WO2021048905A1 - Outdoor unit and refrigeration cycle device - Google Patents

Outdoor unit and refrigeration cycle device Download PDF

Info

Publication number
WO2021048905A1
WO2021048905A1 PCT/JP2019/035407 JP2019035407W WO2021048905A1 WO 2021048905 A1 WO2021048905 A1 WO 2021048905A1 JP 2019035407 W JP2019035407 W JP 2019035407W WO 2021048905 A1 WO2021048905 A1 WO 2021048905A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerant
flow path
expansion valve
condenser
outdoor unit
Prior art date
Application number
PCT/JP2019/035407
Other languages
French (fr)
Japanese (ja)
Inventor
智隆 石川
悠介 有井
素 早坂
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to CN201980099971.7A priority Critical patent/CN114364934B/en
Priority to FIEP19944933.1T priority patent/FI4030122T3/en
Priority to ES19944933T priority patent/ES2950759T3/en
Priority to JP2021544993A priority patent/JP7199554B2/en
Priority to EP19944933.1A priority patent/EP4030122B1/en
Priority to DK19944933.1T priority patent/DK4030122T3/en
Priority to PCT/JP2019/035407 priority patent/WO2021048905A1/en
Publication of WO2021048905A1 publication Critical patent/WO2021048905A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • F25B1/10Compression machines, plants or systems with non-reversible cycle with multi-stage compression
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/005Arrangement or mounting of control or safety devices of safety devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/06Compression machines, plants or systems characterised by the refrigerant being carbon dioxide
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/06Compression machines, plants or systems characterised by the refrigerant being carbon dioxide
    • F25B2309/061Compression machines, plants or systems characterised by the refrigerant being carbon dioxide with cycle highest pressure above the supercritical pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/04Refrigeration circuit bypassing means
    • F25B2400/0409Refrigeration circuit bypassing means for the evaporator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/16Receivers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/23Separators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/19Calculation of parameters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/22Preventing, detecting or repairing leaks of refrigeration fluids
    • F25B2500/222Detecting refrigerant leaks
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/24Low amount of refrigerant in the system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/02Compressor control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/05Refrigerant levels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/23Time delays
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2501Bypass valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2509Economiser valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/19Pressures
    • F25B2700/195Pressures of the condenser
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2116Temperatures of a condenser
    • F25B2700/21161Temperatures of a condenser of the fluid heated by the condenser
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2116Temperatures of a condenser
    • F25B2700/21163Temperatures of a condenser of the refrigerant at the outlet of the condenser

