WO2017199391A1 - Refrigerating device - Google Patents

Refrigerating device Download PDF

Info

Publication number
WO2017199391A1
WO2017199391A1 PCT/JP2016/064857 JP2016064857W WO2017199391A1 WO 2017199391 A1 WO2017199391 A1 WO 2017199391A1 JP 2016064857 W JP2016064857 W JP 2016064857W WO 2017199391 A1 WO2017199391 A1 WO 2017199391A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerant
temperature
heat exchanger
compressor
amount
Prior art date
Application number
PCT/JP2016/064857
Other languages
French (fr)
Japanese (ja)
Inventor
洋貴 佐藤
佐多 裕士
池田 隆
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2016/064857 priority Critical patent/WO2017199391A1/en
Priority to JP2018518016A priority patent/JP6611929B2/en
Publication of WO2017199391A1 publication Critical patent/WO2017199391A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems

Definitions

  • the present invention relates to a refrigeration apparatus for determining a refrigerant shortage.
  • Patent Document 1 An example of a method for detecting refrigerant leakage in a refrigeration apparatus is disclosed in Patent Document 1.
  • Patent Document 1 discloses that the control means calculates a temperature difference between the inlet refrigerant temperature and the outlet refrigerant temperature of the subcooler, and determines that the refrigerant leaks when the calculated temperature difference is smaller than a set value. .
  • Patent Document 2 includes a refrigerant shortage determination unit that determines whether the refrigerant amount is insufficient based on at least one of the operating state quantity that varies according to the degree of refrigerant subcooling or the degree of subcooling at the outlet of the subcooler.
  • a refrigerating and air-conditioning apparatus provided is disclosed.
  • the presence or absence of refrigerant leakage is determined by a change in the degree of supercooling, and the presence or absence of refrigerant leakage is determined using a threshold for one parameter, the degree of supercooling.
  • the first problem is that in the case of the method disclosed in Patent Document 1, the degree of supercooling varies depending on the operating conditions. Thereby, erroneous detection is likely to occur in the determination of refrigerant leakage.
  • a second problem is that a false detection condition in which the change in the degree of supercooling exceeds a threshold value may occur in a short time during operation of the refrigeration apparatus. That is, there is a risk of being erroneously determined. This problem is improved as compared with the method disclosed in Patent Document 1, but may also occur in the method disclosed in Patent Document 2.
  • the refrigeration apparatus In order to prevent the refrigeration apparatus from determining that the refrigerant leaks even under erroneous detection conditions, it is necessary to increase the charging frequency of the refrigerant amount or to set the threshold value low. When the charging amount of the refrigerant amount is increased, there is a problem that the operation cost is increased. If the threshold value is set low, erroneous detection can be prevented, but if the refrigerant leakage does not increase, the refrigeration apparatus may not be able to detect the refrigerant leakage.
  • Patent Literature 3 discloses a refrigerant shortage determination method using the temperature efficiency of a supercooling heat exchanger as a criterion for refrigerant shortage.
  • Patent Document 3 when the temperature efficiency of the supercooling heat exchanger is calculated at regular time intervals, if the calculated temperature efficiency is smaller than the threshold, it is determined that there is a refrigerant leak, and the refrigerant leak is detected N times continuously. It is disclosed to determine that the refrigerant is insufficient.
  • the present invention has been made to solve the above-described problems, and provides a refrigeration apparatus that prevents a compressor from being damaged due to a lack of refrigerant.
  • a refrigeration apparatus controls a refrigerant circuit that circulates refrigerant to a compressor, a heat source side heat exchanger, a supercooling heat exchanger, a load side expansion device, and a load side heat exchanger, and a refrigeration cycle in the refrigerant circuit.
  • a control unit that monitors the temperature efficiency of the refrigeration cycle control means for controlling the refrigeration cycle and the supercooling heat exchanger, and the temperature efficiency is equal to or higher than a predetermined threshold value.
  • the refrigerant amount determining means that determines that the refrigerant amount charged in the refrigerant circuit is normal and the temperature efficiency is less than the threshold value is that there is a refrigerant leak; and If it is determined that the parameter value related to the temperature of the discharge gas of the compressor deviates from a predetermined range, and if the parameter value deviates from the range, Insufficient amount of refrigerant
  • the present invention determines whether or not the value of the parameter related to the temperature of the discharge gas of the compressor deviates from a predetermined range when it is determined that there is a refrigerant leak using the temperature efficiency of the supercooling heat exchanger. If the parameter value deviates from the predetermined range, it is determined that the refrigerant is insufficient. Therefore, the refrigerant shortage can be detected before detecting the refrigerant shortage using the temperature efficiency, and the compressor It can be prevented from stopping due to abnormal temperature, and the compressor can be prevented from malfunctioning.
  • FIG. 1B is a ph diagram for explaining an example of parameters for detecting a sign of a shortage of refrigerant in the refrigeration apparatus shown in FIG. 1A.
  • FIG. 1B is a ph diagram for explaining an example of parameters for detecting a sign of a shortage of refrigerant in the refrigeration apparatus shown in FIG. 1A.
  • FIG. It is a flowchart which shows the procedure of the refrigerant
  • FIG. 11 is a ph diagram for explaining an example of parameters for detecting a sign of insufficient refrigerant amount in the refrigeration apparatus shown in FIG. 10.
  • FIG. 1A is a refrigerant circuit diagram illustrating a configuration example of a refrigeration apparatus in Embodiment 1 of the present invention.
  • the refrigeration apparatus includes a heat source side unit 100 and a load side unit 200.
  • the heat source side unit 100 includes a compressor 1, an oil separator 2, a heat source side heat exchanger 3, a liquid receiver 4, a supercooling heat exchanger 5, an accumulator 8, and a controller 120.
  • the load side unit 200 includes a load side expansion device 6 and a load side heat exchanger 7.
  • the load side expansion device 6 is, for example, an expansion valve.
  • the compressor 1, the oil separator 2, the heat source side heat exchanger 3, the liquid receiver 4, the supercooling heat exchanger 5 and the accumulator 8 are connected by a pipe 13.
  • the load side unit 200 the load side expansion device 6 and the load side heat exchanger 7 are connected by a pipe 12.
  • the piping 12 of the load side unit 200 is connected to the piping 13 of the heat source side unit 100 via the liquid extension piping 10 and the gas extension piping 11.
  • Refrigerant that sequentially circulates refrigerant to the compressor 1, the oil separator 2, the heat source side heat exchanger 3, the receiver 4, the supercooling heat exchanger 5, the load side expansion device 6, the load side heat exchanger 7, and the accumulator 8.
  • a circuit is configured.
  • a fan that supplies outside air to the heat source side heat exchanger 3 and the supercooling heat exchanger 5 is provided in the heat source side unit 100, and a fan that supplies air to the load side heat exchanger 7 is loaded. It is provided in the side unit 200.
  • the heat source side unit 100 is provided with an outside air temperature sensor TH6 that detects the temperature of the outside air heat exchanged with the refrigerant by the heat source side heat exchanger 3 as the outside air temperature THV6.
  • a condensing temperature sensor TH5 that detects the refrigerant temperature as the condensing temperature THV5 is provided in a flow path from the outlet of the heat source side heat exchanger 3 to the inlet of the supercooling heat exchanger 5.
  • a liquid receiver 4 is provided between the heat source side heat exchanger 3 and the supercooling heat exchanger 5, and the condensation temperature sensor TH ⁇ b> 5 includes the heat source side heat exchanger 3 and the liquid receiver 4. Between the pipes 13.
  • a liquid refrigerant temperature sensor TH8 that detects the temperature of the refrigerant as the liquid refrigerant temperature THV8 is provided in the flow path from the outlet of the supercooling heat exchanger 5 to the inlet of the load side expansion device 6.
  • An evaporating temperature sensor ET that detects the refrigerant temperature as the evaporating temperature ETV is provided in a flow path from the outlet of the load side expansion device 6 to the inlet of the load side heat exchanger 7.
  • a discharge gas temperature sensor 51 that detects the temperature of the discharge gas of the compressor 1 is provided at the outlet of the compressor 1.
  • An intake gas temperature sensor 52 that detects the temperature of the refrigerant sucked into the compressor 1 is provided at the suction port of the compressor 1.
  • a pressure sensor for detecting the refrigerant pressure is provided in a flow path from the outlet of the heat source side heat exchanger 3 to the inlet of the supercooling heat exchanger 5, and the pressure sensor is used as the condensation temperature THV5.
  • the saturation temperature may be calculated from the pressure detected by.
  • a pressure sensor for detecting the pressure of the refrigerant is provided in a flow path from the outlet of the load side expansion device 6 to the inlet of the load side heat exchanger 7, and the pressure sensor is used as the evaporation temperature ETV.
  • the saturation temperature may be calculated from the detected pressure.
  • the flow of the refrigerant in the refrigerant circuit of the refrigeration apparatus shown in FIG. 1A will be described.
  • the heat source side heat exchanger 3 is a condenser
  • the load side heat exchanger 7 is an evaporator.
  • the high-temperature and high-pressure gas refrigerant discharged from the variable capacity compressor 1 flows into the heat source side heat exchanger 3 after the refrigeration oil contained in the refrigerant is separated by the oil separator 2.
  • the high-temperature and high-pressure gas refrigerant flowing into the heat source side heat exchanger 3 is condensed in the heat source side heat exchanger 3 to become a high pressure liquid refrigerant (liquid state or gas-liquid two-phase state), and the high pressure liquid refrigerant is stored in the receiver 4. To do.
  • the high-pressure liquid refrigerant accumulated in the liquid receiver 4 further becomes a supercooled liquid refrigerant by exchanging heat with the supercooling heat exchanger 5.
  • the refrigerant that has become a high-pressure liquid in the subcooling heat exchanger 5 becomes a low-temperature and low-pressure gas-liquid two-phase refrigerant in the load-side expansion device 6 of the load-side unit 200 and flows into the load-side heat exchanger 7.
  • the low-temperature and low-pressure gas-liquid two-phase refrigerant becomes low-temperature and low-pressure gas refrigerant in the load-side heat exchanger 7, and the gas refrigerant returns to the compressor 1 through the accumulator 8.
  • the number of load side units 200 connected to the heat source side unit 100 is one.
  • the number is not limited and may be plural.
  • the number of the load side units 200 provided in the refrigeration apparatus is arbitrary.
  • a description will be given of a refrigeration apparatus in which a refrigerant circuit is configured by connecting the heat source side unit 100 and the load side unit 200, but the refrigeration apparatus in the first embodiment is the same. It is not limited to such a configuration.
  • a heat source side unit 100 corresponding to a condensing unit and a load side unit 200 corresponding to a load side unit are joined by refrigerant piping including liquid piping and gas piping.
  • refrigerant piping including liquid piping and gas piping.
  • It may be a refrigeration device in which a refrigerant circuit is configured by connection.
  • the refrigeration apparatus of the first embodiment may be configured such that the compressor 1 is installed indoors and the remote condensing unit including the heat source side heat exchanger 3 is installed outdoors.
  • FIGS. 1B and 1C A configuration example of a refrigeration apparatus having a remote condensing unit will be described with reference to FIGS. 1B and 1C.
  • FIG. 1B and 1C are refrigerant circuit diagrams showing another configuration example of the refrigeration apparatus in Embodiment 1 of the present invention.
  • the refrigeration apparatus shown in FIG. 1B includes a compression unit 150 between the load side unit 200 and the heat source side unit 100.
  • the compression unit 150 is installed indoors.
  • the heat source side unit 100 includes a heat source side heat exchanger 3 and a supercooling heat exchanger 5.
  • the compression unit 150 includes a compressor 1, an oil separator 2, a liquid receiver 4, an accumulator 8, and a controller 120.
  • the compression unit 150 is provided with a pipe 14 connected to the compressor 1, the oil separator 2, the liquid receiver 4, and the accumulator 8.
  • the piping 13 of the heat source unit 100 and the piping 14 of the compression unit 150 are connected via an extension piping 15.
  • the pipe 14 of the compression unit 150 is connected to the pipe 12 of the load side unit 200 via the gas extension pipe 11 and the liquid extension pipe 10.
  • the configuration of the refrigeration apparatus shown in FIG. 1C will be described.
  • the refrigeration apparatus illustrated in FIG. 1C includes a compression unit 151 between the load side unit 200 and the heat source side unit 100.
  • the liquid receiver 4 is provided on the compression unit 150 side.
  • the refrigeration apparatus shown in FIG. 1C has the exception that the liquid receiver 4 is provided on the heat source side unit 100.
  • the configuration is the same as that shown in FIG. 1B.
  • the refrigeration apparatus includes, for example, a compressor 1, a heat source side heat exchanger 3, a supercooling heat that configures a refrigerant circuit in one unit like a cooling unit.
  • the exchanger 5, the load side expansion device 6, the load side heat exchanger 7, and other accessory devices may be provided, and these devices may be connected by piping.
  • the configuration of the refrigerant circuit in the first embodiment is not limited to the configuration shown in FIGS. 1A to 1C.
  • a four-way valve or the like that switches the refrigerant flow path may be provided in the refrigeration apparatus, and the refrigeration apparatus may be configured to switch between a cooling operation and a heating operation.
  • the heat source side heat exchanger 3 is an evaporator
  • the load side heat exchanger 7 is a condenser.
  • the supercooling heat exchanger 5 may be provided in the load side unit 200.
  • 1A to 1C show a case where the oil separator 2, the liquid receiver 4 and the accumulator 8 are provided in the refrigerant circuit of the refrigeration apparatus. Some of these three devices are shown. It does not have to be provided, and all may not be provided.
  • FIG. 2 is a functional block diagram showing a configuration example of the refrigeration apparatus shown in FIG. 1A.
  • the controller 120 includes a control unit 20 and a display unit 21.
  • the control unit 20 supplies air to the compressor 1, the load side expansion device 6, a fan 26 that supplies outside air to the heat source side heat exchanger 3 and the subcooling heat exchanger 5, and air to the load side heat exchanger 7.
  • the fan 27 is connected via a signal line (not shown).
  • the control unit 20 is connected to the condensing temperature sensor TH5, the liquid refrigerant temperature sensor TH8, the outside air temperature sensor TH6, the evaporation temperature sensor ET, the discharge gas temperature sensor 51, and the intake gas temperature sensor 52 via signal lines (not shown). Yes.
  • the controller 20 receives temperature information, which is information on the temperature detected by each of these temperature sensors, from each temperature sensor via a signal line (not shown).
  • FIG. 3 is a block diagram showing a configuration example of the controller shown in FIG. 1A.
  • the control unit 20 performs refrigeration cycle control means 22 for controlling the refrigerant cycle, refrigerant amount determination means 23 for determining the appropriateness of the refrigerant amount charged in the refrigerant circuit, and appropriateness determination of the refrigerant amount.
  • the control unit 20 is, for example, a microcomputer.
  • the control unit 20 includes a storage unit 122 that stores a program, and a CPU (Central Processing Unit) 121 that executes processing according to the program.
  • the storage unit 122 is, for example, a nonvolatile memory.
  • the storage unit 122 stores in advance information such as a threshold value and a range, which are determination criteria for refrigerant leakage and refrigerant shortage.
  • the storage unit 122 also serves as a buffer memory that temporarily stores values and calculation results used for calculation of the refrigerant amount suitability determination.
  • the display unit 21 displays the determination result received from the control unit 20 and various information.
  • the display unit 21 is, for example, a 7-segment LED (Light Emitting Diode).
  • the display unit 21 displays the numeral zero with a 7-segment LED when the refrigerant amount is normal, and displays the Roman letter “A” with the 7-segment LED when the refrigerant amount is insufficient. To do. “A” is an acronym for alarm.
  • the display unit 21 may display any number among the numbers 1 to 9 on the 7-segment LED depending on the degree of the leakage.
