14. Normally, since a large amount of refrigerant is collected in the preparatory operation as the refrigerant recovery operation, all the refrigerant cannot be temporarily evaporated by the cooler 6 and flows into the accumulator 51 with some liquid refrigerant. The refrigerant flowing into the accumulator 51 is separated into gas and liquid, and only the gas refrigerant is sucked into the compressor 1. That is, even when there is a liquid back operation during the preparation operation, the compressor damage can be reduced. Moreover, since the refrigerant can be held by the accumulator 51 without being accumulated in the heat exchanger, it is possible to cope with the shortage of the refrigerant. That is, it also functions as a liquid reservoir.

以上説明したように実施の形態4によれば、実施の形態1と同様の作用効果が得られるとともに、低圧側にアキュムレータ51を設けたため、準備運転時の液バック運転があった場合でもそのダメージを軽減できる。また、冷媒を溜めるという液溜め的な機能も果たすため、運転状態の変化時も冷媒不足の起こりにくい空気調和機を提供できる。また、液溜め的な機能を果たす容器を液溜めとしてではなくアキュムレータとして設けたことでコストメリットももたらす。つまり、液溜めは高圧部品であり設計圧力がHFC:R410Aで4.15MPa程度と高く、液溜めはアキュムレータに比べ肉厚を厚くする必要があるのに対し、アキュムレータは低圧部品であり設計圧力がHFC:R410Aで2.21MPa程度であり、液溜めに比べ肉厚を薄くすることが可能である。このように肉厚を薄くできることは部材のコストダウンとなりコストメリットをもたらす。   As described above, according to the fourth embodiment, the same effects as those of the first embodiment can be obtained, and the accumulator 51 is provided on the low pressure side. Can be reduced. In addition, since it also serves as a liquid storage function for storing refrigerant, it is possible to provide an air conditioner that is unlikely to cause shortage of refrigerant even when the operating state changes. Further, providing a container that functions as a liquid reservoir as an accumulator rather than as a liquid reservoir also brings a cost merit. In other words, the liquid reservoir is a high-pressure part and the design pressure is as high as 4.15 MPa for HFC: R410A, and the liquid reservoir needs to be thicker than the accumulator, whereas the accumulator is a low-pressure part and the design pressure is HFC: R410A is about 2.21 MPa, and the wall thickness can be reduced compared with the liquid reservoir. Such a reduction in wall thickness reduces the cost of the member and brings about cost merit.

実施の形態5.
実施の形態1〜4での冷媒としては、HCFC:R22、HFC:R407c、HFC:R404Aなど各種の冷媒を用いることができ、それぞれの場合で上記効果をもたらす。一方、近年ではR410Aのような高圧のHFC冷媒が冷媒ガスの主流となってきており、実施の形態5は、冷媒としてHFC:R410Aを使用したものである。
Embodiment 5 FIG.
Various refrigerants such as HCFC: R22, HFC: R407c, and HFC: R404A can be used as the refrigerant in the first to fourth embodiments, and the above-described effects are brought about in each case. On the other hand, in recent years, a high-pressure HFC refrigerant such as R410A has become the main stream of refrigerant gas, and Embodiment 5 uses HFC: R410A as the refrigerant.

ここで、冷媒としてHFC:R410Aを使用した場合は運転回路での冷媒不足が発生しやすい。したがって、上述の準備運転は、冷媒不足の回避策として特別に効果のあるものとなる。以下、R410Aを冷媒として使用した時に冷媒不足が発生しやすい理由について説明する。   Here, when HFC: R410A is used as the refrigerant, shortage of the refrigerant in the operation circuit is likely to occur. Therefore, the above-described preparation operation is particularly effective as a measure for avoiding the shortage of refrigerant. Hereinafter, the reason why a refrigerant shortage is likely to occur when R410A is used as a refrigerant will be described.

