JP2018044725A - Refrigerant circuit device - Google Patents

Refrigerant circuit device Download PDF

Info

Publication number
JP2018044725A
JP2018044725A JP2016180366A JP2016180366A JP2018044725A JP 2018044725 A JP2018044725 A JP 2018044725A JP 2016180366 A JP2016180366 A JP 2016180366A JP 2016180366 A JP2016180366 A JP 2016180366A JP 2018044725 A JP2018044725 A JP 2018044725A
Authority
JP
Japan
Prior art keywords
refrigerant
stage
low
pressure
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016180366A
Other languages
Japanese (ja)
Other versions
JP6772703B2 (en
Inventor
祐輔 大西
Yusuke Onishi
祐輔 大西
中村 淳
Atsushi Nakamura
淳 中村
修平 柴田
Shuhei Shibata
修平 柴田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP2016180366A priority Critical patent/JP6772703B2/en
Publication of JP2018044725A publication Critical patent/JP2018044725A/en
Application granted granted Critical
Publication of JP6772703B2 publication Critical patent/JP6772703B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a refrigerant circuit device enabling stable control of a water level of a gas liquid separator used for the refrigerant circuit device including a two-stage compression two-stage expansion cycle by using a simple configuration.SOLUTION: A refrigerant circuit device includes: an evaporator 12 for evaporating a low-pressure refrigerant; a low-stage compressor 1 for compressing the low-pressure refrigerant to intermediate pressure; a high-stage compressor 2 for compressing an intermediate-pressure refrigerant to high pressure; a condenser 3 for condensing a high-pressure refrigerant; a high-stage expansion valve 5 for decompressing and expanding the high-pressure refrigerant condensed by the condenser 3 to an intermediate pressure; a gas liquid separator 7 for performing gas-liquid separation of the intermediate-pressure refrigerant introduced from the high-stage expansion valve 5; intermediate piping 9 for introducing the intermediate-pressure refrigerant introduced from a gas phase side outlet of the gas liquid separator 7 to between a discharge port of the low-stage compressor 1 and a suction port of the high-stage compressor 2; and a low-stage side expansion valve 10 for decompressing and expanding the intermediate-pressure refrigerant introduced from a liquid phase side outlet of the gas liquid separator 7 to low-pressure and leading out the low-pressure refrigerant to the evaporator 12. The refrigerant circuit device further includes a control section C for controlling rotational frequency of the low-stage compressor 1 in accordance with dryness of the refrigerant introduce to the gas liquid separator 7.SELECTED DRAWING: Figure 1

Description

本発明は、二段圧縮二段膨張サイクルを有した冷媒回路装置に用いられる気液分離器の水位を簡易な構成で安定制御することができる冷媒回路装置に関する。   The present invention relates to a refrigerant circuit device capable of stably controlling the water level of a gas-liquid separator used in a refrigerant circuit device having a two-stage compression / two-stage expansion cycle with a simple configuration.

二段圧縮二段膨張サイクルでは、圧縮を二段階にすることで圧縮機単段当たりの圧縮比が低減でき、また、ヒートポンプとして動作させる場合には低段側の冷媒流量を必要最小限とすることで低段側の圧縮動力を最小化することができるため、単段サイクルに比べて高効率化することができる。   In the two-stage compression and two-stage expansion cycle, the compression ratio per single stage of the compressor can be reduced by using two stages of compression, and when operating as a heat pump, the refrigerant flow on the low stage side is minimized. As a result, the compression power on the lower stage side can be minimized, so that the efficiency can be increased as compared with the single stage cycle.

なお、特許文献1には、低段側圧縮機及び高段側圧縮機の2つの圧縮機が設けられた二段圧縮式のヒートポンプ式加熱装置が記載されている。このヒートポンプ式加熱装置は、第1減圧装置、第2減圧装置、気液分離器、インジェクション管路を設けることで、簡易な構成で加熱能力の向上を図っている。   Patent Document 1 describes a two-stage compression heat pump type heating apparatus provided with two compressors, a low-stage compressor and a high-stage compressor. This heat pump type heating device is provided with a first pressure reducing device, a second pressure reducing device, a gas-liquid separator, and an injection pipe, thereby improving the heating capacity with a simple configuration.

特開2014−119157号公報JP 2014-119157 A

ところで、二段圧縮二段膨張サイクルでは、一般に気液分離器を用いて中間圧冷媒の気相冷媒を分離し、この分離した中間圧冷媒と低段圧縮機から吐出された冷媒と合流させて高段圧縮機の入口側に導入している。気液分離器は、水位を制御して、気相冷媒と液相冷媒とを高効率に分離しているが、水位が大きく変化すると、二段圧縮二段膨張サイクルに大きな影響を及ぼす。ここで、従来は気液分離器内の水位を実測する水位計を設けていたが、水位計を設けると耐圧性能が要求される気液分離器の構成が複雑化し、高価なものとなる。   By the way, in a two-stage compression two-stage expansion cycle, generally, a gas-liquid separator is used to separate an intermediate-pressure refrigerant gas-phase refrigerant, and the separated intermediate-pressure refrigerant and the refrigerant discharged from the low-stage compressor are combined. It is installed on the inlet side of the high stage compressor. The gas-liquid separator controls the water level and separates the gas-phase refrigerant and the liquid-phase refrigerant with high efficiency. However, if the water level changes greatly, the gas-liquid separator greatly affects the two-stage compression / two-stage expansion cycle. Conventionally, a water level meter that actually measures the water level in the gas-liquid separator has been provided. However, if the water level meter is provided, the configuration of the gas-liquid separator that requires pressure resistance becomes complicated and expensive.

本発明は、上記に鑑みてなされたものであって、二段圧縮二段膨張サイクルを有した冷媒回路装置に用いられる気液分離器の水位を簡易な構成で安定制御することができる冷媒回路装置を提供することを目的とする。   The present invention has been made in view of the above, and a refrigerant circuit capable of stably controlling the water level of a gas-liquid separator used in a refrigerant circuit device having a two-stage compression / two-stage expansion cycle with a simple configuration. An object is to provide an apparatus.

上述した課題を解決し、目的を達成するために、本発明にかかる冷媒回路装置は、低圧冷媒を蒸発させる蒸発器と、前記蒸発器から導入された低圧冷媒を中間圧に圧縮する低段圧縮機と、前記低段圧縮機で圧縮された中間圧冷媒を高圧に圧縮する高段圧縮機と、前記高段圧縮機で圧縮された高圧冷媒を凝縮する凝縮器と、前記凝縮器で凝縮された高圧冷媒を減圧膨張して前記中間圧にする高段膨張弁と、前記高段膨張弁から導入された中間圧冷媒を気液分離する気液分離器と、前記気液分離器の気相側出口から導入された中間圧冷媒を前記低段圧縮機の吐出口と前記高段圧縮機の吸入口との間に導入する中間配管と、前記気液分離器の液相側出口から導入された中間圧冷媒を減圧膨張して低圧にして前記蒸発器に導出する低段膨張弁と、を備えた冷媒回路装置であって、前記気液分離器に導入される冷媒の乾き度に応じて前記低段圧縮機の回転数を制御する制御部を備えたことを特徴とする。   In order to solve the above-described problems and achieve the object, a refrigerant circuit device according to the present invention includes an evaporator that evaporates low-pressure refrigerant and low-stage compression that compresses low-pressure refrigerant introduced from the evaporator to an intermediate pressure. A high-pressure compressor that compresses the intermediate-pressure refrigerant compressed by the low-stage compressor to a high pressure, a condenser that condenses the high-pressure refrigerant compressed by the high-stage compressor, and a condenser that is condensed by the condenser A high-stage expansion valve that decompresses and expands the high-pressure refrigerant to the intermediate pressure, a gas-liquid separator that gas-liquid separates the intermediate-pressure refrigerant introduced from the high-stage expansion valve, and a gas phase of the gas-liquid separator An intermediate pipe for introducing intermediate pressure refrigerant introduced from the side outlet between the discharge port of the low stage compressor and the suction port of the high stage compressor, and introduced from the liquid phase side outlet of the gas-liquid separator. A low-stage expansion valve that expands the intermediate pressure refrigerant under reduced pressure to reduce the pressure to the evaporator. And a refrigerant circuit device, characterized by comprising a control unit for controlling the rotational speed of the low-stage compressor in accordance with the dryness of the refrigerant introduced into the gas-liquid separator.

また、本発明にかかる冷媒回路装置は、上記の発明において、前記制御部は、前記冷媒の乾き度が目標値以上の場合に前記低段圧縮機の回転数を減少させ、前記冷媒の乾き度が目標値未満の場合に前記低段圧縮機の回転数を増加させることを特徴とする。   In the refrigerant circuit device according to the present invention, in the above invention, the control unit decreases the rotational speed of the low-stage compressor when the dryness of the refrigerant is equal to or higher than a target value, and the dryness of the refrigerant. When the value is less than the target value, the rotational speed of the low-stage compressor is increased.