  • the number of 7-segment LEDs provided in the display unit 21 is not limited to one and may be plural.
  • the display unit 21 may be a liquid crystal display.
  • the refrigeration cycle control means 22 adjusts the opening degree of the load side expansion device 6 so that the degree of superheat coincides with a predetermined value. Further, the refrigeration cycle control means 22 controls the rotation speeds of the compressor 1 and the fan 26 of the heat source side heat exchanger 3 so that the temperature of the air-conditioning target space matches the set temperature.
  • the refrigerant amount determination means 23 monitors the temperature efficiency ⁇ of the supercooling heat exchanger 5 in order to determine the suitability of the refrigerant amount charged in the refrigerant circuit. Specifically, when the operating state of the refrigeration apparatus does not correspond to a predetermined non-detectable condition, the temperature efficiency ⁇ of the supercooling heat exchanger 5 is calculated, and is the temperature efficiency ⁇ greater than or equal to a predetermined threshold value? Determine whether or not. The refrigerant amount determination means 23 determines that the refrigerant amount is normal when the temperature efficiency ⁇ is equal to or greater than the threshold value, and determines that refrigerant leakage has occurred when the temperature efficiency ⁇ is less than the threshold value.
  • the refrigerant amount determination means 23 determines that the refrigerant amount is insufficient when the case where the temperature efficiency ⁇ is less than the threshold value continues for a predetermined number of times.
  • the predetermined number of times is N (N is a positive integer of 2 or more).
  • N 3.
  • the “normal” refrigerant amount means that the refrigerant amount charged in the refrigerant circuit is appropriate.
  • the refrigerant amount determination unit 23 instructs the refrigeration cycle control unit 22 to stop the refrigeration cycle.
  • the refrigerant amount determination means 23 outputs the determination result to the display unit 21 when the refrigerant amount is normal and when the refrigerant amount is insufficient.
  • FIG. 4 is a diagram for explaining the temperature change of the refrigerant when the refrigerant amount is normal in the refrigeration apparatus shown in FIG. 1A.
  • the vertical axis indicates the temperature of the refrigerant
  • the horizontal axis indicates the position in the refrigerant circuit.
  • FIG. 4 shows that the temperature is higher on the upper side of the vertical axis.
  • the horizontal axis shown in FIG. 4 shows the refrigerant path from the heat source side heat exchanger 3 through the supercooling heat exchanger 5 to the pipe 13 on the outlet side of the supercooling heat exchanger 5.
  • the pipe 13 on the outlet side of the supercooling heat exchanger 5 the refrigerant is in a liquid state, and therefore, the pipe 13 is indicated as “liquid pipe” in FIG.
  • An arrow 501 shown in FIG. 4 indicates a change in the temperature of the refrigerant in each refrigerant path shown on the horizontal axis in FIG. 4 when the refrigerant amount is normal.
  • the gas-liquid two-phase refrigerant flowing out from the heat source side heat exchanger 3 is separated into gas and liquid by the receiver 4, and the receiver 4 is in a saturated liquid state in which the liquid refrigerant is stored. Therefore, the liquid refrigerant from the liquid receiver 4 flows into the supercooling heat exchanger 5, and all the heat exchange performed by the supercooling heat exchanger 5 contributes to the supercooling of the liquid refrigerant.
  • FIG. 5 is a diagram for explaining the temperature change of the refrigerant when the refrigerant amount is insufficient in the refrigeration apparatus shown in FIG. 1A.
  • the vertical axis indicates the temperature of the refrigerant
  • the horizontal axis indicates the position in the refrigerant circuit.
  • the vertical axis and horizontal axis shown in FIG. 5 are the same as the vertical axis and horizontal axis shown in FIG.
  • An arrow 502 shown in FIG. 5 indicates the temperature change of the refrigerant in each refrigerant path indicated by the horizontal axis in FIG. 5 when the refrigerant amount is insufficient.
  • the arrow 501 shown in FIG. 4 is indicated by a broken line.
  • the refrigerant quantity judging means 23 uses the temperature efficiency ⁇ of the supercooling heat exchanger 5. The reason why the refrigerant amount determination means 23 uses the temperature efficiency ⁇ of the supercooling heat exchanger 5 as a parameter for determining whether or not the refrigerant amount is appropriate will be described below.
  • the temperature efficiency ⁇ of the supercooling heat exchanger 5 is the refrigerant subcooling degree (condensation temperature THV5 ⁇ liquid refrigerant temperature THV8) at the outlet of the supercooling heat exchanger 5 and the maximum temperature difference (condensation) of the supercooling heat exchanger 5. Temperature THV5 ⁇ outside air temperature THV6).
  • the temperature efficiency ⁇ of the supercooling heat exchanger 5 is expressed by the following formula (1).
  • the equation on the right side for calculating the temperature efficiency ⁇ includes the degree of supercooling. Therefore, the temperature efficiency ⁇ of the supercooling heat exchanger 5 is suitable as a parameter for determining the suitability of the refrigerant amount. Further, the temperature efficiency ⁇ of the supercooling heat exchanger 5 indicates the performance of the supercooling heat exchanger 5, and has an advantage that variation due to operating conditions is smaller than the degree of supercooling. Therefore, if the temperature efficiency ⁇ is used as a parameter for determining whether or not the refrigerant amount is appropriate, it is not necessary to set a threshold value for each operating condition, and the accuracy of determining whether or not the refrigerant amount is appropriate can be improved.
  • the refrigerant amount determination means 23 determines the suitability of the refrigerant amount by using the temperature efficiency ⁇ of the supercooling heat exchanger 5 that is less fluctuated by operating conditions than the degree of supercooling. However, if the suitability of the refrigerant amount is determined based on one calculation result, it is conceivable that the refrigerant amount determination unit 23 erroneously determines when the temperature sensor erroneously detects. In the first embodiment, in order to prevent such an erroneous determination, the refrigerant amount determination unit 23 determines that the refrigerant amount is insufficient when the temperature efficiency ⁇ is less than the threshold value N times consecutively. Yes.
  • the refrigerant amount determination means 23 calculates a plurality of temperature efficiencies ⁇ in a fixed time, obtains an average value of the calculated temperature efficiencies ⁇ , and compares the calculated average value with a threshold value. May be.
  • the auxiliary determination unit 24 refers to a value other than the temperature efficiency ⁇ as information indicating a sign of a refrigeration amount shortage, and detects the shortage of the refrigerant amount earlier than the refrigerant amount determination unit 23 determines. Specifically, the auxiliary determination means 24 determines whether or not each value deviates from a predetermined range for parameters related to the discharge gas temperature and the discharge gas temperature of the compressor 1. . The auxiliary determination unit 24 determines that the refrigerant amount is insufficient when at least one of the auxiliary determination units deviates from a predetermined range.
  • the auxiliary determination unit 24 determines that the refrigerant amount is insufficient, the auxiliary determination unit 24 outputs the determination result to the display unit 21 and instructs the refrigeration cycle control unit 22 to stop the refrigeration cycle.
  • the auxiliary determination means 24 indicates that the refrigerant amount deficiency was not detected when both the discharge gas temperature of the compressor 1 and the parameters related to the discharge gas temperature are within the predetermined ranges.
  • the amount determining means 23 is notified.
  • Parameters relating to the temperature of the discharge gas of the compressor 1 include, for example, the degree of superheat at the suction port of the compressor 1 and the pressure of the refrigerant in the load side heat exchanger 7.
  • the superheat degree of the suction port of the compressor 1 is set as a parameter P1
  • the refrigerant pressure in the load side heat exchanger 7 is set as a parameter P2.
  • the degree of superheat of the suction port of the compressor 1 is equal to or higher than the upper limit of a predetermined range corresponds to a shortage of the refrigerant amount.
  • the pressure of the refrigerant in the load-side heat exchanger 7 is equal to or lower than the lower limit of a predetermined range corresponds to the shortage of the refrigerant amount.
  • the shortage of the refrigerant amount raises the temperature of the discharge gas of the compressor 1.
  • the refrigerant is completely vaporized by the load-side heat exchanger 7 and is sucked into the compressor 1 in a state where the temperature is excessively high after drying. Since the compressor 1 sucks in the refrigerant whose temperature has become excessively high, the temperature of the discharge gas of the compressor 1 rises.
  • the case where the value detected by the discharge gas temperature sensor 51 is equal to or greater than the upper limit value in a predetermined range corresponds to the shortage of the refrigerant amount.
  • the refrigeration cycle control means 22 stops the refrigeration cycle according to the instruction of the auxiliary determination means 24.
  • Abnormal postponement is that the operation is automatically stopped when the refrigeration apparatus detects an abnormality of the compressor 1 in accordance with a preset safety standard.
  • 6 and 7 are ph diagrams for explaining an example of parameters for detecting a sign of a shortage of the refrigerant amount in the refrigeration apparatus shown in FIG. 1A. 6 and 7, the vertical axis represents pressure [MPa], and the horizontal axis represents specific enthalpy [kJ / kg]. 6 and 7 show a refrigeration cycle comprising an evaporation process, a compression process, a condensation process, and an expansion process.
  • Point J1 ⁇ point J2 corresponds to the evaporation process
  • point J2 ⁇ point J3 corresponds to the compression process
  • point J3 ⁇ point J4 corresponds to the condensation process
  • point J4 ⁇ point J1 corresponds to the expansion process.
  • the parameter P1 is related to the temperature of the discharge gas of the compressor 1.
  • SH super heat
  • shown in FIG. 6 corresponds to the degree of superheat of the suction port of the compressor 1.
  • the auxiliary determination means 24 calculates the difference between the temperature detected by the intake gas temperature sensor 52 and the evaporation temperature ETV to determine the superheat degree SH.
  • assistant determination means 24 determines with the refrigerant
  • the parameter P2 relates to the discharge gas of the compressor 1.
  • the pressure Ps shown in FIG. 7 indicates the pressure of the refrigerant in the load side heat exchanger 7.
  • the point J3 transitions to the point J3 ′ as shown by the broken line.
  • the temperature of the discharge gas of the compressor 1 also increases.
  • the auxiliary determination unit 24 obtains a saturation pressure from the temperature of the evaporation temperature ETV as the refrigerant pressure of the load side heat exchanger 7, and the refrigerant pressure of the load side heat exchanger 7 is equal to or lower than a lower limit value in a predetermined range. In this case, it is determined that the refrigerant amount is insufficient.
  • a pressure sensor that detects the pressure of the refrigerant in the load side heat exchanger 7 may be provided in the pipe 12 between the load side expansion device 6 and the load side heat exchanger 7. Moreover, since the pressure of the refrigerant
  • the parameters related to the discharge gas of the compressor 1 are not limited to the parameters P1 and P2 described above, and other parameters that can detect signs that occur when the refrigerant is insufficient may be appropriately set in the control unit 20.
  • FIG. 8 is a flowchart showing the procedure of the refrigerant shortage determination method in the comparative example.
  • FIG. 8 corresponds to a procedure in which the refrigerant amount determination unit 23 executes the determination of whether the refrigerant amount is appropriate, but the auxiliary determination unit 24 does not determine the appropriateness of the refrigerant amount.
  • an average temperature efficiency ⁇ Ave which is an average value of the temperature efficiency ⁇
  • the threshold value of the temperature efficiency ⁇ is expressed as ⁇ Line.
  • M is a variable for counting the number of times that the average temperature efficiency ⁇ Ave is continuously less than the threshold value. Possible values of the variable M are integers of 0 or more.
  • the refrigeration cycle control means 22 starts controlling the refrigeration cycle.
  • the refrigerant amount determination means 23 sets zero as an initial value for the variable M (step S101), and performs a determination operation for periodically determining whether the refrigerant amount is appropriate or not during operation of the refrigeration apparatus.
  • the refrigerant amount determination means 23 acquires temperature information from the condensation temperature sensor TH5, the outside air temperature sensor TH6, the liquid refrigerant temperature sensor TH8, and the evaporation temperature sensor ET as data indicating the operation state, and the compressor 1 Information indicating the state is acquired from each component device including (step S102).
  • the refrigerant amount determination means 23 determines whether or not the current operation state corresponds to the undetectable condition based on the acquired data (step S103).
  • Undetectable condition 1 When the compressor 1 is stopped. The reason for making the detection impossible is that the cause of the stop of the compressor 1 may be an abnormality that has occurred in the refrigeration apparatus.
  • Undetectable condition 2 30 minutes after starting the refrigeration system. The reason why the detection is impossible is that the temperature efficiency ⁇ is not stable for the first 10 to 20 minutes after the refrigeration apparatus is started.
  • Undetectable condition 3 When the outside air temperature is a low outside temperature lower than a predetermined temperature.
  • the reason why detection is impossible is that when the outside air temperature is low, the refrigeration cycle control means 22 tries to keep the refrigerant on the inlet side of the heat source side heat exchanger 3 at a high pressure, and the heat source side heat exchanger 3 and the supercooling heat exchanger. This is because the temperature efficiency ⁇ is lowered to reduce the air volume of the fan 26 that blows air to 5 and there is a possibility of erroneous detection.
  • Non-detectable condition 4 When the outside air temperature is a high outside air temperature that is outside the predetermined operating range. The reason why the detection is impossible is that the refrigerant hardly radiates heat in the heat source side heat exchanger 3, the temperature efficiency ⁇ is lowered, and there is a possibility of erroneous detection.
  • Undetectable condition 5 When the temperature difference between the condensation temperature THV5 and the outside air temperature THV6 is larger than a predetermined value. The reason why detection is impossible is that the denominator on the right side of equation (1) becomes excessive, and there is a possibility of erroneous detection.
  • Detection impossible condition 6 When the degree of superheat is smaller than a predetermined value. The reason why the detection is impossible is that the superheat degree is reduced when there is no excess refrigerant in the liquid receiver 4, but if there is an excess refrigerant in the accumulator 8, it does not correspond to a shortage of the refrigerant amount.
  • the value of the temperature efficiency ⁇ may be smaller than the threshold value ⁇ Line even if the refrigerant amount is normal. Therefore, under such conditions, the refrigerant amount determination means 23 may erroneously determine whether or not the refrigerant amount is appropriate, so that the determination of the appropriateness of the refrigerant amount is not performed.
  • the undetectable conditions 1 to 6 are examples.
  • the temperature efficiency calculated by the equation (1) There may be a case where ⁇ becomes smaller than the threshold ⁇ Line.
  • the detection impossible condition in such a case is referred to as a detection impossible condition 7.
  • the refrigerant amount determination means 23 stores error information in the storage unit 122 as an invalid value (Ste S104).
  • the refrigerant amount determination means 23 uses the equation (1) to calculate the temperature of the supercooling heat exchanger 5
  • the efficiency ⁇ is calculated (step S105), and the temperature efficiency ⁇ and the operating frequency value of the compressor 1 are stored in the storage unit 122 as effective values (step S106).
  • the refrigerant amount determination means 23 performs the processing of steps S103 to S106 for a predetermined number of times (for example, 10 times) at a predetermined period during a predetermined time (for example, 10 minutes).
  • the refrigerant amount determination means 23 determines whether or not the plurality of temperature efficiencies ⁇ stored in the storage unit 122 satisfy the calculation condition of the average temperature efficiency ⁇ Ave (step S107).
  • the refrigerant amount determination unit 23 does not determine whether or not there is a refrigerant leak, and returns to step S102.
  • the stability determination condition is, for example, that fluctuations of a plurality of temperature efficiencies ⁇ from which the average temperature efficiency ⁇ Ave is calculated are within a predetermined range.
  • the stability determination condition may include a condition that fluctuations in the operating frequency of the compressor 1 stored in the storage unit 122 together with a plurality of temperature efficiencies ⁇ are within a predetermined range.