Definitions

  • the present invention relates to an outdoor unit and a refrigeration cycle device.
  • Patent Document 1 discloses a refrigeration cycle device that prevents a compressor from failing by detecting a refrigerant shortage.
  • Patent Document 1 discloses a refrigerating apparatus having an injection flow path in addition to a general refrigerating apparatus, and detects a refrigerant shortage before the compressor fails. There is.
  • the efficiency of the refrigerating cycle device is lowered because the temperature of the discharged refrigerant of the compressor rises above the target temperature. Therefore, it is desirable to detect the refrigerant shortage that progresses due to the leakage of the refrigerant as soon as possible even at the stage where the compressor failure does not occur due to the refrigerant shortage.
  • An object of the present invention is to provide an outdoor unit and a refrigeration cycle device capable of detecting a refrigerant shortage at an early stage.
  • the present disclosure relates to an outdoor unit of a refrigeration cycle device configured to be connected to a load device including an inflator and an evaporator.
  • the outdoor unit includes a refrigerant outlet port and a refrigerant inlet port for connecting to a load device, a first flow path, a compressor, a condenser, a second flow path, a first expansion valve, and a liquid receiver.
  • a second expansion valve and a control device are provided.
  • the first flow path is a flow path from the refrigerant inlet port to the refrigerant outlet port, and forms a circulation flow path in which the refrigerant circulates together with the load device.
  • the compressor and the condenser are arranged in order from the refrigerant inlet port to the refrigerant outlet port in the first flow path.
  • the second flow path is configured to branch from the portion of the first flow path between the condenser and the refrigerant outlet port, and return the refrigerant that has passed through the condenser to the compressor.
  • the first expansion valve, the receiver and the second expansion valve are arranged in the second flow path in order from the branch point of the second flow path from the first flow path.
  • the control device controls the compressor, the first expansion valve, and the second expansion valve. The control device notifies that the refrigerant is insufficient when the time when the opening degree of the second expansion valve is the upper limit opening time exceeds the determination time.
  • the refrigerant shortage can be detected at an early stage.
  • FIG. 5 is an overall configuration diagram of a refrigeration cycle device according to the first embodiment. It is a flowchart for demonstrating the control of the 1st expansion valve 71. It is a flowchart for demonstrating the control of the 2nd expansion valve 72. It is a graph which shows the relationship between the degree of progress of the refrigerant shortage at the time of the occurrence of a refrigerant leakage, and the opening degree of the expansion valve of an outdoor unit.
  • FIG. 5 is an overall configuration diagram of a refrigeration cycle device according to the second embodiment.
  • FIG. 1 is an overall configuration diagram of a refrigeration cycle device according to the first embodiment. Note that FIG. 1 functionally shows the connection relationship and the arrangement configuration of each device in the refrigeration cycle apparatus, and does not necessarily show the arrangement in the physical space.
  • the refrigeration cycle device 1 includes an outdoor unit 2, a load device 3, and pipes 84 and 88.
  • the outdoor unit 2 has a refrigerant outlet port PO2 and a refrigerant inlet port PI2 for connecting to the load device 3.
  • the load device 3 has a refrigerant outlet port PO3 and a refrigerant inlet port PI3 for connecting to the outdoor unit 2.
  • the pipe 84 connects the refrigerant outlet port PO2 of the outdoor unit 2 and the refrigerant inlet port PI3 of the load device 3.
  • the pipe 88 connects the refrigerant outlet port PO3 of the load device 3 and the refrigerant inlet port PI2 of the outdoor unit 2.
  • the outdoor unit 2 of the refrigeration cycle device 1 is configured to be connected to the load device 3.
  • the outdoor unit 2 includes a compressor 10 having a suction port G1, a discharge port G2, and an intermediate pressure port G3, a condenser 20, a fan 22, and pipes 80, 81, 89.
  • the load device 3 includes an expansion valve 50, which is an expansion device, an evaporator 60, and pipes 85, 86, and 87.
  • the evaporator 60 is configured to exchange heat between air and a refrigerant. In the refrigeration cycle device 1, the evaporator 60 evaporates the refrigerant by endothermic heat from the air in the cooling target space.
  • the expansion valve 50 is, for example, a temperature expansion valve that is controlled independently of the outdoor unit 2.
  • the expansion valve 50 may be an electronic expansion valve capable of reducing the pressure of the refrigerant.
  • the compressor 10 compresses the refrigerant sucked from the pipe 89 and discharges it to the pipe 80.
  • the drive frequency of the compressor 10 can be arbitrarily changed by inverter control.
  • the compressor 10 is provided with an intermediate pressure port G3, so that the refrigerant from the intermediate pressure port G3 can flow into a portion in the middle of the compression process.
  • the compressor 10 is configured to adjust the rotation speed according to a control signal from the control device 100. By adjusting the rotation speed of the compressor 10, the circulation amount of the refrigerant is adjusted, and the capacity of the refrigeration cycle device 1 can be adjusted.
  • Various types of compressors 10 can be adopted, and for example, scroll type, rotary type, screw type and the like can be adopted.
  • the condenser 20 is configured such that a high-temperature and high-pressure gas refrigerant discharged from the compressor 10 exchanges heat (heat dissipation) with the outside air. By this heat exchange, the gas refrigerant is condensed and changed to a liquid phase.
  • the refrigerant discharged from the compressor 10 to the pipe 80 is condensed and liquefied in the condenser 20 and flows out to the pipe 81.
  • a fan 22 for sending outside air is attached to the condenser 20 in order to improve the efficiency of heat exchange.
  • the fan 22 supplies the condenser 20 with outside air through which the refrigerant exchanges heat in the condenser 20. By adjusting the rotation speed of the fan 22, the refrigerant pressure (high pressure side pressure) on the discharge side of the compressor 10 can be adjusted.
  • the outdoor unit 2 includes a first flow path F1 from the refrigerant inlet port PI2 to the refrigerant outlet port PO2 via the compressor 10 and the condenser 20.
  • the first flow path F1 forms a circulation flow path through which the refrigerant circulates together with the flow path in which the expansion valve 50 and the evaporator 60 of the load device 3 are arranged.
  • this circulation flow path is also referred to as a "main refrigerant circuit" of the refrigeration cycle.
  • the outdoor unit 2 includes pipes 91, 92, 93, 94 for flowing the refrigerant from the portion between the outlet of the condenser 20 of the circulation flow path and the refrigerant outlet port PO2 to the intermediate pressure port G3 of the compressor 10.
  • a second flow path F2 to be formed is further provided.
  • the second flow path F2 that branches from the main refrigerant circuit and sends the refrigerant to the compressor 10 is also referred to as an “injection flow path”.
  • the outdoor unit 2 further includes a first expansion valve 71, a liquid receiver 73, a second expansion valve 72, and a flow rate limiting device 70, which are arranged in the second flow path F2.
  • the liquid receiver 73 stores the liquid refrigerant.
  • the first expansion valve 71 is arranged between the pipe 91 branched from the main refrigerant circuit and the pipe 92 connected to the inlet of the liquid receiver 73.
  • the pipe 93 connects the gas discharge port of the receiver 73 and the pipe 94, and discharges the refrigerant gas in the receiver 73.
  • the flow rate limiting device 70 is arranged between the pipe 93 and the pipe 94 to limit the flow rate of the refrigerant gas.
  • a capillary tube can be used as the flow rate limiting device 70.
  • the pipe 91 is a pipe that branches from the main refrigerant circuit and allows the refrigerant to flow into the liquid receiver 73.
  • the first expansion valve 71 is an electronic expansion valve capable of reducing the refrigerant in the high pressure portion of the main refrigerant circuit to an intermediate pressure.
  • the liquid receiver 73 is a container capable of separating the gas phase and the liquid phase of the refrigerant which has been decompressed into two phases in the container, storing the refrigerant, and adjusting the circulation amount of the refrigerant in the main refrigerant circuit.
  • the pipe 93 connected to the upper part of the receiver 73 and the pipe 94 connected to the lower part of the receiver 73 take out the refrigerant separated into the gas refrigerant and the liquid refrigerant in the receiver 73 in a separated state. It is the piping of.
  • the second expansion valve 72 is provided in the pipe 94. The second expansion valve 72 can adjust the amount of refrigerant in the liquid receiver 73 by adjusting the amount of liquid refrigerant discharged from the pipe 94.
  • the liquid receiver 73 By providing the liquid receiver 73 in the injection flow path in this way, it becomes easy to secure the degree of supercooling in the pipe 81 which is a liquid pipe. This is because, in general, since the gas refrigerant is present in the receiver 73, the temperature of the refrigerant becomes the saturation temperature, and therefore, if the receiver 73 is arranged in the pipe 81, the degree of supercooling cannot be secured.
  • the outdoor unit 2 further includes pressure sensors 110, 111, 112, temperature sensors 120, 121, and a control device 100 that controls the compressor 10, the first expansion valve 71, and the second expansion valve 72.
  • the pressure sensor 110 detects the pressure PL of the suction port portion of the compressor 10 and outputs the detected value to the control device 100.
  • the pressure sensor 111 detects the pressure PH of the discharged refrigerant of the compressor 10 and outputs the detected value to the control device 100.
  • the pressure sensor 112 detects the pressure P1 of the refrigerant flowing out of the condenser 20, and outputs the detected value to the control device 100.
  • the temperature sensor 120 detects the temperature TH of the discharged refrigerant of the compressor 10 and outputs the detected value to the control device 100.
  • the temperature sensor 121 detects the temperature T1 of the refrigerant in the pipe 81 at the outlet of the condenser 20, and outputs the detected value to the control device 100.
  • the second flow path F2 controls the temperature TH of the discharged refrigerant of the compressor 10 by inflowing the refrigerant whose temperature has decreased due to decompression into the compressor 10.
  • the amount of refrigerant in the main refrigerant circuit can be adjusted by the receiver 73 installed on the second flow path F2.
  • the control device 100 includes a CPU (Central Processing Unit) 102, a memory 104 (ROM (Read Only Memory) and RAM (Random Access Memory)), an input / output buffer (not shown) for inputting / outputting various signals, and the like. Consists of including.
  • the CPU 102 expands the program stored in the ROM into a RAM or the like and executes the program.
  • the program stored in the ROM is a program in which the processing procedure of the control device 100 is described.
  • the control device 100 executes control of each device in the outdoor unit 2 according to these programs. This control is not limited to software processing, but can also be processed by dedicated hardware (electronic circuit).
  • the control device 100 feedback-controls the first expansion valve 71 so that the temperature TH of the discharged refrigerant of the compressor 10 matches the target temperature.
  • FIG. 2 is a flowchart for explaining the control of the first expansion valve 71.
  • the control device 100 increases the opening degree of the first expansion valve 71 (S22). As a result, the amount of refrigerant flowing into the intermediate pressure port G3 via the receiver 73 increases, so that the temperature TH decreases.
  • the control device 100 reduces the opening degree of the first expansion valve 71 (S24). As a result, the amount of refrigerant flowing into the intermediate pressure port G3 via the receiver 73 is reduced, so that the temperature TH rises.
  • the control device 100 maintains the opening degree of the first expansion valve 71 in the current state.
  • control device 100 controls the opening degree of the first expansion valve 71 so that the temperature TH of the discharged refrigerant of the compressor 10 approaches the target temperature.
  • the second expansion valve 72 in order to secure the supercooling degree SC of the refrigerant at the outlet of the condenser 20 in normal operation, the second expansion valve 72 so that the temperature T1 of the refrigerant at the outlet of the condenser 20 matches the target temperature. Feedback control. At this time, in the first embodiment, the refrigerant shortage is detected at the same time.
  • FIG. 3 is a flowchart for explaining the control of the second expansion valve 72.
  • the control device 100 calculates the degree of supercooling SC of the refrigerant at the outlet portion of the condenser 20 based on the temperature T1 and the pressure of the condenser 20 (approximate by PH) in steps S31 and S33. Specifically, the control device 100 calculates the supercooling degree SC by subtracting the temperature T1 from the saturation temperature of the refrigerant corresponding to the pressure PH.
  • the conversion table for obtaining the saturation temperature of the refrigerant corresponding to each pressure is stored in the memory 104 of the control device 100 in advance. Then, the control device 100 compares the calculated supercooling degree SC with the target value.
  • This target value is, for example, 5K (Kelvin).
  • the control device 100 reduces the opening degree of the second expansion valve 72 (S32). As a result, the amount of liquid refrigerant discharged from the receiver 73 decreases and the amount of liquid refrigerant in the receiver 73 increases, so that the amount of refrigerant circulating in the main refrigerant circuit decreases and the temperature T1 of the refrigerant rises. As it rises, the supercooling degree SC decreases.
  • the control device 100 increases the opening degree of the second expansion valve 72 in step S34. Determine if it is fully open.
  • “fully open” means that the opening degree of the second expansion valve 72 is the upper limit value.
  • the control device 100 increases the opening degree of the second expansion valve 72 (S35).
  • the amount of liquid refrigerant discharged from the receiver 73 increases and the amount of liquid refrigerant stored in the receiver 73 decreases, so that the amount of refrigerant circulating in the main refrigerant circuit increases, and the temperature of the refrigerant T1 Decreases, so the degree of supercooling SC increases.
  • the control device 100 determines in step S36 whether or not the state in which the second expansion valve 72 is fully open continues for the determination time. To do.
  • control device 100 maintains the opening degree of the second expansion valve 72 in the fully open state.
  • the control device 100 gives an alarm to the notification device 101 indicating that the refrigerant is insufficient. Output.
  • the notification device 101 is, for example, a display device such as a liquid crystal display, a warning lamp, or the like, and may be a device that transmits a warning signal to an external device via a communication line.
  • step S38 After executing any of the processes of steps S32, S35, and S37, the control device 100 proceeds to the process in step S38.
  • the control device 100 processes in step S38 while maintaining the current opening degree. To proceed. In these cases, the processing is once returned to the main routine, but the processing of the flowchart of FIG. 3 is repeatedly executed at regular intervals.
  • FIG. 4 is a graph showing the relationship between the progress of refrigerant shortage when a refrigerant leak occurs and the opening degree of the expansion valve of the outdoor unit.
  • the degree of refrigerant shortage increases as the progress progresses from D0 to D3.
  • the temperature of the discharged refrigerant of the compressor 10 is appropriately controlled by increasing the opening degree of the second expansion valve 72 to the fully open position.
  • the supercooling degree SC of the refrigerant at the outlet portion of the condenser 20 gradually decreases, and the supercooling degree SC becomes zero at the progress degree D1.
  • the supercooling degree SC of the refrigerant at the outlet portion of the condenser 20 is zero, but the temperature of the discharged refrigerant of the compressor 10 is still properly controlled.
  • the amount of the liquid refrigerant in the receiver 73 decreases, and at the degree of progress D2, the liquid refrigerant inside the receiver 73 does not exist.
  • the opening degree of the second expansion valve 72 is fully opened.
  • the supercooling degree SC of the refrigerant at the outlet portion of the condenser 20 is zero, and the liquid refrigerant inside the receiver 73 does not exist.
  • the opening degree of the first expansion valve 71 is increased in order to increase the amount of refrigerant flowing into the injection flow path, but the temperature TH of the discharged refrigerant of the compressor 10 rises above the optimum state. It ends up. Then, at the degree of progress D3, the opening degree of the first expansion valve 71 is fully opened.
  • both the first expansion valve 71 and the second expansion valve 72 are fully opened, but the second expansion valve 72 is fully opened at an earlier stage, so that the second expansion valve 72 is fully opened. If the refrigerant shortage is determined based on the opening degree of the expansion valve 72, the refrigerant shortage can be detected at an early stage. In the present embodiment, since it is determined that the refrigerant is insufficient when the time when the opening degree of the second expansion valve 72 is fully opened reaches the determination time, it is possible to notify the user of the refrigerant shortage at an early stage. ..
  • Embodiment 2 a case where a refrigerant whose supercooling degree SC can be calculated from the temperature T1 and the pressure PH, that is, a refrigerant whose pressure in the condenser is less than the critical pressure is used has been described. In recent years, the adoption of a natural refrigerant having a low global warming potential has been studied, and a refrigerant such as CO 2 in which the pressure in the condenser is higher than the critical pressure may be adopted. In the second embodiment, detection of a refrigerant shortage in the case of adopting such a refrigerant will be described.
  • FIG. 5 is an overall configuration diagram of a refrigeration cycle device according to the second embodiment. Note that FIG. 5 functionally shows the connection relationship and the arrangement configuration of each device in the refrigeration cycle apparatus, and does not necessarily show the arrangement in the physical space.
  • the refrigeration cycle device 1A includes an outdoor unit 2A, a load device 3, and pipes 84 and 88. Since the load device 3 and the pipes 84 and 88 are the same as those in the first embodiment, the description will not be repeated.
  • the outdoor unit 2A includes a temperature sensor 123 instead of the pressure sensor 112, and includes a control device 100A instead of the control device 100. Since the other configurations of the outdoor unit 2A are the same as those of the outdoor unit 2, the description will not be repeated.
  • the temperature sensor 123 detects the outside air temperature TA, which is the ambient temperature of the outdoor unit 2A, and outputs the detected value to the control device 100A.
  • the control device 100A includes a CPU 102, a memory 104, an input / output buffer (not shown) for inputting / outputting various signals, and the like.
  • the CPU 102 expands the program stored in the ROM into a RAM or the like and executes the program.
  • the program stored in the ROM is a program in which the processing procedure of the control device 100A is described.
  • the control device 100 executes control of each device in the outdoor unit 2 according to these programs. This control is not limited to software processing, but can also be processed by dedicated hardware (electronic circuit).
  • the control device 100A feedback-controls the first expansion valve 71 so that the temperature TH of the discharged refrigerant of the compressor 10 matches the target temperature. Since the control of the first expansion valve 71 is the same as the control of the first embodiment shown in FIG. 2, the description will not be repeated.
  • the second expansion valve 72 in order to secure the supercooling degree SC of the refrigerant at the outlet of the condenser 20 in normal operation, the second expansion valve 72 so that the temperature T1 of the refrigerant at the outlet of the condenser 20 matches the target temperature. Feedback control. At this time, in the second embodiment, the refrigerant shortage is detected at the same time.
  • the case of cooling a refrigerant such as CO 2 in a supercritical state is also referred to as a condenser 20.
  • the amount of decrease of the refrigerant in the supercritical state from the reference temperature is also referred to as the degree of supercooling SC.
  • the reference temperature is the temperature TA + ⁇ of the outside air measured by the temperature sensor 123, and the target value of the amount of decrease is, for example, 5K (Kelvin).
  • the refrigerant shortage can be detected at an early stage by the processing of the flowchart shown in FIG.
  • the pressure in the condenser 20 exceeds the critical pressure as in the second embodiment, if the liquid receiver 73 is provided in the intermediate pressure portion, the pressure in the high pressure portion of the main refrigerant circuit is high and the refrigerant is in a supercritical state. Even in this case, it is possible to store the liquid refrigerant having an intermediate pressure inside the receiver 73. Therefore, the design pressure of the container of the receiver 73 can be made lower than that of the high-pressure portion, and the cost can be reduced by thinning the container.
  • the present disclosure relates to an outdoor unit 2 of a refrigeration cycle device 1 and an outdoor unit 2A of a refrigeration cycle device 1A configured to be connected to a load device 3 including an expansion valve 50 and an evaporator 60 which are expansion devices.
  • the outdoor unit 2 shown in FIG. 1 and the outdoor unit 2A shown in FIG. 5 include a refrigerant outlet port PO2 and a refrigerant inlet port PI2 for connecting to the load device 3, a first flow path F1, a compressor 10, and a condenser. 20, a second flow path F2, a first expansion valve 71, a liquid receiver 73, a second expansion valve 72, and a control device 100 or 100A.
  • the first flow path F1 is a flow path from the refrigerant inlet port PI2 to the refrigerant outlet port PO2, and forms a circulation flow path in which the refrigerant circulates together with the load device 3.
  • the compressor 10 and the condenser 20 are arranged in order from the refrigerant inlet port PI2 toward the refrigerant outlet port PO2 in the first flow path F1.
  • the second flow path F2 is configured to branch from the portion between the condenser 20 of the first flow path F1 and the refrigerant outlet port PO2, and return the refrigerant that has passed through the condenser 20 to the compressor 10.
  • the first expansion valve 71, the liquid receiver 73, and the second expansion valve 72 are arranged in the second flow path F2 in order from the branch point of the second flow path F2 from the first flow path F1.
  • the control devices 100 and 100A are configured to control the compressor 10, the first expansion valve 71, and the second expansion valve 72.
  • the control devices 100 and 100A notify that the refrigerant is insufficient when the opening time of the second expansion valve 72 exceeds the determination time.
  • the refrigerant shortage is detected at an early stage, and the capacity of the refrigeration cycle device is prevented from decreasing and the refrigerant leakage is prevented from continuing. Can be done.
  • the outdoor unit 2 shown in FIG. 1 and the outdoor unit 2A shown in FIG. 5 further include a first temperature sensor 121 that detects the temperature T1 of the refrigerant outlet portion of the condenser 20 in the first flow path F1.
  • the control devices 100 and 100A are configured to control the opening degree of the second expansion valve 72 according to the output of the first temperature sensor 121.
  • the outdoor unit 2 shown in FIG. 1 further includes a pressure sensor 111 that detects the pressure PH of the refrigerant at the refrigerant outlet portion of the condenser 20 in the first flow path F1.
  • the time when the opening degree of the second expansion valve 72 is the upper limit opening time exceeds the determination time, and the refrigerant is calculated based on the output of the first temperature sensor 121 and the output of the pressure sensor 111.
  • the supercooling degree SC is not the target value, it is determined that the refrigerant is insufficient.
  • the refrigerant used in the configuration shown in FIG. 1 is a refrigerant used when the pressure in the condenser 20 is less than the critical pressure.
  • the outdoor unit 2A shown in FIG. 5 further includes a second temperature sensor 123 that detects the temperature TA of the outside air supplied to the condenser 20.
  • the time when the opening degree of the second expansion valve 72 is the upper limit opening time exceeds the determination time, and the difference between the detection temperature of the first temperature sensor 121 and the detection temperature of the second temperature sensor 123 is determined. If it is smaller than the value, it is judged that the refrigerant is insufficient.
  • the refrigerant used in the configuration shown in FIG. 5 is carbon dioxide used when the pressure in the condenser 20 is equal to or higher than the critical pressure.
  • the present disclosure relates to a refrigeration cycle device including the outdoor unit described in any of the above and a load device in another aspect.
  • 1,1A refrigeration cycle device 1,2A outdoor unit, 3 load device, 10 compressor, 20 condenser, 22 fan, 50 expansion valve, 60 evaporator, 70 flow limit device, 71 first expansion valve, 72 second Expansion valve, 73 refrigerant receiver, 80,81,84,85,88,89,91,92,93,94 piping, 100,100A control device, 101 notification device, 104 memory, 110,111,112 pressure sensor, 120, 121, 123 Temperature sensor, F1, F2 flow path, G1 suction port, G2 discharge port, G3 intermediate pressure port, PI2, PI3 refrigerant inlet port, PO2, PO3 refrigerant outlet port.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Air Conditioning Control Device (AREA)
  • Devices That Are Associated With Refrigeration Equipment (AREA)
  • Other Air-Conditioning Systems (AREA)

