JP2020076516A - Heat pump cycle and heat pump type steam generation device - Google Patents

Heat pump cycle and heat pump type steam generation device Download PDF

Info

Publication number
JP2020076516A
JP2020076516A JP2018208559A JP2018208559A JP2020076516A JP 2020076516 A JP2020076516 A JP 2020076516A JP 2018208559 A JP2018208559 A JP 2018208559A JP 2018208559 A JP2018208559 A JP 2018208559A JP 2020076516 A JP2020076516 A JP 2020076516A
Authority
JP
Japan
Prior art keywords
pressure
refrigerant
heat pump
condenser
stage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2018208559A
Other languages
Japanese (ja)
Inventor
祐輔 大西
Yusuke Onishi
祐輔 大西
賢哲 安嶋
Kentetsu Yasujima
賢哲 安嶋
時空 吉田
Tokiaki Yoshida
時空 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP2018208559A priority Critical patent/JP2020076516A/en
Publication of JP2020076516A publication Critical patent/JP2020076516A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Heat-Pump Type And Storage Water Heaters (AREA)

Abstract

To provide a heat pump cycle and a heat pump type steam generation device capable of calculating a refrigerant flow rate without using a flow meter.SOLUTION: A heat pump cycle is formed by circularly connecting a two-stage compression mechanism, a condenser, an expansion mechanism generating a refrigerant with intermediate pressure and a refrigerant with low pressure and an evaporator, and has an intermediate route. The heat pump cycle includes: a decompression part; decompression part inlet pressure measurement means; decompression part inlet temperature measurement means; pressure loss measurement means measuring pressure loss generated in the decompression part; a density calculation part calculating refrigerant density flowing into the decompression part on the basis of the pressure measured by the decompression part inlet pressure measurement means and the temperature measured by the decompression part inlet temperature measurement means; and a flow rate calculation part calculating a flow rate of the refrigerant flowing in the condenser on the basis of the density calculated by the density calculation part and the pressure loss measured by the pressure loss measurement means.SELECTED DRAWING: Figure 1

Description

本発明は、ヒートポンプサイクルおよびヒートポンプ式蒸気生成装置に関するものである。   The present invention relates to a heat pump cycle and a heat pump type steam generator.

ヒートポンプ装置には、圧縮を二段階にし、一部冷媒を中間経路で高段圧縮入口側に導入することで圧縮機単段当たりの圧縮比を低減するようにしたものがある。この種のヒートポンプ装置では、低段側サイクルの冷媒流量を必要最小限とすることで低段側の圧縮動力を最小化することができ、単段サイクルに比べて効率を向上することが可能となる(例えば特許文献1参照)。   There is a heat pump device in which compression is performed in two stages and a partial refrigerant is introduced to a high stage compression inlet side in an intermediate path to reduce the compression ratio per single stage of the compressor. In this type of heat pump device, it is possible to minimize the compression power on the low-stage side by minimizing the refrigerant flow rate in the low-stage cycle, and it is possible to improve the efficiency compared to the single-stage cycle. (For example, see Patent Document 1).

特開2014−119157号公報JP, 2014-119157, A 特開2016−138715号公報JP, 2016-138715, A

ところで、ヒートポンプ装置において凝縮器によって被加熱媒体の加熱をする際に、その出力制御を行うためには凝縮器を流通する冷媒の流量を取得する必要がある。例えば特許文献2では、単段圧縮のヒートポンプサイクルにおいて圧縮機吸入圧力、圧縮機吸入温度、圧縮機回転数および圧縮機定数から冷媒の流量を演算する技術について開示されている。一方、中間経路からの冷媒を高段圧縮機入口に合流させる二段圧縮サイクルでは、高段圧縮機に吸入される冷媒の状態を測定することが難しく、従来の流量測定手段を用いることができない。二段圧縮サイクルにおいて高段側を流通する冷媒の流量を求めるためには、高段サイクルの流路に別途流量計を設ける必要があるが、流量計は高価であることから、二段圧縮サイクルにおいても廉価かつ簡易な手段で冷媒流量を求めることが望まれている。   By the way, when the medium to be heated is heated by the condenser in the heat pump device, it is necessary to obtain the flow rate of the refrigerant flowing through the condenser in order to control the output thereof. For example, Patent Document 2 discloses a technique for calculating the flow rate of a refrigerant from a compressor suction pressure, a compressor suction temperature, a compressor rotation speed, and a compressor constant in a single-stage compression heat pump cycle. On the other hand, in the two-stage compression cycle in which the refrigerant from the intermediate path joins the high-stage compressor inlet, it is difficult to measure the state of the refrigerant drawn into the high-stage compressor, and the conventional flow rate measuring means cannot be used. .. In order to obtain the flow rate of the refrigerant flowing through the high-stage side in the two-stage compression cycle, it is necessary to install a separate flow meter in the flow path of the high-stage cycle, but since the flow meter is expensive, the two-stage compression cycle It is also desired to obtain the refrigerant flow rate by a low cost and simple means.

本発明は、上記の課題に鑑みてなされたものであって、二段圧縮サイクルにおいても流量計を用いずに凝縮器を流通する冷媒流量を求めることができるヒートポンプサイクルおよびヒートポンプ式蒸気生成装置を提供することを目的とする。   The present invention has been made in view of the above problems, and a heat pump cycle and a heat pump type steam generator that can determine the flow rate of a refrigerant flowing through a condenser without using a flow meter even in a two-stage compression cycle. The purpose is to provide.

上記目的を達成するため、本発明に係るヒートポンプサイクルは、低段圧縮機構と高段圧縮機構とを持つ二段圧縮機構と、凝縮器と、高圧の冷媒を膨張し中間圧の冷媒および低圧の冷媒を生成する膨張機構と、低圧の冷媒を導入する蒸発器とを環状に接続し、前記中間圧の冷媒を前記高段圧縮機構に供給する中間経路を備えたヒートポンプサイクルにおいて、前記凝縮器と前記膨張機構との間に設けられ、前記凝縮器を通過した冷媒を減圧する減圧部と、前記高段圧縮機構から前記減圧部までの冷媒圧力を測定する減圧部入口圧力測定手段と、前記凝縮器から前記減圧部までの冷媒温度を測定する減圧部入口温度測定手段と、前記減圧部で生じた圧力損失を測定する圧力損失測定手段と、前記減圧部入口圧力測定手段で測定された圧力と前記減圧部入口温度測定手段で測定された温度とに基づき、前記前記減圧部に流入する冷媒密度を算出する密度算出部と、前記密度算出部で算出された密度と前記圧力損失測定手段で測定された圧力損失とに基づき、前記凝縮器を流通する冷媒の流量を算出する流量算出部と、を備えることを特徴とする。 To achieve the above object, the heat pump cycle according to the present invention includes a two-stage compression mechanism having a low-stage compression mechanism and a high-stage compression mechanism, a condenser, and a medium-pressure refrigerant and a low-pressure medium for expanding a high-pressure refrigerant. An expansion mechanism that generates a refrigerant and an evaporator that introduces a low-pressure refrigerant are connected in an annular shape, and in the heat pump cycle including an intermediate path that supplies the intermediate-pressure refrigerant to the high-stage compression mechanism, the condenser and A decompression unit provided between the expansion mechanism and decompressing the refrigerant that has passed through the condenser, a decompression unit inlet pressure measuring unit that measures the refrigerant pressure from the high-stage compression mechanism to the decompression unit, and the condensation Pressure reducing section inlet temperature measuring means for measuring the refrigerant temperature from the pressure reducing unit to the pressure reducing section, pressure loss measuring means for measuring the pressure loss generated in the pressure reducing section, and pressure measured by the pressure reducing section inlet pressure measuring means. Based on the temperature measured by the pressure reducing section inlet temperature measuring means, a density calculating section for calculating the density of the refrigerant flowing into the pressure reducing section, the density calculated by the density calculating section and the pressure loss measuring means. And a flow rate calculation unit that calculates the flow rate of the refrigerant flowing through the condenser based on the determined pressure loss.