  • the refrigerant amount determination means 23 uses the values of the plurality of temperature efficiencies ⁇ to calculate the average temperature efficiency. ⁇ Ave is calculated (step S108). And the refrigerant
  • step S109 If the result of determination in step S109 is that the average temperature efficiency ⁇ Ave is equal to or greater than the threshold value ⁇ Line, the refrigerant amount determination means 23 resets the value of the variable M to zero if the variable M is not zero (step S110), and then the refrigerant The display unit 21 displays that the amount is normal (step S111). As a result of the determination in step S109, when the average temperature efficiency ⁇ Ave is equal to or greater than the threshold value ⁇ Line and the value of the variable M is zero, the refrigerant amount determination unit 23 proceeds to step S111 without executing step S110. .
  • step S109 when the average temperature efficiency ⁇ Ave is smaller than the threshold value ⁇ Line, the refrigerant amount determination unit 23 determines that there is a refrigerant leak (step S200). And the refrigerant
  • step S202 If the value of the variable M coincides with N as a result of the determination in step S202, the refrigerant amount determination means 23 displays on the display unit 21 that the refrigerant amount is insufficient (step S203). If the value of the variable M does not match N as a result of the determination in step S202, the refrigerant amount determination means 23 returns to step S102.
  • the refrigerant amount determination means 23 determines that the refrigerant amount is insufficient when the determination that there is a refrigerant leak is performed N times in succession, and displays that the refrigerant amount is insufficient. This is displayed on the unit 21.
  • the refrigerant amount determination means 23 instructs the refrigeration cycle control means 22 to stop the refrigeration cycle operation.
  • the refrigerant shortage determination method determines the refrigerant shortage at an early stage by determining that the refrigerant amount is insufficient at the stage where the sign of the refrigerant amount shortage is detected other than the decrease in temperature efficiency ⁇ . It is something to detect.
  • FIG. 9 is a flowchart showing an operation procedure of the refrigerant shortage determination method executed by the refrigeration apparatus in Embodiment 1 of the present invention. Note that the processing in steps S101 to S111 shown in FIG. 9 is the same as that in steps S101 to S111 described with reference to FIG.
  • the auxiliary determination unit 24 sets the discharge gas temperature of the compressor 1 and the parameters related to the discharge gas temperature for each parameter. It is determined whether or not the value deviates from each predetermined range (step S199).
  • the auxiliary determination unit 24 determines that at least one of the parameters related to the discharge gas temperature and the discharge gas temperature of the compressor 1 deviates from a predetermined range. It is determined that the amount of refrigerant is insufficient, and a message indicating that the amount of refrigerant is insufficient is displayed on the display unit 21 (step S203). In addition, the auxiliary determination unit 24 instructs the refrigeration cycle control unit 22 to stop the operation of the refrigeration cycle.
  • the auxiliary determination unit 24 determines the refrigerant amount when both the temperature of the discharge gas of the compressor 1 and the parameter related to the temperature of the discharge gas are within a predetermined range.
  • the means 23 is notified that the refrigerant amount shortage has not been detected, and the processing of step S200 is instructed.
  • the refrigerant amount determination unit 23 receives an instruction for the process of step S200 from the auxiliary determination unit 24, the refrigerant amount determination unit 23 performs the process after step S200 as described with reference to FIG.
  • the auxiliary determination unit 24 detects the temperature of the discharge gas and the discharge gas of the compressor 1. It is determined whether or not the amount of refrigerant is insufficient using a parameter related to temperature. Therefore, if the auxiliary determination unit 24 detects the refrigerant shortage earlier than the period in which the refrigerant amount determination unit 23 continuously determines the refrigerant leakage N times, the refrigeration apparatus stops the refrigeration cycle before the period elapses. And it can prevent that the compressor 1 breaks down.
  • the refrigeration apparatus shown in FIGS. 1A to 1C is taken as an example to describe the parameters for detecting the sign of insufficient refrigerant amount.
  • the parameters corresponding to the configuration added to the refrigeration apparatus are described. May be added.
  • 1A to 1C show the configuration in which the intake gas temperature sensor 52 is provided in the refrigeration apparatus, the intake gas temperature sensor 52 is refrigerated in accordance with the parameters used by the auxiliary determination means 24 for refrigerant shortage determination. It may not be provided in the apparatus.
  • the refrigeration apparatus of the first embodiment includes a refrigeration cycle in a refrigerant circuit that circulates refrigerant through the compressor 1, the heat source side heat exchanger 3, the supercooling heat exchanger 5, the load side expansion device 6, and the load side heat exchanger 7.
  • the refrigerant amount determination means 23 for determining that there is a refrigerant leak and the parameter related to the temperature of the discharge gas of the compressor 1 when the refrigerant amount determination means 23 determines that there is a refrigerant leak
  • the auxiliary determination means 24 determines whether or not the value deviates from a predetermined range, and determines that the amount of refrigerant is insufficient when the parameter value deviates from the range.
  • the auxiliary determination unit 24 uses the compressor. It is determined whether or not a parameter relating to the temperature of one discharge gas deviates from a predetermined range, and when the parameter value deviates from a predetermined range, the refrigerant amount is insufficient. judge. Therefore, in the refrigeration apparatus, before the refrigerant amount determination unit 23 detects the refrigerant shortage using the temperature efficiency, the auxiliary determination unit 24 can detect the occurrence of the refrigerant shortage, and the compressor 1 stops due to the abnormal temperature of the discharge gas. This can prevent the compressor 1 from failing.
  • the parameter related to the temperature of the discharge gas of the compressor 1 may be any one of the superheat degree of the suction port of the compressor 1 and the pressure of the refrigerant of the load side heat exchanger 7.
  • An increase in the degree of superheat at the suction port of the compressor 1 increases the temperature of the discharge gas from the compressor 1, and a decrease in the refrigerant pressure in the load-side heat exchanger 7 increases the temperature of the discharge gas from the compressor 1. Therefore, the refrigerant shortage can be detected even if any of these parameters is used as the criterion for the refrigerant shortage.
  • FIG. The second embodiment is a case where an injection circuit is provided in the refrigeration apparatus.
  • the configuration of the refrigeration apparatus of the second embodiment will be described.
  • detailed description of the same configuration as that described in the first embodiment is omitted.
  • FIG. 10 is a refrigerant circuit diagram illustrating a configuration example of the refrigeration apparatus according to Embodiment 2 of the present invention. 10 illustrates a case where the injection circuit is provided in the refrigeration apparatus illustrated in FIG. 1A, the refrigeration apparatus provided with the injection circuit is not limited to the refrigeration apparatus illustrated in FIG. 1A.
  • the refrigeration apparatus provided with the injection circuit may be a refrigeration apparatus other than the configuration shown in FIG. 1A as described in the first embodiment.
  • the refrigeration apparatus includes a pipe 41 branched from the refrigerant circuit on the outlet side of the supercooling heat exchanger 5 and connected to the intermediate port of the compressor 1, and an injection connected in series to the pipe 41. It has an injection circuit including an expansion device 42 and an accumulator 43.
  • the intermediate port of the compressor 1 is an input port for injecting the refrigerant from the refrigerant circuit to the compressor 1 via the injection circuit on the outlet side of the supercooling heat exchanger 5.
  • the injection expansion device 42 is, for example, an expansion valve.
  • the injection circuit injects refrigerant from the refrigerant circuit on the outlet side of the supercooling heat exchanger 5 into the intermediate port of the compressor 1 in order to cool the refrigerant of the compressor 1.
  • the injection expansion device 42 adjusts the pressure of the refrigerant that is injected into the compressor 1 via the injection circuit.
  • a temperature sensor 44 that detects the temperature of the refrigerant is provided at an intermediate port of the compressor 1.
  • the control unit 20 is connected to each of the injection expansion device 42 and the temperature sensor 44 via signal lines (not shown).
  • the following two parameters can be considered as parameters related to the temperature of the discharge gas of the compressor 1.
  • the first parameter is the temperature of the refrigerant input to the intermediate port of the compressor 1 via the injection circuit. This parameter is set as parameter P3.
  • the second parameter is the opening degree of the injection expansion device 42 of the injection circuit. This parameter is set as parameter P4.
  • the fact that the temperature of the refrigerant input to the intermediate port of the compressor 1 is equal to or higher than the upper limit value in a predetermined range corresponds to the shortage of the refrigerant amount.
  • the opening of the injection expansion device 42 is equal to or greater than the upper limit value in a predetermined range corresponds to a shortage of the refrigerant amount.
  • FIG. 11 is a ph diagram for explaining an example of parameters for detecting a sign of a shortage of the refrigerant amount in the refrigeration apparatus shown in FIG.
  • the vertical axis represents pressure [MPa] and the horizontal axis represents specific enthalpy [kJ / kg].
  • point J1 ⁇ point J2 corresponds to the evaporation step
  • point J2 ⁇ point J3 corresponds to the compression step
  • point J3 ⁇ point J4 corresponds to the condensation step
  • point J4 ⁇ point J1 This corresponds to the expansion process.
  • the refrigerant injected into the intermediate port of the compressor 1 via the injection circuit cools the compressor 1. Therefore, the compression process follows the path of point J2 ⁇ point J5 ⁇ point J3 shown in FIG.
  • the temperature at point J5 shown in FIG. 11 corresponds to the temperature of the refrigerant input to the intermediate port of the compressor 1.
  • the point J3 changes to the point J3' as shown by the broken line.
  • the auxiliary determination unit 24 determines that the amount of refrigerant is insufficient when the temperature detected by the temperature sensor 44 is equal to or higher than the upper limit value in a predetermined range.
  • the refrigeration cycle control means 22 increases the opening of the injection expansion device 42 in order to cool the refrigerant in the compressor 1. To do.
  • the auxiliary determination means 24 determines that the amount of refrigerant is insufficient when the opening of the injection expansion device 42 is equal to or greater than the upper limit of a predetermined range.
  • a parameter corresponding to the injection circuit is added as a parameter for detecting a sign of insufficient refrigerant amount. Therefore, the auxiliary determination means 24 can detect a sign of a shortage of the refrigerant amount due to the injection circuit.
  • FIG. 10 shows a configuration in which the temperature sensor 44 is provided in the refrigeration apparatus
  • the temperature sensor 44 may not be provided corresponding to the parameter used by the auxiliary determination unit 24 for the refrigerant shortage determination.
  • the accumulator 43 may not be provided in the refrigeration apparatus shown in FIG.
  • the second embodiment is provided with an injection circuit that branches from the refrigerant circuit on the outlet side of the supercooling heat exchanger 5 and is connected to the compressor 1 and injects refrigerant from the refrigerant circuit into the compressor 1.
  • the same effect as in the first embodiment can be obtained by selecting the parameter related to the temperature of the discharge gas of the compressor 1 and determining the presence or absence of refrigerant shortage. Can do.

Abstract

This refrigerating device comprises: a refrigerant circuit in which a refrigerant is circulated in a compressor, a heat source-side heat exchanger, a super-cooling heat exchanger, a load-side expansion device, and a load-side heat exchanger; and a control unit that controls a refrigeration cycle in the refrigerant circuit. The control unit comprises: a refrigeration cycle control means for controlling the refrigeration cycle; a refrigerant volume determination means for monitoring the temperature efficiency of the super-cooling heat exchanger, determining that the volume of the refrigerant filling the refrigerant circuit is normal when the temperature efficiency is at least a predetermined threshold value, and determining that there is a refrigerant leak when the temperature efficiency is less than the threshold value; and an auxiliary determination means for determining whether the value of a parameter associated with the temperature of gas discharged from the compressor deviates from a predetermined range when the refrigerant volume determination means has determined that there is a refrigerant leak, and determining that the refrigerant volume is insufficient when the value of the parameter has deviated from the range.

Description

冷凍装置Refrigeration equipment
 本発明は、冷媒不足を判定する冷凍装置に関するものである。 The present invention relates to a refrigeration apparatus for determining a refrigerant shortage.
 冷凍装置においては、冷媒量の過不足は冷凍装置の能力低下および構成機器の損傷を生じさせる原因になる。そのため、従来の冷凍装置のなかには、冷媒量の過不足に起因する不具合の発生を防止するために、冷媒回路に充填されている冷媒量の過不足の有無を判定する機能を備えたものがある。 In a refrigeration system, excess or deficiency of the refrigerant amount causes a decrease in the capacity of the refrigeration system and damages to the components. For this reason, some conventional refrigeration apparatuses have a function of determining whether there is an excess or deficiency in the amount of refrigerant charged in the refrigerant circuit in order to prevent occurrence of problems due to excess or deficiency in the amount of refrigerant. .
 冷凍装置における冷媒洩れを検出する方法の一例が特許文献1に開示されている。特許文献1には、制御手段が過冷却器の入口冷媒温度と出口冷媒温度との温度差を算出し、算出した温度差が設定値より減少したとき冷媒洩れと判定することが開示されている。 An example of a method for detecting refrigerant leakage in a refrigeration apparatus is disclosed in Patent Document 1. Patent Document 1 discloses that the control means calculates a temperature difference between the inlet refrigerant temperature and the outlet refrigerant temperature of the subcooler, and determines that the refrigerant leaks when the calculated temperature difference is smaller than a set value. .
 また、冷媒量の不足を検知する方法について、別の方法が特許文献2に開示されている。特許文献2には、過冷却器の出口における冷媒の過冷却度または過冷却度の変動に応じて変動する運転状態量の少なくとも1つに基づいて冷媒量の不足を判定する冷媒不足判定手段を備えた冷凍空調装置が開示されている。 Further, another method for detecting a shortage of the refrigerant amount is disclosed in Patent Document 2. Patent Document 2 includes a refrigerant shortage determination unit that determines whether the refrigerant amount is insufficient based on at least one of the operating state quantity that varies according to the degree of refrigerant subcooling or the degree of subcooling at the outlet of the subcooler. A refrigerating and air-conditioning apparatus provided is disclosed.
 特許文献1および特許文献2に開示された冷凍装置においては、過冷却度の変化で冷媒漏れの有無を判定しており、過冷却度という1つのパラメータに対して閾値を用いて冷媒漏れの有無を判定することで、次のような2つの問題がある。 In the refrigeration apparatus disclosed in Patent Document 1 and Patent Document 2, the presence or absence of refrigerant leakage is determined by a change in the degree of supercooling, and the presence or absence of refrigerant leakage is determined using a threshold for one parameter, the degree of supercooling. There are two problems as follows.
 第1の問題は、特許文献1に開示された方法の場合、過冷却度が運転条件毎に異なるということである。これにより、冷媒漏洩の判定において誤検知が起き易くなる。第2の問題は、冷凍装置の運転中の短時間に過冷却度の変化が閾値を超える誤検知条件が発生する場合があり、この誤検知条件のときに判定が行われると、冷媒漏れと誤って判定されてしまうおそれがあるということである。この問題は、特許文献1に開示された方法に比べて改善されるが、特許文献2に開示された方法にも起こり得る。 The first problem is that in the case of the method disclosed in Patent Document 1, the degree of supercooling varies depending on the operating conditions. Thereby, erroneous detection is likely to occur in the determination of refrigerant leakage. A second problem is that a false detection condition in which the change in the degree of supercooling exceeds a threshold value may occur in a short time during operation of the refrigeration apparatus. That is, there is a risk of being erroneously determined. This problem is improved as compared with the method disclosed in Patent Document 1, but may also occur in the method disclosed in Patent Document 2.