Abstract

An outdoor unit (2) is provided with: a first flow path (F1); a second flow path (F2); and a control device (100). A compressor (10) and a condenser (20) are arranged in order from a refrigerant inlet port (PI2) toward a refrigerant outlet port (PO2) on the first flow path (F1). The second flow path (F2) branches from a part between the condenser (20) and the refrigerant outlet port (PO2) on the first flow path (F1), and is configured to return a refrigerant having passed through the condenser (20) to the compressor (10). A first expansion valve (71), a liquid receiver (73), and a second expansion valve (72) are arranged on the second flow path (F2) in order from a branch point of the second flow path (F2) from the first flow path (F1) . The control device (100) controls the compressor (10), the first expansion valve (71), and the second expansion valve (72). The control device (100) provides notification regarding a shortage of the refrigerant if the duration, in which opening of the second expansion valve (72) is at an upper limit opening, exceeds a determination time.

Description

室外ユニットおよび冷凍サイクル装置Outdoor unit and refrigeration cycle device
 この発明は、室外ユニットおよび冷凍サイクル装置に関する。 The present invention relates to an outdoor unit and a refrigeration cycle device.
 冷凍サイクル装置においては、冷媒量の過不足は冷凍装置の能力低下および構成機器の損傷を生じさせる原因となる。国際公開第2017/199391号(特許文献1)には、冷媒不足を検知することによって圧縮機が故障することを防止する冷凍サイクル装置が開示されている。 In the refrigeration cycle equipment, excess or deficiency of the amount of refrigerant causes a decrease in the capacity of the refrigeration equipment and damage to the constituent equipment. International Publication No. 2017/199391 (Patent Document 1) discloses a refrigeration cycle device that prevents a compressor from failing by detecting a refrigerant shortage.
国際公開第2017/199391号International Publication No. 2017/199391
 凝縮器から流出する液冷媒の一部を減圧し温度を下げて圧縮機に戻すインジェクション流路を有する冷凍サイクル装置が知られている。インジェクション流路によって圧縮機の冷媒を冷却することができる。国際公開第2017/199391号(特許文献1)には、一般的な冷凍装置に加えて、インジェクション流路を有する冷凍装置も開示されており、圧縮機が故障する前に冷媒不足を検出している。 A refrigeration cycle device having an injection flow path that depressurizes a part of the liquid refrigerant flowing out of the condenser, lowers the temperature, and returns it to the compressor is known. The refrigerant of the compressor can be cooled by the injection flow path. International Publication No. 2017/199391 (Patent Document 1) discloses a refrigerating apparatus having an injection flow path in addition to a general refrigerating apparatus, and detects a refrigerant shortage before the compressor fails. There is.
 一般に、冷媒回路に封入された冷媒が充填量不足または漏洩などによって不足すると、冷凍サイクル装置は圧縮機の吐出冷媒の温度が目標温度よりも上昇するなどして、効率が低下する。したがって、冷媒不足によって圧縮機の故障などに至らない段階であっても、冷媒の漏洩などによって進行する冷媒不足はなるべく早期に検知することが望ましい。 Generally, when the refrigerant sealed in the refrigerant circuit is insufficient due to insufficient filling amount or leakage, the efficiency of the refrigerating cycle device is lowered because the temperature of the discharged refrigerant of the compressor rises above the target temperature. Therefore, it is desirable to detect the refrigerant shortage that progresses due to the leakage of the refrigerant as soon as possible even at the stage where the compressor failure does not occur due to the refrigerant shortage.
 この発明の目的は、早期の段階で冷媒不足を検出することができる室外ユニットおよび冷凍サイクル装置を提供することである。 An object of the present invention is to provide an outdoor unit and a refrigeration cycle device capable of detecting a refrigerant shortage at an early stage.
 本開示は、膨張装置および蒸発器を含む負荷装置に接続されるように構成された冷凍サイクル装置の室外ユニットに関する。室外ユニットは、負荷装置と接続するための冷媒出口ポートおよび冷媒入口ポートと、第1流路と、圧縮機と、凝縮器と、第2流路と、第1膨張弁と、受液器と、第2膨張弁と、制御装置とを備える。第1流路は、冷媒入口ポートから冷媒出口ポートに至る流路であって、負荷装置とともに冷媒が循環する循環流路を形成する。圧縮機および凝縮器は、第1流路において冷媒入口ポートから冷媒出口ポートに向けて順に配置される。第2流路は、第1流路の凝縮器と冷媒出口ポートとの間の部分から分岐し、凝縮器を通過した冷媒を圧縮機に戻すように構成される。第1膨張弁、受液器および第2膨張弁は、第2流路の第1流路からの分岐点から順に第2流路に配置される。制御装置は、圧縮機、第1膨張弁、第2膨張弁を制御する。制御装置は、第2膨張弁の開度が上限開度である時間が判定時間を超えた場合に、冷媒が不足していることを報知する。 The present disclosure relates to an outdoor unit of a refrigeration cycle device configured to be connected to a load device including an inflator and an evaporator. The outdoor unit includes a refrigerant outlet port and a refrigerant inlet port for connecting to a load device, a first flow path, a compressor, a condenser, a second flow path, a first expansion valve, and a liquid receiver. , A second expansion valve and a control device are provided. The first flow path is a flow path from the refrigerant inlet port to the refrigerant outlet port, and forms a circulation flow path in which the refrigerant circulates together with the load device. The compressor and the condenser are arranged in order from the refrigerant inlet port to the refrigerant outlet port in the first flow path. The second flow path is configured to branch from the portion of the first flow path between the condenser and the refrigerant outlet port, and return the refrigerant that has passed through the condenser to the compressor. The first expansion valve, the receiver and the second expansion valve are arranged in the second flow path in order from the branch point of the second flow path from the first flow path. The control device controls the compressor, the first expansion valve, and the second expansion valve. The control device notifies that the refrigerant is insufficient when the time when the opening degree of the second expansion valve is the upper limit opening time exceeds the determination time.
 本開示の室外ユニットおよびそれを備える冷凍サイクル装置によれば、冷媒の漏洩などによって冷媒が不足した場合に、早期の段階で冷媒不足を検出することができる。 According to the outdoor unit of the present disclosure and the refrigeration cycle device including the outdoor unit, when the refrigerant is insufficient due to the leakage of the refrigerant or the like, the refrigerant shortage can be detected at an early stage.
実施の形態1に従う冷凍サイクル装置の全体構成図である。FIG. 5 is an overall configuration diagram of a refrigeration cycle device according to the first embodiment. 第1膨張弁71の制御を説明するためのフローチャートである。It is a flowchart for demonstrating the control of the 1st expansion valve 71. 第2膨張弁72の制御を説明するためのフローチャートである。It is a flowchart for demonstrating the control of the 2nd expansion valve 72. 冷媒漏洩発生時の冷媒不足の進行度と室外ユニットの膨張弁の開度との関係を示すグラフである。It is a graph which shows the relationship between the degree of progress of the refrigerant shortage at the time of the occurrence of a refrigerant leakage, and the opening degree of the expansion valve of an outdoor unit. 実施の形態2に従う冷凍サイクル装置の全体構成図である。FIG. 5 is an overall configuration diagram of a refrigeration cycle device according to the second embodiment.
 以下、本発明の実施の形態について、図面を参照しながら詳細に説明する。以下では、複数の実施の形態について説明するが、各実施の形態で説明された構成を適宜組み合わせることは出願当初から予定されている。なお、図中同一または相当部分には同一符号を付してその説明は繰返さない。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. Hereinafter, a plurality of embodiments will be described, but it is planned from the beginning of the application that the configurations described in the respective embodiments are appropriately combined. The same or corresponding parts in the drawings are designated by the same reference numerals, and the description thereof will not be repeated.
 実施の形態1.
 図1は、実施の形態1に従う冷凍サイクル装置の全体構成図である。なお、図1では、冷凍サイクル装置における各機器の接続関係および配置構成を機能的に示しており、物理的な空間における配置を必ずしも示すものではない。
Embodiment 1.
FIG. 1 is an overall configuration diagram of a refrigeration cycle device according to the first embodiment. Note that FIG. 1 functionally shows the connection relationship and the arrangement configuration of each device in the refrigeration cycle apparatus, and does not necessarily show the arrangement in the physical space.
 図1を参照して、冷凍サイクル装置1は、室外ユニット2と、負荷装置3と、配管84,88とを備える。室外ユニット2は、負荷装置3と接続するための冷媒出口ポートPO2および冷媒入口ポートPI2を有する。負荷装置3は、室外ユニット2と接続するための冷媒出口ポートPO3および冷媒入口ポートPI3を有する。配管84は、室外ユニット2の冷媒出口ポートPO2と負荷装置3の冷媒入口ポートPI3とを接続する。配管88は、負荷装置3の冷媒出口ポートPO3と室外ユニット2の冷媒入口ポートPI2とを接続する。 With reference to FIG. 1, the refrigeration cycle device 1 includes an outdoor unit 2, a load device 3, and pipes 84 and 88. The outdoor unit 2 has a refrigerant outlet port PO2 and a refrigerant inlet port PI2 for connecting to the load device 3. The load device 3 has a refrigerant outlet port PO3 and a refrigerant inlet port PI3 for connecting to the outdoor unit 2. The pipe 84 connects the refrigerant outlet port PO2 of the outdoor unit 2 and the refrigerant inlet port PI3 of the load device 3. The pipe 88 connects the refrigerant outlet port PO3 of the load device 3 and the refrigerant inlet port PI2 of the outdoor unit 2.
 冷凍サイクル装置1の室外ユニット2は、負荷装置3に接続されるように構成される。室外ユニット2は、吸入ポートG1、吐出ポートG2、中間圧ポートG3を有する圧縮機10と、凝縮器20と、ファン22と、配管80,81,89とを備える。 The outdoor unit 2 of the refrigeration cycle device 1 is configured to be connected to the load device 3. The outdoor unit 2 includes a compressor 10 having a suction port G1, a discharge port G2, and an intermediate pressure port G3, a condenser 20, a fan 22, and pipes 80, 81, 89.
 負荷装置3は、膨張装置である膨張弁50と、蒸発器60と、配管85、86,87とを含む。蒸発器60は空気と冷媒との間で熱交換を行なうように構成される。冷凍サイクル装置1では、蒸発器60は、冷却対象空間の空気からの吸熱によって冷媒を蒸発させる。膨張弁50は、例えば、室外ユニット2と独立して制御される温度膨張弁である。なお、膨張弁50は冷媒を減圧することができる電子膨張弁であってもよい。 The load device 3 includes an expansion valve 50, which is an expansion device, an evaporator 60, and pipes 85, 86, and 87. The evaporator 60 is configured to exchange heat between air and a refrigerant. In the refrigeration cycle device 1, the evaporator 60 evaporates the refrigerant by endothermic heat from the air in the cooling target space. The expansion valve 50 is, for example, a temperature expansion valve that is controlled independently of the outdoor unit 2. The expansion valve 50 may be an electronic expansion valve capable of reducing the pressure of the refrigerant.
 圧縮機10は、配管89から吸入される冷媒を圧縮して配管80へ吐出する。圧縮機10は、インバータ制御により駆動周波数を任意に変更することができる。また、圧縮機10には中間圧ポートG3が設けられており中間圧ポートG3からの冷媒を圧縮工程の途中部分に流入させることができる。圧縮機10は、制御装置100からの制御信号に従って回転速度を調整するように構成される。圧縮機10の回転速度を調整することで冷媒の循環量が調整され、冷凍サイクル装置1の能力を調整することができる。圧縮機10には種々のタイプのものを採用可能であり、例えば、スクロールタイプ、ロータリータイプ、スクリュータイプ等のものを採用し得る。 The compressor 10 compresses the refrigerant sucked from the pipe 89 and discharges it to the pipe 80. The drive frequency of the compressor 10 can be arbitrarily changed by inverter control. Further, the compressor 10 is provided with an intermediate pressure port G3, so that the refrigerant from the intermediate pressure port G3 can flow into a portion in the middle of the compression process. The compressor 10 is configured to adjust the rotation speed according to a control signal from the control device 100. By adjusting the rotation speed of the compressor 10, the circulation amount of the refrigerant is adjusted, and the capacity of the refrigeration cycle device 1 can be adjusted. Various types of compressors 10 can be adopted, and for example, scroll type, rotary type, screw type and the like can be adopted.