一般的に、延長配管は圧力損失と返油を考慮し適切に決定される。これは、配管が太すぎると冷媒流速が低下し配管内面へ付着する油の量が増大したり、最悪の場合は冷媒流速が油が立ち上がり配管内を上昇できる最低速度(返油限界速度)以下となり、圧縮機1から排出された油が圧縮機1に戻らず、油枯渇の不具合を引き起こすことがある。また、配管が細すぎると圧力損失が大きくなり能力低下を引き起こしたり、最悪の場合は吐出圧力と吐出温度の上昇を招き保護停止する可能性があるためである。また、圧力損失は配管長及び配管径が同一であれば冷媒循環量及び冷媒粘性の影響を受けるが、どちらかと言えば冷媒循環量の影響の方が支配的である。   In general, the extension pipe is appropriately determined in consideration of pressure loss and oil return. This is because if the pipe is too thick, the refrigerant flow rate decreases and the amount of oil adhering to the inner surface of the pipe increases, or in the worst case, the refrigerant flow rate rises below the minimum speed (oil return limit speed) at which oil can rise and rise in the pipe. Thus, the oil discharged from the compressor 1 does not return to the compressor 1 and may cause a problem of oil exhaustion. Moreover, if the piping is too thin, the pressure loss increases and the capacity is lowered. In the worst case, the discharge pressure and the discharge temperature are increased, and the protection may be stopped. Further, the pressure loss is affected by the refrigerant circulation amount and the refrigerant viscosity if the pipe length and the pipe diameter are the same, but the influence of the refrigerant circulation amount is more dominant.

ここで、R410Aは冷媒物性の特徴として、他の冷媒のR22やR404AやR407cと比較すると冷媒が蒸発する時の潜熱が大きく、同一の冷却能力をもたらすのに必要な冷媒循環量が少なくてすむ。したがって、結果として圧力損失が小さくなる。ここで、一般的に、延長配管には、細すぎず、太すぎず、封入冷媒が少なく、配管コストのかからないできるだけ細い配管が選択される。このことから、R410Aを使用した空気調和機では、他の冷媒(R22やR407cやR404Aなど)を使用した同様容量の機種に比べて配管径を細くするのが一般的である。したがって、冷媒が寝込んだ場合には、その冷媒を移動させることが難しく冷媒回収が困難となってしまう。つまり、R410Aを冷媒として使用した場合は、他の冷媒(R22やR407cやR404Aなど)を使用した場合に比べて寝込んだ冷媒を回収するのがより困難となる。したがって、準備運転を行うことは、R410Aを冷媒として使用した空気調和機において特に効果的である。   Here, R410A is characterized by the physical properties of the refrigerant. Compared with other refrigerants R22, R404A and R407c, R410A has a large latent heat when the refrigerant evaporates, and the amount of refrigerant circulation required to provide the same cooling capacity can be reduced. . Therefore, the pressure loss is reduced as a result. Here, in general, as the extension pipe, a pipe that is not too thin, not too thick, contains a small amount of refrigerant, and is as thin as possible without incurring piping costs. For this reason, in an air conditioner using R410A, it is common to reduce the pipe diameter compared to models of similar capacity using other refrigerants (R22, R407c, R404A, etc.). Therefore, when the refrigerant stagnates, it is difficult to move the refrigerant and it becomes difficult to recover the refrigerant. In other words, when R410A is used as a refrigerant, it is more difficult to collect the stagnation refrigerant than when other refrigerants (R22, R407c, R404A, etc.) are used. Therefore, performing the preparatory operation is particularly effective in an air conditioner using R410A as a refrigerant.

またさらに、R410Aを冷媒として使用した機器は設計圧力が他の冷媒(R22やR407cやR404Aなど)の時に比べて高い。これは、冷媒物性による差で同じ温度に対する飽和圧力が高いためであり、他の冷媒(R22やR407cやR404Aなど)の設計圧力が3MPa程度であるに対してR410Aの設計圧力が4.15MPa程度であるからである。それ故、従来のように高圧側に液溜めを設ける場合には耐圧上の理由からその肉厚を厚くする必要があり、部材のコストアップ、場合によっては容器製作に使用する型を新規に制作するためのコストアップが懸念される。このことからも、R410Aを冷媒として使用した場合の、準備運転による従来の高圧側液溜め廃止は、他の冷媒(R22やR407cやR404Aなど)の時に比べコストメリットが大きい。   Furthermore, the device using R410A as a refrigerant has a higher design pressure than other refrigerants (R22, R407c, R404A, etc.). This is because the saturation pressure for the same temperature is high due to the difference in the physical properties of the refrigerant. The design pressure of R410A is about 4.15 MPa while the design pressure of other refrigerants (R22, R407c, R404A, etc.) is about 3 MPa. Because. Therefore, when a liquid reservoir is provided on the high-pressure side as in the past, it is necessary to increase the wall thickness for reasons of pressure resistance, which increases the cost of components and, in some cases, creates a new mold for container production. There is a concern about the cost increase. For this reason as well, the conventional high pressure side liquid reservoir abolition by preparatory operation when R410A is used as a refrigerant has a large cost merit compared to other refrigerants (R22, R407c, R404A, etc.).