 冷凍装置が誤検知条件下でも冷媒漏れと判定しないようにするには、冷媒量の充填頻度を高くするか、閾値を低く設定する必要がある。冷媒量の充填頻度を高くすると、運用コストが高くなるという問題がある。閾値を低く設定すれば、誤検知を防げるが、冷媒漏れが多くならないと、冷凍装置が冷媒漏れを検知できなくなるおそれがある。 In order to prevent the refrigeration apparatus from determining that the refrigerant leaks even under erroneous detection conditions, it is necessary to increase the charging frequency of the refrigerant amount or to set the threshold value low. When the charging amount of the refrigerant amount is increased, there is a problem that the operation cost is increased. If the threshold value is set low, erroneous detection can be prevented, but if the refrigerant leakage does not increase, the refrigeration apparatus may not be able to detect the refrigerant leakage.
 冷媒不足の誤検知を防ぐ方法の一例として、冷媒不足の判定基準に過冷却熱交換器の温度効率を用いた冷媒不足判定方法が特許文献3に開示されている。特許文献3には、一定時間毎に過冷却熱交換器の温度効率を算出し、算出した温度効率が閾値より小さければ冷媒漏れがあると判定し、冷媒漏れをN回連続して検知した場合に冷媒不足と判定することが開示されている。 As an example of a method for preventing erroneous detection of refrigerant shortage, Patent Literature 3 discloses a refrigerant shortage determination method using the temperature efficiency of a supercooling heat exchanger as a criterion for refrigerant shortage. In Patent Document 3, when the temperature efficiency of the supercooling heat exchanger is calculated at regular time intervals, if the calculated temperature efficiency is smaller than the threshold, it is determined that there is a refrigerant leak, and the refrigerant leak is detected N times continuously. It is disclosed to determine that the refrigerant is insufficient.
特許第3601130号公報Japanese Patent No. 3601130 特許第5334909号公報Japanese Patent No. 5334909 特開2012-132639号公報JP 2012-132039 A
 特許文献3に開示された方法では、過冷却熱交換器の温度効率を用いた冷媒漏れ判定を少なくともN回行うことで誤検知を防いでいるが、最短でもN回判定する期間が経過するまで、冷媒量の不足を検知できない。そのため、冷凍装置が冷媒不足を検知する前に冷媒不足が発生してしまうと、圧縮機の異常で冷凍装置が停止する前に、圧縮機が故障してしまうおそれがある。 In the method disclosed in Patent Document 3, erroneous detection is prevented by performing refrigerant leakage determination using the temperature efficiency of the supercooling heat exchanger at least N times, but until the period for determining N times at least has elapsed. Insufficient amount of refrigerant cannot be detected. Therefore, if the refrigerant shortage occurs before the refrigeration apparatus detects the refrigerant shortage, the compressor may break down before the refrigeration apparatus stops due to an abnormality of the compressor.
 本発明は、上記のような課題を解決するためになされたもので、冷媒不足が原因で圧縮機が故障することを防止する冷凍装置を得るものである。 The present invention has been made to solve the above-described problems, and provides a refrigeration apparatus that prevents a compressor from being damaged due to a lack of refrigerant.
 本発明に係る冷凍装置は、圧縮機、熱源側熱交換器、過冷却熱交換器、負荷側膨張装置および負荷側熱交換器に冷媒を循環させる冷媒回路と、前記冷媒回路における冷凍サイクルを制御する制御部と、を有し、前記制御部は、前記冷凍サイクルを制御する冷凍サイクル制御手段と、前記過冷却熱交換器の温度効率を監視し、該温度効率が予め決められた閾値以上である場合、前記冷媒回路に充填された冷媒量が正常と判定し、前記温度効率が前記閾値未満である場合、冷媒漏れがあると判定する冷媒量判定手段と、前記冷媒量判定手段が冷媒漏れがあると判定した場合、前記圧縮機の吐出ガスの温度に関係するパラメータの値が予め決められた範囲を逸脱するか否かを判定し、該パラメータの値が該範囲を逸脱する場合、前記冷媒量が不足していると判定する補助判定手段と、を有するものである。 A refrigeration apparatus according to the present invention controls a refrigerant circuit that circulates refrigerant to a compressor, a heat source side heat exchanger, a supercooling heat exchanger, a load side expansion device, and a load side heat exchanger, and a refrigeration cycle in the refrigerant circuit. A control unit that monitors the temperature efficiency of the refrigeration cycle control means for controlling the refrigeration cycle and the supercooling heat exchanger, and the temperature efficiency is equal to or higher than a predetermined threshold value. If there is, the refrigerant amount determining means that determines that the refrigerant amount charged in the refrigerant circuit is normal and the temperature efficiency is less than the threshold value is that there is a refrigerant leak; and If it is determined that the parameter value related to the temperature of the discharge gas of the compressor deviates from a predetermined range, and if the parameter value deviates from the range, Insufficient amount of refrigerant The auxiliary judgment means for determining that the one having a.
 本発明は、過冷却熱交換器の温度効率を用いて冷媒漏れ有りと判定した時点で、圧縮機の吐出ガスの温度に関係するパラメータの値が予め決められた範囲を逸脱するか否かを判定し、パラメータの値が予め決められた範囲を逸脱している場合、冷媒不足と判定するため、温度効率を用いて冷媒不足を検知する前に冷媒不足を検知でき、圧縮機が吐出ガスの温度異常で停止することを防ぎ、圧縮機が故障してしまうことを防げる。 The present invention determines whether or not the value of the parameter related to the temperature of the discharge gas of the compressor deviates from a predetermined range when it is determined that there is a refrigerant leak using the temperature efficiency of the supercooling heat exchanger. If the parameter value deviates from the predetermined range, it is determined that the refrigerant is insufficient. Therefore, the refrigerant shortage can be detected before detecting the refrigerant shortage using the temperature efficiency, and the compressor It can be prevented from stopping due to abnormal temperature, and the compressor can be prevented from malfunctioning.
本発明の実施の形態1における冷凍装置の一構成例を示す冷媒回路図である。It is a refrigerant circuit diagram which shows one structural example of the freezing apparatus in Embodiment 1 of this invention. 本発明の実施の形態1における冷凍装置の別の構成例を示す冷媒回路図である。It is a refrigerant circuit figure which shows another structural example of the refrigeration apparatus in Embodiment 1 of this invention. 本発明の実施の形態1における冷凍装置の別の構成例を示す冷媒回路図である。It is a refrigerant circuit figure which shows another structural example of the refrigeration apparatus in Embodiment 1 of this invention. 図1Aに示した冷凍装置の一構成例を示す機能ブロック図である。It is a functional block diagram which shows one structural example of the freezing apparatus shown to FIG. 1A. 図1Aに示したコントローラの一構成例を示すブロック図である。It is a block diagram which shows the example of 1 structure of the controller shown to FIG. 1A. 図1Aに示した冷凍装置において、冷媒量が正常である場合の冷媒の温度変化を説明するための図である。In the refrigerating apparatus shown in FIG. 1A, it is a figure for demonstrating the temperature change of a refrigerant | coolant when a refrigerant | coolant amount is normal. 図1Aに示した冷凍装置において、冷媒量が不足している場合の冷媒の温度変化を説明するための図である。It is a figure for demonstrating the temperature change of a refrigerant | coolant when the refrigerant | coolant amount is insufficient in the refrigeration apparatus shown to FIG. 1A. 図1Aに示した冷凍装置において、冷媒量の不足の兆候を検知するパラメータの一例を説明するためのp-h線図である。1B is a ph diagram for explaining an example of parameters for detecting a sign of a shortage of refrigerant in the refrigeration apparatus shown in FIG. 1A. FIG. 図1Aに示した冷凍装置において、冷媒量の不足の兆候を検知するパラメータの一例を説明するためのp-h線図である。1B is a ph diagram for explaining an example of parameters for detecting a sign of a shortage of refrigerant in the refrigeration apparatus shown in FIG. 1A. FIG. 比較例における冷媒不足判定方法の手順を示すフローチャートである。It is a flowchart which shows the procedure of the refrigerant | coolant shortage determination method in a comparative example. 本発明の実施の形態1における冷凍装置が実行する冷媒不足判定方法の動作手順を示すフローチャートである。It is a flowchart which shows the operation | movement procedure of the refrigerant | coolant shortage determination method which the refrigeration apparatus in Embodiment 1 of this invention performs. 本発明の実施の形態2における冷凍装置の一構成例を示す冷媒回路図である。It is a refrigerant circuit figure which shows the example of 1 structure of the freezing apparatus in Embodiment 2 of this invention. 図10に示した冷凍装置において、冷媒量の不足の兆候を検知するパラメータの一例を説明するためのp-h線図である。FIG. 11 is a ph diagram for explaining an example of parameters for detecting a sign of insufficient refrigerant amount in the refrigeration apparatus shown in FIG. 10.
実施の形態1.
 本実施の形態1における冷凍装置の構成を説明する。
(冷凍装置の構成の概要)
 図1Aは、本発明の実施の形態1における冷凍装置の一構成例を示す冷媒回路図である。冷凍装置は、熱源側ユニット100と、負荷側ユニット200とを有する。熱源側ユニット100は、圧縮機1、油分離器2、熱源側熱交換器3、受液器4、過冷却熱交換器5、アキュムレータ8およびコントローラ120を備えている。負荷側ユニット200は、負荷側膨張装置6および負荷側熱交換器7を備えている。負荷側膨張装置6は、例えば、膨張弁である。
Embodiment 1 FIG.
The configuration of the refrigeration apparatus in Embodiment 1 will be described.
(Outline of configuration of refrigeration equipment)
FIG. 1A is a refrigerant circuit diagram illustrating a configuration example of a refrigeration apparatus in Embodiment 1 of the present invention. The refrigeration apparatus includes a heat source side unit 100 and a load side unit 200. The heat source side unit 100 includes a compressor 1, an oil separator 2, a heat source side heat exchanger 3, a liquid receiver 4, a supercooling heat exchanger 5, an accumulator 8, and a controller 120. The load side unit 200 includes a load side expansion device 6 and a load side heat exchanger 7. The load side expansion device 6 is, for example, an expansion valve.
 熱源側ユニット100において、圧縮機1、油分離器2、熱源側熱交換器3、受液器4、過冷却熱交換器5およびアキュムレータ8は配管13で接続されている。負荷側ユニット200において、負荷側膨張装置6および負荷側熱交換器7は配管12で接続されている。 In the heat source side unit 100, the compressor 1, the oil separator 2, the heat source side heat exchanger 3, the liquid receiver 4, the supercooling heat exchanger 5 and the accumulator 8 are connected by a pipe 13. In the load side unit 200, the load side expansion device 6 and the load side heat exchanger 7 are connected by a pipe 12.
 負荷側ユニット200の配管12は、液延長配管10およびガス延長配管11を介して、熱源側ユニット100の配管13と接続されている。圧縮機1、油分離器2、熱源側熱交換器3、受液器4、過冷却熱交換器5、負荷側膨張装置6、負荷側熱交換器7およびアキュムレータ8に順次冷媒を循環させる冷媒回路が構成されている。図1Aに示していないが、熱源側熱交換器3および過冷却熱交換器5に外気を供給するファンが熱源側ユニット100に設けられ、負荷側熱交換器7に空気を供給するファンが負荷側ユニット200に設けられている。 The piping 12 of the load side unit 200 is connected to the piping 13 of the heat source side unit 100 via the liquid extension piping 10 and the gas extension piping 11. Refrigerant that sequentially circulates refrigerant to the compressor 1, the oil separator 2, the heat source side heat exchanger 3, the receiver 4, the supercooling heat exchanger 5, the load side expansion device 6, the load side heat exchanger 7, and the accumulator 8. A circuit is configured. Although not shown in FIG. 1A, a fan that supplies outside air to the heat source side heat exchanger 3 and the supercooling heat exchanger 5 is provided in the heat source side unit 100, and a fan that supplies air to the load side heat exchanger 7 is loaded. It is provided in the side unit 200.
 熱源側ユニット100には、熱源側熱交換器3が冷媒と熱交換する外気の温度を、外気温度THV6として検出する外気温度センサTH6が設けられている。熱源側熱交換器3の出口から過冷却熱交換器5の入口に至る流路に、凝縮温度THV5として冷媒の温度を検出する凝縮温度センサTH5が設けられている。図1Aに示す構成例では熱源側熱交換器3と過冷却熱交換器5の間に受液器4が設けられており、凝縮温度センサTH5は、熱源側熱交換器3と受液器4の間の配管13に設けられている。 The heat source side unit 100 is provided with an outside air temperature sensor TH6 that detects the temperature of the outside air heat exchanged with the refrigerant by the heat source side heat exchanger 3 as the outside air temperature THV6. A condensing temperature sensor TH5 that detects the refrigerant temperature as the condensing temperature THV5 is provided in a flow path from the outlet of the heat source side heat exchanger 3 to the inlet of the supercooling heat exchanger 5. In the configuration example shown in FIG. 1A, a liquid receiver 4 is provided between the heat source side heat exchanger 3 and the supercooling heat exchanger 5, and the condensation temperature sensor TH <b> 5 includes the heat source side heat exchanger 3 and the liquid receiver 4. Between the pipes 13.
 過冷却熱交換器5の出口から負荷側膨張装置6の入口に至る流路に、液冷媒温度THV8として冷媒の温度を検出する液冷媒温度センサTH8が設けられている。負荷側膨張装置6の出口から負荷側熱交換器7の入口に至る流路に、蒸発温度ETVとして冷媒の温度を検出する蒸発温度センサETが設けられている。圧縮機1の出口には、圧縮機1の吐出ガスの温度を検出する吐出ガス温度センサ51が設けられている。圧縮機1の吸入口には、圧縮機1に吸入される冷媒の温度を検出する吸入ガス温度センサ52が設けられている。 A liquid refrigerant temperature sensor TH8 that detects the temperature of the refrigerant as the liquid refrigerant temperature THV8 is provided in the flow path from the outlet of the supercooling heat exchanger 5 to the inlet of the load side expansion device 6. An evaporating temperature sensor ET that detects the refrigerant temperature as the evaporating temperature ETV is provided in a flow path from the outlet of the load side expansion device 6 to the inlet of the load side heat exchanger 7. A discharge gas temperature sensor 51 that detects the temperature of the discharge gas of the compressor 1 is provided at the outlet of the compressor 1. An intake gas temperature sensor 52 that detects the temperature of the refrigerant sucked into the compressor 1 is provided at the suction port of the compressor 1.
 なお、凝縮温度センサTH5の代わりに、熱源側熱交換器3の出口から過冷却熱交換器5の入口に至る流路に冷媒の圧力を検出する圧力センサを設け、凝縮温度THV5として、圧力センサが検出した圧力から飽和温度を算出してもよい。また、蒸発温度センサETの代わりに、負荷側膨張装置6の出口から負荷側熱交換器7の入口に至る流路に冷媒の圧力を検出する圧力センサを設け、蒸発温度ETVとして、圧力センサが検出した圧力から飽和温度を算出してもよい。 Instead of the condensation temperature sensor TH5, a pressure sensor for detecting the refrigerant pressure is provided in a flow path from the outlet of the heat source side heat exchanger 3 to the inlet of the supercooling heat exchanger 5, and the pressure sensor is used as the condensation temperature THV5. The saturation temperature may be calculated from the pressure detected by. Further, instead of the evaporation temperature sensor ET, a pressure sensor for detecting the pressure of the refrigerant is provided in a flow path from the outlet of the load side expansion device 6 to the inlet of the load side heat exchanger 7, and the pressure sensor is used as the evaporation temperature ETV. The saturation temperature may be calculated from the detected pressure.