 凝縮器20は、圧縮機10から吐出された高温高圧のガス冷媒が外気と熱交換(放熱)を行なうように構成される。この熱交換により、ガス冷媒は凝縮されて液相に変化する。圧縮機10から配管80に吐出された冷媒は、凝縮器20において凝縮および液化され配管81へ流出する。熱交換の効率を上げるため外気を送るファン22が凝縮器20に取り付けられている。ファン22は、凝縮器20において冷媒が熱交換を行なう外気を凝縮器20に供給する。ファン22の回転数を調整することにより、圧縮機10の吐出側の冷媒圧力(高圧側圧力)を調整することができる。 The condenser 20 is configured such that a high-temperature and high-pressure gas refrigerant discharged from the compressor 10 exchanges heat (heat dissipation) with the outside air. By this heat exchange, the gas refrigerant is condensed and changed to a liquid phase. The refrigerant discharged from the compressor 10 to the pipe 80 is condensed and liquefied in the condenser 20 and flows out to the pipe 81. A fan 22 for sending outside air is attached to the condenser 20 in order to improve the efficiency of heat exchange. The fan 22 supplies the condenser 20 with outside air through which the refrigerant exchanges heat in the condenser 20. By adjusting the rotation speed of the fan 22, the refrigerant pressure (high pressure side pressure) on the discharge side of the compressor 10 can be adjusted.
 室外ユニット2は、冷媒入口ポートPI2から、圧縮機10、凝縮器20を経て冷媒出口ポートPO2に至る第1流路F1を備える。第1流路F1は、負荷装置3の膨張弁50および蒸発器60が配置される流路とともに、冷媒が循環する循環流路を形成する。以下、この循環流路を冷凍サイクルの「主冷媒回路」とも言う。 The outdoor unit 2 includes a first flow path F1 from the refrigerant inlet port PI2 to the refrigerant outlet port PO2 via the compressor 10 and the condenser 20. The first flow path F1 forms a circulation flow path through which the refrigerant circulates together with the flow path in which the expansion valve 50 and the evaporator 60 of the load device 3 are arranged. Hereinafter, this circulation flow path is also referred to as a "main refrigerant circuit" of the refrigeration cycle.
 室外ユニット2は、循環流路の凝縮器20の出口と冷媒出口ポートPO2との間の部分から、圧縮機10の中間圧ポートG3に冷媒を流す配管91,92,93,94を含んで構成される第2流路F2をさらに備える。以下において、主冷媒回路から分岐して圧縮機10に冷媒を送る第2流路F2を、「インジェクション流路」とも言う。 The outdoor unit 2 includes pipes 91, 92, 93, 94 for flowing the refrigerant from the portion between the outlet of the condenser 20 of the circulation flow path and the refrigerant outlet port PO2 to the intermediate pressure port G3 of the compressor 10. A second flow path F2 to be formed is further provided. Hereinafter, the second flow path F2 that branches from the main refrigerant circuit and sends the refrigerant to the compressor 10 is also referred to as an “injection flow path”.
 室外ユニット2は、さらに、第2流路F2に配置される、第1膨張弁71と、受液器73と、第2膨張弁72と、流量制限装置70とを備える。受液器73は、液冷媒を貯留する。第1膨張弁71は、主冷媒回路から分岐した配管91と受液器73の入口に接続された配管92との間に配置される。配管93は、受液器73のガス排出口と配管94とを接続し受液器73内の冷媒ガスを排出する。流量制限装置70は、配管93と配管94との間に配置され、冷媒ガスの流量を制限する。流量制限装置70としては例えばキャピラリチューブが使用できる。 The outdoor unit 2 further includes a first expansion valve 71, a liquid receiver 73, a second expansion valve 72, and a flow rate limiting device 70, which are arranged in the second flow path F2. The liquid receiver 73 stores the liquid refrigerant. The first expansion valve 71 is arranged between the pipe 91 branched from the main refrigerant circuit and the pipe 92 connected to the inlet of the liquid receiver 73. The pipe 93 connects the gas discharge port of the receiver 73 and the pipe 94, and discharges the refrigerant gas in the receiver 73. The flow rate limiting device 70 is arranged between the pipe 93 and the pipe 94 to limit the flow rate of the refrigerant gas. As the flow rate limiting device 70, for example, a capillary tube can be used.
 配管91は、主冷媒回路から分岐し受液器73へ冷媒を流入させる配管である。第1膨張弁71は主冷媒回路の高圧部の冷媒を中間圧力まで低下させることができる電子膨張弁である。受液器73は、減圧され二相となった冷媒の気相と液相の分離を容器内で行ない、冷媒を貯蔵し主冷媒回路の冷媒の循環量を調整することができる容器である。受液器73の上部に接続される配管93と受液器73の下部に接続される配管94は、受液器73の中でガス冷媒と液冷媒に分離した冷媒を分離した状態で取り出すための配管である。第2膨張弁72は、配管94に設けられる。第2膨張弁72は、配管94から排出される液冷媒の量を調整することで受液器73の冷媒量を調整することができる。 The pipe 91 is a pipe that branches from the main refrigerant circuit and allows the refrigerant to flow into the liquid receiver 73. The first expansion valve 71 is an electronic expansion valve capable of reducing the refrigerant in the high pressure portion of the main refrigerant circuit to an intermediate pressure. The liquid receiver 73 is a container capable of separating the gas phase and the liquid phase of the refrigerant which has been decompressed into two phases in the container, storing the refrigerant, and adjusting the circulation amount of the refrigerant in the main refrigerant circuit. The pipe 93 connected to the upper part of the receiver 73 and the pipe 94 connected to the lower part of the receiver 73 take out the refrigerant separated into the gas refrigerant and the liquid refrigerant in the receiver 73 in a separated state. It is the piping of. The second expansion valve 72 is provided in the pipe 94. The second expansion valve 72 can adjust the amount of refrigerant in the liquid receiver 73 by adjusting the amount of liquid refrigerant discharged from the pipe 94.
 このようにインジェクション流路に受液器73を設けることにより、液管である配管81における過冷却度を確保することが容易となる。一般に受液器73にはガス冷媒が存在するため、冷媒の温度は飽和温度となるので、配管81に受液器73を配置すると過冷却度を確保できないからである。 By providing the liquid receiver 73 in the injection flow path in this way, it becomes easy to secure the degree of supercooling in the pipe 81 which is a liquid pipe. This is because, in general, since the gas refrigerant is present in the receiver 73, the temperature of the refrigerant becomes the saturation temperature, and therefore, if the receiver 73 is arranged in the pipe 81, the degree of supercooling cannot be secured.
 室外ユニット2は、さらに、圧力センサ110,111,112と、温度センサ120,121と、圧縮機10、第1膨張弁71、および第2膨張弁72を制御する制御装置100とを備える。 The outdoor unit 2 further includes pressure sensors 110, 111, 112, temperature sensors 120, 121, and a control device 100 that controls the compressor 10, the first expansion valve 71, and the second expansion valve 72.
 圧力センサ110は、圧縮機10の吸入ポート部分の圧力PLを検出し、その検出値を制御装置100へ出力する。圧力センサ111は、圧縮機10の吐出冷媒の圧力PHを検出し、その検出値を制御装置100へ出力する。圧力センサ112は、凝縮器20から流出する冷媒の圧力P1を検出し、その検出値を制御装置100へ出力する。 The pressure sensor 110 detects the pressure PL of the suction port portion of the compressor 10 and outputs the detected value to the control device 100. The pressure sensor 111 detects the pressure PH of the discharged refrigerant of the compressor 10 and outputs the detected value to the control device 100. The pressure sensor 112 detects the pressure P1 of the refrigerant flowing out of the condenser 20, and outputs the detected value to the control device 100.
 温度センサ120は、圧縮機10の吐出冷媒の温度THを検出し、その検出値を制御装置100へ出力する。温度センサ121は、凝縮器20の出口の配管81の冷媒の温度T1を検出し、その検出値を制御装置100へ出力する。 The temperature sensor 120 detects the temperature TH of the discharged refrigerant of the compressor 10 and outputs the detected value to the control device 100. The temperature sensor 121 detects the temperature T1 of the refrigerant in the pipe 81 at the outlet of the condenser 20, and outputs the detected value to the control device 100.
 本実施の形態では第2流路F2は、減圧されて温度が低下した冷媒を圧縮機10へ流入させることによって圧縮機10の吐出冷媒の温度THを制御するものである。加えて第2流路F2上に設置した受液器73によって主冷媒回路の冷媒量を調整することができる。 In the present embodiment, the second flow path F2 controls the temperature TH of the discharged refrigerant of the compressor 10 by inflowing the refrigerant whose temperature has decreased due to decompression into the compressor 10. In addition, the amount of refrigerant in the main refrigerant circuit can be adjusted by the receiver 73 installed on the second flow path F2.
 制御装置100は、CPU(Central Processing Unit)102と、メモリ104(ROM(Read Only Memory)およびRAM(Random Access Memory))と、各種信号を入出力するための入出力バッファ(図示せず)等を含んで構成される。CPU102は、ROMに格納されているプログラムをRAM等に展開して実行する。ROMに格納されるプログラムは、制御装置100の処理手順が記されたプログラムである。制御装置100は、これらのプログラムに従って、室外ユニット2における各機器の制御を実行する。この制御については、ソフトウェアによる処理に限られず、専用のハードウェア(電子回路)で処理することも可能である。 The control device 100 includes a CPU (Central Processing Unit) 102, a memory 104 (ROM (Read Only Memory) and RAM (Random Access Memory)), an input / output buffer (not shown) for inputting / outputting various signals, and the like. Consists of including. The CPU 102 expands the program stored in the ROM into a RAM or the like and executes the program. The program stored in the ROM is a program in which the processing procedure of the control device 100 is described. The control device 100 executes control of each device in the outdoor unit 2 according to these programs. This control is not limited to software processing, but can also be processed by dedicated hardware (electronic circuit).
 制御装置100は、第1膨張弁71を、圧縮機10の吐出冷媒の温度THが目標温度に一致するようにフィードバック制御する。 The control device 100 feedback-controls the first expansion valve 71 so that the temperature TH of the discharged refrigerant of the compressor 10 matches the target temperature.
 図2は、第1膨張弁71の制御を説明するためのフローチャートである。制御装置100は、圧縮機10の吐出冷媒の温度THが目標温度より高い場合には(S21でYES)、第1膨張弁71の開度を増加させる(S22)。これによって、受液器73を経由して中間圧ポートG3に流入する冷媒が増えるため、温度THが低下する。 FIG. 2 is a flowchart for explaining the control of the first expansion valve 71. When the temperature TH of the discharged refrigerant of the compressor 10 is higher than the target temperature (YES in S21), the control device 100 increases the opening degree of the first expansion valve 71 (S22). As a result, the amount of refrigerant flowing into the intermediate pressure port G3 via the receiver 73 increases, so that the temperature TH decreases.
 一方、圧縮機10の吐出冷媒の温度THが目標温度より低い場合には(S21でNOかつS23でYES)、制御装置100は、第1膨張弁71の開度を減少させる(S24)。これによって、受液器73を経由して中間圧ポートG3に流入する冷媒が減るため、温度THが上昇する。 On the other hand, when the temperature TH of the discharged refrigerant of the compressor 10 is lower than the target temperature (NO in S21 and YES in S23), the control device 100 reduces the opening degree of the first expansion valve 71 (S24). As a result, the amount of refrigerant flowing into the intermediate pressure port G3 via the receiver 73 is reduced, so that the temperature TH rises.
 温度TH=目標温度であれば(S21でNOかつS23でNO)、制御装置100は、第1膨張弁71の開度を現在の状態に維持する。 If the temperature TH = the target temperature (NO in S21 and NO in S23), the control device 100 maintains the opening degree of the first expansion valve 71 in the current state.
 このように、制御装置100は、圧縮機10の吐出冷媒の温度THが目標温度に近づくように第1膨張弁71の開度を制御する。 In this way, the control device 100 controls the opening degree of the first expansion valve 71 so that the temperature TH of the discharged refrigerant of the compressor 10 approaches the target temperature.
 また、制御装置100は、通常運転では凝縮器20の出口の冷媒の過冷却度SCを確保するため、凝縮器20の出口の冷媒の温度T1が目標温度に一致するように第2膨張弁72をフィードバック制御する。このときに、実施の形態1では、冷媒不足の検知も同時に行なう。 Further, in the control device 100, in order to secure the supercooling degree SC of the refrigerant at the outlet of the condenser 20 in normal operation, the second expansion valve 72 so that the temperature T1 of the refrigerant at the outlet of the condenser 20 matches the target temperature. Feedback control. At this time, in the first embodiment, the refrigerant shortage is detected at the same time.