以上説明したように、上記実施の形態1〜4で説明した構成は、冷媒としてR410Aを使用している空気調和装置において特に有効である。   As described above, the configurations described in the first to fourth embodiments are particularly effective in an air conditioner that uses R410A as a refrigerant.

ところで、上述した実施の形態1〜4では、それぞれ別の実施の形態として説明したが、各実施の形態を適宜組み合わせた空気調和機としてもよいし、実施の形態1〜4の全てが実施できる空気調和機としてもよい。例えば、実施の形態1〜3を組み合わせることにより、室外凝縮器3及び室内凝縮器8の両方の回収スピードを速まり、効果的な冷媒回収効果を得ることが期待できる。   By the way, in Embodiment 1-4 mentioned above, it demonstrated as another embodiment, respectively, but it is good also as an air conditioner which combined each embodiment suitably, and all of Embodiment 1-4 can be implemented. It is good also as an air conditioner. For example, by combining the first to third embodiments, it can be expected that the recovery speed of both the outdoor condenser 3 and the indoor condenser 8 is increased and an effective refrigerant recovery effect is obtained.

また、例えば実施の形態1〜4を組み合わせ、図6に示すようにバイパス回路を吸入配管14のアキュムレータ上流部に設けるようにするとともに、絞り装置として電子式膨張弁41を使用するようにしてもよい。ここで、実施の形態2でのバイパス運転は、室外凝縮器3に溜り込んだ冷媒を吸入配管14にバイパスするものであるが、吸入配管14に流入する冷媒は液冷媒又は気液二相冷媒の場合が多く、結果として液バック運転となる。したがって、図6に示す構成とすることで、液バックした冷媒をアキュムレータ51で気液分離することができ、圧縮機1に対する液バック保護効果は大である。また、実施の形態3は、電子式膨張弁41を開き気味にする制御であるが、かかる制御により一時的に冷却器6に流入する冷媒量が増加し、液バック運転をもたらす可能性が高くなる。したがって、アキュムレータ51を設けた構成とすることで、圧縮機1に対する液バック保護の効果は大である。   Further, for example, the first to fourth embodiments may be combined so that a bypass circuit is provided at the upstream portion of the accumulator of the suction pipe 14 as shown in FIG. 6, and the electronic expansion valve 41 is used as a throttle device. Good. Here, in the bypass operation in the second embodiment, the refrigerant accumulated in the outdoor condenser 3 is bypassed to the suction pipe 14, and the refrigerant flowing into the suction pipe 14 is liquid refrigerant or gas-liquid two-phase refrigerant. In many cases, this results in a liquid back operation. Therefore, with the configuration shown in FIG. 6, the liquid-backed refrigerant can be gas-liquid separated by the accumulator 51, and the liquid back protection effect for the compressor 1 is great. Further, the third embodiment is a control that opens the electronic expansion valve 41. However, the amount of refrigerant that temporarily flows into the cooler 6 is increased by such control, and there is a high possibility that a liquid back operation will be caused. Become. Therefore, by providing the accumulator 51, the effect of liquid back protection for the compressor 1 is great.

この発明の実施の形態1における空気調和機の冷媒回路図である。It is a refrigerant circuit figure of the air conditioner in Embodiment 1 of this invention. この発明の実施の形態1の空気調和機の電気的構成を示すブロック図である。It is a block diagram which shows the electrical constitution of the air conditioner of Embodiment 1 of this invention. この発明の実施の形態2における空気調和機の冷媒回路図である。It is a refrigerant circuit figure of the air conditioner in Embodiment 2 of this invention. この発明の実施の形態3における空気調和機の冷媒回路図である。It is a refrigerant circuit figure of the air conditioner in Embodiment 3 of this invention. この発明の実施の形態4における空気調和機の冷媒回路図である。It is a refrigerant circuit figure of the air conditioner in Embodiment 4 of this invention. この発明の実施の形態1〜4を組み合わせた場合の空気調和機の冷媒回路図である。It is a refrigerant circuit figure of the air conditioner at the time of combining Embodiments 1-4 of this invention.