また、本発明に係るヒートポンプ式蒸気生成装置は、前記蒸発器に熱源水を供給する熱源水供給部と、前記凝縮器に前記被加熱媒体として水を供給し、生成された蒸気を外部に送出する蒸気生成部と、をさらに備えることを特徴とする。 In addition, the heat pump type steam generator according to the present invention supplies water as the heated medium to the heat source water supply unit that supplies heat source water to the evaporator and the condenser, and sends the generated steam to the outside. And a steam generating unit for controlling the temperature.

本発明によれば、高価かつ複雑な構造の流量計を用いずに凝縮器を流通する冷媒流量を求めることが可能となるため、装置のコスト低減および構造の簡素化による装置全体の信頼性を向上させることが可能となる。   According to the present invention, it is possible to determine the flow rate of the refrigerant flowing through the condenser without using an expensive and complicated flow meter, so that the reliability of the entire device can be reduced by reducing the cost of the device and simplifying the structure. It is possible to improve.

また本発明によれば、減圧部によって生じた圧力損失が、ヒートポンプサイクルにおける膨張機構による減圧膨張の一部を担うような構成となっているため、圧力損失による熱効率の低下を防止することが可能となる。   Further, according to the present invention, since the pressure loss caused by the pressure reducing portion plays a part of the pressure reducing expansion by the expansion mechanism in the heat pump cycle, it is possible to prevent the decrease in thermal efficiency due to the pressure loss. Becomes

本発明の実施の形態にかかるヒートポンプ式蒸気生成装置の回路構成図である。It is a circuit block diagram of the heat pump type | formula steam generator concerning embodiment of this invention. 本発明の実施の形態にかかるヒートポンプサイクルのP−H線図である。It is a PH diagram of the heat pump cycle concerning embodiment of this invention. 本発明の実施の形態にかかる制御部のブロック図である。It is a block diagram of a control unit according to an embodiment of the present invention. 本発明の実施の形態にかかるヒートポンプ式蒸気生成装置の制御手順を示すフローチャートである。It is a flow chart which shows the control procedure of the heat pump type steam generator concerning an embodiment of the invention. 本発明の変形例にかかるヒートポンプ式蒸気生成装置の回路構成図である。It is a circuit block diagram of the heat pump type | formula steam generator concerning the modification of this invention. 本発明の変形例にかかるヒートポンプサイクルのP−H線図である。It is a PH diagram of the heat pump cycle concerning the modification of this invention.

(第1実施形態)
以下、図面を参照しながら本発明にかかるヒートポンプ式蒸気生成装置の好適な実施の形態について詳細に説明する。
(First embodiment)
Hereinafter, preferred embodiments of a heat pump steam generator according to the present invention will be described in detail with reference to the drawings.

図1は、本発明の実施の形態であるヒートポンプ式蒸気生成装置1の構成を示す回路構成図である。ここで例示するヒートポンプサイクル100は、二段圧縮二段膨張サイクルにより、工場排水や使用済冷却水等の排温水から排熱を回収して被加熱媒体である被加熱水を加熱し、温水や蒸気を生成するもので、配管によって順次接続された一体型二段圧縮機10、凝縮器21、高段膨張弁(高段膨張機構)51、気液分離器31、低段膨張弁(低段膨張機構)52、蒸発器41を備えている。   FIG. 1 is a circuit configuration diagram showing a configuration of a heat pump steam generator 1 according to an embodiment of the present invention. The heat pump cycle 100 illustrated here recovers exhaust heat from waste hot water such as factory drainage and used cooling water by a two-stage compression two-stage expansion cycle to heat heated water as a medium to be heated, An integrated two-stage compressor 10, a condenser 21, a high-stage expansion valve (high-stage expansion mechanism) 51, a gas-liquid separator 31, a low-stage expansion valve (low stage) An expansion mechanism) 52 and an evaporator 41 are provided.

一体型二段圧縮機10は、低段圧縮部(低段圧縮機構)11および高段圧縮部(高段圧縮機構)12が一体となった二段圧縮機(多段圧縮機)であり、低段圧縮部11の吐出口と高段圧縮部12の吸入口との間の中間ポート12aは一体型二段圧縮機10の筺体内部に設けられている。一体型二段圧縮機10は例えば1軸型スクロール圧縮機である。低段圧縮部(低段圧縮機構)11では蒸発器41から供給された冷媒を中間圧まで圧縮し、高段圧縮部12の中間吸入ポート12aに供給する。高段圧縮部12は中間吸入ポート12aから導入された中間圧冷媒を高圧まで圧縮し、凝縮器21に供給する。凝縮器21は、高段圧縮部12から供給された冷媒と、蒸気生成部200を流通する被加熱水との熱交換により、水を蒸発させ蒸気を生成するとともに冷媒を凝縮させる。低段圧縮部11および高段圧縮部12としては、別個に構成された圧縮機を採用してもよい。 The integrated two-stage compressor 10 is a two-stage compressor (multistage compressor) in which a low-stage compression unit (low-stage compression mechanism) 11 and a high-stage compression unit (high-stage compression mechanism) 12 are integrated, An intermediate port 12 a between the discharge port of the stage compression unit 11 and the suction port of the high stage compression unit 12 is provided inside the housing of the integrated two-stage compressor 10. The integrated two-stage compressor 10 is, for example, a single-axis scroll compressor. The low-stage compression section (low-stage compression mechanism) 11 compresses the refrigerant supplied from the evaporator 41 to an intermediate pressure and supplies the refrigerant to the intermediate suction port 12 a of the high-stage compression section 12. The high-stage compression unit 12 compresses the intermediate-pressure refrigerant introduced from the intermediate suction port 12 a to a high pressure and supplies it to the condenser 21. The condenser 21 heat-exchanges the refrigerant supplied from the high-stage compression section 12 and the heated water flowing through the steam generation section 200 to evaporate water to generate steam and condense the refrigerant. As the low-stage compression section 11 and the high-stage compression section 12, separately configured compressors may be adopted.

減圧部61は、上流側および下流側の管路よりも内径が小さい細管路により構成され、凝縮器21を通過して凝縮した液相の冷媒に対して圧力損失を付与する。減圧部61の上流側配管と下流側配管には、減圧部で冷媒に生じた圧力損失を測定可能とする差圧計(圧力損失測定手段)62が接続される。高段膨張弁51は、減圧部61を通過した液相の冷媒をさらに減圧して気液二相流とし、気液分離器31に供給する。 The decompression unit 61 is configured by a thin pipe having an inner diameter smaller than that of the upstream and downstream pipes, and imparts a pressure loss to the liquid-phase refrigerant condensed through the condenser 21. A differential pressure gauge (pressure loss measuring means) 62 capable of measuring the pressure loss generated in the refrigerant in the pressure reducing section is connected to the upstream side pipe and the downstream side pipe of the pressure reducing section 61. The high-stage expansion valve 51 further depressurizes the liquid-phase refrigerant that has passed through the depressurization unit 61 to form a gas-liquid two-phase flow, and supplies the gas-liquid separator 31.

気液分離器31は、高段膨張弁51から供給された冷媒を導入する上部導入口31a、内部で気液分離された冷媒の内、主に気相の冷媒を外部に吐出する上部吐出口31bおよび主に液相の冷媒を外部に吐出する下部吐出口31cを備えている。   The gas-liquid separator 31 includes an upper inlet 31a for introducing the refrigerant supplied from the high-stage expansion valve 51, and an upper outlet for mainly discharging a gas-phase refrigerant out of the refrigerant that has been gas-liquid separated inside. 31b and a lower discharge port 31c for discharging mainly the liquid-phase refrigerant to the outside.

低段膨張弁52は、下部吐出口31cを通じて気液分離器31から吐出された冷媒を減圧して蒸発器41に供給する。高段膨張弁51及び低段膨張弁52としては、与えられた指令に応じて開度を変更することのできる電磁弁を適用している。   The low-stage expansion valve 52 reduces the pressure of the refrigerant discharged from the gas-liquid separator 31 through the lower discharge port 31c and supplies it to the evaporator 41. As the high-stage expansion valve 51 and the low-stage expansion valve 52, electromagnetic valves whose opening can be changed according to a given command are applied.