また、本発明にかかる冷媒回路装置は、上記の発明において、前記凝縮器と前記高段膨張弁との間の高圧冷媒の温度を検出する温度検出部と、前記凝縮器と前記高段膨張弁との間の高圧冷媒の圧力を検出する高圧圧力検出部と、前記高段膨張弁と前記気液分離器との間の中間圧冷媒または前記中間配管内の中間圧冷媒の圧力または温度を検出する中間圧冷媒状態検出部と、を備え、前記制御部は、前記高圧冷媒の温度及び圧力と前記中間圧冷媒の圧力または温度とをもとに、前記気液分離器に導入される冷媒の乾き度を算出することを特徴とする。   Further, the refrigerant circuit device according to the present invention is the above-described invention, wherein the temperature detector that detects the temperature of the high-pressure refrigerant between the condenser and the high stage expansion valve, the condenser, and the high stage expansion valve. A high-pressure detector that detects the pressure of the high-pressure refrigerant, and the pressure or temperature of the intermediate-pressure refrigerant between the high-stage expansion valve and the gas-liquid separator or the intermediate-pressure refrigerant in the intermediate pipe An intermediate-pressure refrigerant state detecting unit, and the control unit is configured to control the refrigerant introduced into the gas-liquid separator based on the temperature and pressure of the high-pressure refrigerant and the pressure or temperature of the intermediate-pressure refrigerant. The dryness is calculated.

また、本発明にかかる冷媒回路装置は、上記の発明において、前記制御部は、前記高段圧縮機に吸入される高段冷媒循環量と、前記低段圧縮機に吸入される低段冷媒循環量とから前記乾き度を求めることを特徴とする。   In the refrigerant circuit device according to the present invention as set forth in the invention described above, the control unit includes a high-stage refrigerant circulation amount sucked into the high-stage compressor and a low-stage refrigerant circulation sucked into the low-stage compressor. The dryness is obtained from the amount.

また、本発明にかかる冷媒回路装置は、上記の発明において、前記高段圧縮機の吸入側の冷媒の温度を検出する高段吸入温度検出部と、前記高段圧縮機の吸入側の冷媒の圧力を検出する高段吸入圧力検出部と、を備え、前記制御部は、前記高段吸入温度検出部が検出した温度、前記高段吸入圧力検出部が検出した圧力、及び前記高段圧縮機の回転数から前記高段冷媒循環量を算出することを特徴とする。   In the refrigerant circuit device according to the present invention, in the above invention, a high-stage intake temperature detection unit that detects a refrigerant temperature on the intake side of the high-stage compressor, and a refrigerant on the intake side of the high-stage compressor. A high-stage suction pressure detection unit that detects pressure, and the control unit detects a temperature detected by the high-stage suction temperature detection unit, a pressure detected by the high-stage suction pressure detection unit, and the high-stage compressor The high-stage refrigerant circulation amount is calculated from the number of rotations.

また、本発明にかかる冷媒回路装置は、上記の発明において、前記高段圧縮機と前記気液分離器との間に高段側流量検出部を備え、前記高段冷媒循環量を検出することを特徴とする。   In the refrigerant circuit device according to the present invention, in the above invention, a high-stage flow rate detection unit is provided between the high-stage compressor and the gas-liquid separator, and the high-stage refrigerant circulation amount is detected. It is characterized by.

また、本発明にかかる冷媒回路装置は、上記の発明において、前記低段圧縮機の吸入側の冷媒の温度を検出する低段吸入温度検出部と、前記低段圧縮機の吸入側の冷媒の圧力を検出する低段吸入圧力検出部と、を備え、前記制御部は、前記低段吸入温度検出部が検出した温度および前記低段吸入圧力検出部が検出した圧力、及び前記低段圧縮機の回転数から前記低段冷媒循環量を算出することを特徴とする。   In the refrigerant circuit device according to the present invention, in the above invention, a low-stage intake temperature detection unit that detects a refrigerant temperature on the intake side of the low-stage compressor, and a refrigerant on the intake side of the low-stage compressor. A low-stage intake pressure detection unit that detects pressure, and the control unit detects the temperature detected by the low-stage intake temperature detection unit, the pressure detected by the low-stage intake pressure detection unit, and the low-stage compressor The low-stage refrigerant circulation amount is calculated from the number of rotations of the engine.

また、本発明にかかる冷媒回路装置は、上記の発明において、前記気液分離器の液相側出口と前記低段圧縮機との間に低段側流量検出部を備え、前記低段冷媒循環量を検出することを特徴とする。   In the refrigerant circuit device according to the present invention, in the above invention, a low-stage flow rate detection unit is provided between the liquid-phase outlet of the gas-liquid separator and the low-stage compressor, and the low-stage refrigerant circulation is provided. It is characterized by detecting the quantity.

また、本発明にかかる冷媒回路装置は、上記の発明において、前記制御部は、起動液面制御モードと通常液面制御モードとを持ち、前記制御部は、前記起動液面制御モードとして、前記冷媒の乾き度が第1の目標値以上の場合に前記低段圧縮機の回転数を減少させ、前記冷媒の乾き度が該第1の目標値未満の場合に前記低段圧縮機の回転数を増加させ、前記制御部は、前記通常液面制御モードとして、前記冷媒の乾き度が第2の目標値以上の場合に前記低段圧縮機の回転数を減少させ、前記冷媒の乾き度が該第2の目標値未満の場合に前記低段圧縮機の回転数を増加させ、前記第1の目標値は、前記第2の目標値よりも小さく設定されることを特徴とする。   Further, in the refrigerant circuit device according to the present invention, in the above invention, the control unit has a startup liquid level control mode and a normal liquid level control mode. When the refrigerant dryness is equal to or higher than the first target value, the rotational speed of the low-stage compressor is decreased, and when the refrigerant dryness is lower than the first target value, the rotational speed of the low-stage compressor is decreased. In the normal liquid level control mode, the control unit decreases the rotational speed of the low-stage compressor when the dryness of the refrigerant is equal to or higher than a second target value, and the dryness of the refrigerant is increased. The number of revolutions of the low-stage compressor is increased when the value is less than the second target value, and the first target value is set to be smaller than the second target value.

また、本発明にかかる冷媒回路装置は、上記の発明において、前記制御部は、前記冷媒回路装置の起動時に前記起動液面制御モードとなり、前記冷媒回路装置の起動後、所定時間が経過した場合に前記通常液面制御モードに移行することを特徴とする。   In the refrigerant circuit device according to the present invention, in the above invention, the control unit is in the startup liquid level control mode when the refrigerant circuit device is activated, and a predetermined time has elapsed after the refrigerant circuit device is activated. And shifting to the normal liquid level control mode.

また、本発明にかかる冷媒回路装置は、上記の発明において、前記目標値は、前記気液分離器に流入する液相冷媒量よりも前記気液分離器の液相側出口から流出する冷媒量が小さくなるよう設定され、前記中間配管には、前記気液分離器の気相側出口から導入された中間圧の冷媒を加熱する加熱手段を有することを特徴とする。   In the refrigerant circuit device according to the present invention, in the above invention, the target value is an amount of refrigerant flowing out from a liquid-phase side outlet of the gas-liquid separator rather than an amount of liquid-phase refrigerant flowing into the gas-liquid separator. The intermediate pipe has a heating means for heating the intermediate pressure refrigerant introduced from the gas phase outlet of the gas-liquid separator.

本発明によれば、二段圧縮二段膨張サイクルを有した冷媒回路装置に用いられる気液分離器に水位計を設けなくても、水位を安定制御することができる。   According to the present invention, the water level can be stably controlled without providing a water level gauge in the gas-liquid separator used in the refrigerant circuit device having the two-stage compression / two-stage expansion cycle.

図1は、本発明の実施の形態1である冷媒回路装置の構成を示す回路図である。FIG. 1 is a circuit diagram showing a configuration of a refrigerant circuit device according to Embodiment 1 of the present invention. 図2は、図1に示した冷媒回路装置のp−h線図である。FIG. 2 is a ph diagram of the refrigerant circuit device shown in FIG. 図3は、本発明の実施の形態1の制御部による水位制御処理手順を示すフローチャートである。FIG. 3 is a flowchart illustrating a water level control processing procedure by the control unit according to the first embodiment of the present invention. 図4は、本発明の実施の形態2の制御部による水位制御処理手順を示すフローチャートである。FIG. 4 is a flowchart showing a water level control processing procedure by the control unit according to the second embodiment of the present invention. 図5は、本発明の実施の形態3である冷媒回路装置の構成を示す回路図である。FIG. 5 is a circuit diagram showing a configuration of a refrigerant circuit device according to Embodiment 3 of the present invention. 図6は、本発明の実施の形態3の制御部による水位制御処理手順を示すフローチャートである。FIG. 6 is a flowchart showing a water level control processing procedure by the control unit according to the third embodiment of the present invention. 図7は、本発明の実施の形態5である冷媒回路装置の構成を示す回路図である。FIG. 7 is a circuit diagram showing a configuration of a refrigerant circuit device according to Embodiment 5 of the present invention. 図8は、本発明の実施の形態6である冷媒回路装置の構成を示す回路図である。FIG. 8 is a circuit diagram showing a configuration of a refrigerant circuit device according to Embodiment 6 of the present invention. 図9は、本発明の実施の形態6の制御部による水位制御処理手順を示すフローチャートである。FIG. 9 is a flowchart showing a water level control processing procedure by the control unit according to the sixth embodiment of the present invention.