 図3は、第2膨張弁72の制御を説明するためのフローチャートである。制御装置100は、ステップS31およびS33において温度T1と凝縮器20の圧力(PHで近似)とに基づいて、凝縮器20の出口部分の冷媒の過冷却度SCを算出する。具体的には、制御装置100は、圧力PHに対応する冷媒の飽和温度から温度T1を差し引いて過冷却度SCを算出する。なお、各圧力に対応する冷媒の飽和温度を得るための変換テーブルは、予め制御装置100のメモリ104に記憶されている。そして制御装置100は、演算した過冷却度SCを目標値と比較する。この目標値は、たとえば5K(ケルビン)である。過冷却度SCが目標値より大きい場合には(S31でYES)、制御装置100は、第2膨張弁72の開度を減少させる(S32)。これによって、受液器73から排出される液冷媒の量が減少し、受液器73内の液冷媒量が増加するため、主冷媒回路を循環する冷媒量が減少し、冷媒の温度T1が上昇するので過冷却度SCが減少する。 FIG. 3 is a flowchart for explaining the control of the second expansion valve 72. The control device 100 calculates the degree of supercooling SC of the refrigerant at the outlet portion of the condenser 20 based on the temperature T1 and the pressure of the condenser 20 (approximate by PH) in steps S31 and S33. Specifically, the control device 100 calculates the supercooling degree SC by subtracting the temperature T1 from the saturation temperature of the refrigerant corresponding to the pressure PH. The conversion table for obtaining the saturation temperature of the refrigerant corresponding to each pressure is stored in the memory 104 of the control device 100 in advance. Then, the control device 100 compares the calculated supercooling degree SC with the target value. This target value is, for example, 5K (Kelvin). When the supercooling degree SC is larger than the target value (YES in S31), the control device 100 reduces the opening degree of the second expansion valve 72 (S32). As a result, the amount of liquid refrigerant discharged from the receiver 73 decreases and the amount of liquid refrigerant in the receiver 73 increases, so that the amount of refrigerant circulating in the main refrigerant circuit decreases and the temperature T1 of the refrigerant rises. As it rises, the supercooling degree SC decreases.
 一方、凝縮器20の出口の冷媒の過冷却度SCが目標値より小さい場合には(S31でNOかつS33でYES)、制御装置100は、ステップS34において、第2膨張弁72の開度が全開であるか否かを判断する。ここで、全開とは、第2膨張弁72の開度が上限値であることを示す。 On the other hand, when the supercooling degree SC of the refrigerant at the outlet of the condenser 20 is smaller than the target value (NO in S31 and YES in S33), the control device 100 increases the opening degree of the second expansion valve 72 in step S34. Determine if it is fully open. Here, "fully open" means that the opening degree of the second expansion valve 72 is the upper limit value.
 第2膨張弁72の開度が全開でない場合(S34でNO)、制御装置100は、第2膨張弁72の開度を増加させる(S35)。これによって、受液器73から排出される液冷媒の量が増加し、受液器73に貯留される液冷媒量が減るため、主冷媒回路を循環する冷媒量が増加し、冷媒の温度T1が低下するので過冷却度SCが増加する。 When the opening degree of the second expansion valve 72 is not fully opened (NO in S34), the control device 100 increases the opening degree of the second expansion valve 72 (S35). As a result, the amount of liquid refrigerant discharged from the receiver 73 increases and the amount of liquid refrigerant stored in the receiver 73 decreases, so that the amount of refrigerant circulating in the main refrigerant circuit increases, and the temperature of the refrigerant T1 Decreases, so the degree of supercooling SC increases.
 一方、第2膨張弁72の開度が全開である場合(S34でYES)、制御装置100は、ステップS36において、第2膨張弁72が全開である状態が判定時間継続したか否かを判断する。 On the other hand, when the opening degree of the second expansion valve 72 is fully open (YES in S34), the control device 100 determines in step S36 whether or not the state in which the second expansion valve 72 is fully open continues for the determination time. To do.
 第2膨張弁72が全開である状態が判定時間継続していない場合には(S36でNO)、制御装置100は、第2膨張弁72の開度を全開の状態に維持する。 If the state in which the second expansion valve 72 is fully open does not continue for the determination time (NO in S36), the control device 100 maintains the opening degree of the second expansion valve 72 in the fully open state.
 一方、第2膨張弁72が全開である状態が判定時間継続した場合には(S36でYES)、ステップS37において、制御装置100は、冷媒が不足していることを示す警報を報知装置101に出力させる。報知装置101は、たとえば、液晶ディスプレイなどの表示装置、警告ランプなどであり、通信回線を介して外部装置への警告信号を送信する装置であっても良い。 On the other hand, when the state in which the second expansion valve 72 is fully open continues for the determination time (YES in S36), in step S37, the control device 100 gives an alarm to the notification device 101 indicating that the refrigerant is insufficient. Output. The notification device 101 is, for example, a display device such as a liquid crystal display, a warning lamp, or the like, and may be a device that transmits a warning signal to an external device via a communication line.
 ステップS32,S35,S37のいずれかの処理を実行した後には、制御装置100は、ステップS38に処理を進める。また、凝縮器20の出口の冷媒の過冷却度SCが目標値であった場合には(S31でNOかつS33でNO)、制御装置100は現状の開度を維持したまま、ステップS38に処理を進める。これらの場合には、一旦メインルーチンに処理が戻されるが、一定時間ごとに図3のフローチャートの処理が繰り返して実行される。 After executing any of the processes of steps S32, S35, and S37, the control device 100 proceeds to the process in step S38. When the supercooling degree SC of the refrigerant at the outlet of the condenser 20 is the target value (NO in S31 and NO in S33), the control device 100 processes in step S38 while maintaining the current opening degree. To proceed. In these cases, the processing is once returned to the main routine, but the processing of the flowchart of FIG. 3 is repeatedly executed at regular intervals.
 図4は、冷媒漏洩発生時の冷媒不足の進行度と室外ユニットの膨張弁の開度との関係を示すグラフである。冷媒不足の度合いは、進行度がD0からD3に進むにつれて大きくなる。 FIG. 4 is a graph showing the relationship between the progress of refrigerant shortage when a refrigerant leak occurs and the opening degree of the expansion valve of the outdoor unit. The degree of refrigerant shortage increases as the progress progresses from D0 to D3.
 進行度がD0~D1においては、冷媒量はまだ不足しておらず、受液器73内には液冷媒がある。この段階では、第2膨張弁72の開度を全開まで増加させることによって、圧縮機10の吐出冷媒の温度は適正に制御されている。ただし、凝縮器20の出口部分の冷媒の過冷却度SCは次第に少なくなり、進行度D1においては、過冷却度SCはゼロとなる。 When the progress is D0 to D1, the amount of refrigerant is not insufficient yet, and there is liquid refrigerant in the receiver 73. At this stage, the temperature of the discharged refrigerant of the compressor 10 is appropriately controlled by increasing the opening degree of the second expansion valve 72 to the fully open position. However, the supercooling degree SC of the refrigerant at the outlet portion of the condenser 20 gradually decreases, and the supercooling degree SC becomes zero at the progress degree D1.
 進行度がD1~D2においては、凝縮器20の出口部分の冷媒の過冷却度SCはゼロであるが、圧縮機10の吐出冷媒の温度はまだ適正に制御されている。ただし、受液器73の液冷媒の量は減少し、進行度D2においては、受液器73の内部の液冷媒は存在しなくなる。この段階では第2膨張弁72の開度は全開となっている。 When the progress is D1 to D2, the supercooling degree SC of the refrigerant at the outlet portion of the condenser 20 is zero, but the temperature of the discharged refrigerant of the compressor 10 is still properly controlled. However, the amount of the liquid refrigerant in the receiver 73 decreases, and at the degree of progress D2, the liquid refrigerant inside the receiver 73 does not exist. At this stage, the opening degree of the second expansion valve 72 is fully opened.
 進行度D2~D3においては、凝縮器20の出口部分の冷媒の過冷却度SCはゼロであり、受液器73の内部の液冷媒は存在しない状態である。この段階になっては、冷媒のインジェクション流路への流入量を増やすために第1膨張弁71の開度を増加させるが、圧縮機10の吐出冷媒の温度THは最適状態よりも上昇してしまう。そして、進行度D3においては、第1膨張弁71の開度が全開となる。 At the progresses D2 to D3, the supercooling degree SC of the refrigerant at the outlet portion of the condenser 20 is zero, and the liquid refrigerant inside the receiver 73 does not exist. At this stage, the opening degree of the first expansion valve 71 is increased in order to increase the amount of refrigerant flowing into the injection flow path, but the temperature TH of the discharged refrigerant of the compressor 10 rises above the optimum state. It ends up. Then, at the degree of progress D3, the opening degree of the first expansion valve 71 is fully opened.
 図4を見ると、冷媒不足が生じる過程において、第1膨張弁71および第2膨張弁72は共に全開状態となるが、第2膨張弁72の方が早い段階で全開となるため、第2膨張弁72の開度に基づいて冷媒不足を判定する方が、早期の段階で冷媒不足を検知できる。本実施の形態では、第2膨張弁72の開度が全開状態となった時間が判定時間に達したときに冷媒不足と判定するので、早期の段階で冷媒不足をユーザに連絡することができる。 Looking at FIG. 4, in the process of running out of refrigerant, both the first expansion valve 71 and the second expansion valve 72 are fully opened, but the second expansion valve 72 is fully opened at an earlier stage, so that the second expansion valve 72 is fully opened. If the refrigerant shortage is determined based on the opening degree of the expansion valve 72, the refrigerant shortage can be detected at an early stage. In the present embodiment, since it is determined that the refrigerant is insufficient when the time when the opening degree of the second expansion valve 72 is fully opened reaches the determination time, it is possible to notify the user of the refrigerant shortage at an early stage. ..
 実施の形態2.
 実施の形態1では、過冷却度SCを温度T1と圧力PHから算出できる冷媒、すなわち、凝縮器における圧力が臨界圧力未満で使用される冷媒を使用する場合について説明した。近年、地球温暖化係数の低い自然冷媒の採用が検討されており、COのように、凝縮器における圧力が臨界圧力以上で使用される冷媒も採用される場合がある。実施の形態2では、このような冷媒を採用する場合における冷媒不足の検知について説明する。
Embodiment 2.
In the first embodiment, a case where a refrigerant whose supercooling degree SC can be calculated from the temperature T1 and the pressure PH, that is, a refrigerant whose pressure in the condenser is less than the critical pressure is used has been described. In recent years, the adoption of a natural refrigerant having a low global warming potential has been studied, and a refrigerant such as CO 2 in which the pressure in the condenser is higher than the critical pressure may be adopted. In the second embodiment, detection of a refrigerant shortage in the case of adopting such a refrigerant will be described.
 図5は、実施の形態2に従う冷凍サイクル装置の全体構成図である。なお、図5では、冷凍サイクル装置における各機器の接続関係および配置構成を機能的に示しており、物理的な空間における配置を必ずしも示すものではない。 FIG. 5 is an overall configuration diagram of a refrigeration cycle device according to the second embodiment. Note that FIG. 5 functionally shows the connection relationship and the arrangement configuration of each device in the refrigeration cycle apparatus, and does not necessarily show the arrangement in the physical space.
 図5を参照して、冷凍サイクル装置1Aは、室外ユニット2Aと、負荷装置3と、配管84,88とを備える。負荷装置3と、配管84,88については、実施の形態1と同様であるので説明は繰返さない。 With reference to FIG. 5, the refrigeration cycle device 1A includes an outdoor unit 2A, a load device 3, and pipes 84 and 88. Since the load device 3 and the pipes 84 and 88 are the same as those in the first embodiment, the description will not be repeated.
 室外ユニット2Aは、図1に示した室外ユニット2の構成において、圧力センサ112に代えて温度センサ123を含み、制御装置100に代えて制御装置100Aを含む。室外ユニット2Aの他の構成については、室外ユニット2と同様であるので説明は繰返さない。 In the configuration of the outdoor unit 2 shown in FIG. 1, the outdoor unit 2A includes a temperature sensor 123 instead of the pressure sensor 112, and includes a control device 100A instead of the control device 100. Since the other configurations of the outdoor unit 2A are the same as those of the outdoor unit 2, the description will not be repeated.
 温度センサ123は室外ユニット2Aの周囲温度である外気温TAを検出し、その検出値を制御装置100Aへ出力する。 The temperature sensor 123 detects the outside air temperature TA, which is the ambient temperature of the outdoor unit 2A, and outputs the detected value to the control device 100A.