蒸発器41は、低段膨張弁52を通過した冷媒と熱源水供給部300から供給される熱源水との間で熱交換を行うことにより冷媒を蒸発させ、低段圧縮部11に供給する。   The evaporator 41 evaporates the refrigerant by exchanging heat between the refrigerant that has passed through the low stage expansion valve 52 and the heat source water supplied from the heat source water supply unit 300, and supplies the refrigerant to the low stage compression unit 11.

また、ヒートポンプサイクル100には、気液分離器31の上部吐出口31bと高段圧縮部12の中間吸入ポート12aとの間を連通するように中間経路71が設けてある。中間経路71は、気液分離器31の上部に貯留された冷媒を低段圧縮部11から吐出された冷媒と共に高段圧縮部12の中間吸入ポート12aに供給する。   Further, the heat pump cycle 100 is provided with an intermediate path 71 so as to connect the upper discharge port 31 b of the gas-liquid separator 31 and the intermediate suction port 12 a of the high-stage compression section 12. The intermediate path 71 supplies the refrigerant stored in the upper part of the gas-liquid separator 31 to the intermediate suction port 12 a of the high-stage compression section 12 together with the refrigerant discharged from the low-stage compression section 11.

密度測定手段80は、凝縮器21と減圧部61の間に設けられた減圧部入口圧力センサ(減圧部入口圧力測定手段)81および減圧部入口温度センサ(減圧部入口温度測定手段)82からなる。減圧部入口圧力センサ81は減圧部61に流入する冷媒の圧力(減圧部入口冷媒圧力)PHを、減圧部入口温度センサ82は減圧部61に流入する冷媒の温度(減圧部入口冷媒温度)Taをそれぞれ測定する。また、凝縮器入口温度センサ(凝縮器入口温度測定手段)83は高段圧縮部12と凝縮器21の間に設けられ、凝縮器21に流入する冷媒の温度(凝縮器入口冷媒温度)Tbを測定する。制御部400は、ヒートポンプサイクル100内を流通する冷媒の状態、例えば差圧計62、減圧部入口圧力センサ81、減圧部入口温度センサ82、凝縮器入口温度センサ83、その他図示しない各種センサの測定値に基づき、一体型二段圧縮機10の運転停止制御および回転数制御、高段膨張弁51および低段膨張弁52の開度制御などを行う。 The density measuring means 80 includes a pressure reducing portion inlet pressure sensor (pressure reducing portion inlet pressure measuring means) 81 and a pressure reducing portion inlet temperature sensor (pressure reducing portion inlet temperature measuring means) 82 provided between the condenser 21 and the pressure reducing portion 61. .. The pressure reducing portion inlet pressure sensor 81 indicates the pressure of the refrigerant flowing into the pressure reducing portion 61 (pressure reducing portion inlet refrigerant pressure) PH, and the pressure reducing portion inlet temperature sensor 82 indicates the temperature of the refrigerant flowing into the pressure reducing portion 61 (pressure reducing portion inlet refrigerant temperature) Ta. Are measured respectively. Further, a condenser inlet temperature sensor (condenser inlet temperature measuring means) 83 is provided between the high-stage compression section 12 and the condenser 21, and measures the temperature of the refrigerant flowing into the condenser 21 (condenser inlet refrigerant temperature) Tb. taking measurement. The control unit 400 controls the state of the refrigerant flowing in the heat pump cycle 100, for example, the measured values of the differential pressure gauge 62, the pressure reducing unit inlet pressure sensor 81, the pressure reducing unit inlet temperature sensor 82, the condenser inlet temperature sensor 83, and other various sensors not shown. Based on the above, operation stop control and rotation speed control of the integrated two-stage compressor 10 and opening degree control of the high-stage expansion valve 51 and the low-stage expansion valve 52 are performed.

続いて図2に基づいてヒートポンプサイクル100の熱サイクルを示すP−H線図について説明する。蒸発器41ではLg点からLa点へ移り、飽和蒸気線を超えて過熱蒸気となる。低段圧縮部11では圧縮により低圧PLのLa点から中間圧PMのLb点を経由して圧力を維持したままLb点へ移る。比エンタルピhがLb点からLb点まで下がるのは、中間経路71からの中圧気相冷媒が合流するためである。高段圧縮部12では圧縮により中間圧PMのLb点から比エンタルピhをhbまで増大させつつ高圧PHのLc点へ移る。 Subsequently, a PH diagram showing a heat cycle of the heat pump cycle 100 will be described based on FIG. 2. In the evaporator 41, it moves from the Lg point to the La point, and exceeds the saturated vapor line to become superheated vapor. In the low-stage compression section 11, the compression moves from the La point of the low pressure PL to the Lb point while maintaining the pressure via the Lb 0 point of the intermediate pressure PM. The reason that the specific enthalpy h drops from the Lb 0 point to the Lb point is that the medium-pressure gas-phase refrigerant from the intermediate path 71 merges. In the high-stage compression section 12, the compression moves from the Lb point of the intermediate pressure PM to the Lc point of the high pressure PH while increasing the specific enthalpy h to hb.

凝縮器21では凝縮により高圧PHを維持したままLc点からLd点に移り、飽和蒸気線を超え、さらに飽和液線を越えて過冷却状態となる。ここで、凝縮器21内では冷媒と被加熱媒体とが共に気液二相状態で熱交換が行われる。飽和液線を越えてのさらなる熱交換は熱交換効率の低下要因となるため、Ld点は可能な限り飽和液線に近い比エンタルピとなるよう設計されることが望ましい。減圧部61では、与えられた圧力損失により飽和液線を越えない範囲で比エンタルピhaを維持したままLd点から圧力PH‘のLd点まで減圧される。前述の通りLd点が飽和液線に近い位置となるため、減圧部61を通過した冷媒が飽和液線を越えないためには、減圧部61によって与えられる圧力損失は所望の精度を満たす範囲で可能な限り小さくすることが望ましい。本実施形態では、例えば高圧PHが2MPa、中間圧PMが1MPaである場合、減圧部61で生じる圧力損失は10kPa以上であればよく、50kPa以上であることがより望ましい。この場合、Ld点と飽和液線との圧力差は余裕をもって100kPa以上となるように運用されることが望ましい。高段膨張弁51では比エンタルピhaを維持したまま減圧により圧力PH‘のLd点から中間圧PMのLe点に移り、再び飽和液線を超えて気液二相となる。気液分離器31では中間圧PMの冷媒が気相と液相に分離されて、気相は飽和蒸気線上のLb点へと移り、低段圧縮部11で圧縮されたLb点の冷媒と合流し、Lb点に移る。液相は飽和液線上のLf点へと移る。低段膨張弁52では減圧により中間圧PMのLf点から低圧PLのLg点に移る。 In the condenser 21, due to condensation, the high-pressure PH is maintained and the point moves from the Lc point to the Ld point, exceeds the saturated vapor line, and further exceeds the saturated liquid line, resulting in a supercooled state. Here, in the condenser 21, the refrigerant and the medium to be heated both exchange heat in a gas-liquid two-phase state. Since further heat exchange beyond the saturated liquid line causes a decrease in heat exchange efficiency, it is desirable that the Ld point be designed to have a specific enthalpy as close as possible to the saturated liquid line. In the decompression unit 61, the pressure is reduced from the Ld point to the Ld 1 point of the pressure PH ′ while maintaining the specific enthalpy ha within a range not exceeding the saturated liquid line due to the given pressure loss. As described above, since the Ld point is close to the saturated liquid line, in order that the refrigerant passing through the pressure reducing unit 61 does not cross the saturated liquid line, the pressure loss provided by the pressure reducing unit 61 is within a range that satisfies the desired accuracy. It is desirable to make it as small as possible. In the present embodiment, for example, when the high pressure PH is 2 MPa and the intermediate pressure PM is 1 MPa, the pressure loss generated in the pressure reducing section 61 may be 10 kPa or more, and more preferably 50 kPa or more. In this case, it is desirable that the pressure difference between the Ld point and the saturated liquid line be 100 kPa or more with a margin. In the high-stage expansion valve 51, while maintaining the specific enthalpy ha, the pressure shifts from the Ld 1 point of the pressure PH ′ to the Le point of the intermediate pressure PM, and again exceeds the saturated liquid line to become a gas-liquid two-phase. In the gas-liquid separator 31, the intermediate-pressure PM refrigerant is separated into a gas phase and a liquid phase, the gas phase moves to the point Lb 1 on the saturated vapor line, and the refrigerant at the point Lb 0 compressed in the low-stage compressor 11 is compressed. Merge with and move to Lb point. The liquid phase moves to point Lf on the saturated liquid line. The low-stage expansion valve 52 moves from the Lf point of the intermediate pressure PM to the Lg point of the low pressure PL by depressurization.