 図1Aに示す冷凍装置の冷媒回路における冷媒の流れを説明する。本実施の形態1では、冷凍装置が空調対象の空間を冷却する場合で説明する。この場合、熱源側熱交換器3は凝縮器であり、負荷側熱交換器7は蒸発器である。容量可変の圧縮機1から吐出された高温高圧のガス冷媒は、油分離器2により冷媒に含まれる冷凍機油が分離された後、熱源側熱交換器3へ流入する。熱源側熱交換器3に流入した高温高圧のガス冷媒は熱源側熱交換器3において凝縮して高圧液冷媒(液状態または気液二相状態)となり、高圧液冷媒は受液器4に貯留する。受液器4に溜まった高圧液冷媒は、さらに、過冷却熱交換器5で熱交換することで過冷却された液冷媒となる。過冷却熱交換器5で高圧の液体となった冷媒は、負荷側ユニット200の負荷側膨張装置6で低温低圧の気液二相冷媒となり、負荷側熱交換器7に流入する。そして、低温低圧の気液二相冷媒は負荷側熱交換器7で低温低圧のガス冷媒となり、ガス冷媒はアキュムレータ8を介して圧縮機1に戻る。 The flow of the refrigerant in the refrigerant circuit of the refrigeration apparatus shown in FIG. 1A will be described. In the first embodiment, the case where the refrigeration apparatus cools the space to be air-conditioned will be described. In this case, the heat source side heat exchanger 3 is a condenser, and the load side heat exchanger 7 is an evaporator. The high-temperature and high-pressure gas refrigerant discharged from the variable capacity compressor 1 flows into the heat source side heat exchanger 3 after the refrigeration oil contained in the refrigerant is separated by the oil separator 2. The high-temperature and high-pressure gas refrigerant flowing into the heat source side heat exchanger 3 is condensed in the heat source side heat exchanger 3 to become a high pressure liquid refrigerant (liquid state or gas-liquid two-phase state), and the high pressure liquid refrigerant is stored in the receiver 4. To do. The high-pressure liquid refrigerant accumulated in the liquid receiver 4 further becomes a supercooled liquid refrigerant by exchanging heat with the supercooling heat exchanger 5. The refrigerant that has become a high-pressure liquid in the subcooling heat exchanger 5 becomes a low-temperature and low-pressure gas-liquid two-phase refrigerant in the load-side expansion device 6 of the load-side unit 200 and flows into the load-side heat exchanger 7. The low-temperature and low-pressure gas-liquid two-phase refrigerant becomes low-temperature and low-pressure gas refrigerant in the load-side heat exchanger 7, and the gas refrigerant returns to the compressor 1 through the accumulator 8.
 なお、本実施の形態1では、1つの熱源側ユニット100に1つの負荷側ユニット200が接続された場合で説明するが、熱源側ユニット100に接続される負荷側ユニット200の数は1つに限らず、複数であってもよい。冷凍装置に設けられる負荷側ユニット200の数は任意である。また、本実施の形態1では、熱源側ユニット100と負荷側ユニット200とが接続されることで冷媒回路が構成される冷凍装置の場合で説明するが、本実施の形態1における冷凍装置はこのような構成に限定されるものではない。 In the first embodiment, a case where one load side unit 200 is connected to one heat source side unit 100 will be described. However, the number of load side units 200 connected to the heat source side unit 100 is one. The number is not limited and may be plural. The number of the load side units 200 provided in the refrigeration apparatus is arbitrary. Further, in the first embodiment, a description will be given of a refrigeration apparatus in which a refrigerant circuit is configured by connecting the heat source side unit 100 and the load side unit 200, but the refrigeration apparatus in the first embodiment is the same. It is not limited to such a configuration.
 例えば、設備業者が冷凍装置を設置する場所で、コンデンシングユニットに相当する熱源側ユニット100と負荷側ユニットに相当する負荷側ユニット200とを、液配管およびガス配管を含む冷媒配管で接合して接続することで、冷媒回路が構成される冷凍装置であってもよい。また、本実施の形態1の冷凍装置は、圧縮機1が室内に設置され、熱源側熱交換器3を含むリモート式コンデンシングユニットが室外に設置された構成であってもよい。リモート式コンデンシングユニットを有する冷凍装置の構成例を、図1Bおよび図1Cを参照して説明する。 For example, at a place where an equipment supplier installs a refrigeration system, a heat source side unit 100 corresponding to a condensing unit and a load side unit 200 corresponding to a load side unit are joined by refrigerant piping including liquid piping and gas piping. It may be a refrigeration device in which a refrigerant circuit is configured by connection. Further, the refrigeration apparatus of the first embodiment may be configured such that the compressor 1 is installed indoors and the remote condensing unit including the heat source side heat exchanger 3 is installed outdoors. A configuration example of a refrigeration apparatus having a remote condensing unit will be described with reference to FIGS. 1B and 1C.
 図1Bおよび図1Cは、本発明の実施の形態1における冷凍装置の別の構成例を示す冷媒回路図である。図1Bに示す冷凍装置は、負荷側ユニット200と熱源側ユニット100の間に圧縮ユニット150を有する。圧縮ユニット150は室内に設置されている。熱源側ユニット100は、熱源側熱交換器3および過冷却熱交換器5を有する。圧縮ユニット150は、圧縮機1、油分離器2、受液器4、アキュムレータ8およびコントローラ120を有する。圧縮ユニット150には、圧縮機1、油分離器2、受液器4およびアキュムレータ8と接続される配管14が設けられている。熱源側ユニット100の配管13と圧縮ユニット150の配管14は延長配管15を介して接続されている。圧縮ユニット150の配管14はガス延長配管11および液延長配管10を介して負荷側ユニット200の配管12と接続されている。 1B and 1C are refrigerant circuit diagrams showing another configuration example of the refrigeration apparatus in Embodiment 1 of the present invention. The refrigeration apparatus shown in FIG. 1B includes a compression unit 150 between the load side unit 200 and the heat source side unit 100. The compression unit 150 is installed indoors. The heat source side unit 100 includes a heat source side heat exchanger 3 and a supercooling heat exchanger 5. The compression unit 150 includes a compressor 1, an oil separator 2, a liquid receiver 4, an accumulator 8, and a controller 120. The compression unit 150 is provided with a pipe 14 connected to the compressor 1, the oil separator 2, the liquid receiver 4, and the accumulator 8. The piping 13 of the heat source unit 100 and the piping 14 of the compression unit 150 are connected via an extension piping 15. The pipe 14 of the compression unit 150 is connected to the pipe 12 of the load side unit 200 via the gas extension pipe 11 and the liquid extension pipe 10.
 図1Cに示す冷凍装置の構成を説明する。図1Cに示す冷凍装置は、負荷側ユニット200と熱源側ユニット100の間に圧縮ユニット151を有する。図1Bに示した構成では受液器4が圧縮ユニット150側に設けられていたが、図1Cに示す冷凍装置は、受液器4が熱源側ユニット100に設けられていることを除いて、図1Bに示した構成と同様である。 The configuration of the refrigeration apparatus shown in FIG. 1C will be described. The refrigeration apparatus illustrated in FIG. 1C includes a compression unit 151 between the load side unit 200 and the heat source side unit 100. In the configuration shown in FIG. 1B, the liquid receiver 4 is provided on the compression unit 150 side. However, the refrigeration apparatus shown in FIG. 1C has the exception that the liquid receiver 4 is provided on the heat source side unit 100. The configuration is the same as that shown in FIG. 1B.
 また、別の構成例として、本実施の形態1の冷凍装置は、例えば、クーリングユニットのように1つのユニット内に、冷媒回路を構成する圧縮機1、熱源側熱交換器3、過冷却熱交換器5、負荷側膨張装置6、負荷側熱交換器7およびその他の付属機器が設けられ、これらの機器が配管で接続された構成であってもよい。 As another configuration example, the refrigeration apparatus according to the first embodiment includes, for example, a compressor 1, a heat source side heat exchanger 3, a supercooling heat that configures a refrigerant circuit in one unit like a cooling unit. The exchanger 5, the load side expansion device 6, the load side heat exchanger 7, and other accessory devices may be provided, and these devices may be connected by piping.
 さらに、本実施の形態1における冷媒回路の構成は、図1A~図1Cに示した構成に限定されない。例えば、冷媒流路を切り換える四方弁等が冷凍装置に設けられ、冷凍装置が冷房運転と暖房運転とを切り換えられる構成となっていてもよい。冷凍装置が暖房運転を行う場合、熱源側熱交換器3は蒸発器であり、負荷側熱交換器7は凝縮器となる。この場合、過冷却熱交換器5が負荷側ユニット200に設けられていてもよい。また、図1A~図1Cには、冷凍装置の冷媒回路に油分離器2、受液器4およびアキュムレータ8が設けられている場合を示しているが、これら3つの機器のうち、一部が設けられていなくてもよく、全部が設けられていなくてもよい。 Furthermore, the configuration of the refrigerant circuit in the first embodiment is not limited to the configuration shown in FIGS. 1A to 1C. For example, a four-way valve or the like that switches the refrigerant flow path may be provided in the refrigeration apparatus, and the refrigeration apparatus may be configured to switch between a cooling operation and a heating operation. When the refrigeration apparatus performs a heating operation, the heat source side heat exchanger 3 is an evaporator, and the load side heat exchanger 7 is a condenser. In this case, the supercooling heat exchanger 5 may be provided in the load side unit 200. 1A to 1C show a case where the oil separator 2, the liquid receiver 4 and the accumulator 8 are provided in the refrigerant circuit of the refrigeration apparatus. Some of these three devices are shown. It does not have to be provided, and all may not be provided.
(コントローラ120の構成)
 次に、図1Aに示したコントローラ120の構成を説明する。図2は、図1Aに示した冷凍装置の一構成例を示す機能ブロック図である。コントローラ120は、制御部20および表示部21を有する。
(Configuration of controller 120)
Next, the configuration of the controller 120 shown in FIG. 1A will be described. FIG. 2 is a functional block diagram showing a configuration example of the refrigeration apparatus shown in FIG. 1A. The controller 120 includes a control unit 20 and a display unit 21.
 制御部20は、圧縮機1と、負荷側膨張装置6と、熱源側熱交換器3および過冷却熱交換器5に外気を供給するファン26と、負荷側熱交換器7に空気を供給するファン27と信号線(不図示)を介して接続されている。制御部20は、凝縮温度センサTH5、液冷媒温度センサTH8、外気温度センサTH6、蒸発温度センサET、吐出ガス温度センサ51および吸入ガス温度センサ52と信号線(不図示)を介して接続されている。制御部20には、これらの各温度センサが検出した温度の情報である温度情報が信号線(不図示)を介して各温度センサから入力される。 The control unit 20 supplies air to the compressor 1, the load side expansion device 6, a fan 26 that supplies outside air to the heat source side heat exchanger 3 and the subcooling heat exchanger 5, and air to the load side heat exchanger 7. The fan 27 is connected via a signal line (not shown). The control unit 20 is connected to the condensing temperature sensor TH5, the liquid refrigerant temperature sensor TH8, the outside air temperature sensor TH6, the evaporation temperature sensor ET, the discharge gas temperature sensor 51, and the intake gas temperature sensor 52 via signal lines (not shown). Yes. The controller 20 receives temperature information, which is information on the temperature detected by each of these temperature sensors, from each temperature sensor via a signal line (not shown).
 図3は、図1Aに示したコントローラの一構成例を示すブロック図である。図3に示すように、制御部20は、冷媒サイクルを制御する冷凍サイクル制御手段22と、冷媒回路に充填された冷媒量の適否を判定する冷媒量判定手段23と、冷媒量の適否判定を補助する補助判定手段24とを有する。制御部20は、例えば、マイクロコンピュータである。制御部20は、プログラムを記憶する記憶部122と、プログラムにしたがって処理を実行するCPU(Central Processing Unit)121とを有する。記憶部122は、例えば、不揮発性メモリである。記憶部122は、冷媒漏れおよび冷媒不足の判定基準となる閾値および範囲等の情報が予め格納されている。また、記憶部122は冷媒量の適否判定の演算に用いる値および演算結果を一時的に保存するバッファメモリとしての役目も果たす。CPU121がプログラムを実行することで、冷凍サイクル制御手段22、冷媒量判定手段23および補助判定手段24がコントローラ120に構成される。 FIG. 3 is a block diagram showing a configuration example of the controller shown in FIG. 1A. As shown in FIG. 3, the control unit 20 performs refrigeration cycle control means 22 for controlling the refrigerant cycle, refrigerant amount determination means 23 for determining the appropriateness of the refrigerant amount charged in the refrigerant circuit, and appropriateness determination of the refrigerant amount. Auxiliary assistance means 24 to assist. The control unit 20 is, for example, a microcomputer. The control unit 20 includes a storage unit 122 that stores a program, and a CPU (Central Processing Unit) 121 that executes processing according to the program. The storage unit 122 is, for example, a nonvolatile memory. The storage unit 122 stores in advance information such as a threshold value and a range, which are determination criteria for refrigerant leakage and refrigerant shortage. In addition, the storage unit 122 also serves as a buffer memory that temporarily stores values and calculation results used for calculation of the refrigerant amount suitability determination. When the CPU 121 executes the program, the refrigeration cycle control unit 22, the refrigerant amount determination unit 23, and the auxiliary determination unit 24 are configured in the controller 120.
 表示部21は、制御部20から受け取る判定結果および各種情報を表示する。表示部21は、例えば、7セグメントLED(Light Emitting Diode)である。表示方法の一例として、表示部21は、冷媒量が正常である場合、7セグメントLEDで数字のゼロを表示し、冷媒量が不足している場合、7セグメントLEDでローマ字の「A」を表示する。「A」はアラームの頭文字である。冷媒漏れがある場合、その程度に応じて、表示部21は、7セグメントLEDに数字の1~9のうち、いずれかの数字を表示してもよい。表示部21が備える7セグメントLEDの数は1つに限らず、複数であってもよい。また、表示部21は、液晶ディスプレイであってもよい。 The display unit 21 displays the determination result received from the control unit 20 and various information. The display unit 21 is, for example, a 7-segment LED (Light Emitting Diode). As an example of the display method, the display unit 21 displays the numeral zero with a 7-segment LED when the refrigerant amount is normal, and displays the Roman letter “A” with the 7-segment LED when the refrigerant amount is insufficient. To do. “A” is an acronym for alarm. When there is a refrigerant leak, the display unit 21 may display any number among the numbers 1 to 9 on the 7-segment LED depending on the degree of the leakage. The number of 7-segment LEDs provided in the display unit 21 is not limited to one and may be plural. The display unit 21 may be a liquid crystal display.
 図3に示した制御部20の構成を詳しく説明する。冷凍サイクル制御手段22は、過熱度が予め決められた値と一致するように、負荷側膨張装置6の開度を調整する。また、冷凍サイクル制御手段22は、空調対象の空間の温度が設定された温度と一致するように、圧縮機1および熱源側熱交換器3のファン26のそれぞれの回転数を制御する。 The configuration of the control unit 20 shown in FIG. 3 will be described in detail. The refrigeration cycle control means 22 adjusts the opening degree of the load side expansion device 6 so that the degree of superheat coincides with a predetermined value. Further, the refrigeration cycle control means 22 controls the rotation speeds of the compressor 1 and the fan 26 of the heat source side heat exchanger 3 so that the temperature of the air-conditioning target space matches the set temperature.