以下、添付図面を参照してこの発明を実施するための形態について説明する。   DESCRIPTION OF EMBODIMENTS Hereinafter, embodiments for carrying out the present invention will be described with reference to the accompanying drawings.

(実施の形態1)
図1は、本発明の実施の形態1である冷媒回路装置の構成を示す回路図である。また、図2は、図1に示した冷媒回路装置のp−h線図である。この冷媒回路装置は、二段圧縮二段膨張サイクルである。
(Embodiment 1)
FIG. 1 is a circuit diagram showing a configuration of a refrigerant circuit device according to Embodiment 1 of the present invention. FIG. 2 is a ph diagram of the refrigerant circuit device shown in FIG. This refrigerant circuit device is a two-stage compression two-stage expansion cycle.

図1に示すように、圧縮機は、低段圧縮機1と高段圧縮機2とを有する二段圧縮機である。図1及び図2に示すように、高段圧縮機2は高段冷媒循環量GHの高圧冷媒RHを生成して凝縮器3に導入する(図2の点P2から点P3)。高圧冷媒RHは、凝縮器3によって放熱凝縮されて冷却される(図2の点P3から点P4)。凝縮器3は、例えば蒸気生成のための被加熱水を加熱する。その後、高圧冷媒RHは、高段膨張弁5で減圧膨張されて(図2の点P4から点P5)中間圧冷媒RMとなって気液分離器7に導入される。中間圧冷媒RMのうちの気体状態である冷媒循環量GMをもつ中間圧冷媒RM1は、中間配管9を介して低段圧縮機1の吐出口と高段圧縮機2の吸入口との間に導入される(図2の点P2)。   As shown in FIG. 1, the compressor is a two-stage compressor having a low-stage compressor 1 and a high-stage compressor 2. As shown in FIGS. 1 and 2, the high-stage compressor 2 generates a high-pressure refrigerant RH having a high-stage refrigerant circulation amount GH and introduces it into the condenser 3 (from the point P2 to the point P3 in FIG. 2). The high-pressure refrigerant RH is radiated and condensed by the condenser 3 and cooled (from point P3 to point P4 in FIG. 2). The condenser 3 heats water to be heated for generating steam, for example. Thereafter, the high-pressure refrigerant RH is decompressed and expanded by the high-stage expansion valve 5 (from the point P4 to the point P5 in FIG. 2), becomes an intermediate-pressure refrigerant RM, and is introduced into the gas-liquid separator 7. Among the intermediate pressure refrigerant RM, the intermediate pressure refrigerant RM1 having a refrigerant circulation amount GM in a gas state is interposed between the discharge port of the low stage compressor 1 and the suction port of the high stage compressor 2 via the intermediate pipe 9. It is introduced (point P2 in FIG. 2).

一方、中間圧冷媒RMのうちの液体状態である低段冷媒循環量GLの中間圧冷媒RM2は、低段膨張弁10で減圧膨張され(図2の点P6から点P7)、低圧冷媒RLとなって蒸発器12に導入される。蒸発器4は、低圧冷媒RLを加熱して蒸発させ(図2の点P7から点P1)、低段圧縮機1に導入する(図2の点P1)。低段圧縮機1は、導入された低圧冷媒RLを中間圧冷媒まで圧縮する。高段圧縮機2は、低段圧縮機1で圧縮された低段冷媒循環量GLの中間圧冷媒と中間配管9を介して導入される冷媒循環量GMの中間圧冷媒RM1とを圧縮して、高段冷媒循環量GHの高圧冷媒RHを導出する。   On the other hand, the intermediate-pressure refrigerant RM2 in the low-stage refrigerant circulation amount GL in the liquid state in the intermediate-pressure refrigerant RM is decompressed and expanded by the low-stage expansion valve 10 (from point P6 to point P7 in FIG. 2), and the low-pressure refrigerant RL And introduced into the evaporator 12. The evaporator 4 heats and evaporates the low-pressure refrigerant RL (from the point P7 to the point P1 in FIG. 2) and introduces it into the low-stage compressor 1 (the point P1 in FIG. 2). The low-stage compressor 1 compresses the introduced low-pressure refrigerant RL to an intermediate-pressure refrigerant. The high stage compressor 2 compresses the intermediate pressure refrigerant of the low stage refrigerant circulation amount GL compressed by the low stage compressor 1 and the intermediate pressure refrigerant RM1 of the refrigerant circulation amount GM introduced via the intermediate pipe 9. Then, the high-pressure refrigerant RH having the high-stage refrigerant circulation amount GH is derived.

また、本実施の形態1では、凝縮器3と高段膨張弁5との間の高圧冷媒RHの温度を検出する温度検出部T11と、凝縮器3と高段膨張弁5との間の高圧冷媒RHの圧力を検出する高圧圧力検出部P11と、高段膨張弁5と気液分離器7との間の中間圧冷媒RMの圧力を検出する中間圧冷媒状態検出部P12とを有する。   In the first embodiment, the temperature detector T11 that detects the temperature of the high-pressure refrigerant RH between the condenser 3 and the high stage expansion valve 5 and the high pressure between the condenser 3 and the high stage expansion valve 5 are used. A high pressure detection unit P11 that detects the pressure of the refrigerant RH and an intermediate pressure refrigerant state detection unit P12 that detects the pressure of the intermediate pressure refrigerant RM between the high stage expansion valve 5 and the gas-liquid separator 7 are provided.

制御部Cには、温度検出部T11、高圧圧力検出部P11、及び中間圧冷媒状態検出部P12から検出結果が入力され、この検出結果をもとに気液分離器7の導入される冷媒の乾き度xを算出する。そして、制御部Cは、この乾き度xが目標値xt以上の場合に、インバータ21を介して低段圧縮機1の回転数を減少させ、この乾き度xが目標値xt未満の場合に、インバータ21を介して低段圧縮機1の回転数を増加させる制御を行う。この制御は例えば、PID制御により行われる。   The control unit C receives detection results from the temperature detection unit T11, the high pressure detection unit P11, and the intermediate pressure refrigerant state detection unit P12, and based on the detection results, the refrigerant introduced into the gas-liquid separator 7 is detected. Calculate dryness x. Then, when the dryness x is equal to or higher than the target value xt, the control unit C decreases the rotational speed of the low-stage compressor 1 via the inverter 21. When the dryness x is lower than the target value xt, Control is performed to increase the rotational speed of the low-stage compressor 1 via the inverter 21. This control is performed by, for example, PID control.

目標値xtは、気液分離器7の気相側出口が水位LVよりも上の状態で、気体状態の中間圧冷媒RM1のみが中間配管9に導出される水位LVとなるときの乾き度に対応したものであり、予め決定されるものである。   The target value xt is the degree of dryness when the gas-phase separator outlet of the gas-liquid separator 7 is above the water level LV and only the intermediate pressure refrigerant RM1 in the gaseous state reaches the water level LV led to the intermediate pipe 9. Corresponding and predetermined.

乾き度xは、図2に示すように、中間圧PMと飽和液線PWとの交点PP1と、中間圧PMと乾き飽和気線PDとの交点PP2との間の比エンタルピ差を「1」としたとき、点P5と交点PP1との間の比エンタルピ差に対応する値であり、気液二相の中間圧冷媒中に含まれる気相冷媒の質量割合を示す。   As shown in FIG. 2, the dryness x represents a specific enthalpy difference between the intersection PP1 between the intermediate pressure PM and the saturated liquid line PW and the intersection PP2 between the intermediate pressure PM and the dry saturated airline PD “1”. Is a value corresponding to the specific enthalpy difference between the point P5 and the intersection PP1, and indicates the mass ratio of the gas-phase refrigerant contained in the gas-liquid two-phase intermediate pressure refrigerant.

制御部Cは、温度検出部T11が検出した高圧冷媒RHの温度及び高圧圧力検出部P11が検出した高圧冷媒RHの圧力をもとに点P4を算出し、中間圧冷媒状態検出部P12が検出した中間圧冷媒RMの圧力PMで、点P4と同一比エンタルピの点P5を求めることによって乾き度xを算出する。   The control unit C calculates the point P4 based on the temperature of the high-pressure refrigerant RH detected by the temperature detection unit T11 and the pressure of the high-pressure refrigerant RH detected by the high-pressure detection unit P11, and the intermediate-pressure refrigerant state detection unit P12 detects The dryness x is calculated by obtaining a point P5 having the same specific enthalpy as the point P4 with the pressure PM of the intermediate pressure refrigerant RM.