続いて凝縮器21を流通する冷媒の流量算出方法について説明する。減圧部61で生じる圧力損失ΔPは一般的に
ΔP=fρ{V/(πD/4)}(1)
で表すことができる。ρは減圧部61に導入される冷媒の密度、Vは減圧部61を流通する冷媒の体積流量、Dは減圧部61の配管直径、fは冷媒特性や減圧部61の配管状態(配管形状、管壁の粗度など)などに基づいて求められる減圧パラメータ式である。なお、{V/(πD/4)}は減圧部61を流通する冷媒の流速を示す。減圧パラメータ式fは実験によって各種条件における値をあらかじめ取得することにより、得ることができる。式(1)において、πは定数であり、配管直径Dは装置によりあらかじめ定まる値であるため、減圧パラメータ式f内に含めることができる。これにより、圧力損失ΔP、密度ρ、冷媒の体積流量Vの関係は
ΔP=fρV (2)
として表すことができる。これにより、減圧部61に導入される冷媒の密度(温度および圧力)ρおよび減圧部61で生じた圧力損失ΔPに基づき、式(2)を用いて減圧部61を流通する冷媒の体積流量V、つまり凝縮器21を流通する冷媒の質量流量を求めることができる。
Next, a method of calculating the flow rate of the refrigerant flowing through the condenser 21 will be described. The pressure loss [Delta] P f caused by the pressure reducing portion 61 is generally ΔP f = fρ {V / ( πD 2/4)} 2 (1)
Can be expressed as ρ is the density of the refrigerant introduced into the pressure reducing section 61, V is the volumetric flow rate of the refrigerant flowing through the pressure reducing section 61, D is the pipe diameter of the pressure reducing section 61, f is the refrigerant characteristics and the piping state of the pressure reducing section 61 (pipe shape, This is a decompression parameter formula calculated based on, for example, the roughness of the pipe wall. Incidentally, {V / (πD 2/ 4)} indicates the flow rate of refrigerant through the evacuating portion 61. The decompression parameter formula f can be obtained by previously acquiring values under various conditions through experiments. In Expression (1), π is a constant, and the pipe diameter D is a value that is predetermined by the device, and thus can be included in the decompression parameter expression f. Accordingly, the relationship among the pressure loss ΔP f , the density ρ, and the volumetric flow rate V of the refrigerant is ΔP f = fρV 2 (2)
Can be expressed as Accordingly, based on the density (temperature and pressure) ρ of the refrigerant introduced into the pressure reducing section 61 and the pressure loss ΔP f generated in the pressure reducing section 61, the volumetric flow rate of the refrigerant flowing through the pressure reducing section 61 is calculated using equation (2). V, that is, the mass flow rate of the refrigerant flowing through the condenser 21 can be obtained.

図3に示すように、制御部400は、記憶部410と、演算部420と、回転数制御部430と開度制御部440とを有する。制御部400は必ずしも装置の内部に設けられている必要はなく、例えば通信回線を介して接続されていてもよい。記憶部410、演算部420、回転数制御部430および開度制御部440は必ずしも一体的に設けられている必要はなく、例えば記憶部410はクラウド式であってもよい。   As shown in FIG. 3, the control unit 400 includes a storage unit 410, a calculation unit 420, a rotation speed control unit 430, and an opening degree control unit 440. The control unit 400 does not necessarily have to be provided inside the device, and may be connected via a communication line, for example. The storage unit 410, the calculation unit 420, the rotation speed control unit 430, and the opening degree control unit 440 do not necessarily have to be integrally provided. For example, the storage unit 410 may be a cloud type.

記憶部410はプログラムやデータを記憶する部分であり、例えばハードディスクであって減圧パラメータ式f、減圧部入口冷媒温度Ta、凝縮器入口冷媒温度Tb、減圧部入口冷媒圧力PH、圧力損失ΔPを示すデータを記憶している。これらの値は、直接的な数値として記憶されていてもよいし、1以上のパラメータから何らかの変換によって求められる間接的な記憶であってもよく、実質的に減圧パラメータ式f、減圧部入口冷媒温度Ta、凝縮器入口冷媒温度Tb、減圧部入口冷媒圧力PH、圧力損失ΔPを示すデータであればよい。 The storage unit 410 is a unit that stores programs and data, and is, for example, a hard disk, and stores the decompression parameter formula f, the decompression unit inlet refrigerant temperature Ta, the condenser inlet refrigerant temperature Tb, the decompression unit inlet refrigerant pressure PH, and the pressure loss ΔP f . It stores the data shown. These values may be stored as direct numerical values, or may be indirect storage obtained by some conversion from one or more parameters. The data may be data indicating the temperature Ta, the condenser inlet refrigerant temperature Tb, the pressure reducing section inlet refrigerant pressure PH, and the pressure loss ΔP f .

演算部420は、密度算出部421と、流量算出部422と、加熱出力算出部423とを有する。これらの各算出部は演算部420の中で明確に区別される必要はなく、例えば一部が重複していてもよいし、いずれかの算出部が他の算出部に含まれていてもよい。演算部420は、例えば、CPU(Central Processing Unit)等の処理装置にプログラムを実行させること、すなわち、ソフトウェアにより実現してもよいし、IC(Integrated Circuit)等のハードウェアにより実現してもよいし、ソフトウェア及びハードウェアを併用して実現してもよい。   The calculation unit 420 has a density calculation unit 421, a flow rate calculation unit 422, and a heating output calculation unit 423. It is not necessary for each of these calculation units to be clearly distinguished in the calculation unit 420. For example, some calculation units may overlap, and one calculation unit may be included in another calculation unit. .. The arithmetic unit 420 may be implemented by causing a processing device such as a CPU (Central Processing Unit) to execute a program, that is, by software, or by hardware such as an IC (Integrated Circuit). However, it may be realized by using software and hardware together.

密度算出部421は、減圧部入口冷媒温度Taおよび減圧部入口冷媒圧力PHに基づいて、減圧部61に導入される冷媒の密度ρを算出する。 The density calculating unit 421 calculates the density ρ of the refrigerant introduced into the pressure reducing unit 61 based on the pressure reducing unit inlet refrigerant temperature Ta and the pressure reducing unit inlet refrigerant pressure PH.

流量算出部422は、密度算出部421で算出された冷媒の密度ρおよび圧力損失ΔPに基づき、減圧部61を流通する冷媒の体積流量Vを算出する。 The flow rate calculation unit 422 calculates the volume flow rate V of the refrigerant flowing through the pressure reducing unit 61 based on the density ρ of the refrigerant and the pressure loss ΔP f calculated by the density calculation unit 421.