 制御装置100Aは、CPU102と、メモリ104と、各種信号を入出力するための入出力バッファ(図示せず)等を含んで構成される。CPU102は、ROMに格納されているプログラムをRAM等に展開して実行する。ROMに格納されるプログラムは、制御装置100Aの処理手順が記されたプログラムである。制御装置100は、これらのプログラムに従って、室外ユニット2における各機器の制御を実行する。この制御については、ソフトウェアによる処理に限られず、専用のハードウェア(電子回路)で処理することも可能である。 The control device 100A includes a CPU 102, a memory 104, an input / output buffer (not shown) for inputting / outputting various signals, and the like. The CPU 102 expands the program stored in the ROM into a RAM or the like and executes the program. The program stored in the ROM is a program in which the processing procedure of the control device 100A is described. The control device 100 executes control of each device in the outdoor unit 2 according to these programs. This control is not limited to software processing, but can also be processed by dedicated hardware (electronic circuit).
 制御装置100Aは、第1膨張弁71を、圧縮機10の吐出冷媒の温度THが目標温度に一致するようにフィードバック制御する。第1膨張弁71の制御については、図2に示した実施の形態1の制御と同様であるので説明は繰返さない。 The control device 100A feedback-controls the first expansion valve 71 so that the temperature TH of the discharged refrigerant of the compressor 10 matches the target temperature. Since the control of the first expansion valve 71 is the same as the control of the first embodiment shown in FIG. 2, the description will not be repeated.
 また、制御装置100Aは、通常運転では凝縮器20の出口の冷媒の過冷却度SCを確保するため、凝縮器20の出口の冷媒の温度T1が目標温度に一致するように第2膨張弁72をフィードバック制御する。このときに、実施の形態2では、冷媒不足の検知も同時に行なう。 Further, in the control device 100A, in order to secure the supercooling degree SC of the refrigerant at the outlet of the condenser 20 in normal operation, the second expansion valve 72 so that the temperature T1 of the refrigerant at the outlet of the condenser 20 matches the target temperature. Feedback control. At this time, in the second embodiment, the refrigerant shortage is detected at the same time.
 なお、本明細書では、説明の容易のため、超臨界状態のCOのような冷媒を冷却する場合も凝縮器20と呼ぶこととする。また、本明細書では、説明の容易のため、超臨界状態の冷媒の基準温度からの低下量も過冷却度SCと呼ぶこととする。実施の形態2では基準温度は、温度センサ123で測定された外気の温度TA+αであり、低下量の目標値は、たとえば5K(ケルビン)である。 In this specification, for the sake of simplicity, the case of cooling a refrigerant such as CO 2 in a supercritical state is also referred to as a condenser 20. Further, in the present specification, for the sake of simplicity, the amount of decrease of the refrigerant in the supercritical state from the reference temperature is also referred to as the degree of supercooling SC. In the second embodiment, the reference temperature is the temperature TA + α of the outside air measured by the temperature sensor 123, and the target value of the amount of decrease is, for example, 5K (Kelvin).
 実施の形態2においても、過冷却度SCを温度TA+αと温度T1との差とすることによって、図3に示したフローチャートの処理によって、冷媒不足を早期に検知することができる。 Also in the second embodiment, by setting the supercooling degree SC as the difference between the temperature TA + α and the temperature T1, the refrigerant shortage can be detected at an early stage by the processing of the flowchart shown in FIG.
 実施の形態2のように凝縮器20における圧力が臨界圧力を超えるような場合には、中間圧部分に受液器73を設けると、主冷媒回路の高圧部の圧力が高く冷媒が超臨界状態である場合でも受液器73の内部に中間圧の液冷媒を貯留することが可能となる。このため、受液器73の容器の設計圧を高圧部よりも低くすることができ、容器の薄肉化によるコスト低減も図れる。 When the pressure in the condenser 20 exceeds the critical pressure as in the second embodiment, if the liquid receiver 73 is provided in the intermediate pressure portion, the pressure in the high pressure portion of the main refrigerant circuit is high and the refrigerant is in a supercritical state. Even in this case, it is possible to store the liquid refrigerant having an intermediate pressure inside the receiver 73. Therefore, the design pressure of the container of the receiver 73 can be made lower than that of the high-pressure portion, and the cost can be reduced by thinning the container.
 以上説明した実施の形態1、2の室外ユニットおよび冷凍サイクル装置について、再び図面を参照して総括する。 The outdoor units and refrigeration cycle devices of the first and second embodiments described above will be summarized again with reference to the drawings.
 本開示は、膨張装置である膨張弁50および蒸発器60を含む負荷装置3に接続されるように構成された冷凍サイクル装置1の室外ユニット2および冷凍サイクル装置1Aの室外ユニット2Aに関する。図1に示す室外ユニット2および図5に示す室外ユニット2Aは、負荷装置3と接続するための冷媒出口ポートPO2および冷媒入口ポートPI2と、第1流路F1と、圧縮機10と、凝縮器20と、第2流路F2と、第1膨張弁71と、受液器73と、第2膨張弁72と、制御装置100または100Aとを備える。第1流路F1は、冷媒入口ポートPI2から冷媒出口ポートPO2に至る流路であって、負荷装置3とともに冷媒が循環する循環流路を形成する。圧縮機10および凝縮器20は、第1流路F1において冷媒入口ポートPI2から冷媒出口ポートPO2に向けて順に配置される。第2流路F2は、第1流路F1の凝縮器20と冷媒出口ポートPO2との間の部分から分岐し、凝縮器20を通過した冷媒を圧縮機10に戻すように構成される。第1膨張弁71、受液器73および第2膨張弁72は、第2流路F2の第1流路F1からの分岐点から順に第2流路F2に配置される。制御装置100および100Aは、圧縮機10、第1膨張弁71、第2膨張弁72を制御するように構成される。制御装置100および100Aは、第2膨張弁72の開度が上限開度である時間が判定時間を超えた場合に、冷媒が不足していることを報知する。 The present disclosure relates to an outdoor unit 2 of a refrigeration cycle device 1 and an outdoor unit 2A of a refrigeration cycle device 1A configured to be connected to a load device 3 including an expansion valve 50 and an evaporator 60 which are expansion devices. The outdoor unit 2 shown in FIG. 1 and the outdoor unit 2A shown in FIG. 5 include a refrigerant outlet port PO2 and a refrigerant inlet port PI2 for connecting to the load device 3, a first flow path F1, a compressor 10, and a condenser. 20, a second flow path F2, a first expansion valve 71, a liquid receiver 73, a second expansion valve 72, and a control device 100 or 100A. The first flow path F1 is a flow path from the refrigerant inlet port PI2 to the refrigerant outlet port PO2, and forms a circulation flow path in which the refrigerant circulates together with the load device 3. The compressor 10 and the condenser 20 are arranged in order from the refrigerant inlet port PI2 toward the refrigerant outlet port PO2 in the first flow path F1. The second flow path F2 is configured to branch from the portion between the condenser 20 of the first flow path F1 and the refrigerant outlet port PO2, and return the refrigerant that has passed through the condenser 20 to the compressor 10. The first expansion valve 71, the liquid receiver 73, and the second expansion valve 72 are arranged in the second flow path F2 in order from the branch point of the second flow path F2 from the first flow path F1. The control devices 100 and 100A are configured to control the compressor 10, the first expansion valve 71, and the second expansion valve 72. The control devices 100 and 100A notify that the refrigerant is insufficient when the opening time of the second expansion valve 72 exceeds the determination time.
 このように冷媒不足を検知することによって、インジェクション流路に受液器73を配置した構成において、早期に冷媒不足を検知し、冷凍サイクル装置の能力の低下および冷媒の漏洩の継続を防止することができる。 By detecting the refrigerant shortage in this way, in the configuration in which the receiver 73 is arranged in the injection flow path, the refrigerant shortage is detected at an early stage, and the capacity of the refrigeration cycle device is prevented from decreasing and the refrigerant leakage is prevented from continuing. Can be done.
 好ましくは、図1に示す室外ユニット2および図5に示す室外ユニット2Aは、第1流路F1における凝縮器20の冷媒出口部分の温度T1を検出する第1温度センサ121をさらに備える。制御装置100および100Aは、第1温度センサ121の出力に応じて第2膨張弁72の開度を制御するように構成される。 Preferably, the outdoor unit 2 shown in FIG. 1 and the outdoor unit 2A shown in FIG. 5 further include a first temperature sensor 121 that detects the temperature T1 of the refrigerant outlet portion of the condenser 20 in the first flow path F1. The control devices 100 and 100A are configured to control the opening degree of the second expansion valve 72 according to the output of the first temperature sensor 121.
 より好ましくは、図1に示す室外ユニット2は、第1流路F1における凝縮器20の冷媒出口部分の冷媒の圧力PHを検出する圧力センサ111をさらに備える。制御装置100は、第2膨張弁72の開度が上限開度である時間が判定時間を超え、かつ、第1温度センサ121の出力と圧力センサ111の出力とに基づいて算出される冷媒の過冷却度SCが目標値となっていない場合に、冷媒が不足していると判断する。 More preferably, the outdoor unit 2 shown in FIG. 1 further includes a pressure sensor 111 that detects the pressure PH of the refrigerant at the refrigerant outlet portion of the condenser 20 in the first flow path F1. In the control device 100, the time when the opening degree of the second expansion valve 72 is the upper limit opening time exceeds the determination time, and the refrigerant is calculated based on the output of the first temperature sensor 121 and the output of the pressure sensor 111. When the supercooling degree SC is not the target value, it is determined that the refrigerant is insufficient.
 さらに好ましくは、図1に示す構成で使用される冷媒は、凝縮器20における圧力が臨界圧力未満で使用される冷媒である。 More preferably, the refrigerant used in the configuration shown in FIG. 1 is a refrigerant used when the pressure in the condenser 20 is less than the critical pressure.
 より好ましくは、図5に示す室外ユニット2Aは、凝縮器20に供給される外気の温度TAを検出する第2温度センサ123をさらに備える。制御装置100Aは、第2膨張弁72の開度が上限開度である時間が判定時間を超え、かつ、第1温度センサ121の検出温度と第2温度センサ123の検出温度との差が判定値よりも小さい場合に、冷媒が不足していると判断する。 More preferably, the outdoor unit 2A shown in FIG. 5 further includes a second temperature sensor 123 that detects the temperature TA of the outside air supplied to the condenser 20. In the control device 100A, the time when the opening degree of the second expansion valve 72 is the upper limit opening time exceeds the determination time, and the difference between the detection temperature of the first temperature sensor 121 and the detection temperature of the second temperature sensor 123 is determined. If it is smaller than the value, it is judged that the refrigerant is insufficient.
 さらに好ましくは、図5に示す構成で使用される冷媒は、凝縮器20における圧力が臨界圧力以上で使用される二酸化炭素である。 More preferably, the refrigerant used in the configuration shown in FIG. 5 is carbon dioxide used when the pressure in the condenser 20 is equal to or higher than the critical pressure.
 本開示は他の局面では、上記いずれかに記載の室外ユニットと、負荷装置とを備える冷凍サイクル装置に関する。 The present disclosure relates to a refrigeration cycle device including the outdoor unit described in any of the above and a load device in another aspect.
 今回開示された実施の形態は、すべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は、上記した実施の形態の説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。 The embodiments disclosed this time should be considered to be exemplary in all respects and not restrictive. The scope of the present invention is shown by the claims rather than the description of the embodiments described above, and is intended to include all modifications within the meaning and scope equivalent to the claims.
 1,1A 冷凍サイクル装置、2,2A 室外ユニット、3 負荷装置、10 圧縮機、20 凝縮器、22 ファン、50 膨張弁、60 蒸発器、70 流量制限装置、71 第1膨張弁、72 第2膨張弁、73 受液器、80,81,84,85,88,89,91,92,93,94 配管、100,100A 制御装置、101 報知装置、104 メモリ、110,111,112 圧力センサ、120,121,123 温度センサ、F1,F2 流路、G1 吸入ポート、G2 吐出ポート、G3 中間圧ポート、PI2,PI3 冷媒入口ポート、PO2,PO3 冷媒出口ポート。 1,1A refrigeration cycle device, 2,2A outdoor unit, 3 load device, 10 compressor, 20 condenser, 22 fan, 50 expansion valve, 60 evaporator, 70 flow limit device, 71 first expansion valve, 72 second Expansion valve, 73 refrigerant receiver, 80,81,84,85,88,89,91,92,93,94 piping, 100,100A control device, 101 notification device, 104 memory, 110,111,112 pressure sensor, 120, 121, 123 Temperature sensor, F1, F2 flow path, G1 suction port, G2 discharge port, G3 intermediate pressure port, PI2, PI3 refrigerant inlet port, PO2, PO3 refrigerant outlet port.