ここで、図3に示したフローチャートを参照して、実施の形態1の制御部Cによる水位制御処理手順について説明する。まず、制御部Cは、上述したように高圧冷媒RHの温度及び圧力と、中間圧冷媒RMの圧力PMとを用いて、現在の乾き度xを算出する(ステップS101)。   Here, with reference to the flowchart shown in FIG. 3, the water level control process procedure by the control part C of Embodiment 1 is demonstrated. First, as described above, the control unit C calculates the current dryness x using the temperature and pressure of the high-pressure refrigerant RH and the pressure PM of the intermediate-pressure refrigerant RM (Step S101).

その後、制御部Cは、乾き度xが目標値xt以上であるか否かを判断する(ステップS102)。乾き度xが目標値xt以上である場合(ステップS102,Yes)には、低段圧縮機1の回転数を、インバータ21を介して減少させて(ステップS103)、本処理を終了する。一方、乾き度xが目標値xt以上でない場合(ステップS102,No)には、低段圧縮機1の回転数を、インバータ21を介して増加させて(ステップS104)、本処理を終了する。そして、所定制御時間ごとに上述した処理を繰り返す。   Thereafter, the controller C determines whether or not the dryness x is equal to or greater than the target value xt (step S102). When the dryness x is equal to or greater than the target value xt (step S102, Yes), the rotational speed of the low-stage compressor 1 is decreased via the inverter 21 (step S103), and this process is terminated. On the other hand, when the dryness x is not equal to or greater than the target value xt (No at Step S102), the rotational speed of the low-stage compressor 1 is increased via the inverter 21 (Step S104), and this process is terminated. And the process mentioned above is repeated for every predetermined control time.

本実施の形態1では、気液分離器7に水位計を設けなくても、算出した気液分離器7の乾き度xをもとに気液分離器7の水位LVを制御できるので、気液分離器7の水位を簡易な構成で安定制御することができる。   In the first embodiment, the water level LV of the gas-liquid separator 7 can be controlled based on the calculated dryness x of the gas-liquid separator 7 without providing a water level meter in the gas-liquid separator 7. The water level of the liquid separator 7 can be stably controlled with a simple configuration.

なお、上述した中間圧冷媒状態検出部P12は、中間配管9内の中間圧冷媒RM1の圧力を検出してもよい。また、中間圧冷媒状態検出部P12は、中間圧冷媒RMの温度を検出してもよい。この場合、制御部Cは、図2に示した中間圧PMに替えて等温線LTを用いて点P5を求め、現在の乾き度xを算出する。   The intermediate pressure refrigerant state detection unit P12 described above may detect the pressure of the intermediate pressure refrigerant RM1 in the intermediate pipe 9. Further, the intermediate pressure refrigerant state detection unit P12 may detect the temperature of the intermediate pressure refrigerant RM. In this case, the control unit C obtains the point P5 using the isotherm LT instead of the intermediate pressure PM shown in FIG. 2, and calculates the current dryness x.

(実施の形態2)
上述した実施の形態1では、制御部Cが起動後の通常状態(定常状態)で水位制御処理を行うものであったが、この実施の形態2では、気液分離器7内に液相の冷媒が存在しない状態からの起動において、起動時と起動後の通常状態とで異なる水位制御処理を行うようにしている。制御部Cは、起動時には起動液面制御モードとなり、起動後、所定時間経過した場合に通常液面制御モードとなる。
(Embodiment 2)
In the first embodiment described above, the control unit C performs the water level control process in the normal state (steady state) after startup. However, in the second embodiment, the liquid phase is contained in the gas-liquid separator 7. In the start-up from the state where no refrigerant exists, different water level control processes are performed in the normal state after the start-up and after the start-up. The controller C enters the startup liquid level control mode at the time of startup, and enters the normal liquid level control mode when a predetermined time has elapsed after startup.

ここで、図4に示したフローチャートを参照して、実施の形態2の制御部Cによる水位制御処理手順について説明する。まず、制御部Cは、上述したように高圧冷媒RHの温度及び圧力と、中間圧冷媒RMの圧力PMとを用いて、現在の乾き度xを算出する(ステップS201)。   Here, with reference to the flowchart shown in FIG. 4, the water level control process procedure by the control part C of Embodiment 2 is demonstrated. First, as described above, the control unit C calculates the current dryness x using the temperature and pressure of the high-pressure refrigerant RH and the pressure PM of the intermediate-pressure refrigerant RM (Step S201).

その後、制御部Cは、現在のモードが起動液面制御モードか通常液面制御モードかを判断する(ステップS202)。現在のモードが起動液面制御モードである場合(ステップS202,起動液面制御モード)、乾き度xが第1の目標値xt1以上であるか否かを判断する(ステップS203)。ここで第1の目標値xt1は気液分離器7に流入する液相冷媒量が気液分離器7の液相側出口から流出する冷媒量よりも大きくなるように設定されており、単位時間における気液分離器7内の水位上昇速度が一定になるよう制御している。乾き度xが第1の目標値xt1以上である場合(ステップS203,Yes)には、低段圧縮機1の回転数を、インバータ21を介して減少させて(ステップS204)、ステップS206に移行する。一方、乾き度xが第1の目標値xt1以上でない場合(ステップS203,No)には、低段圧縮機1の回転数を、インバータ21を介して増加させて(ステップS205)、ステップS206に移行する。   Thereafter, the control unit C determines whether the current mode is the startup liquid level control mode or the normal liquid level control mode (step S202). When the current mode is the startup liquid level control mode (step S202, startup liquid level control mode), it is determined whether or not the dryness x is equal to or higher than the first target value xt1 (step S203). Here, the first target value xt1 is set so that the amount of liquid-phase refrigerant flowing into the gas-liquid separator 7 is larger than the amount of refrigerant flowing out from the liquid-phase outlet of the gas-liquid separator 7, and unit time The water level rising speed in the gas-liquid separator 7 is controlled to be constant. When the dryness x is equal to or greater than the first target value xt1 (step S203, Yes), the rotational speed of the low-stage compressor 1 is decreased via the inverter 21 (step S204), and the process proceeds to step S206. To do. On the other hand, when the dryness x is not equal to or greater than the first target value xt1 (No at Step S203), the rotational speed of the low-stage compressor 1 is increased via the inverter 21 (Step S205), and the process goes to Step S206. Transition.

ステップS206では、起動後、所定時間を経過したか否かを判断する。起動後、所定時間を経過した場合(ステップS206,Yes)には、通常液面制御モードに移行して(ステップS207)、本処理を終了する。一方、起動後、所定時間を経過していない場合(ステップS206,No)には、そのまま本処理を終了する。   In step S206, it is determined whether or not a predetermined time has elapsed after activation. If a predetermined time has elapsed after the start (step S206, Yes), the process proceeds to the normal liquid level control mode (step S207), and this process ends. On the other hand, if the predetermined time has not passed since the start (step S206, No), this processing is ended as it is.

一方、現在のモードが通常液面制御モードである場合(ステップS202,通常液面制御モード)、乾き度xが第2の目標値xt2以上であるか否かを判断する(ステップS208)。この第2の目標値xt2は、第1の目標値xt1よりも大きい値であり、気液分離器7に流入する液相冷媒量と気液分離器7の液相側出口から流出する冷媒量とが略同一になるように設定されることが望ましい。乾き度xが第2の目標値xt2以上である場合(ステップS208,Yes)には、低段圧縮機1の回転数を、インバータ21を介して減少させて(ステップS209)、本処理を終了する。一方、乾き度xが第2の目標値xt2以上でない場合(ステップS208,No)には、低段圧縮機1の回転数を、インバータ21を介して増加させて(ステップS210)、本処理を終了する。そして、所定制御時間ごとに上述した処理を繰り返す。   On the other hand, when the current mode is the normal liquid level control mode (step S202, normal liquid level control mode), it is determined whether or not the dryness x is equal to or greater than the second target value xt2 (step S208). The second target value xt2 is larger than the first target value xt1, and the amount of liquid-phase refrigerant flowing into the gas-liquid separator 7 and the amount of refrigerant flowing out from the liquid-phase outlet of the gas-liquid separator 7 Is preferably set so that they are substantially the same. When the dryness x is equal to or greater than the second target value xt2 (step S208, Yes), the rotational speed of the low-stage compressor 1 is decreased via the inverter 21 (step S209), and this process is terminated. To do. On the other hand, when the dryness x is not equal to or greater than the second target value xt2 (No at Step S208), the rotational speed of the low-stage compressor 1 is increased via the inverter 21 (Step S210), and this process is performed. finish. And the process mentioned above is repeated for every predetermined control time.