 冷媒量判定手段23は、冷媒回路に充填された冷媒量の適否を判定するために、過冷却熱交換器5の温度効率εを監視する。具体的には、冷凍装置の運転状態が予め決められた検知不可条件に該当しない場合、過冷却熱交換器5の温度効率εを算出し、温度効率εが予め決められた閾値以上であるか否かを判定する。冷媒量判定手段23は、温度効率εが閾値以上である場合、冷媒量は正常であると判定し、温度効率εが閾値未満である場合、冷媒漏れが発生していると判定する。また、冷媒量判定手段23は、温度効率εが閾値未満である場合が予め決められた回数連続すると、冷媒量が不足していると判定する。本実施の形態1では、予め決められた回数をN(Nは2以上の正の整数)とする。例えば、N=3である。冷媒量が「正常」とは、冷媒回路に充填されている冷媒量が適正であることを意味する。 The refrigerant amount determination means 23 monitors the temperature efficiency ε of the supercooling heat exchanger 5 in order to determine the suitability of the refrigerant amount charged in the refrigerant circuit. Specifically, when the operating state of the refrigeration apparatus does not correspond to a predetermined non-detectable condition, the temperature efficiency ε of the supercooling heat exchanger 5 is calculated, and is the temperature efficiency ε greater than or equal to a predetermined threshold value? Determine whether or not. The refrigerant amount determination means 23 determines that the refrigerant amount is normal when the temperature efficiency ε is equal to or greater than the threshold value, and determines that refrigerant leakage has occurred when the temperature efficiency ε is less than the threshold value. Further, the refrigerant amount determination means 23 determines that the refrigerant amount is insufficient when the case where the temperature efficiency ε is less than the threshold value continues for a predetermined number of times. In the first embodiment, the predetermined number of times is N (N is a positive integer of 2 or more). For example, N = 3. The “normal” refrigerant amount means that the refrigerant amount charged in the refrigerant circuit is appropriate.
 冷媒量判定手段23は、冷媒量が不足していると判定した場合、冷凍サイクル制御手段22に冷凍サイクルの停止を指示する。冷媒量判定手段23は、冷媒量が正常である場合および冷媒量が不足している場合、その判定結果を表示部21に出力する。 When it is determined that the refrigerant amount is insufficient, the refrigerant amount determination unit 23 instructs the refrigeration cycle control unit 22 to stop the refrigeration cycle. The refrigerant amount determination means 23 outputs the determination result to the display unit 21 when the refrigerant amount is normal and when the refrigerant amount is insufficient.
 ここで、冷媒量判定手段23が温度効率εを用いて冷媒量の適否を判定する原理を説明する。はじめに、冷媒量の適否判定の原理の前提として、冷媒充填量と過冷却度の関係を説明する。図4は、図1Aに示した冷凍装置において、冷媒量が正常である場合の冷媒の温度変化を説明するための図である。 Here, the principle by which the refrigerant amount determination means 23 determines the suitability of the refrigerant amount using the temperature efficiency ε will be described. First, the relationship between the refrigerant charge amount and the degree of supercooling will be described as a premise of the principle of determining the suitability of the refrigerant amount. FIG. 4 is a diagram for explaining the temperature change of the refrigerant when the refrigerant amount is normal in the refrigeration apparatus shown in FIG. 1A.
 図4において、縦軸は冷媒の温度を示し、横軸は冷媒回路における位置を示す。図4は縦軸の上側ほど温度が高くなることを示している。図4に示す横軸は、熱源側熱交換器3から過冷却熱交換器5を経由して、過冷却熱交換器5の出口側の配管13までの冷媒経路を示している。過冷却熱交換器5の出口側の配管13では、冷媒は液体になっているため、図4では、配管13を「液管」と表示している。図4に示す矢印501は、冷媒量が正常である場合において、図4の横軸に示す各冷媒経路における冷媒の温度の変化を示している。 4, the vertical axis indicates the temperature of the refrigerant, and the horizontal axis indicates the position in the refrigerant circuit. FIG. 4 shows that the temperature is higher on the upper side of the vertical axis. The horizontal axis shown in FIG. 4 shows the refrigerant path from the heat source side heat exchanger 3 through the supercooling heat exchanger 5 to the pipe 13 on the outlet side of the supercooling heat exchanger 5. In the pipe 13 on the outlet side of the supercooling heat exchanger 5, the refrigerant is in a liquid state, and therefore, the pipe 13 is indicated as “liquid pipe” in FIG. An arrow 501 shown in FIG. 4 indicates a change in the temperature of the refrigerant in each refrigerant path shown on the horizontal axis in FIG. 4 when the refrigerant amount is normal.
 冷媒量が正常である場合、熱源側熱交換器3から流れ出る気液二相冷媒が受液器4で気体と液体に分離され、受液器4は液冷媒が貯留する飽和液状態となる。そのため、受液器4からの液冷媒が過冷却熱交換器5に流入し、過冷却熱交換器5が行う熱交換は全て液冷媒の過冷却に寄与することとなる。 When the refrigerant amount is normal, the gas-liquid two-phase refrigerant flowing out from the heat source side heat exchanger 3 is separated into gas and liquid by the receiver 4, and the receiver 4 is in a saturated liquid state in which the liquid refrigerant is stored. Therefore, the liquid refrigerant from the liquid receiver 4 flows into the supercooling heat exchanger 5, and all the heat exchange performed by the supercooling heat exchanger 5 contributes to the supercooling of the liquid refrigerant.
 図5は、図1Aに示した冷凍装置において、冷媒量が不足している場合の冷媒の温度変化を説明するための図である。図5において、縦軸は冷媒の温度を示し、横軸は冷媒回路における位置を示す。図5に示す縦軸および横軸は、図4に示した縦軸および横軸と同様なため、詳細な説明を省略する。図5に示す矢印502は、冷媒量が不足している場合において、図5の横軸に示す各冷媒経路における冷媒の温度変化を示す。図5には、比較のために、図4に示した矢印501を破線で示している。 FIG. 5 is a diagram for explaining the temperature change of the refrigerant when the refrigerant amount is insufficient in the refrigeration apparatus shown in FIG. 1A. In FIG. 5, the vertical axis indicates the temperature of the refrigerant, and the horizontal axis indicates the position in the refrigerant circuit. The vertical axis and horizontal axis shown in FIG. 5 are the same as the vertical axis and horizontal axis shown in FIG. An arrow 502 shown in FIG. 5 indicates the temperature change of the refrigerant in each refrigerant path indicated by the horizontal axis in FIG. 5 when the refrigerant amount is insufficient. In FIG. 5, for comparison, the arrow 501 shown in FIG. 4 is indicated by a broken line.
 冷媒量が不足している場合、熱源側熱交換器3の出口の冷媒が乾いた状態となり、受液器4には液冷媒が貯留せず、図5の矢印502に示すように、過冷却熱交換器5に気液二相状態の冷媒が流れ込む。そのため、過冷却熱交換器5が行う熱交換は、気液二相冷媒の凝縮液化と過冷却とに費やされることになる。その結果、図5に示すように、矢印502は矢印501に比べて、過冷却度が減少する。 When the amount of the refrigerant is insufficient, the refrigerant at the outlet of the heat source side heat exchanger 3 is in a dry state, the liquid refrigerant is not stored in the liquid receiver 4, and as shown by the arrow 502 in FIG. A gas-liquid two-phase refrigerant flows into the heat exchanger 5. Therefore, the heat exchange performed by the supercooling heat exchanger 5 is consumed for condensing and supercooling the gas-liquid two-phase refrigerant. As a result, as shown in FIG. 5, the degree of supercooling of the arrow 502 is reduced compared to the arrow 501.
 図4および図5に示すグラフから、冷媒量の不足が過冷却度に影響を及ぼすことがわかる。冷媒量の適否判定のためのパラメータとして過冷却度を用いることも考えられるが、冷媒量判定手段23は、過冷却熱交換器5の温度効率εを用いている。以下に、冷媒量判定手段23が冷媒量の適否判定のためのパラメータとして過冷却熱交換器5の温度効率εを用いる理由を、説明する。 From the graphs shown in FIG. 4 and FIG. 5, it can be seen that the shortage of the refrigerant amount affects the degree of supercooling. Although it is conceivable to use the degree of supercooling as a parameter for determining the suitability of the refrigerant quantity, the refrigerant quantity judging means 23 uses the temperature efficiency ε of the supercooling heat exchanger 5. The reason why the refrigerant amount determination means 23 uses the temperature efficiency ε of the supercooling heat exchanger 5 as a parameter for determining whether or not the refrigerant amount is appropriate will be described below.
 過冷却熱交換器5の温度効率εは、過冷却熱交換器5の出口における冷媒の過冷却度(凝縮温度THV5-液冷媒温度THV8)を、過冷却熱交換器5の最大温度差(凝縮温度THV5-外気温度THV6)で除算した値である。過冷却熱交換器5の温度効率εは下記の式(1)で表される。 The temperature efficiency ε of the supercooling heat exchanger 5 is the refrigerant subcooling degree (condensation temperature THV5−liquid refrigerant temperature THV8) at the outlet of the supercooling heat exchanger 5 and the maximum temperature difference (condensation) of the supercooling heat exchanger 5. Temperature THV5−outside air temperature THV6). The temperature efficiency ε of the supercooling heat exchanger 5 is expressed by the following formula (1).
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 式(1)を参照すると、温度効率εを算出する右辺の式が過冷却度を含んでいる。そのため、過冷却熱交換器5の温度効率εは、冷媒量の適否を判定するパラメータとして適している。また、過冷却熱交換器5の温度効率εは、過冷却熱交換器5の性能を示すものであり、過冷却度に比べ運転条件による変動が小さいという利点がある。そのため、冷媒量の適否判定のパラメータに温度効率εを用いれば、運転条件ごとに閾値を設定する必要がなく、冷媒量適否の判定精度を向上させることができる。 Referring to Equation (1), the equation on the right side for calculating the temperature efficiency ε includes the degree of supercooling. Therefore, the temperature efficiency ε of the supercooling heat exchanger 5 is suitable as a parameter for determining the suitability of the refrigerant amount. Further, the temperature efficiency ε of the supercooling heat exchanger 5 indicates the performance of the supercooling heat exchanger 5, and has an advantage that variation due to operating conditions is smaller than the degree of supercooling. Therefore, if the temperature efficiency ε is used as a parameter for determining whether or not the refrigerant amount is appropriate, it is not necessary to set a threshold value for each operating condition, and the accuracy of determining whether or not the refrigerant amount is appropriate can be improved.
 上述したことにより、冷媒量判定手段23は、過冷却度に比べ運転条件による変動が小さい、過冷却熱交換器5の温度効率εを用いて、冷媒量の適否を判定する。ただし、1回の算出結果で冷媒量の適否を判定すると、温度センサが誤検出したときに冷媒量判定手段23が誤判定してしまうことが考えられる。本実施の形態1では、このような誤判定を防ぐために、冷媒量判定手段23は、N回連続して温度効率εが閾値未満になると、冷媒量が不足していると判定するようにしている。さらに、誤判定の防止を強化するために、冷媒量判定手段23が一定時間に温度効率εを複数算出し、算出した複数の温度効率εの平均値を求め、求めた平均値を閾値と比較してもよい。 As described above, the refrigerant amount determination means 23 determines the suitability of the refrigerant amount by using the temperature efficiency ε of the supercooling heat exchanger 5 that is less fluctuated by operating conditions than the degree of supercooling. However, if the suitability of the refrigerant amount is determined based on one calculation result, it is conceivable that the refrigerant amount determination unit 23 erroneously determines when the temperature sensor erroneously detects. In the first embodiment, in order to prevent such an erroneous determination, the refrigerant amount determination unit 23 determines that the refrigerant amount is insufficient when the temperature efficiency ε is less than the threshold value N times consecutively. Yes. Furthermore, in order to enhance prevention of erroneous determination, the refrigerant amount determination means 23 calculates a plurality of temperature efficiencies ε in a fixed time, obtains an average value of the calculated temperature efficiencies ε, and compares the calculated average value with a threshold value. May be.
 続いて、図3に示した補助判定手段24の構成を説明する。補助判定手段24は、冷凍量の不足の兆候を示す情報として、温度効率ε以外の値を参照し、冷媒量判定手段23が判定するよりも早く、冷媒量の不足を検知するものである。具体的には、補助判定手段24は、圧縮機1の吐出ガスの温度および吐出ガスの温度に関係するパラメータについて、それぞれの値がそれぞれの予め決められた範囲を逸脱するか否かを判定する。補助判定手段24は、少なくとも一方が予め決められた範囲を逸脱する場合、冷媒量が不足していると判定する。 Subsequently, the configuration of the auxiliary determination means 24 shown in FIG. 3 will be described. The auxiliary determination unit 24 refers to a value other than the temperature efficiency ε as information indicating a sign of a refrigeration amount shortage, and detects the shortage of the refrigerant amount earlier than the refrigerant amount determination unit 23 determines. Specifically, the auxiliary determination means 24 determines whether or not each value deviates from a predetermined range for parameters related to the discharge gas temperature and the discharge gas temperature of the compressor 1. . The auxiliary determination unit 24 determines that the refrigerant amount is insufficient when at least one of the auxiliary determination units deviates from a predetermined range.
 補助判定手段24は、冷媒量が不足していると判定した場合、その判定結果を表示部21に出力し、冷凍サイクル制御手段22に冷凍サイクルの停止を指示する。補助判定手段24は、圧縮機1の吐出ガスの温度および吐出ガスの温度に関係するパラメータの両方がそれぞれの予め決められた範囲内である場合、冷媒量の不足を検知しなかった旨を冷媒量判定手段23に通知する。 When the auxiliary determination unit 24 determines that the refrigerant amount is insufficient, the auxiliary determination unit 24 outputs the determination result to the display unit 21 and instructs the refrigeration cycle control unit 22 to stop the refrigeration cycle. The auxiliary determination means 24 indicates that the refrigerant amount deficiency was not detected when both the discharge gas temperature of the compressor 1 and the parameters related to the discharge gas temperature are within the predetermined ranges. The amount determining means 23 is notified.
 圧縮機1の吐出ガスの温度に関係するパラメータとして、例えば、圧縮機1の吸入口の過熱度、および負荷側熱交換器7の冷媒の圧力がある。以下では、圧縮機1の吸入口の過熱度をパラメータP1とし、負荷側熱交換器7の冷媒の圧力をパラメータP2とする。パラメータP1の場合、圧縮機1の吸入口の過熱度が予め決められた範囲の上限値以上になることが、冷媒量の不足に相当する。パラメータP2の場合、負荷側熱交換器7の冷媒の圧力が予め決められた範囲の下限値以下になることが、冷媒量の不足に相当する。 Parameters relating to the temperature of the discharge gas of the compressor 1 include, for example, the degree of superheat at the suction port of the compressor 1 and the pressure of the refrigerant in the load side heat exchanger 7. Hereinafter, the superheat degree of the suction port of the compressor 1 is set as a parameter P1, and the refrigerant pressure in the load side heat exchanger 7 is set as a parameter P2. In the case of the parameter P1, the fact that the degree of superheat of the suction port of the compressor 1 is equal to or higher than the upper limit of a predetermined range corresponds to a shortage of the refrigerant amount. In the case of the parameter P2, the fact that the pressure of the refrigerant in the load-side heat exchanger 7 is equal to or lower than the lower limit of a predetermined range corresponds to the shortage of the refrigerant amount.
 冷媒量の不足が圧縮機1の吐出ガスの温度を上昇させることを説明する。冷媒回路を循環する冷媒量が少ないと、冷媒は負荷側熱交換器7で完全に気化し、乾燥して温度が過度に高くなった状態で圧縮機1に吸い込まれる。温度が過度に高くなった冷媒を圧縮機1が吸い込むため、圧縮機1の吐出ガスの温度が上昇する。吐出ガス温度センサ51が検出する値が予め決められた範囲の上限値以上になる場合が、冷媒量の不足に相当する。なお、圧縮機1の吐出ガスの温度が急上昇して予め決められた範囲の上限値以上になり、冷凍サイクル制御手段22が補助判定手段24の指示にしたがって冷凍サイクルを停止することが、冷凍装置が異常猶予で運転停止に至る場合に相当する。異常猶予とは、冷凍装置が予め設定された安全基準にしたがって圧縮機1の異常を検知すると、自動的に運転を停止することである。 It will be explained that the shortage of the refrigerant amount raises the temperature of the discharge gas of the compressor 1. When the amount of refrigerant circulating through the refrigerant circuit is small, the refrigerant is completely vaporized by the load-side heat exchanger 7 and is sucked into the compressor 1 in a state where the temperature is excessively high after drying. Since the compressor 1 sucks in the refrigerant whose temperature has become excessively high, the temperature of the discharge gas of the compressor 1 rises. The case where the value detected by the discharge gas temperature sensor 51 is equal to or greater than the upper limit value in a predetermined range corresponds to the shortage of the refrigerant amount. Note that the temperature of the discharge gas of the compressor 1 suddenly rises and becomes equal to or higher than the upper limit of a predetermined range, and the refrigeration cycle control means 22 stops the refrigeration cycle according to the instruction of the auxiliary determination means 24. Corresponds to the case where the operation is stopped due to an abnormal postponement. Abnormal postponement is that the operation is automatically stopped when the refrigeration apparatus detects an abnormality of the compressor 1 in accordance with a preset safety standard.