符号の説明Explanation of symbols

1 圧縮機、2 室外用電磁弁、3 室外凝縮器、4 室外凝縮器用逆止弁、5 絞り装置、6 冷却器、7 室内用電磁弁、8 室内凝縮器、9 室内凝縮器用逆止弁、10,11 吐出配管、12,13 液配管、14 吸入配管、15 吐出配管、16 液配管、20 室外ファン、21 室内ファン、31 バイパス管、32 バイパス電磁弁、33 バイパス回路用逆止弁、41 電子式膨張弁、51 アキュムレータ、52 吸入配管、101 室外温度センサ、103 制御部。
1 compressor, 2 outdoor solenoid valve, 3 outdoor condenser, 4 outdoor condenser check valve, 5 throttle device, 6 cooler, 7 indoor solenoid valve, 8 indoor condenser, 9 indoor condenser check valve, 10, 11 Discharge pipe, 12, 13 Liquid pipe, 14 Suction pipe, 15 Discharge pipe, 16 Liquid pipe, 20 Outdoor fan, 21 Indoor fan, 31 Bypass pipe, 32 Bypass solenoid valve, 33 Bypass circuit check valve, 41 Electronic expansion valve, 51 accumulator, 52 suction pipe, 101 outdoor temperature sensor, 103 control unit.

Claims (12)