本実施の形態2では、起動時に気液分離器7内の水位がゼロから起動した場合でも、起動液面制御モードによって水位を目標レベルまで上昇制御した上で、通常液面制御モードに移行させることができる。   In the second embodiment, even when the water level in the gas-liquid separator 7 is started from zero at the time of startup, the water level is raised to the target level by the startup liquid level control mode, and then the normal liquid level control mode is shifted to. be able to.

(実施の形態3)
上述した実施の形態1,2では、図2に示した二段圧縮二段膨張サイクルのp−h線図を用いて乾き度xを算出していたが、本実施の形態3では、乾き度xを高段冷媒循環量GH及び低段冷媒循環量GLを用いて算出している。
(Embodiment 3)
In the first and second embodiments described above, the dryness x is calculated using the ph diagram of the two-stage compression / two-stage expansion cycle shown in FIG. 2, but in the third embodiment, the dryness is calculated. x is calculated using the high-stage refrigerant circulation amount GH and the low-stage refrigerant circulation amount GL.

ここで、乾き度xと高段冷媒循環量GH及び低段冷媒循環量GLとの関係は、次式(1)で表される。
1−x=GL/GH …(1)
したがって、乾き度xは、次式(2)で表される。
x=1−(GL/GH) …(2)
この結果、乾き度xは、高段冷媒循環量GH及び低段冷媒循環量GLと用いて算出することができる。
Here, the relationship between the dryness x, the high-stage refrigerant circulation amount GH, and the low-stage refrigerant circulation amount GL is expressed by the following equation (1).
1-x = GL / GH (1)
Therefore, the dryness x is expressed by the following equation (2).
x = 1- (GL / GH) (2)
As a result, the dryness x can be calculated using the high-stage refrigerant circulation amount GH and the low-stage refrigerant circulation amount GL.

図5は、本発明の実施の形態3である冷媒回路装置の構成を示す回路図である。図5に示すように、本実施の形態3では、高段圧縮機2の吸入側の冷媒の温度を検出する高段吸入温度検出部T21と、高段圧縮機2の吸入側の冷媒の圧力を検出する高段吸入圧力検出部P21と、低段圧縮機1の吸入側の冷媒の温度を検出する低段吸入温度検出部T22と、低段圧縮機1の吸入側の冷媒の圧力を検出する低段吸入圧力検出部P22とを有する。   FIG. 5 is a circuit diagram showing a configuration of a refrigerant circuit device according to Embodiment 3 of the present invention. As shown in FIG. 5, in the third embodiment, the high-stage suction temperature detection unit T <b> 21 that detects the temperature of the refrigerant on the suction side of the high-stage compressor 2, and the pressure of the refrigerant on the suction side of the high-stage compressor 2. A high-stage suction pressure detection unit P21 that detects the refrigerant, a low-stage suction temperature detection unit T22 that detects the temperature of the refrigerant on the suction side of the low-stage compressor 1, and a pressure of the refrigerant on the suction side of the low-stage compressor 1 And a low stage suction pressure detection unit P22.

制御部Cは、高段吸入温度検出部T21が検出した温度、高段吸入圧力検出部P21が検出した圧力、及び高段圧縮機2の回転数から高段圧縮機2の吐出口から吐出される高段冷媒循環量GHを算出し、低段吸入温度検出部T22が検出した温度、低段吸入圧力検出部P22が検出した圧力、及び低段圧縮機1の回転数から低段圧縮機1の吸入口に吸入される低段冷媒循環量GLを算出する。そして、制御部Cは、式(2)を用い、高段冷媒循環量GH及び低段冷媒循環量GLをもとに乾き度xを算出する。   The control unit C is discharged from the discharge port of the high stage compressor 2 based on the temperature detected by the high stage suction temperature detection unit T21, the pressure detected by the high stage suction pressure detection unit P21, and the rotation speed of the high stage compressor 2. The low-stage compressor 1 is calculated from the temperature detected by the low-stage intake temperature detection unit T22, the pressure detected by the low-stage intake pressure detection unit P22, and the rotation speed of the low-stage compressor 1. The low-stage refrigerant circulation amount GL sucked into the suction port is calculated. And the control part C calculates dryness x based on the high stage refrigerant | coolant circulation amount GH and the low stage refrigerant | coolant circulation amount GL using Formula (2).

ここで、図6に示したフローチャートを参照して、実施の形態3の制御部Cによる水位制御処理手順について説明する。まず、制御部Cは、上述したように、高段吸入温度検出部T21が検出した温度、高段吸入圧力検出部P21が検出した圧力、及び高段圧縮機2の回転数から高段圧縮機2の吐出口から吐出される高段冷媒循環量GHを算出する(ステップS301)。さらに、制御部Cは、低段吸入温度検出部T22が検出した温度、低段吸入圧力検出部P22が検出した圧力、及び低段圧縮機1の回転数から低段圧縮機1の吸入口に吸入される低段冷媒循環量GLを算出する(ステップS302)。そして、制御部Cは、式(2)を用いて、乾き度xを算出する(ステップS303)。   Here, with reference to the flowchart shown in FIG. 6, the water level control process procedure by the control part C of Embodiment 3 is demonstrated. First, as described above, the control unit C determines the high stage compressor from the temperature detected by the high stage suction temperature detection unit T21, the pressure detected by the high stage suction pressure detection unit P21, and the rotation speed of the high stage compressor 2. The high-stage refrigerant circulation amount GH discharged from the second discharge port is calculated (step S301). Further, the control unit C supplies the suction port of the low stage compressor 1 from the temperature detected by the low stage suction temperature detection unit T22, the pressure detected by the low stage suction pressure detection unit P22, and the rotation speed of the low stage compressor 1. The low-stage refrigerant circulation amount GL to be sucked is calculated (step S302). And the control part C calculates dryness x using Formula (2) (step S303).

その後、制御部Cは、乾き度xが目標値xt以上であるか否かを判断する(ステップS304)。乾き度xが目標値xt以上である場合(ステップS304,Yes)には、低段圧縮機1の回転数を、インバータ21を介して減少させて(ステップS305)、本処理を終了する。一方、乾き度xが目標値xt以上でない場合(ステップS304,No)には、低段圧縮機1の回転数を、インバータ21を介して増加させて(ステップS306)、本処理を終了する。そして、所定制御時間ごとに上述した処理を繰り返す。   Thereafter, the control unit C determines whether or not the dryness x is equal to or greater than the target value xt (step S304). If the dryness x is equal to or greater than the target value xt (step S304, Yes), the rotational speed of the low-stage compressor 1 is decreased via the inverter 21 (step S305), and this process is terminated. On the other hand, when the dryness x is not equal to or higher than the target value xt (No at Step S304), the rotational speed of the low-stage compressor 1 is increased via the inverter 21 (Step S306), and this process is terminated. And the process mentioned above is repeated for every predetermined control time.

本実施の形態3では、気液分離器7に水位計を設けなくても、通常の運転制御に用いられる、既存の温度検出手段、圧力検出手段のみを用いて乾き度xを算出し気液分離器7の水位LVを制御できるので、気液分離器7の水位を簡易な構成で安定制御することができる。   In the third embodiment, the dryness x is calculated using only the existing temperature detection means and pressure detection means used for normal operation control without providing a water level meter in the gas-liquid separator 7 to calculate the gas-liquid. Since the water level LV of the separator 7 can be controlled, the water level of the gas-liquid separator 7 can be stably controlled with a simple configuration.

(実施の形態4)
実施の形態1〜3では、気液分離器7に流入する液相冷媒量と気液分離器7の液相側出口から流出する冷媒量とが略同一になるよう設定することで、気液分離器7の水位LVを一定に制御している。一方、圧縮機の圧縮比が非常に大きくなるなど特殊な条件下で運転を行った場合は、体積効率が悪くなるため、計算の理論値と実際の値との誤差が大きくなり、水位が変動してしまう恐れがある。通常は、あらかじめ設計時に決められた気液分離器7内の水位LVで最大運転効率となるよう、冷媒回路内の冷媒充填量を決定するため、運転時は常に一定の水位を保つことが望ましい。
(Embodiment 4)
In the first to third embodiments, the liquid-liquid refrigerant amount flowing into the gas-liquid separator 7 and the refrigerant amount flowing out from the liquid-phase side outlet of the gas-liquid separator 7 are set to be substantially the same. The water level LV of the separator 7 is controlled to be constant. On the other hand, when operating under special conditions such as a very high compression ratio of the compressor, the volumetric efficiency becomes worse, so the error between the calculated theoretical value and the actual value increases, and the water level fluctuates. There is a risk of doing. Normally, the refrigerant charge amount in the refrigerant circuit is determined so that the maximum operation efficiency is achieved at the water level LV in the gas-liquid separator 7 determined in advance at the time of design. Therefore, it is desirable to always maintain a constant water level during operation. .