 パラメータP1およびパラメータP2が圧縮機1の吐出ガスの温度に関係することを説明する。図6および図7は、図1Aに示した冷凍装置において、冷媒量の不足の兆候を検知するパラメータの一例を説明するためのp-h線図である。図6および図7において、縦軸は圧力[MPa]であり、横軸は比エンタルピ[kJ/kg]である。図6および図7は、蒸発工程、圧縮工程、凝縮工程および膨張工程からなる冷凍サイクルを示す。点J1→点J2は蒸発工程に相当し、点J2→点J3は圧縮工程に相当し、点J3→点J4は凝縮工程に相当し、点J4→点J1は膨張工程に相当する。 It will be explained that the parameters P1 and P2 are related to the temperature of the discharge gas of the compressor 1. 6 and 7 are ph diagrams for explaining an example of parameters for detecting a sign of a shortage of the refrigerant amount in the refrigeration apparatus shown in FIG. 1A. 6 and 7, the vertical axis represents pressure [MPa], and the horizontal axis represents specific enthalpy [kJ / kg]. 6 and 7 show a refrigeration cycle comprising an evaporation process, a compression process, a condensation process, and an expansion process. Point J1 → point J2 corresponds to the evaporation process, point J2 → point J3 corresponds to the compression process, point J3 → point J4 corresponds to the condensation process, and point J4 → point J1 corresponds to the expansion process.
 図6を参照して、パラメータP1が圧縮機1の吐出ガスの温度に関係することを説明する。図6に示すSH(super heat)は圧縮機1の吸入口の過熱度に相当する。圧縮機1の吸入口の過熱度が増加し、図6に示すように点J2が点J2’に遷移すると、破線で示すように、点J3が点J3’に遷移する。その結果、圧縮機1の吐出ガスの温度も上昇することになる。補助判定手段24は、吸入ガス温度センサ52が検出した温度と蒸発温度ETVとの差を算出して過熱度SHを求める。そして、補助判定手段24は、過熱度SHが予め決められた範囲の上限値以上である場合、冷媒量が不足していると判定する。 Referring to FIG. 6, it will be described that the parameter P1 is related to the temperature of the discharge gas of the compressor 1. SH (super heat) shown in FIG. 6 corresponds to the degree of superheat of the suction port of the compressor 1. When the degree of superheat at the suction port of the compressor 1 increases and the point J2 changes to the point J2 'as shown in FIG. 6, the point J3 changes to the point J3' as shown by the broken line. As a result, the temperature of the discharge gas of the compressor 1 also increases. The auxiliary determination means 24 calculates the difference between the temperature detected by the intake gas temperature sensor 52 and the evaporation temperature ETV to determine the superheat degree SH. And the auxiliary | assistant determination means 24 determines with the refrigerant | coolant amount being insufficient, when the superheat degree SH is more than the upper limit of the predetermined range.
 図7を参照して、パラメータP2が圧縮機1の吐出ガスに関係することを説明する。図7に示す圧力Psは負荷側熱交換器7の冷媒の圧力を示す。負荷側熱交換器7における冷媒の圧力Psが低下し、図7に示すように圧力Ps’に低下すると、破線で示すように、点J3が点J3’に遷移する。その結果、圧縮機1の吐出ガスの温度も上昇することになる。補助判定手段24は、負荷側熱交換器7の冷媒の圧力として蒸発温度ETVの温度から飽和圧力を求め、負荷側熱交換器7の冷媒の圧力が予め決められた範囲の下限値以下である場合、冷媒量が不足していると判定する。 Referring to FIG. 7, it will be described that the parameter P2 relates to the discharge gas of the compressor 1. The pressure Ps shown in FIG. 7 indicates the pressure of the refrigerant in the load side heat exchanger 7. When the refrigerant pressure Ps in the load-side heat exchanger 7 decreases and decreases to the pressure Ps ′ as shown in FIG. 7, the point J3 transitions to the point J3 ′ as shown by the broken line. As a result, the temperature of the discharge gas of the compressor 1 also increases. The auxiliary determination unit 24 obtains a saturation pressure from the temperature of the evaporation temperature ETV as the refrigerant pressure of the load side heat exchanger 7, and the refrigerant pressure of the load side heat exchanger 7 is equal to or lower than a lower limit value in a predetermined range. In this case, it is determined that the refrigerant amount is insufficient.
 なお、負荷側熱交換器7の冷媒の圧力を検出する圧力センサが負荷側膨張装置6と負荷側熱交換器7の間の配管12に設けられていてもよい。また、圧縮機1の発停回数が増加すると、負荷側熱交換器7の冷媒の圧力が低下する傾向があることから、圧縮機1の発停回数の頻度が予め決められた値よりも大きいことが、パラメータP2が予め決められた範囲を逸脱する場合に含まれていてもよい。 A pressure sensor that detects the pressure of the refrigerant in the load side heat exchanger 7 may be provided in the pipe 12 between the load side expansion device 6 and the load side heat exchanger 7. Moreover, since the pressure of the refrigerant | coolant of the load side heat exchanger 7 tends to fall when the number of starts / stops of the compressor 1 increases, the frequency of the number of starts / stops of the compressor 1 is larger than a predetermined value. This may be included when the parameter P2 deviates from a predetermined range.
 圧縮機1の吐出ガスに関係するパラメータは、上記のパラメータP1、P2に限定されるものではなく、冷媒不足時に起きる兆候を検知できる、その他のパラメータを制御部20に適宜設定してもよい。 The parameters related to the discharge gas of the compressor 1 are not limited to the parameters P1 and P2 described above, and other parameters that can detect signs that occur when the refrigerant is insufficient may be appropriately set in the control unit 20.
(比較例の冷媒不足判定の手順)
 次に、比較例における冷媒不足判定方法を説明する。図8は、比較例における冷媒不足判定方法の手順を示すフローチャートである。図8は、冷媒量の適否の判定を冷媒量判定手段23が実行するが、補助判定手段24は冷媒量の適否を判定しない場合の手順に相当する。
(Procedure for refrigerant shortage determination in comparative example)
Next, the refrigerant shortage determination method in the comparative example will be described. FIG. 8 is a flowchart showing the procedure of the refrigerant shortage determination method in the comparative example. FIG. 8 corresponds to a procedure in which the refrigerant amount determination unit 23 executes the determination of whether the refrigerant amount is appropriate, but the auxiliary determination unit 24 does not determine the appropriateness of the refrigerant amount.
 冷媒量の判定には、温度効率εの平均値である平均温度効率εAveを用いるものとする。温度効率εの閾値をεLineと表記する。また、冷媒量判定手段23が冷媒量の適否を判定する際、連続して平均温度効率εAveが閾値未満になる回数をカウントするための変数をMとする。変数Mが取り得る値は0以上の整数である。 For the determination of the refrigerant amount, an average temperature efficiency εAve, which is an average value of the temperature efficiency ε, is used. The threshold value of the temperature efficiency ε is expressed as εLine. In addition, when the refrigerant amount determination means 23 determines the suitability of the refrigerant amount, M is a variable for counting the number of times that the average temperature efficiency εAve is continuously less than the threshold value. Possible values of the variable M are integers of 0 or more.
 図8に示すように、冷媒が充填された後に冷凍装置が起動すると、冷凍サイクル制御手段22が冷凍サイクルの制御を開始する。冷媒量判定手段23は、変数Mに初期値としてゼロを設定し(ステップS101)、冷凍装置の運転中に定期的に冷媒量の適否を判定する判定動作を行う。判定動作では、はじめに、冷媒量判定手段23は、運転状態を示すデータとして、凝縮温度センサTH5、外気温度センサTH6、液冷媒温度センサTH8および蒸発温度センサETから温度情報を取得し、圧縮機1を含む各構成機器から状態を示す情報を取得する(ステップS102)。続いて、冷媒量判定手段23は、取得したデータを基に、現在の運転状態が検知不可条件に該当するか否かを判定する(ステップS103)。 As shown in FIG. 8, when the refrigeration apparatus is started after the refrigerant is filled, the refrigeration cycle control means 22 starts controlling the refrigeration cycle. The refrigerant amount determination means 23 sets zero as an initial value for the variable M (step S101), and performs a determination operation for periodically determining whether the refrigerant amount is appropriate or not during operation of the refrigeration apparatus. In the determination operation, first, the refrigerant amount determination means 23 acquires temperature information from the condensation temperature sensor TH5, the outside air temperature sensor TH6, the liquid refrigerant temperature sensor TH8, and the evaporation temperature sensor ET as data indicating the operation state, and the compressor 1 Information indicating the state is acquired from each component device including (step S102). Subsequently, the refrigerant amount determination means 23 determines whether or not the current operation state corresponds to the undetectable condition based on the acquired data (step S103).
 ここで、検知不可条件の例を説明する。
 検知不可条件1:圧縮機1が停止状態である場合。検知不可とする理由は、圧縮機1の停止の原因が冷凍装置に発生した異常である場合も考えられるからである。
 検知不可条件2:冷凍装置の起動後30分間。検知不可とする理由は冷凍装置が起動してから最初の10~20分間は温度効率εが安定しないためである。
 検知不可条件3:外気温度が予め決められた温度よりも低い低外気温である場合。検知不可とする理由は、外気温度が低いと、冷凍サイクル制御手段22が、熱源側熱交換器3の入口側の冷媒を高圧に保とうとして、熱源側熱交換器3および過冷却熱交換器5に送風するファン26の風量を低下させるため、温度効率εが低下し、誤検知の可能性があるからである。
Here, an example of the detection impossible condition will be described.
Undetectable condition 1: When the compressor 1 is stopped. The reason for making the detection impossible is that the cause of the stop of the compressor 1 may be an abnormality that has occurred in the refrigeration apparatus.
Undetectable condition 2: 30 minutes after starting the refrigeration system. The reason why the detection is impossible is that the temperature efficiency ε is not stable for the first 10 to 20 minutes after the refrigeration apparatus is started.
Undetectable condition 3: When the outside air temperature is a low outside temperature lower than a predetermined temperature. The reason why detection is impossible is that when the outside air temperature is low, the refrigeration cycle control means 22 tries to keep the refrigerant on the inlet side of the heat source side heat exchanger 3 at a high pressure, and the heat source side heat exchanger 3 and the supercooling heat exchanger. This is because the temperature efficiency ε is lowered to reduce the air volume of the fan 26 that blows air to 5 and there is a possibility of erroneous detection.
 検知不可条件4:外気温度が予め決められた運転範囲外の温度である高外気温である場合。検知不可とする理由は、熱源側熱交換器3で冷媒が放熱しにくくなり、温度効率εが低下し、誤検知の可能性があるからである。
 検知不可条件5:凝縮温度THV5と外気温度THV6の温度差が予め決められた値よりも大きい場合。検知不可とする理由は、式(1)の右辺の分母が過大になり、誤検知の可能性があるからである。
 検知不可条件6:過熱度が予め決められた値よりも小さい場合。検知不可とする理由は、受液器4に余剰冷媒がなくなると過熱度が小さくなるが、アキュムレータ8に余剰冷媒があれば、冷媒量の不足に相当しないためである。
Non-detectable condition 4: When the outside air temperature is a high outside air temperature that is outside the predetermined operating range. The reason why the detection is impossible is that the refrigerant hardly radiates heat in the heat source side heat exchanger 3, the temperature efficiency ε is lowered, and there is a possibility of erroneous detection.
Undetectable condition 5: When the temperature difference between the condensation temperature THV5 and the outside air temperature THV6 is larger than a predetermined value. The reason why detection is impossible is that the denominator on the right side of equation (1) becomes excessive, and there is a possibility of erroneous detection.
Detection impossible condition 6: When the degree of superheat is smaller than a predetermined value. The reason why the detection is impossible is that the superheat degree is reduced when there is no excess refrigerant in the liquid receiver 4, but if there is an excess refrigerant in the accumulator 8, it does not correspond to a shortage of the refrigerant amount.
 上記の検知不可条件1~6では、冷媒量が正常であっても、温度効率εの値が閾値εLineよりも小さくなる場合がある。そのため、このような条件では、冷媒量判定手段23は冷媒量の適否を誤判定してしまうおそれがあるので、冷媒量の適否の判定を行わないようにしている。なお、検知不可条件1~6は例示である。検知不可条件1~6以外にも、凝縮温度THV5、凝縮温度THV5と外気温度THV6との温度差、および外気温度THV6の影響により、冷媒量が正常でも、式(1)で算出される温度効率εが閾値εLineより小さくなってしまう場合が考えられる。このような場合の検知不可条件を検知不可条件7とする。 In the non-detectable conditions 1 to 6 described above, the value of the temperature efficiency ε may be smaller than the threshold value εLine even if the refrigerant amount is normal. Therefore, under such conditions, the refrigerant amount determination means 23 may erroneously determine whether or not the refrigerant amount is appropriate, so that the determination of the appropriateness of the refrigerant amount is not performed. The undetectable conditions 1 to 6 are examples. In addition to the non-detectable conditions 1 to 6, even if the refrigerant amount is normal due to the effect of the condensation temperature THV5, the temperature difference between the condensation temperature THV5 and the outside air temperature THV6, and the outside air temperature THV6, the temperature efficiency calculated by the equation (1) There may be a case where ε becomes smaller than the threshold εLine. The detection impossible condition in such a case is referred to as a detection impossible condition 7.
 検知不可条件の説明から図8に示すフローチャートの説明に戻る。ステップS103の判定の結果、現在の冷凍装置が検知不可条件1~7のうち、いずれかに該当する場合、冷媒量判定手段23は、無効値として、エラーの情報を記憶部122に格納する(ステップS104)。一方、ステップS103の判定の結果、現在の冷凍装置が検知不可条件1~7のいずれにも該当しない場合、冷媒量判定手段23は、式(1)を用いて過冷却熱交換器5の温度効率εを算出し(ステップS105)、有効値として、温度効率εと圧縮機1の運転周波数の値を記憶部122に格納する(ステップS106)。冷媒量判定手段23は、予め決められた時間(例えば、10分)にステップS103~S106の処理を予め決められた周期で予め決められた回数(例えば、10回)行う。 Return from the description of the undetectable condition to the description of the flowchart shown in FIG. As a result of the determination in step S103, when the current refrigeration apparatus meets any one of the undetectable conditions 1 to 7, the refrigerant amount determination means 23 stores error information in the storage unit 122 as an invalid value ( Step S104). On the other hand, if the result of determination in step S103 is that the current refrigeration apparatus does not fall under any of the undetectable conditions 1 to 7, the refrigerant amount determination means 23 uses the equation (1) to calculate the temperature of the supercooling heat exchanger 5 The efficiency ε is calculated (step S105), and the temperature efficiency ε and the operating frequency value of the compressor 1 are stored in the storage unit 122 as effective values (step S106). The refrigerant amount determination means 23 performs the processing of steps S103 to S106 for a predetermined number of times (for example, 10 times) at a predetermined period during a predetermined time (for example, 10 minutes).