加熱出力算出部423は、凝縮器21内を流通する冷媒が被加熱媒体を加熱する熱出力Qを算出する。加熱出力算出部423は、まず、減圧部入口冷媒圧力PHおよび減圧部入口冷媒温度Taに基づいて凝縮器20の吐出口におけるエンタルピhaを、減圧部入口冷媒圧力PHおよび凝縮器入口冷媒温度Tbに基づいて凝縮器20の吸入口におけるエンタルピhbをそれぞれ算出する。また、質量流量vをv=ρVの式に基づいて計算する。そして加熱出力Qを、Q=v・(hb−ha)として求める。 The heating output calculation unit 423 calculates the thermal output Q by which the refrigerant flowing in the condenser 21 heats the medium to be heated. The heating output calculation unit 423 first sets the enthalpy ha at the discharge port of the condenser 20 to the pressure reducing unit inlet refrigerant pressure PH and the condenser inlet refrigerant temperature Tb based on the pressure reducing unit inlet refrigerant pressure PH and the pressure reducing unit inlet refrigerant temperature Ta. Based on this, the enthalpy hb at the suction port of the condenser 20 is calculated. Further, the mass flow rate v is calculated based on the equation of v = ρV. Then, the heating output Q is obtained as Q = v · (hb−ha).

回転数制御部430は、凝縮器21による加熱出力Qが目標値となるように低段圧縮部11および高段圧縮部12の回転数制御を行い、冷媒の体積流量Vが調整される。低段圧縮部11と高段圧縮部12とが独立した複数台の圧縮機である場合、回転数制御部430は、低段圧縮部11の回転数を一定とし、高段圧縮部12のみの回転数制御を行ってもよい。また、蒸発器41に供給される熱源水の流量や、凝縮器21に供給される被加熱媒体の流量をさらに制御してもよい。 The rotation speed control unit 430 controls the rotation speeds of the low-stage compression unit 11 and the high-stage compression unit 12 so that the heating output Q of the condenser 21 becomes a target value, and the volumetric flow rate V of the refrigerant is adjusted. When the low-stage compression unit 11 and the high-stage compression unit 12 are a plurality of independent compressors, the rotation speed control unit 430 keeps the rotation speed of the low-stage compression unit 11 constant and only the high-stage compression unit 12 operates. Rotational speed control may be performed. Further, the flow rate of the heat source water supplied to the evaporator 41 and the flow rate of the heated medium supplied to the condenser 21 may be further controlled.

開度制御部440は、減圧部入口冷媒圧力PHおよび圧力損失ΔPに基づき、高段膨張弁51を通過後の冷媒圧力が目標値となるように高段膨張弁51の開度制御を行う。開度制御部440は、低段膨張弁52の開度制御をさらに行ってもよい。この場合、例えば冷暖膨張弁52の開度は図示しない中間圧力センサに基づき蒸発器41を流通する冷媒の流量が一定になるように制御を行う。なお、蒸発器41および低段圧縮部11を流通する冷媒の流量は、蒸発器41と低段圧縮部11との間に温度センサおよび圧力センサを設けることで、低段圧縮部11の特性値から従来の流量測定手法により求めることができる。 The opening control unit 440 controls the opening of the high-stage expansion valve 51 based on the pressure reducing unit inlet refrigerant pressure PH and the pressure loss ΔP f so that the refrigerant pressure after passing through the high-stage expansion valve 51 reaches a target value. .. The opening control section 440 may further control the opening of the low-stage expansion valve 52. In this case, for example, the opening degree of the cooling / warming expansion valve 52 is controlled based on an intermediate pressure sensor (not shown) so that the flow rate of the refrigerant flowing through the evaporator 41 becomes constant. It should be noted that the flow rate of the refrigerant flowing through the evaporator 41 and the low-stage compression section 11 is set to a characteristic value of the low-stage compression section 11 by providing a temperature sensor and a pressure sensor between the evaporator 41 and the low-stage compression section 11. Can be obtained from the conventional flow rate measurement method.

図4は、ヒートポンプ式蒸気生成装置1の制御手順を示すフローチャートであり、本実施の形態にかかる流量演算方法が含まれる。この手順は微小時間ごとに繰り返し実行される。 FIG. 4 is a flowchart showing the control procedure of the heat pump steam generator 1, which includes the flow rate calculation method according to the present embodiment. This procedure is repeatedly executed every minute time.

ステップS1は密度算出ステップであり、密度算出部421により減圧部61に導入される冷媒の密度ρが算出される。ステップS2は流量算出ステップであり、流量算出部422により減圧部61を流通する冷媒の体積流量Vが算出される。ステップS3は加熱出力算出ステップであり、加熱出力算出部423により加熱出力Qが算出される。ステップS4は制御ステップであり、回転数制御部430により低段圧縮部11および高段圧縮部12の回転数が、開度制御部440により高段膨張弁51の開度がそれぞれ制御される。 Step S1 is a density calculation step, and the density calculation unit 421 calculates the density ρ of the refrigerant introduced into the pressure reducing unit 61. Step S2 is a flow rate calculating step, and the flow rate calculating unit 422 calculates the volume flow rate V of the refrigerant flowing through the pressure reducing unit 61. Step S3 is a heating output calculation step in which the heating output calculator 423 calculates the heating output Q. Step S4 is a control step, in which the rotation speed control unit 430 controls the rotation speeds of the low-stage compression unit 11 and the high-stage compression unit 12, and the opening control unit 440 controls the opening degree of the high-stage expansion valve 51.

このように、ヒートポンプ式蒸気生成装置1においては、一体型二段圧縮機10の筐体内部に温度センサを設けることが困難であるが、減圧部61による圧力損失ΔP、減圧部61に導入される冷媒の密度ρに基づいて凝縮器21を流通する冷媒の質量流量vが算出される。これにより熱出力Qが求まり、適正な出力制御を行うことができる。 As described above, in the heat pump steam generator 1, it is difficult to provide the temperature sensor inside the housing of the integrated two-stage compressor 10, but the pressure loss ΔP f due to the pressure reducing unit 61 is introduced into the pressure reducing unit 61. The mass flow rate v of the refrigerant flowing through the condenser 21 is calculated based on the density ρ of the refrigerant. As a result, the heat output Q is obtained, and proper output control can be performed.

さらに、高価な流量計(例えば冷媒流量計や蒸気流量計など)が不要となりシステムを簡易かつ廉価に構成することができる。 Furthermore, an expensive flow meter (for example, a refrigerant flow meter or a steam flow meter) is not required, and the system can be configured simply and inexpensively.

(第2実施形態)
本発明にかかるヒートポンプ式蒸気生成装置の変形例について図面を用いて詳細に説明する。なお、先の実施形態と同様の部分については説明を省略する。
(Second embodiment)
A modified example of the heat pump steam generator according to the present invention will be described in detail with reference to the drawings. The description of the same parts as those in the previous embodiment will be omitted.

図5は、本発明の実施の形態の変形例であるヒートポンプ式蒸気生成装置1の構成を示す回路構成図である。   FIG. 5: is a circuit block diagram which shows the structure of the heat pump steam generator 1 which is a modification of embodiment of this invention.

減圧部61を通過した冷媒は、高圧冷媒分岐手段である分岐配管72により第1高圧冷媒経路73と第2高圧冷媒経路74に分岐され、第1高圧冷媒経路73を流通する冷媒は、高段膨張弁51で減圧され中間経路71に導入された後、内部熱交換器(加熱手段)75で第2高圧冷媒経路74を流通する液相冷媒から熱を回収し、中間吸入ポート12aに導入される。また、第2高圧冷媒経路74を流通する冷媒は、内部熱交換器75で中間経路71を流通する冷媒に熱を与えた後、低段膨張弁52で減圧され蒸発器41に導入される。   The refrigerant that has passed through the decompression section 61 is branched into a first high-pressure refrigerant path 73 and a second high-pressure refrigerant path 74 by a branch pipe 72 that is a high-pressure refrigerant branching means, and the refrigerant flowing through the first high-pressure refrigerant path 73 has a high stage. After being decompressed by the expansion valve 51 and introduced into the intermediate passage 71, heat is recovered from the liquid-phase refrigerant flowing through the second high-pressure refrigerant passage 74 by the internal heat exchanger (heating means) 75 and introduced into the intermediate suction port 12a. It Further, the refrigerant flowing through the second high-pressure refrigerant path 74 gives heat to the refrigerant flowing through the intermediate path 71 by the internal heat exchanger 75, and then is decompressed by the low-stage expansion valve 52 and introduced into the evaporator 41.