このため、本実施の形態4では、気液分離器7に流入する液相冷媒量よりも気液分離器7の液相側出口から流出する冷媒量が大きくなるよう目標値xtを設定している。ここで目標値xtは、気液分離器7に流入する液相冷媒量と気液分離器7の液相側出口から流出する冷媒量との差分が極力小さくなるように設定することが望ましい。   For this reason, in the fourth embodiment, the target value xt is set so that the refrigerant amount flowing out from the liquid-phase side outlet of the gas-liquid separator 7 becomes larger than the liquid-phase refrigerant amount flowing into the gas-liquid separator 7. Yes. Here, it is desirable that the target value xt is set so that the difference between the amount of liquid-phase refrigerant flowing into the gas-liquid separator 7 and the amount of refrigerant flowing out from the liquid-phase outlet of the gas-liquid separator 7 is minimized.

このような設定で運転することにより、気液分離器7の水位を常にゼロレベルに保つことで運転条件の変化による影響を受けることを防止しつつ、過剰の気液二相冷媒が気液分離器7の液相側出口から流出して効率が悪化することをも防止することができる。   By operating at such a setting, excessive gas-liquid two-phase refrigerant is separated from gas-liquid while preventing the influence of changes in operating conditions by always maintaining the water level of the gas-liquid separator 7 at zero level. It is also possible to prevent the efficiency from deteriorating due to outflow from the liquid phase side outlet of the vessel 7.

(実施の形態5)
本実施の形態5では、気液分離器7に流入する液相冷媒量よりも気液分離器7の液相側出口から流出する冷媒量が小さくなるよう目標値xtを設定している。ここで目標値xtは、気液分離器7に流入する液相冷媒量と気液分離器7の液相側出口から流出する冷媒量との差分が極力小さくなるように設定することが望ましい。そして、図7に示すように、中間配管9には、気液分離器7の気相側出口から導入された中間圧冷媒RM1を加熱する加熱部8を設けている。加熱部8は、気液分離器7の気相側出口から流出した気液二相冷媒を気相冷媒に変換する。加熱部8は例えば熱交換器を用いることができ、熱源として凝縮器から吐出された高圧冷媒や外部熱源を利用することができる。
(Embodiment 5)
In the fifth embodiment, the target value xt is set so that the refrigerant amount flowing out from the liquid-phase side outlet of the gas-liquid separator 7 is smaller than the liquid-phase refrigerant amount flowing into the gas-liquid separator 7. Here, it is desirable that the target value xt is set so that the difference between the amount of liquid-phase refrigerant flowing into the gas-liquid separator 7 and the amount of refrigerant flowing out from the liquid-phase outlet of the gas-liquid separator 7 is minimized. As shown in FIG. 7, the intermediate pipe 9 is provided with a heating unit 8 that heats the intermediate pressure refrigerant RM <b> 1 introduced from the gas phase side outlet of the gas-liquid separator 7. The heating unit 8 converts the gas-liquid two-phase refrigerant flowing out from the gas-phase side outlet of the gas-liquid separator 7 into a gas-phase refrigerant. For example, a heat exchanger can be used as the heating unit 8, and a high-pressure refrigerant discharged from a condenser or an external heat source can be used as a heat source.

このような設定で運転することにより、気液分離器7の水位を常に気液分離器7の気相側出口と同レベルに保ちつつ、過剰の気液二相冷媒が気液分離器7の気相側出口から流出して効率が悪化することを防止することができる。さらに、気液分離器7の気相側出口から流出した冷媒に液相冷媒が混入した場合でも、加熱部8により、完全に気化させた上で高段圧縮機2に吸入させることができるため、高段圧縮機内での液バックを防止できる。   By operating in such a setting, an excess of the gas-liquid two-phase refrigerant is kept in the gas-liquid separator 7 while always keeping the water level of the gas-liquid separator 7 at the same level as the gas-phase outlet of the gas-liquid separator 7. It is possible to prevent the efficiency from deteriorating due to outflow from the gas phase outlet. Furthermore, even when a liquid-phase refrigerant is mixed into the refrigerant flowing out from the gas-phase-side outlet of the gas-liquid separator 7, it can be completely vaporized by the heating unit 8 and then sucked into the high-stage compressor 2. Liquid back in the high stage compressor can be prevented.

(実施の形態6)
図8は、本発明の実施の形態6である冷媒回路装置の構成を示す回路図である。図8に示すように、本実施の形態6では、高段圧縮機2から気液分離器7までの間に設けられて高段圧縮機2の吐出口から吐出される高段冷媒循環量GHを検出する高段側流量検出部F11と、気液分離器7の液相側出口から低段圧縮機1までの間に設けられて低段圧縮機1の吸入口に吸入される低段冷媒循環量GLを検出する低段側流量検出部F12とを有する。
(Embodiment 6)
FIG. 8 is a circuit diagram showing a configuration of a refrigerant circuit device according to Embodiment 6 of the present invention. As shown in FIG. 8, in the sixth embodiment, a high-stage refrigerant circulation amount GH provided between the high-stage compressor 2 and the gas-liquid separator 7 and discharged from the discharge port of the high-stage compressor 2. The low-stage refrigerant that is provided between the high-stage flow rate detection unit F11 for detecting the gas and the gas-liquid separator 7 from the liquid-phase side outlet to the low-stage compressor 1 and sucked into the suction port of the low-stage compressor 1 A low-stage flow rate detection unit F12 that detects the circulation amount GL.

制御部Cは、高段側流量検出部F11が検出した高段冷媒循環量GHと、低段側流量検出部F12が検出した低段冷媒循環量GLとをもとに乾き度xを算出する。   The control unit C calculates the dryness x based on the high-stage refrigerant circulation amount GH detected by the high-stage side flow rate detection unit F11 and the low-stage refrigerant circulation amount GL detected by the low-stage side flow rate detection unit F12. .

ここで、図9に示したフローチャートを参照して、実施の形態6の制御部Cによる水位制御処理手順について説明する。まず、制御部Cは、上述したように、高段側流量検出部F11によって高段冷媒循環量GHを検出する(ステップS401)。さらに、制御部Cは、低段側流量検出部F12によって低段冷媒循環量GLを検出する(ステップS402)。そして、制御部Cは、式(2)を用いて、乾き度xを算出する(ステップS403)。   Here, with reference to the flowchart shown in FIG. 9, the water level control process procedure by the control part C of Embodiment 6 is demonstrated. First, as described above, the control unit C detects the high stage refrigerant circulation amount GH by the high stage side flow rate detection unit F11 (step S401). Further, the control unit C detects the low-stage refrigerant circulation amount GL by the low-stage side flow rate detection unit F12 (step S402). And the control part C calculates dryness x using Formula (2) (step S403).

その後、制御部Cは、乾き度xが目標値xt以上であるか否かを判断する(ステップS404)。乾き度xが目標値xt以上である場合(ステップS404,Yes)には、低段圧縮機1の回転数を、インバータ21を介して減少させて(ステップS405)、本処理を終了する。一方、乾き度xが目標値xt以上でない場合(ステップS404,No)には、低段圧縮機1の回転数を、インバータ21を介して増加させて(ステップS406)、本処理を終了する。そして、所定制御時間ごとに上述した処理を繰り返す。   Thereafter, the control unit C determines whether or not the dryness x is equal to or greater than the target value xt (step S404). When the dryness x is equal to or greater than the target value xt (step S404, Yes), the rotational speed of the low-stage compressor 1 is decreased via the inverter 21 (step S405), and this process is terminated. On the other hand, when the dryness x is not equal to or greater than the target value xt (No at Step S404), the rotational speed of the low-stage compressor 1 is increased via the inverter 21 (Step S406), and this process is terminated. And the process mentioned above is repeated for every predetermined control time.

本実施の形態6では、気液分離器7に水位計を設けなくても、従来の出力制御などに用いられる、既存流量計を用いて乾き度xを算出し気液分離器7の水位LVを制御できるので、気液分離器7の水位を簡易な構成で安定制御することができる。   In Embodiment 6, the water level LV of the gas-liquid separator 7 is calculated by calculating the dryness x using an existing flow meter used for conventional output control or the like without providing a water level meter in the gas-liquid separator 7. Therefore, the water level of the gas-liquid separator 7 can be stably controlled with a simple configuration.

なお、上述した実施の形態1〜6の各構成要素は適宜組み合わせ及び重複組み合わせが可能である。例えば、実施の形態1,2の重複組み合わせを行う場合、制御部Cは、それぞれが算出される乾き度xの平均値を乾き度xとして制御すればよい。このように複数の方法で算出された乾き度を併用することで、誤差をより小さくし、より水位を安定させることができる。   In addition, each component of Embodiment 1-6 mentioned above can be combined suitably, and a duplication combination is possible. For example, when the overlapping combination of Embodiments 1 and 2 is performed, the control unit C may control the average value of the dryness x calculated by each as the dryness x. Thus, by using together the dryness calculated by the several method, an error can be made smaller and a water level can be stabilized more.