Claims (7)

  1.  膨張装置および蒸発器を含む負荷装置に接続されるように構成された冷凍サイクル装置の室外ユニットであって、
     前記負荷装置と接続するための冷媒出口ポートおよび冷媒入口ポートと、
     前記冷媒入口ポートから前記冷媒出口ポートに至る流路であって、前記負荷装置とともに冷媒が循環する循環流路を形成する第1流路と、
     前記第1流路において前記冷媒入口ポートから前記冷媒出口ポートに向けて順に配置される、圧縮機および凝縮器と、
     前記第1流路の前記凝縮器と前記冷媒出口ポートとの間の部分から分岐し、前記凝縮器を通過した前記冷媒を前記圧縮機に戻すように構成された第2流路と、
     前記第2流路の前記第1流路からの分岐点から順に前記第2流路に配置される第1膨張弁、受液器および第2膨張弁と、
     前記圧縮機、前記第1膨張弁、前記第2膨張弁を制御する制御装置とを備え、
     前記制御装置は、前記第2膨張弁の開度が上限開度である時間が判定時間を超えた場合に、前記冷媒が不足していることを報知する、室外ユニット。
    An outdoor unit of a refrigeration cycle device configured to be connected to a load device including an inflator and an evaporator.
    Refrigerant outlet port and refrigerant inlet port for connecting to the load device,
    A first flow path from the refrigerant inlet port to the refrigerant outlet port, which forms a circulation flow path through which the refrigerant circulates together with the load device.
    A compressor and a condenser arranged in order from the refrigerant inlet port to the refrigerant outlet port in the first flow path.
    A second flow path configured to branch from a portion of the first flow path between the condenser and the refrigerant outlet port and return the refrigerant that has passed through the condenser to the compressor.
    The first expansion valve, the receiver, and the second expansion valve arranged in the second flow path in order from the branch point of the second flow path from the first flow path.
    The compressor, the first expansion valve, and a control device for controlling the second expansion valve are provided.
    The control device is an outdoor unit that notifies that the refrigerant is insufficient when the time when the opening degree of the second expansion valve is the upper limit opening time exceeds the determination time.
  2.  前記第1流路における前記凝縮器の冷媒出口部分の冷媒の温度を検出する第1温度センサをさらに備え、
     前記制御装置は、前記第1温度センサの出力に応じて前記第2膨張弁の開度を制御するように構成される、請求項1に記載の室外ユニット。
    A first temperature sensor for detecting the temperature of the refrigerant at the refrigerant outlet portion of the condenser in the first flow path is further provided.
    The outdoor unit according to claim 1, wherein the control device is configured to control the opening degree of the second expansion valve according to the output of the first temperature sensor.
  3.  前記第1流路における前記凝縮器の冷媒出口部分の冷媒圧力を検出する圧力センサをさらに備え、
     前記制御装置は、前記第2膨張弁の開度が前記上限開度である時間が前記判定時間を超え、かつ、前記第1温度センサの出力と前記圧力センサの出力とに基づいて算出される冷媒の過冷却度が目標値となっていない場合に、前記冷媒が不足していると判断する、請求項2に記載の室外ユニット。
    A pressure sensor for detecting the refrigerant pressure at the refrigerant outlet portion of the condenser in the first flow path is further provided.
    The control device is calculated based on the time when the opening degree of the second expansion valve is the upper limit opening time exceeds the determination time and the output of the first temperature sensor and the output of the pressure sensor. The outdoor unit according to claim 2, wherein it is determined that the refrigerant is insufficient when the degree of supercooling of the refrigerant is not the target value.
  4.  前記冷媒は、前記凝縮器における圧力が臨界圧力未満で使用される冷媒である、請求項3に記載の室外ユニット。 The outdoor unit according to claim 3, wherein the refrigerant is a refrigerant used when the pressure in the condenser is less than the critical pressure.
  5.  前記凝縮器に供給される外気の温度を検出する第2温度センサをさらに備え、
     前記制御装置は、前記第2膨張弁の開度が前記上限開度である時間が前記判定時間を超え、かつ、前記第1温度センサの検出温度と前記第2温度センサの検出温度との差が判定値よりも小さい場合に、前記冷媒が不足していると判断する、請求項2に記載の室外ユニット。
    A second temperature sensor for detecting the temperature of the outside air supplied to the condenser is further provided.
    In the control device, the time when the opening degree of the second expansion valve is the upper limit opening time exceeds the determination time, and the difference between the detection temperature of the first temperature sensor and the detection temperature of the second temperature sensor. The outdoor unit according to claim 2, wherein when is smaller than the determination value, it is determined that the refrigerant is insufficient.
  6.  前記冷媒は、前記凝縮器における圧力が臨界圧力以上で使用される二酸化炭素である、請求項5に記載の室外ユニット。 The outdoor unit according to claim 5, wherein the refrigerant is carbon dioxide used when the pressure in the condenser is equal to or higher than the critical pressure.
  7.  請求項1~6のいずれか1項に記載の室外ユニットと、前記負荷装置とを備える冷凍サイクル装置。 A refrigeration cycle device including the outdoor unit according to any one of claims 1 to 6 and the load device.
PCT/JP2019/035407 2019-09-09 2019-09-09 Outdoor unit and refrigeration cycle device WO2021048905A1 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
CN201980099971.7A CN114364934B (en) 2019-09-09 2019-09-09 Outdoor unit and refrigeration cycle device
FIEP19944933.1T FI4030122T3 (en) 2019-09-09 2019-09-09 Outdoor unit and refrigeration cycle apparatus
ES19944933T ES2950759T3 (en) 2019-09-09 2019-09-09 Outdoor unit and refrigeration cycle apparatus
JP2021544993A JP7199554B2 (en) 2019-09-09 2019-09-09 Outdoor unit and refrigeration cycle equipment
EP19944933.1A EP4030122B1 (en) 2019-09-09 2019-09-09 Outdoor unit and refrigeration cycle apparatus
DK19944933.1T DK4030122T3 (en) 2019-09-09 2019-09-09 OUTDOOR UNIT AND REFRIGERANT CIRCUIT APPARATUS
PCT/JP2019/035407 WO2021048905A1 (en) 2019-09-09 2019-09-09 Outdoor unit and refrigeration cycle device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/035407 WO2021048905A1 (en) 2019-09-09 2019-09-09 Outdoor unit and refrigeration cycle device