圧縮機と、室外用電磁弁と、室外凝縮器と、絞り装置と、冷却器とを順次冷媒配管で接続し、さらに、圧縮機と室外用電磁弁との間から分岐し、室内用電磁弁及び室内凝縮器を順次冷媒配管で接続して前記絞り装置に合流する冷凍サイクルと、
前記室外用電磁弁と前記室内用電磁弁とを制御して前記圧縮機の準備運転を行う制御部とを備え、
前記制御部は、前記室外用電磁弁を開、前記室内用電磁弁を閉として前記圧縮機を運転する室外冷媒回収運転を行った後、前記室外用電磁弁を開、前記室内用電磁弁を開として前記圧縮機を運転する室内冷媒回収運転を、前記準備運転として行い、
前記冷凍サイクルの高圧側に液溜めを設けることなく、前記準備運転を行うことで冷凍サイクル内の冷媒不足を解消することを特徴とする空気調和機。
A compressor, an outdoor solenoid valve, an outdoor condenser, a throttling device, and a cooler are sequentially connected by a refrigerant pipe, and further branched from between the compressor and the outdoor solenoid valve. And a refrigerating cycle in which indoor condensers are sequentially connected by refrigerant piping and merged with the expansion device,
A controller for controlling the outdoor solenoid valve and the indoor solenoid valve to perform a preparatory operation of the compressor;
The controller opens the outdoor solenoid valve, closes the indoor solenoid valve, performs an outdoor refrigerant recovery operation for operating the compressor, then opens the outdoor solenoid valve, and opens the indoor solenoid valve. The indoor refrigerant recovery operation for operating the compressor as open is performed as the preparatory operation,
An air conditioner characterized by eliminating the refrigerant shortage in the refrigeration cycle by performing the preparatory operation without providing a liquid reservoir on the high pressure side of the refrigeration cycle.
前記制御部は、前記準備運転を圧縮機起動時に実施することを特徴とする請求項1記載の空気調和機。 The air conditioner according to claim 1, wherein the controller performs the preparatory operation when the compressor is started . 前記制御部は、前記準備運転を運転モード切替時に実施することを特徴とする請求項1又は請求項2記載の空気調和機。 The air conditioner according to claim 1 or 2, wherein the controller performs the preparatory operation when the operation mode is switched . 前記制御部は、前記準備運転を所定時間の同一運転モード継続時に実施することを特徴とする請求項1乃至請求項3の何れかに記載の空気調和機。 The air conditioner according to any one of claims 1 to 3, wherein the controller performs the preparation operation when the same operation mode is continued for a predetermined time . 前記圧縮機を周波数可変型圧縮機で構成し、前記制御部は、前記準備運転の際、前記周波数可変型圧縮機の運転周波数を上げて冷媒回収速度を上昇させることを特徴とする請求項1乃至請求項4の何れかに記載の空気調和機。 2. The compressor according to claim 1, wherein the compressor is a variable frequency compressor, and the control unit increases a refrigerant recovery rate by increasing an operating frequency of the variable frequency compressor during the preparatory operation. The air conditioner in any one of Claims 4 thru | or 4. 室内温度検知器又は/及び室外温度検知器を設け、前記制御部は、前記検知器の検出結果に応じて前記準備運転の室内外冷媒回収運転の時間を制御することを特徴とする請求項1乃至請求項5の何れかに記載の空気調和機。 The indoor temperature detector or / and the outdoor temperature detector are provided, and the control unit controls the time of the indoor / outdoor refrigerant recovery operation in the preparatory operation according to the detection result of the detector. The air conditioner according to any one of claims 5 to 5. 圧縮機の吸入側の圧力を検出する低圧検知手段又は/及び前記圧縮機の吐出温度を検出する吐出温度検知手段を設け、前記制御部は、前記準備運転を低圧圧力低下時又は/及び吐出温度上昇時に実施する制御を行うことを特徴とする請求項1乃至請求項6の何れかに記載の空気調和機。 Low pressure detection means for detecting the pressure on the suction side of the compressor and / or discharge temperature detection means for detecting the discharge temperature of the compressor are provided, and the control unit performs the preparatory operation when the low pressure is lowered or / and the discharge temperature. The air conditioner according to any one of claims 1 to 6, wherein control is performed when the vehicle is lifted . 前記室外凝縮器と前記絞り装置との間の配管から圧縮機の吸入側の配管にバイパスするバイパス回路と、該バイパス回路を開閉する電磁弁とを備え、前記制御部は、前記準備運転の際に、前記バイパス回路の前記電磁弁を開くように制御することを特徴とする請求項1乃至請求項7の何れかに記載の空気調和機。 A bypass circuit that bypasses a pipe between the outdoor condenser and the throttle device to a pipe on the suction side of the compressor; and an electromagnetic valve that opens and closes the bypass circuit, and the control unit performs the preparatory operation. The air conditioner according to any one of claims 1 to 7, wherein the electromagnetic valve of the bypass circuit is controlled to open . 前記絞り装置として電子式膨張弁を使用したことを特徴とする請求項1乃至請求項8の何れかに記載の空気調和機。 The air conditioner according to any one of claims 1 to 8, wherein an electronic expansion valve is used as the throttle device . 前記制御部は、前記準備運転時に前記電子式膨張弁の開度を調節することを特徴とする請求項9記載の空気調和機。 The air conditioner according to claim 9 , wherein the control unit adjusts an opening degree of the electronic expansion valve during the preparatory operation . 前記圧縮機の吸入側に液冷媒が戻るのを阻止するアキュムレータを前記冷凍サイクルの低圧側に備えたことを特徴とする請求項1乃至請求項10の何れかに記載の空気調和機。 The air conditioner according to any one of claims 1 to 10, further comprising an accumulator that prevents liquid refrigerant from returning to the suction side of the compressor on a low-pressure side of the refrigeration cycle . 前記冷凍サイクル内に封入する冷媒としてR410Aを使用したことを特徴とする請求項1乃至請求項11の何れかに記載の空気調和機。   The air conditioner according to any one of claims 1 to 11, wherein R410A is used as a refrigerant sealed in the refrigeration cycle.
JP2005266261A 2005-09-14 2005-09-14 Air conditioner Active JP4668021B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005266261A JP4668021B2 (en) 2005-09-14 2005-09-14 Air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005266261A JP4668021B2 (en) 2005-09-14 2005-09-14 Air conditioner

Publications (2)

Publication Number Publication Date
JP2007078242A JP2007078242A (en) 2007-03-29
JP4668021B2 true JP4668021B2 (en) 2011-04-13

Family

ID=37938751

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005266261A Active JP4668021B2 (en) 2005-09-14 2005-09-14 Air conditioner

Country Status (1)

Country Link
JP (1) JP4668021B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104296415A (en) * 2014-10-31 2015-01-21 无锡同方人工环境有限公司 Multifunctional modular heat pump air-conditioning system