1 低段圧縮機
2 高段圧縮機
3 凝縮器
5 高段膨張弁
7 気液分離器
8 加熱部
9 中間配管
10 低段膨張弁
12 蒸発器
21 インバータ
C 制御部
F11 高段側流量検出部
F12 低段側流量検出部
GH 高段冷媒循環量
GL 低段冷媒循環量
GM 冷媒循環量
LT 等温線
LV 水位
P1〜P7 点
P11 高圧圧力検出部
P12 中間圧冷媒状態検出部
P21 高段吸入圧力検出部
P22 低段吸入圧力検出部
PD 乾き飽和気線
PP1、PP2 交点
PW 飽和液線
RH 高圧冷媒
RL 低圧冷媒
RM、RM1,RM2 中間圧冷媒
T11 温度検出部
T21 高段吸入温度検出部
T22 低段吸入温度検出部
x 乾き度
xt,xt1,xt2 目標値
DESCRIPTION OF SYMBOLS 1 Low stage compressor 2 High stage compressor 3 Condenser 5 High stage expansion valve 7 Gas-liquid separator 8 Heating part 9 Intermediate piping 10 Low stage expansion valve 12 Evaporator 21 Inverter C Control part F11 High stage side flow rate detection part F12 Low-stage flow rate detection unit GH High-stage refrigerant circulation amount GL Low-stage refrigerant circulation amount GM Refrigerant circulation amount LT Isothermal line LV Water levels P1 to P7 Point P11 High-pressure detection unit P12 Intermediate-pressure refrigerant state detection unit P21 High-stage intake pressure detection unit P22 Low stage suction pressure detection part PD Dry saturated air line PP1, PP2 Intersection PW Saturated liquid line RH High pressure refrigerant RL Low pressure refrigerant RM, RM1, RM2 Intermediate pressure refrigerant T11 Temperature detection part T21 High stage suction temperature detection part T22 Low stage suction temperature Detection unit x Dryness xt, xt1, xt2 Target value

Claims (11)

低圧冷媒を蒸発させる蒸発器と、前記蒸発器から導入された低圧冷媒を中間圧に圧縮する低段圧縮機と、前記低段圧縮機で圧縮された中間圧冷媒を高圧に圧縮する高段圧縮機と、前記高段圧縮機で圧縮された高圧冷媒を凝縮する凝縮器と、前記凝縮器で凝縮された高圧冷媒を減圧膨張して前記中間圧にする高段膨張弁と、前記高段膨張弁から導入された中間圧冷媒を気液分離する気液分離器と、前記気液分離器の気相側出口から導入された中間圧冷媒を前記低段圧縮機の吐出口と前記高段圧縮機の吸入口との間に導入する中間配管と、前記気液分離器の液相側出口から導入された中間圧冷媒を減圧膨張して低圧にして前記蒸発器に導出する低段膨張弁と、を備えた冷媒回路装置であって、
前記気液分離器に導入される冷媒の乾き度に応じて前記低段圧縮機の回転数を制御する制御部を備えたことを特徴とする冷媒回路装置。
An evaporator that evaporates low-pressure refrigerant, a low-stage compressor that compresses low-pressure refrigerant introduced from the evaporator to an intermediate pressure, and a high-stage compression that compresses intermediate-pressure refrigerant compressed by the low-stage compressor to a high pressure A condenser for condensing the high-pressure refrigerant compressed by the high-stage compressor, a high-stage expansion valve for decompressing and expanding the high-pressure refrigerant condensed by the condenser to the intermediate pressure, and the high-stage expansion A gas-liquid separator that gas-liquid separates the intermediate-pressure refrigerant introduced from the valve; and an intermediate-pressure refrigerant introduced from the gas-phase-side outlet of the gas-liquid separator, the discharge port of the low-stage compressor and the high-stage compression An intermediate pipe introduced between the suction port of the compressor and a low-stage expansion valve for decompressing and expanding the intermediate pressure refrigerant introduced from the liquid phase side outlet of the gas-liquid separator to a low pressure A refrigerant circuit device comprising:
A refrigerant circuit device comprising a control unit that controls the number of revolutions of the low-stage compressor in accordance with the dryness of the refrigerant introduced into the gas-liquid separator.
前記制御部は、前記冷媒の乾き度が目標値以上の場合に前記低段圧縮機の回転数を減少させ、前記冷媒の乾き度が目標値未満の場合に前記低段圧縮機の回転数を増加させることを特徴とする請求項1に記載の冷媒回路装置。   The control unit decreases the rotational speed of the low-stage compressor when the dryness of the refrigerant is equal to or higher than a target value, and decreases the rotational speed of the low-stage compressor when the dryness of the refrigerant is less than the target value. The refrigerant circuit device according to claim 1, wherein the refrigerant circuit device is increased. 前記凝縮器と前記高段膨張弁との間の高圧冷媒の温度を検出する温度検出部と、
前記凝縮器と前記高段膨張弁との間の高圧冷媒の圧力を検出する高圧圧力検出部と、
前記高段膨張弁と前記気液分離器との間の中間圧冷媒または前記中間配管内の中間圧冷媒の圧力または温度を検出する中間圧冷媒状態検出部と、
を備え、
前記制御部は、前記高圧冷媒の温度及び圧力と前記中間圧冷媒の圧力または温度とをもとに、前記気液分離器に導入される冷媒の乾き度を算出することを特徴とする請求項1または2に記載の冷媒回路装置。
A temperature detector for detecting the temperature of the high-pressure refrigerant between the condenser and the high stage expansion valve;
A high-pressure detector that detects the pressure of the high-pressure refrigerant between the condenser and the high-stage expansion valve;
An intermediate pressure refrigerant state detection unit for detecting the pressure or temperature of the intermediate pressure refrigerant between the high stage expansion valve and the gas-liquid separator or the intermediate pressure refrigerant in the intermediate pipe;
With
The said control part calculates the dryness of the refrigerant | coolant introduce | transduced into the said gas-liquid separator based on the temperature and pressure of the said high pressure refrigerant | coolant, and the pressure or temperature of the said intermediate pressure refrigerant | coolant. The refrigerant circuit device according to 1 or 2.
前記制御部は、
前記高段圧縮機に吸入される高段冷媒循環量と、前記低段圧縮機に吸入される低段冷媒循環量とから前記乾き度を求めることを特徴とする請求項1または2に記載の冷媒回路装置。
The controller is
The dryness is obtained from a high-stage refrigerant circulation amount sucked into the high-stage compressor and a low-stage refrigerant circulation amount sucked into the low-stage compressor. Refrigerant circuit device.
前記高段圧縮機の吸入側の冷媒の温度を検出する高段吸入温度検出部と、
前記高段圧縮機の吸入側の冷媒の圧力を検出する高段吸入圧力検出部と、
を備え、
前記制御部は、
前記高段吸入温度検出部が検出した温度、前記高段吸入圧力検出部が検出した圧力、及び前記高段圧縮機の回転数から前記高段冷媒循環量を算出することを特徴とする請求項4に記載の冷媒回路装置。
A high stage suction temperature detection unit for detecting the temperature of the refrigerant on the suction side of the high stage compressor;
A high stage suction pressure detection unit for detecting the pressure of refrigerant on the suction side of the high stage compressor;
With
The controller is
The high-stage refrigerant circulation amount is calculated from the temperature detected by the high-stage intake temperature detection unit, the pressure detected by the high-stage intake pressure detection unit, and the rotation speed of the high-stage compressor. 5. The refrigerant circuit device according to 4.
前記高段圧縮機と前記気液分離器との間に高段側流量検出部を備え、前記高段冷媒循環量を検出することを特徴とする請求項4に記載の冷媒回路装置。   5. The refrigerant circuit device according to claim 4, further comprising a high-stage-side flow rate detection unit between the high-stage compressor and the gas-liquid separator, and detecting the high-stage refrigerant circulation amount. 前記低段圧縮機の吸入側の冷媒の温度を検出する低段吸入温度検出部と、
前記低段圧縮機の吸入側の冷媒の圧力を検出する低段吸入圧力検出部と、
を備え、
前記制御部は、
前記低段吸入温度検出部が検出した温度および前記低段吸入圧力検出部が検出した圧力、及び前記低段圧縮機の回転数から前記低段冷媒循環量を算出することを特徴とする請求項4〜6のいずれか1項に記載の冷媒回路装置。
A low-stage intake temperature detector that detects the temperature of the refrigerant on the intake side of the low-stage compressor;
A low-stage suction pressure detector that detects the pressure of refrigerant on the suction side of the low-stage compressor;
With
The controller is
The low-stage refrigerant circulation amount is calculated from the temperature detected by the low-stage intake temperature detection unit, the pressure detected by the low-stage intake pressure detection unit, and the rotation speed of the low-stage compressor. The refrigerant circuit device according to any one of 4 to 6.
前記気液分離器の液相側出口と前記低段圧縮機との間に低段側流量検出部を備え、前記低段冷媒循環量を検出することを特徴とする請求項4〜6のいずれか1項に記載の冷媒回路装置。   The low-stage side flow rate detection unit is provided between the liquid-phase side outlet of the gas-liquid separator and the low-stage compressor, and the low-stage refrigerant circulation amount is detected. The refrigerant circuit device according to claim 1. 前記制御部は、起動液面制御モードと通常液面制御モードとを持ち、
前記制御部は、前記起動液面制御モードとして、前記冷媒の乾き度が第1の目標値以上の場合に前記低段圧縮機の回転数を減少させ、前記冷媒の乾き度が該第1の目標値未満の場合に前記低段圧縮機の回転数を増加させ、
前記制御部は、前記通常液面制御モードとして、前記冷媒の乾き度が第2の目標値以上の場合に前記低段圧縮機の回転数を減少させ、前記冷媒の乾き度が該第2の目標値未満の場合に前記低段圧縮機の回転数を増加させ、
前記第1の目標値は、前記第2の目標値よりも小さく設定されることを特徴とする請求項1〜8のいずれか1項に記載の冷媒回路装置。
The control unit has a startup liquid level control mode and a normal liquid level control mode,
The controller, as the starting liquid level control mode, reduces the rotational speed of the low-stage compressor when the dryness of the refrigerant is equal to or higher than a first target value, and the dryness of the refrigerant is set to the first dryness level control mode. Increase the number of rotations of the low-stage compressor when less than the target value,
In the normal liquid level control mode, the control unit decreases the rotation speed of the low-stage compressor when the dryness of the refrigerant is equal to or higher than a second target value, and the dryness of the refrigerant is set to the second level. Increase the number of rotations of the low-stage compressor when less than the target value,
The refrigerant circuit device according to any one of claims 1 to 8, wherein the first target value is set smaller than the second target value.
前記制御部は、前記冷媒回路装置の起動時に前記起動液面制御モードとなり、前記冷媒回路装置の起動後、所定時間が経過した場合に前記通常液面制御モードに移行することを特徴とする請求項9に記載の冷媒回路装置。   The control unit is in the startup liquid level control mode when the refrigerant circuit device is activated, and shifts to the normal liquid level control mode when a predetermined time has elapsed after the refrigerant circuit device is activated. Item 10. The refrigerant circuit device according to Item 9. 前記目標値は、前記気液分離器に流入する液相冷媒量よりも前記気液分離器の液相側出口から流出する冷媒量が小さくなるよう設定され、前記中間配管には、前記気液分離器の気相側出口から導入された中間圧の冷媒を加熱する加熱手段を有することを特徴とする請求項1〜8のいずれか1項に記載の冷媒回路装置。   The target value is set so that the amount of refrigerant flowing out from the liquid-phase side outlet of the gas-liquid separator is smaller than the amount of liquid-phase refrigerant flowing into the gas-liquid separator. The refrigerant circuit device according to any one of claims 1 to 8, further comprising a heating unit that heats the intermediate pressure refrigerant introduced from a gas phase side outlet of the separator.
JP2016180366A 2016-09-15 2016-09-15 Refrigerant circuit device Active JP6772703B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016180366A JP6772703B2 (en) 2016-09-15 2016-09-15 Refrigerant circuit device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016180366A JP6772703B2 (en) 2016-09-15 2016-09-15 Refrigerant circuit device