Publications (1)

Publication Number Publication Date
WO2021048905A1 true WO2021048905A1 (en) 2021-03-18

Family

ID=74866239

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/035407 WO2021048905A1 (en) 2019-09-09 2019-09-09 Outdoor unit and refrigeration cycle device

Country Status (7)

Country Link
EP (1) EP4030122B1 (en)
JP (1) JP7199554B2 (en)
CN (1) CN114364934B (en)
DK (1) DK4030122T3 (en)
ES (1) ES2950759T3 (en)
FI (1) FI4030122T3 (en)
WO (1) WO2021048905A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024062948A1 (en) * 2022-09-20 2024-03-28 ダイキン工業株式会社 Heat source unit and freezing device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05288438A (en) * 1992-04-08 1993-11-02 Daikin Ind Ltd Refrigerant filled amount detector of refrigerating plant
JP2010156536A (en) * 2008-12-05 2010-07-15 Daikin Ind Ltd Refrigeration device
JP2011226704A (en) * 2010-04-20 2011-11-10 Mitsubishi Electric Corp Refrigerating air conditioner, and refrigerating air conditioning system
JP2013087966A (en) * 2011-10-13 2013-05-13 Fukushima Industries Corp Refrigerant leakage detection method and refrigeration equipment
JP2013164242A (en) * 2012-02-13 2013-08-22 Panasonic Corp Refrigerating apparatus
WO2017199391A1 (en) 2016-05-19 2017-11-23 三菱電機株式会社 Refrigerating device

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5411643B2 (en) * 2009-10-05 2014-02-12 パナソニック株式会社 Refrigeration cycle apparatus and hot water heater
JP5886463B1 (en) * 2015-08-07 2016-03-16 伸和コントロールズ株式会社 Air conditioner and operation method thereof
JP2017053566A (en) * 2015-09-10 2017-03-16 ジョンソンコントロールズ ヒタチ エア コンディショニング テクノロジー(ホンコン)リミテッド Refrigeration cycle device
EP3608606A4 (en) * 2017-04-04 2020-02-26 Mitsubishi Electric Corporation Refrigeration cycle device
KR102354891B1 (en) * 2017-05-31 2022-01-25 삼성전자주식회사 Air conditioner and control method thereof
CN107940826B (en) * 2017-11-10 2020-04-03 广东美的暖通设备有限公司 Multi-split air conditioning system and refrigerant distribution control method and device thereof

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05288438A (en) * 1992-04-08 1993-11-02 Daikin Ind Ltd Refrigerant filled amount detector of refrigerating plant
JP2010156536A (en) * 2008-12-05 2010-07-15 Daikin Ind Ltd Refrigeration device
JP2011226704A (en) * 2010-04-20 2011-11-10 Mitsubishi Electric Corp Refrigerating air conditioner, and refrigerating air conditioning system
JP2013087966A (en) * 2011-10-13 2013-05-13 Fukushima Industries Corp Refrigerant leakage detection method and refrigeration equipment
JP2013164242A (en) * 2012-02-13 2013-08-22 Panasonic Corp Refrigerating apparatus
WO2017199391A1 (en) 2016-05-19 2017-11-23 三菱電機株式会社 Refrigerating device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024062948A1 (en) * 2022-09-20 2024-03-28 ダイキン工業株式会社 Heat source unit and freezing device
JP7553833B2 (en) 2022-09-20 2024-09-19 ダイキン工業株式会社 Heat source unit and refrigeration device

Also Published As

Publication number Publication date
ES2950759T3 (en) 2023-10-13
FI4030122T3 (en) 2023-07-28
DK4030122T3 (en) 2023-07-24
EP4030122B1 (en) 2023-06-21
EP4030122A4 (en) 2022-09-21
CN114364934B (en) 2023-03-21
JPWO2021048905A1 (en) 2021-03-18
EP4030122A1 (en) 2022-07-20
CN114364934A (en) 2022-04-15
JP7199554B2 (en) 2023-01-05

Similar Documents

Publication Publication Date Title
US10180269B2 (en) Refrigeration device
JP5136165B2 (en) Refrigeration equipment
WO2020208752A1 (en) Outdoor unit, refrigeration cycle device, and refrigerating machine
CN114341567B (en) Outdoor unit and refrigeration cycle device
JP6588626B2 (en) Refrigeration equipment
WO2021048905A1 (en) Outdoor unit and refrigeration cycle device
JP2019035579A (en) Freezing device
US20220146165A1 (en) Air conditioning apparatus
CN114364929B (en) Outdoor unit and refrigeration cycle device
JP7150191B2 (en) Outdoor unit and refrigeration cycle equipment
JP6449979B2 (en) Refrigeration equipment
WO2021048898A1 (en) Outdoor unit and refrigeration cycle device
JP7282258B2 (en) Outdoor unit and refrigeration cycle equipment
WO2022018803A1 (en) Cold heat source unit and refrigeration cycle device
JP7342269B2 (en) Cold heat source unit and refrigeration cycle equipment
JP6848027B2 (en) Refrigeration equipment
JP2018179370A (en) Freezer unit
WO2021111561A1 (en) Outdoor unit and refrigeration cycle device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19944933

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021544993

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019944933

Country of ref document: EP

Effective date: 20220411