続いて、図6に基づいて変形例にかかるヒートポンプサイクル100の熱サイクルを示すP−H線図について説明する。なお、先の実施形態と同様の部分については説明を省略する。   Next, a PH diagram showing a heat cycle of the heat pump cycle 100 according to the modification will be described based on FIG. The description of the same parts as those in the previous embodiment will be omitted.

減圧部61でLd点まで減圧された冷媒のうち、第1高圧冷媒経路73を流通する冷媒は高段膨張弁51で比エンタルピhaを維持したまま圧力PH‘のLd点から中間圧PMのLe点に移り、飽和液線を超えて気液二相となる。さらに内部熱交換器75で第2高圧冷媒経路74を流通する液相冷媒から熱を回収して蒸発し、低段圧縮部11で圧縮されたLb点の冷媒と合流し、Lb点に移る。 Among the refrigerants depressurized to Ld 1 point by the depressurizing unit 61, the refrigerant flowing through the first high-pressure refrigerant path 73 is the intermediate pressure PM from the Ld 1 point of the pressure PH ′ while maintaining the specific enthalpy ha in the high-stage expansion valve 51. To the point Le and cross the saturated liquid line to become a gas-liquid two phase. Further, the internal heat exchanger 75 recovers heat from the liquid-phase refrigerant flowing through the second high-pressure refrigerant path 74 and evaporates it, merges with the refrigerant at the Lb 0 point compressed in the low-stage compression section 11, and moves to the Lb point. ..

減圧部61で圧力PH‘のLd点まで減圧された冷媒のうち、第2高圧冷媒経路74を流通する冷媒は、内部熱交換器75で中間経路71を流通する冷媒に熱を与え、圧力PH‘を保ったままLd点からLh点まで移る。さらに低段膨張弁52で圧力PH‘のLh点から低圧PLのLg点まで移る。 Of the refrigerant depressurized by the depressurizing unit 61 to the Ld 1 point of the pressure PH ′, the refrigerant flowing through the second high-pressure refrigerant path 74 gives heat to the refrigerant flowing through the intermediate path 71 by the internal heat exchanger 75, and Move from Ld point to Lh point while keeping PH '. Further, the low-stage expansion valve 52 moves from the Lh point of the pressure PH ′ to the Lg point of the low pressure PL.

上述した各実施の形態における制御部400は、低段圧縮部11の吸入側圧力および温度、高段圧縮部12の吐出側圧力および温度、蒸気生成部200を流通する熱源水の温度および流量、熱源水供給部300を流通する熱源水の温度および流量などに基づきヒートポンプサイクル100内の高段膨張弁51および低段膨張弁52の開度、低段圧縮部11および高段圧縮部12を制御してもよい。また、制御部400は蒸気生成部200を流通する被加熱水の流量および温度、熱源水供給部300を流通する熱源水の流量および温度を制御してもよい。   The control unit 400 in each of the above-described embodiments controls the suction-side pressure and temperature of the low-stage compression unit 11, the discharge-side pressure and temperature of the high-stage compression unit 12, the temperature and flow rate of the heat source water flowing through the steam generation unit 200, The opening degree of the high-stage expansion valve 51 and the low-stage expansion valve 52 in the heat pump cycle 100, the low-stage compression unit 11 and the high-stage compression unit 12 are controlled based on the temperature and flow rate of the heat source water flowing through the heat source water supply unit 300. You may. The control unit 400 may control the flow rate and temperature of the heated water flowing through the steam generating unit 200 and the flow rate and temperature of the heat source water flowing through the heat source water supply unit 300.

本実施の形態の密度測定手段80として、凝縮器21と減圧部61との間に設けられた減圧部入口圧力センサ81および減圧部入口温度センサ82を例示したが、凝縮器21と減圧部61との間を流通する冷媒の圧力および温度が分かればそれには限定されない。例えば、高段圧縮部12と凝縮器21との間の冷媒圧力を減圧部61の入口側冷媒圧力として用いてもよく、凝縮器21本体の内、冷媒出口に近い部分の温度を測定して減圧部61の入口側冷媒温度として用いてもよい。また、密度測定手段80として、単独の密度計を用いてもよい。 As the density measuring means 80 of the present embodiment, the pressure reducing portion inlet pressure sensor 81 and the pressure reducing portion inlet temperature sensor 82 provided between the condenser 21 and the pressure reducing portion 61 are exemplified, but the condenser 21 and the pressure reducing portion 61 are illustrated. If the pressure and temperature of the refrigerant flowing between and are known, it is not limited thereto. For example, the refrigerant pressure between the high-stage compression section 12 and the condenser 21 may be used as the inlet-side refrigerant pressure of the decompression section 61, and the temperature of the portion of the condenser 21 main body near the refrigerant outlet may be measured. It may be used as the temperature of the refrigerant on the inlet side of the pressure reducing portion 61. Further, as the density measuring means 80, a single density meter may be used.

本実施の形態の減圧部61として細管路を例示しているが、冷媒に圧力損失を付与することができれば、オリフィスや絞り弁を用いてもよい。また、立ち上げ配管による圧力損失付与や、立ち上げ配管と細管路の組合せを用いてもよい。また、減圧部61前後の冷媒が常に液相である必要はなく、通常運転時など圧力損失を測定するタイミングで減圧部61前後の冷媒がともに液相になっていればよい。 Although a thin pipe is illustrated as the decompression unit 61 of the present embodiment, an orifice or a throttle valve may be used as long as it can give a pressure loss to the refrigerant. Further, a pressure loss may be imparted by the start-up pipe, or a combination of the start-up pipe and the narrow pipe may be used. Further, the refrigerant before and after the pressure reducing portion 61 does not always have to be in the liquid phase, and it is sufficient that the refrigerant before and after the pressure reducing portion 61 is both in the liquid phase at the timing of measuring the pressure loss during normal operation.

本実施の形態の圧力損失測定手段として差圧計62を用いているが、差圧計62に代わり、減圧部61の上流側と下流側にそれぞれ設けられた単独の圧力計測手段によって求められた値から差を求めてもよい。この場合、減圧部上流側の圧力計測手段は高段圧縮部12から減圧部61の間の冷媒圧力を、減圧部下流側の圧力計測手段は第1の実施形態においては減圧部62から高段膨張弁51の間、第2の実施形態においては減圧部62から分岐配管72の間の冷媒圧力を測定するものであればよい。なお、密度計測手段80で圧力を測定していれば、その値を減圧部61の上流側圧力として兼用してもよい。 Although the differential pressure gauge 62 is used as the pressure loss measuring means of the present embodiment, instead of the differential pressure gauge 62, from the values obtained by the independent pressure measuring means provided on the upstream side and the downstream side of the pressure reducing portion 61, respectively. You may ask for the difference. In this case, the pressure measuring unit on the upstream side of the pressure reducing unit measures the refrigerant pressure between the high-stage compression unit 12 and the pressure reducing unit 61, and the pressure measuring unit on the downstream side of the pressure reducing unit increases the pressure from the pressure reducing unit 62 to the high stage in the first embodiment. It suffices to measure the refrigerant pressure between the expansion valves 51, and in the second embodiment between the pressure reducing portion 62 and the branch pipe 72. If the pressure is measured by the density measuring unit 80, the value may be used as the upstream pressure of the pressure reducing unit 61.

本実施の形態の変形例における加熱手段として、内部熱交換器75を例示しているが、加熱手段はそれに限定されない。例えば、熱源温水など外部熱源との熱交換により高段膨張弁51を通過した冷媒を蒸発させてもよく、ヒータにより高段膨張弁51を通過した冷媒を蒸発させてもよい。また、第1の実施の形態における中間経路71に、上述の各種加熱手段を設けてもよい。 Although the internal heat exchanger 75 is illustrated as the heating means in the modification of the present embodiment, the heating means is not limited thereto. For example, the refrigerant that has passed through the high-stage expansion valve 51 may be evaporated by heat exchange with an external heat source such as heat source hot water, or the refrigerant that has passed through the high-stage expansion valve 51 may be evaporated by a heater. Further, the above-mentioned various heating means may be provided in the intermediate path 71 in the first embodiment.