Publications (2)

Publication Number Publication Date
JP2018044725A true JP2018044725A (en) 2018-03-22
JP6772703B2 JP6772703B2 (en) 2020-10-21

Family

ID=61693563

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016180366A Active JP6772703B2 (en) 2016-09-15 2016-09-15 Refrigerant circuit device

Country Status (1)

Country Link
JP (1) JP6772703B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109469971A (en) * 2018-11-13 2019-03-15 珠海格力电器股份有限公司 Heat-production control method and air-conditioner control system
CN109900004A (en) * 2019-02-20 2019-06-18 仲恺农业工程学院 A kind of adjustable mass dryness fraction refrigeration system of the Two-stage Compression with injector
JP2020041744A (en) * 2018-09-11 2020-03-19 富士電機株式会社 Heat pump type steam generating device
JP2020076516A (en) * 2018-11-06 2020-05-21 富士電機株式会社 Heat pump cycle and heat pump type steam generation device

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56105258A (en) * 1980-01-28 1981-08-21 Hitachi Ltd Refrigerating cycle
JPH0237259A (en) * 1988-07-26 1990-02-07 Toshiba Corp Two-stage compression refrigerating cycle
JP2002277078A (en) * 2001-03-16 2002-09-25 Mitsubishi Electric Corp Refrigerating cycle
JP2007085612A (en) * 2005-09-21 2007-04-05 Sanden Corp Refrigerant flow rate measuring method and air conditioner
JP2007147218A (en) * 2005-11-30 2007-06-14 Daikin Ind Ltd Refrigerating device
JP2012112648A (en) * 2012-03-16 2012-06-14 Mitsubishi Electric Corp Refrigeration cycle device
JP2013002722A (en) * 2011-06-16 2013-01-07 Sanyo Electric Co Ltd Refrigerator
JP2014016119A (en) * 2012-07-10 2014-01-30 Sharp Corp Heat pump type heating device
JP2016044938A (en) * 2014-08-26 2016-04-04 株式会社Nttファシリティーズ Steam compression type refrigeration cycle

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56105258A (en) * 1980-01-28 1981-08-21 Hitachi Ltd Refrigerating cycle
JPH0237259A (en) * 1988-07-26 1990-02-07 Toshiba Corp Two-stage compression refrigerating cycle
JP2002277078A (en) * 2001-03-16 2002-09-25 Mitsubishi Electric Corp Refrigerating cycle
JP2007085612A (en) * 2005-09-21 2007-04-05 Sanden Corp Refrigerant flow rate measuring method and air conditioner
JP2007147218A (en) * 2005-11-30 2007-06-14 Daikin Ind Ltd Refrigerating device
JP2013002722A (en) * 2011-06-16 2013-01-07 Sanyo Electric Co Ltd Refrigerator
JP2012112648A (en) * 2012-03-16 2012-06-14 Mitsubishi Electric Corp Refrigeration cycle device
JP2014016119A (en) * 2012-07-10 2014-01-30 Sharp Corp Heat pump type heating device
JP2016044938A (en) * 2014-08-26 2016-04-04 株式会社Nttファシリティーズ Steam compression type refrigeration cycle

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020041744A (en) * 2018-09-11 2020-03-19 富士電機株式会社 Heat pump type steam generating device
JP7176310B2 (en) 2018-09-11 2022-11-22 富士電機株式会社 Heat pump steam generator
JP2020076516A (en) * 2018-11-06 2020-05-21 富士電機株式会社 Heat pump cycle and heat pump type steam generation device
CN109469971A (en) * 2018-11-13 2019-03-15 珠海格力电器股份有限公司 Heat-production control method and air-conditioner control system
CN109469971B (en) * 2018-11-13 2020-01-17 珠海格力电器股份有限公司 Heating control method and air conditioner control system
CN109900004A (en) * 2019-02-20 2019-06-18 仲恺农业工程学院 A kind of adjustable mass dryness fraction refrigeration system of the Two-stage Compression with injector
CN109900004B (en) * 2019-02-20 2024-03-26 仲恺农业工程学院 Two-stage compression adjustable dryness refrigerating system with ejector

Also Published As

Publication number Publication date
JP6772703B2 (en) 2020-10-21

Similar Documents

Publication Publication Date Title
KR101460426B1 (en) Turbo freezer device, control device therefor, and control method therefor
JP6772703B2 (en) Refrigerant circuit device
JP3625816B2 (en) Air conditioner start-up control system and control method thereof
EP2933583A1 (en) Heat pump-type heating device
JP6029879B2 (en) Heat pump type heating device
US9395112B2 (en) Method for controlling operation of a vapour compression system in a subcritical and a supercritical mode
WO1999010686A1 (en) Cooling cycle
JP5278452B2 (en) Refrigeration cycle apparatus and hot water heater using the same
JP5776314B2 (en) Heat pump water heater
EP2746699A1 (en) Refrigeration cycle device
JP2005134070A (en) Heat pump water heater
CN114341567B (en) Outdoor unit and refrigeration cycle device
KR20170095616A (en) Air conditioner and a method for controlling the same
JP6554903B2 (en) Air conditioner
JP6132028B2 (en) Heat pump equipment
JP2012122637A (en) Refrigeration cycle apparatus
WO2021048905A1 (en) Outdoor unit and refrigeration cycle device
JP7151262B2 (en) Heat pump device and refrigerant flow rate calculation method
WO2023139765A1 (en) Refrigeration cycle device, control method, and control device
JP7135633B2 (en) Heat pump steam generator
JP7172265B2 (en) heat pump equipment
JPWO2018163345A1 (en) Heat pump water heater
JP2018028405A (en) Refrigerant circuit device
JP2020076516A (en) Heat pump cycle and heat pump type steam generation device
KR100535676B1 (en) Control method of cooling cycling apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190809

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200415

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200519

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200714

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200901

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200914

R150 Certificate of patent or registration of utility model

Ref document number: 6772703

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250