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5213372B2 (en) * 2007-07-09 2013-06-19 三菱電機株式会社 Air conditioner
JP5414598B2 (en) * 2010-03-30 2014-02-12 三菱電機株式会社 Air conditioner
JP5333365B2 (en) * 2010-07-07 2013-11-06 ダイキン工業株式会社 Air conditioner
JP6404539B2 (en) * 2012-04-09 2018-10-10 三菱電機株式会社 Air conditioner
JP5929450B2 (en) 2012-04-16 2016-06-08 三菱電機株式会社 Refrigeration cycle equipment
CN102853595A (en) * 2012-10-12 2013-01-02 天津商业大学 Refrigeration system
US9644877B2 (en) 2012-11-22 2017-05-09 Mitsubishi Electric Corporation Air-conditioning apparatus and operation control method therefor
CN105758044A (en) * 2016-03-01 2016-07-13 珠海格力节能环保制冷技术研究中心有限公司 Refrigeration system
CN110709648B (en) * 2017-06-13 2021-06-22 三菱电机株式会社 Air conditioner

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62190365A (en) * 1986-02-14 1987-08-20 三菱電機株式会社 Refrigerator
JPH05312433A (en) * 1992-05-11 1993-11-22 Sanyo Electric Co Ltd Freezer
JPH11142017A (en) * 1997-11-13 1999-05-28 Mitsubishi Electric Corp Air conditioner
JP2000094952A (en) * 1998-09-24 2000-04-04 Zexel Corp Air conditioning system for vehicle
JP2001194016A (en) * 1999-10-18 2001-07-17 Daikin Ind Ltd Freezing apparatus
JP2003302088A (en) * 2002-04-12 2003-10-24 Asahi Kogyosha Co Ltd Precision temperature/humidity control method and its device
JP2004182203A (en) * 2002-12-06 2004-07-02 Mitsubishi Heavy Ind Ltd Control method of vehicular air conditioner and vehicular air conditioner
JP2005043008A (en) * 2003-07-24 2005-02-17 Denso Corp Refrigerating cycle device

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62190365A (en) * 1986-02-14 1987-08-20 三菱電機株式会社 Refrigerator
JPH05312433A (en) * 1992-05-11 1993-11-22 Sanyo Electric Co Ltd Freezer
JPH11142017A (en) * 1997-11-13 1999-05-28 Mitsubishi Electric Corp Air conditioner
JP2000094952A (en) * 1998-09-24 2000-04-04 Zexel Corp Air conditioning system for vehicle
JP2001194016A (en) * 1999-10-18 2001-07-17 Daikin Ind Ltd Freezing apparatus
JP2003302088A (en) * 2002-04-12 2003-10-24 Asahi Kogyosha Co Ltd Precision temperature/humidity control method and its device
JP2004182203A (en) * 2002-12-06 2004-07-02 Mitsubishi Heavy Ind Ltd Control method of vehicular air conditioner and vehicular air conditioner
JP2005043008A (en) * 2003-07-24 2005-02-17 Denso Corp Refrigerating cycle device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104296415A (en) * 2014-10-31 2015-01-21 无锡同方人工环境有限公司 Multifunctional modular heat pump air-conditioning system

Also Published As

Publication number Publication date
JP2007078242A (en) 2007-03-29

Similar Documents

Publication Publication Date Title
JP4668021B2 (en) Air conditioner
EP1801520B1 (en) Air conditioning system
US6370889B2 (en) Method for controlling refrigerant for an air conditioner
US9897349B2 (en) Refrigeration cycle device
JP3925545B2 (en) Refrigeration equipment
US7617694B2 (en) Apparatus and method for controlling super-heating degree in heat pump system
JP5125116B2 (en) Refrigeration equipment
JP4069947B2 (en) Refrigeration equipment
US20090241569A1 (en) Heat pump type hot water supply outdoor apparatus
JP6138711B2 (en) Air conditioner
JP2010164257A (en) Refrigerating cycle device and method of controlling the refrigerating cycle device
JP2008082589A (en) Air conditioner
WO2019144616A1 (en) Heat pump system and defrosting control method therefor
JP5310101B2 (en) Air conditioner
JP5164527B2 (en) Air conditioner
JP5213372B2 (en) Air conditioner
EP3591311B1 (en) Refrigeration cycle device
JP2007271181A (en) Air conditioner
KR101414860B1 (en) Air conditioner and method of controlling the same
JP6372307B2 (en) Heat pump equipment
JP6584342B2 (en) Dehumidifying and drying equipment
CN213089945U (en) Air conditioner
JP6404539B2 (en) Air conditioner
KR20140094343A (en) An air conditioner and a control method the same
KR100767213B1 (en) Heat pump cycle system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080407

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100513

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100608

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100709

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110104

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110112

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140121

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4668021

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250