本発明における減圧部入口圧力測定手段81、減圧部入口温度測定手段82、凝縮器入口温度測定手段83について、圧力一定制御や温度一定制御を行っている場合、その固定値を記憶部410に記憶させておき、必要に応じて読み出しを行ってもよい。この場合、記憶部410が各種測定手段に該当する。 When the constant pressure control or the constant temperature control is performed on the pressure reducing portion inlet pressure measuring means 81, the pressure reducing portion inlet temperature measuring means 82, and the condenser inlet temperature measuring means 83 in the present invention, the fixed values are stored in the storage portion 410. Then, the data may be read out if necessary. In this case, the storage unit 410 corresponds to various measuring means.

本発明は、上記した実施形態に限定されるものではなく、本発明の主旨を逸脱しない範囲で自由に変更できることは勿論である。   The present invention is not limited to the above-described embodiments, and it goes without saying that the present invention can be freely modified without departing from the spirit of the present invention.

1 ヒートポンプ式蒸気生成装置
100 ヒートポンプサイクル
200 蒸気生成部
300 熱源水供給部
400 制御部
10 一体型二段圧縮機
11 低段圧縮部(低段圧縮機構)
12 高段圧縮部(高段圧縮機構)
12a 中間吸入ポート
21 凝縮器
31 気液分離器
31a 上部導入口
31b 上部吐出口
31c 下部吐出口
41 蒸発器
51 高段膨張弁(高段膨張機構)
52 低段膨張弁(低段膨張機構)
61 減圧部
62 差圧計(圧力損失測定手段)
71 中間経路
72 分岐配管(高圧冷媒分岐手段)
73 第1高圧冷媒経路
74 第2高圧冷媒経路
75 内部熱交換器(加熱手段)
80 密度測定手段
81 減圧部入口圧力センサ(減圧部入口圧力測定手段)
82 減圧部入口温度センサ(減圧部入口温度測定手段)
83 凝縮器入口温度センサ(凝縮器入口温度測定手段)
410 記憶部
420 演算部
421 密度算出部
422 流量算出部
423 加熱出力算出部
430 回転数制御部
440 開度制御部
1 Heat Pump Type Steam Generator 100 Heat Pump Cycle 200 Steam Generator 300 Heat Source Water Supply Unit 400 Control Unit 10 Integrated Two-Stage Compressor 11 Low-Stage Compressor (Low-Stage Compression Mechanism)
12 High-stage compression section (high-stage compression mechanism)
12a Intermediate suction port 21 Condenser 31 Gas-liquid separator 31a Upper inlet 31b Upper outlet 31c Lower outlet 41 Evaporator 51 High-stage expansion valve (high-stage expansion mechanism)
52 Low-stage expansion valve (low-stage expansion mechanism)
61 pressure reducing unit 62 differential pressure gauge (pressure loss measuring means)
71 Intermediate path 72 Branch pipe (high pressure refrigerant branching means)
73 first high-pressure refrigerant path 74 second high-pressure refrigerant path 75 internal heat exchanger (heating means)
80 Density measuring means 81 Pressure reducing section inlet pressure sensor (pressure reducing section inlet pressure measuring means)
82 Pressure reducing section inlet temperature sensor (pressure reducing section inlet temperature measuring means)
83 Condenser inlet temperature sensor (condenser inlet temperature measuring means)
410 storage unit 420 calculation unit 421 density calculation unit 422 flow rate calculation unit 423 heating output calculation unit 430 rotation speed control unit 440 opening control unit

Claims (9)

低段圧縮機構と高段圧縮機構とを持つ二段圧縮機構と、凝縮器と、高圧の冷媒を膨張し中間圧の冷媒および低圧の冷媒を生成する膨張機構と、前記低圧の冷媒を導入する蒸発器とを環状に接続し、前記中間圧の冷媒を前記高段圧縮機構に供給する中間経路を備えたヒートポンプサイクルにおいて、
前記凝縮器と前記膨張機構との間に設けられ、前記凝縮器を通過した冷媒を減圧する減圧部と、
前記高段圧縮機構から前記減圧部までの冷媒圧力を測定する減圧部入口圧力測定手段と、
前記凝縮器から前記減圧部までの冷媒温度を測定する減圧部入口温度測定手段と、
前記減圧部で生じた圧力損失を測定する圧力損失測定手段と、
前記減圧部入口圧力測定手段で測定された圧力と前記減圧部入口温度測定手段で測定された温度とに基づき、前記前記減圧部に流入する冷媒密度を算出する密度算出部と、
前記密度算出部で算出された密度と前記圧力損失測定手段で測定された圧力損失とに基づき、前記凝縮器を流通する冷媒の流量を算出する流量算出部と、
を備えることを特徴とするヒートポンプサイクル。
A two-stage compression mechanism having a low-stage compression mechanism and a high-stage compression mechanism, a condenser, an expansion mechanism that expands a high-pressure refrigerant to generate an intermediate-pressure refrigerant and a low-pressure refrigerant, and introduces the low-pressure refrigerant. An evaporator and an annular connection, in a heat pump cycle having an intermediate path for supplying the intermediate pressure refrigerant to the high-stage compression mechanism,
A decompression unit provided between the condenser and the expansion mechanism, for decompressing the refrigerant passing through the condenser,
Decompression section inlet pressure measuring means for measuring the refrigerant pressure from the high-stage compression mechanism to the decompression section,
Decompression section inlet temperature measuring means for measuring the refrigerant temperature from the condenser to the decompression section,
Pressure loss measuring means for measuring the pressure loss generated in the pressure reducing section,
Based on the pressure measured by the pressure reducing portion inlet pressure measuring means and the temperature measured by the pressure reducing portion inlet temperature measuring means, a density calculating portion for calculating the density of the refrigerant flowing into the pressure reducing portion,
Based on the density calculated by the density calculating section and the pressure loss measured by the pressure loss measuring means, a flow rate calculating section for calculating the flow rate of the refrigerant flowing through the condenser,
A heat pump cycle comprising:
前記膨張機構は、
前記凝縮器を通過した高圧の冷媒を膨張し前記中間圧の冷媒を生成する高段膨張機構と、
前記中間経路が接続され、前記中間圧の冷媒を気相及び液相に分離する気液分離器と、
前記気液分離器で分離した中間圧の液相冷媒を低圧まで減圧して前記蒸発器に供給する低段膨張機構と、
を備えることを特徴とする請求項1に記載のヒートポンプサイクル。
The expansion mechanism is
A high-stage expansion mechanism that expands the high-pressure refrigerant that has passed through the condenser to generate the intermediate-pressure refrigerant,
A gas-liquid separator connected to the intermediate path, for separating the intermediate-pressure refrigerant into a gas phase and a liquid phase;
A low-stage expansion mechanism for reducing the intermediate-pressure liquid-phase refrigerant separated by the gas-liquid separator to a low pressure and supplying the same to the evaporator,
The heat pump cycle according to claim 1, further comprising:
前記膨張機構は、
前記凝縮器を通過した高圧の冷媒を第1高圧冷媒経路と第2高圧冷媒経路とに分岐させる高圧冷媒分岐手段と、
冷媒入口に前記第1高圧冷媒経路、冷媒出口に前記中間経路が接続され、前記第1高圧冷媒経路を流通する高圧の冷媒を膨張し前記中間圧の冷媒を生成する高段膨張機構と、
前記第2高圧冷媒経路を流通する高圧の冷媒を膨張し前記低圧の冷媒を生成する低段膨張機構と、
前記中間経路を流通する冷媒を前記第2高圧冷媒経路を流通する冷媒で加熱する加熱手段と、
を備えることを特徴とする請求項1に記載のヒートポンプサイクル。
The expansion mechanism is
High-pressure refrigerant branching means for branching the high-pressure refrigerant passing through the condenser into a first high-pressure refrigerant path and a second high-pressure refrigerant path,
A first high-pressure refrigerant path to the refrigerant inlet, the intermediate path is connected to the refrigerant outlet, a high-stage expansion mechanism for expanding the high-pressure refrigerant flowing through the first high-pressure refrigerant path to generate the intermediate-pressure refrigerant,
A low-stage expansion mechanism that expands the high-pressure refrigerant flowing through the second high-pressure refrigerant path to generate the low-pressure refrigerant,
Heating means for heating the refrigerant flowing through the intermediate path with the refrigerant flowing through the second high-pressure refrigerant path;
The heat pump cycle according to claim 1, further comprising:
前記高段圧縮機構から前記凝縮器までの冷媒温度を測定する凝縮器入口温度測定手段と、
少なくとも前記減圧部入口圧力測定手段で測定された冷媒圧力、前記減圧部入口温度測定手段で測定された冷媒温度、前記凝縮器入口温度測定手段で測定された冷媒温度および前記流量算出部で算出された冷媒流量に基づき、前記凝縮器の加熱出力を算出する加熱出力算出部と、
を備えることを特徴とする請求項1〜3のいずれか1項に記載のヒートポンプサイクル。
Condenser inlet temperature measuring means for measuring the refrigerant temperature from the high-stage compression mechanism to the condenser,
At least the refrigerant pressure measured by the pressure reducing section inlet pressure measuring means, the refrigerant temperature measured by the pressure reducing section inlet temperature measuring means, the refrigerant temperature measured by the condenser inlet temperature measuring means and the flow rate calculating section are calculated. A heating output calculation unit that calculates the heating output of the condenser based on the refrigerant flow rate,
The heat pump cycle according to any one of claims 1 to 3, further comprising:
前記加熱出力算出部で算出された加熱出力に基づき、少なくとも前記高段圧縮機構を制御する回転数制御部を備えることを特徴とする請求項4に記載のヒートポンプサイクル。   The heat pump cycle according to claim 4, further comprising a rotation speed control unit that controls at least the high-stage compression mechanism based on the heating output calculated by the heating output calculation unit. 前記冷媒が前記減圧部前後においてともに液相状態であることを特徴とする請求項1〜5のいずれか1項に記載のヒートポンプサイクル。   The heat pump cycle according to any one of claims 1 to 5, wherein the refrigerant is in a liquid phase state before and after the pressure reducing unit. 前記減圧部は、上流側および下流側の管路よりも内径が小さい細管路であることを特徴とする請求項1〜6のいずれか1項に記載のヒートポンプサイクル。   The heat pump cycle according to any one of claims 1 to 6, wherein the decompression section is a thin pipe having an inner diameter smaller than that of the upstream and downstream pipes. 前記高段圧縮機構および前記低段圧縮機構は、一体型の二段圧縮機であることを特徴とする請求項1〜7のいずれか1項に記載のヒートポンプサイクル。   The heat pump cycle according to any one of claims 1 to 7, wherein the high-stage compression mechanism and the low-stage compression mechanism are integrated two-stage compressors. 請求項1〜8に記載のヒートポンプサイクルと、
前記蒸発器に熱源水を供給する熱源水供給部と、
前記凝縮器に前記被加熱媒体として水を供給し、生成された蒸気を外部に送出する蒸気生成部と、
を備えることを特徴とするヒートポンプ式蒸気生成装置。
A heat pump cycle according to claim 1;
A heat source water supply unit for supplying heat source water to the evaporator;
Supplying water as the medium to be heated to the condenser, and a steam generation unit for sending the generated steam to the outside,
A heat pump-type steam generator comprising:
JP2018208559A 2018-11-06 2018-11-06 Heat pump cycle and heat pump type steam generation device Withdrawn JP2020076516A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018208559A JP2020076516A (en) 2018-11-06 2018-11-06 Heat pump cycle and heat pump type steam generation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018208559A JP2020076516A (en) 2018-11-06 2018-11-06 Heat pump cycle and heat pump type steam generation device

Publications (1)

Publication Number Publication Date
JP2020076516A true JP2020076516A (en) 2020-05-21

Family

ID=70723818

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018208559A Withdrawn JP2020076516A (en) 2018-11-06 2018-11-06 Heat pump cycle and heat pump type steam generation device

Country Status (1)

Country Link
JP (1) JP2020076516A (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008249209A (en) * 2007-03-29 2008-10-16 Sanyo Electric Co Ltd Refrigerating device
JP2012041036A (en) * 2010-07-23 2012-03-01 Sanden Corp Vehicle air-conditioning device and method for determining operating state of variable displacement compressor in vehicle air-conditioning device
JP2014119157A (en) * 2012-12-14 2014-06-30 Sharp Corp Heat pump type heating device
JP2016169893A (en) * 2015-03-11 2016-09-23 株式会社デンソー Expansion valve device
JP2016173128A (en) * 2015-03-17 2016-09-29 アズビル株式会社 Positioner
JP2016200314A (en) * 2015-04-08 2016-12-01 富士電機株式会社 Heat pump type steam creation device and operational method of the heat pump type steam creation device
JP2018044725A (en) * 2016-09-15 2018-03-22 富士電機株式会社 Refrigerant circuit device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008249209A (en) * 2007-03-29 2008-10-16 Sanyo Electric Co Ltd Refrigerating device
JP2012041036A (en) * 2010-07-23 2012-03-01 Sanden Corp Vehicle air-conditioning device and method for determining operating state of variable displacement compressor in vehicle air-conditioning device
JP2014119157A (en) * 2012-12-14 2014-06-30 Sharp Corp Heat pump type heating device
JP2016169893A (en) * 2015-03-11 2016-09-23 株式会社デンソー Expansion valve device
JP2016173128A (en) * 2015-03-17 2016-09-29 アズビル株式会社 Positioner
JP2016200314A (en) * 2015-04-08 2016-12-01 富士電機株式会社 Heat pump type steam creation device and operational method of the heat pump type steam creation device
JP2018044725A (en) * 2016-09-15 2018-03-22 富士電機株式会社 Refrigerant circuit device

Similar Documents

Publication Publication Date Title
JP6454564B2 (en) Turbo refrigerator
US9689730B2 (en) Estimation apparatus of heat transfer medium flow rate, heat source machine, and estimation method of heat transfer medium flow rate
CN103322711B (en) Turbine refrigerator and control method thereof
CN103443563A (en) Expansion valve control device, heat source machine, and expansion valve control method
JP2008039383A (en) Unit provided on cooling device for transcritical operation
US9395112B2 (en) Method for controlling operation of a vapour compression system in a subcritical and a supercritical mode
JPH1163694A (en) Refrigeration cycle
CN104896780A (en) Turbine refrigerator
JP2008121451A (en) Turbo refrigeration device and method of controlling the same
JP6772703B2 (en) Refrigerant circuit device
CN114341567B (en) Outdoor unit and refrigeration cycle device
JP2009030954A (en) Refrigeration system
JP6680300B2 (en) Exhaust heat recovery heat pump device
JP2020076516A (en) Heat pump cycle and heat pump type steam generation device
JP6176470B2 (en) refrigerator
JP5875396B2 (en) Heat pump control device, heat pump, and heat pump control method
JP7151262B2 (en) Heat pump device and refrigerant flow rate calculation method
JP7176310B2 (en) Heat pump steam generator
JP6105972B2 (en) Turbo refrigerator
WO2021048905A1 (en) Outdoor unit and refrigeration cycle device
JP6822007B2 (en) Refrigerant circuit device
JP7265963B2 (en) turbo chiller
WO2022003933A1 (en) Cold heat source unit and refrigeration cycle device
JP6037637B2 (en) Heat pump control device, heat pump, and heat pump control method
JP7196186B2 (en) Outdoor unit of refrigerating cycle device, refrigerating cycle device, and air conditioner

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211014

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220809

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220817

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20221017