 続いて、冷媒量判定手段23は、記憶部122に格納した複数の温度効率εが平均温度効率εAveの算出条件を満たしているかを判定する(ステップS107)。記憶部122に格納された複数の温度効率εが安定判定条件を満たさない場合、冷媒量判定手段23は、冷媒漏れの有無の判定を行わず、ステップS102に戻る。安定判定条件は、例えば、平均温度効率εAveの算出元となる複数の温度効率εの変動が予め決められた範囲にあるというものである。安定判定条件は、複数の温度効率εと共に記憶部122に格納された、圧縮機1の運転周波数の変動が予め決められた範囲にあるという条件を含んでいてもよい。 Subsequently, the refrigerant amount determination means 23 determines whether or not the plurality of temperature efficiencies ε stored in the storage unit 122 satisfy the calculation condition of the average temperature efficiency εAve (step S107). When the plurality of temperature efficiencies ε stored in the storage unit 122 do not satisfy the stability determination condition, the refrigerant amount determination unit 23 does not determine whether or not there is a refrigerant leak, and returns to step S102. The stability determination condition is, for example, that fluctuations of a plurality of temperature efficiencies ε from which the average temperature efficiency εAve is calculated are within a predetermined range. The stability determination condition may include a condition that fluctuations in the operating frequency of the compressor 1 stored in the storage unit 122 together with a plurality of temperature efficiencies ε are within a predetermined range.
 一方、ステップS107の判定の結果、記憶部122に格納された複数の温度効率εが安定判定条件を満たす場合、冷媒量判定手段23は、これら複数の温度効率εの値を用いて平均温度効率εAveを算出する(ステップS108)。そして、冷媒量判定手段23は、算出した平均温度効率εAveを閾値εLineと比較し、平均温度効率εAveが閾値εLine以上であるか否かを判定する(ステップS109)。 On the other hand, as a result of the determination in step S107, when the plurality of temperature efficiencies ε stored in the storage unit 122 satisfy the stability determination condition, the refrigerant amount determination means 23 uses the values of the plurality of temperature efficiencies ε to calculate the average temperature efficiency. εAve is calculated (step S108). And the refrigerant | coolant amount determination means 23 compares the calculated average temperature efficiency (epsilon) Ave with threshold value (epsilon) Line, and determines whether average temperature efficiency (epsilon) Ave is more than threshold value (epsilon) Line (step S109).
 ステップS109の判定の結果、平均温度効率εAveが閾値εLine以上である場合、冷媒量判定手段23は、変数Mがゼロ以外であれば変数Mの値をゼロにリセットした後(ステップS110)、冷媒量が正常である旨を表示部21に表示させる(ステップS111)。なお、ステップS109の判定の結果、平均温度効率εAveが閾値εLine以上であって、変数Mの値がゼロである場合、冷媒量判定手段23は、ステップS110を実行せずに、ステップS111に進む。ステップS109の判定の結果、平均温度効率εAveが閾値εLineよりも小さい場合、冷媒量判定手段23は、冷媒漏れがあると判定する(ステップS200)。そして、冷媒量判定手段23は、変数Mの値に1を加算し(ステップS201)、1を加算した後の変数Mの値がNと一致するか否かを判定する(ステップS202)。 If the result of determination in step S109 is that the average temperature efficiency εAve is equal to or greater than the threshold value εLine, the refrigerant amount determination means 23 resets the value of the variable M to zero if the variable M is not zero (step S110), and then the refrigerant The display unit 21 displays that the amount is normal (step S111). As a result of the determination in step S109, when the average temperature efficiency εAve is equal to or greater than the threshold value εLine and the value of the variable M is zero, the refrigerant amount determination unit 23 proceeds to step S111 without executing step S110. . As a result of the determination in step S109, when the average temperature efficiency εAve is smaller than the threshold value εLine, the refrigerant amount determination unit 23 determines that there is a refrigerant leak (step S200). And the refrigerant | coolant amount determination means 23 adds 1 to the value of the variable M (step S201), and determines whether the value of the variable M after adding 1 corresponds with N (step S202).
 ステップS202の判定の結果、変数Mの値がNと一致する場合、冷媒量判定手段23は、冷媒量が不足している旨を表示部21に表示させる(ステップS203)。ステップS202の判定の結果、変数Mの値がNと一致しない場合、冷媒量判定手段23は、ステップS102に戻る。 If the value of the variable M coincides with N as a result of the determination in step S202, the refrigerant amount determination means 23 displays on the display unit 21 that the refrigerant amount is insufficient (step S203). If the value of the variable M does not match N as a result of the determination in step S202, the refrigerant amount determination means 23 returns to step S102.
 このようにして、冷媒量判定手段23は、冷媒漏れが有りの判定を連続してN回行った場合に、冷媒量が不足していると判定し、冷媒量が不足している旨を表示部21に表示させる。また、冷媒量判定手段23は、冷凍サイクルの運転の停止を冷凍サイクル制御手段22に指示する。 In this way, the refrigerant amount determination means 23 determines that the refrigerant amount is insufficient when the determination that there is a refrigerant leak is performed N times in succession, and displays that the refrigerant amount is insufficient. This is displayed on the unit 21. The refrigerant amount determination means 23 instructs the refrigeration cycle control means 22 to stop the refrigeration cycle operation.
(本実施の形態1における冷媒不足判定方法の手順)
 次に、本実施の形態1における冷凍装置が実行する冷媒不足判定方法の手順を説明する。本実施の形態1における冷媒不足判定方法は、温度効率εの低下以外で、冷媒量の不足の兆候が検知された段階で冷媒量が不足していると判定することで、冷媒不足を早期に検知するものである。
(Procedure of the refrigerant shortage determination method in the first embodiment)
Next, the procedure of the refrigerant shortage determination method executed by the refrigeration apparatus in Embodiment 1 will be described. The refrigerant shortage determination method according to the first embodiment determines the refrigerant shortage at an early stage by determining that the refrigerant amount is insufficient at the stage where the sign of the refrigerant amount shortage is detected other than the decrease in temperature efficiency ε. It is something to detect.
 図9は、本発明の実施の形態1における冷凍装置が実行する冷媒不足判定方法の動作手順を示すフローチャートである。なお、図9に示すステップS101~S111の処理は、図8を参照して説明したステップS101~S111と同様なため、その詳細な説明を省略する。 FIG. 9 is a flowchart showing an operation procedure of the refrigerant shortage determination method executed by the refrigeration apparatus in Embodiment 1 of the present invention. Note that the processing in steps S101 to S111 shown in FIG. 9 is the same as that in steps S101 to S111 described with reference to FIG.
 図9に示すステップS109の判定の結果、平均温度効率εAveが閾値εLineよりも小さい場合、補助判定手段24は、圧縮機1の吐出ガスの温度および吐出ガスの温度に関係するパラメータについて、それぞれの値がそれぞれの予め決められた範囲を逸脱するか否かを判定する(ステップS199)。 As a result of the determination in step S109 shown in FIG. 9, when the average temperature efficiency εAve is smaller than the threshold value εLine, the auxiliary determination unit 24 sets the discharge gas temperature of the compressor 1 and the parameters related to the discharge gas temperature for each parameter. It is determined whether or not the value deviates from each predetermined range (step S199).
 ステップS199の判定の結果、補助判定手段24は、圧縮機1の吐出ガスの温度および吐出ガスの温度に関係するパラメータのうち、少なくともいずれか一方が予め決められた範囲を逸脱している場合、冷媒量が不足していると判定し、冷媒量が不足している旨を表示部21に表示させる(ステップS203)。また、補助判定手段24は、冷凍サイクルの運転の停止を冷凍サイクル制御手段22に指示する。 As a result of the determination in step S199, the auxiliary determination unit 24 determines that at least one of the parameters related to the discharge gas temperature and the discharge gas temperature of the compressor 1 deviates from a predetermined range. It is determined that the amount of refrigerant is insufficient, and a message indicating that the amount of refrigerant is insufficient is displayed on the display unit 21 (step S203). In addition, the auxiliary determination unit 24 instructs the refrigeration cycle control unit 22 to stop the operation of the refrigeration cycle.
 一方、ステップS199の判定の結果、補助判定手段24は、圧縮機1の吐出ガスの温度および吐出ガスの温度に関係するパラメータの両方が予め決められた範囲内におさまっている場合、冷媒量判定手段23に冷媒量の不足を検知しなかった旨を通知し、ステップS200の処理を指示する。冷媒量判定手段23は、補助判定手段24からステップS200の処理の指示を受け付けると、図8を参照して説明したように、ステップS200以降の処理を実行する。 On the other hand, as a result of the determination in step S199, the auxiliary determination unit 24 determines the refrigerant amount when both the temperature of the discharge gas of the compressor 1 and the parameter related to the temperature of the discharge gas are within a predetermined range. The means 23 is notified that the refrigerant amount shortage has not been detected, and the processing of step S200 is instructed. When the refrigerant amount determination unit 23 receives an instruction for the process of step S200 from the auxiliary determination unit 24, the refrigerant amount determination unit 23 performs the process after step S200 as described with reference to FIG.
 図9を参照して説明したように、冷媒量判定手段23が平均温度効率εAveが閾値εLineよりも小さいと判定する度に、補助判定手段24が圧縮機1の吐出ガスの温度と吐出ガスの温度に関係するパラメータを用いて、冷媒量が不足しているか否かを判定する。そのため、冷媒量判定手段23がN回連続で冷媒漏れを判定する期間よりも早く、補助判定手段24が冷媒不足を検知すれば、冷凍装置は、その期間が経過する前に、冷凍サイクルを停止して、圧縮機1が故障することを防止できる。 As described with reference to FIG. 9, every time the refrigerant amount determination unit 23 determines that the average temperature efficiency εAve is smaller than the threshold value εLine, the auxiliary determination unit 24 detects the temperature of the discharge gas and the discharge gas of the compressor 1. It is determined whether or not the amount of refrigerant is insufficient using a parameter related to temperature. Therefore, if the auxiliary determination unit 24 detects the refrigerant shortage earlier than the period in which the refrigerant amount determination unit 23 continuously determines the refrigerant leakage N times, the refrigeration apparatus stops the refrigeration cycle before the period elapses. And it can prevent that the compressor 1 breaks down.
 なお、本実施の形態1では、図1A~図1Cに示す冷凍装置を一例として、冷媒量の不足の兆候を検知するパラメータを説明したが、冷凍装置に付加される構成に対応してパラメータを追加してもよい。また、図1A~図1Cは冷凍装置に吸入ガス温度センサ52が設けられた構成を示しているが、補助判定手段24が冷媒不足判定に用いるパラメータに対応して、吸入ガス温度センサ52は冷凍装置に設けられていなくてもよい。 In the first embodiment, the refrigeration apparatus shown in FIGS. 1A to 1C is taken as an example to describe the parameters for detecting the sign of insufficient refrigerant amount. However, the parameters corresponding to the configuration added to the refrigeration apparatus are described. May be added. 1A to 1C show the configuration in which the intake gas temperature sensor 52 is provided in the refrigeration apparatus, the intake gas temperature sensor 52 is refrigerated in accordance with the parameters used by the auxiliary determination means 24 for refrigerant shortage determination. It may not be provided in the apparatus.
 本実施の形態1の冷凍装置は、圧縮機1、熱源側熱交換器3、過冷却熱交換器5、負荷側膨張装置6および負荷側熱交換器7に冷媒を循環させる冷媒回路における冷凍サイクルを制御する冷凍サイクル制御手段22と、過冷却熱交換器5の温度効率を監視し、温度効率が予め決められた閾値以上である場合、冷媒回路に充填された冷媒量が正常と判定し、温度効率が閾値未満である場合、冷媒漏れがあると判定する冷媒量判定手段23と、冷媒量判定手段23が冷媒漏れがあると判定した場合、圧縮機1の吐出ガスの温度に関係するパラメータの値が予め決められた範囲を逸脱するか否かを判定し、パラメータの値がその範囲を逸脱する場合、冷媒量が不足していると判定する補助判定手段24とを有するものである。
 本実施の形態1によれば、冷媒量判定手段23が冷媒量の適否の判定基準に過冷却熱交換器5の温度効率を用いて冷媒漏れ有りと判定した場合、補助判定手段24が圧縮機1の吐出ガスの温度に関係するパラメータについて予め決められた範囲を逸脱するか否かを判定し、パラメータの値が予め決められた範囲を逸脱している場合、冷媒量が不足していると判定する。そのため、冷凍装置は、冷媒量判定手段23が温度効率を用いて冷媒不足を検知する前に、補助判定手段24が冷媒不足の発生を検知でき、圧縮機1が吐出ガスの温度異常で停止することを防ぎ、圧縮機1が故障してしまうことを防げる。
The refrigeration apparatus of the first embodiment includes a refrigeration cycle in a refrigerant circuit that circulates refrigerant through the compressor 1, the heat source side heat exchanger 3, the supercooling heat exchanger 5, the load side expansion device 6, and the load side heat exchanger 7. Monitoring the temperature efficiency of the refrigerating cycle control means 22 for controlling the temperature and the supercooling heat exchanger 5, and if the temperature efficiency is equal to or greater than a predetermined threshold, it is determined that the amount of refrigerant charged in the refrigerant circuit is normal, When the temperature efficiency is less than the threshold value, the refrigerant amount determination means 23 for determining that there is a refrigerant leak and the parameter related to the temperature of the discharge gas of the compressor 1 when the refrigerant amount determination means 23 determines that there is a refrigerant leak The auxiliary determination means 24 determines whether or not the value deviates from a predetermined range, and determines that the amount of refrigerant is insufficient when the parameter value deviates from the range.
According to the first embodiment, when the refrigerant amount determination unit 23 determines that there is a refrigerant leak using the temperature efficiency of the subcooling heat exchanger 5 as a criterion for determining whether the refrigerant amount is appropriate, the auxiliary determination unit 24 uses the compressor. It is determined whether or not a parameter relating to the temperature of one discharge gas deviates from a predetermined range, and when the parameter value deviates from a predetermined range, the refrigerant amount is insufficient. judge. Therefore, in the refrigeration apparatus, before the refrigerant amount determination unit 23 detects the refrigerant shortage using the temperature efficiency, the auxiliary determination unit 24 can detect the occurrence of the refrigerant shortage, and the compressor 1 stops due to the abnormal temperature of the discharge gas. This can prevent the compressor 1 from failing.
 本実施の形態1において、圧縮機1の吐出ガスの温度に関係するパラメータは、圧縮機1の吸入口の過熱度および負荷側熱交換器7の冷媒の圧力のうち、いずれかとしてもよい。圧縮機1の吸入口の過熱度の上昇は圧縮機1の吐出ガスの温度を上昇させ、負荷側熱交換器7の冷媒の圧力の低下は圧縮機1の吐出ガスの温度を上昇させる。そのため、これらのパラメータのいずれを冷媒不足の判定基準に用いても、冷媒不足を検知することができる。 In the first embodiment, the parameter related to the temperature of the discharge gas of the compressor 1 may be any one of the superheat degree of the suction port of the compressor 1 and the pressure of the refrigerant of the load side heat exchanger 7. An increase in the degree of superheat at the suction port of the compressor 1 increases the temperature of the discharge gas from the compressor 1, and a decrease in the refrigerant pressure in the load-side heat exchanger 7 increases the temperature of the discharge gas from the compressor 1. Therefore, the refrigerant shortage can be detected even if any of these parameters is used as the criterion for the refrigerant shortage.
実施の形態2.
 本実施の形態2は、冷凍装置にインジェクション回路が設けられている場合である。本実施の形態2の冷凍装置の構成を説明する。本実施の形態2では、実施の形態1で説明した構成と同様な構成についての詳細な説明を省略する。
Embodiment 2. FIG.
The second embodiment is a case where an injection circuit is provided in the refrigeration apparatus. The configuration of the refrigeration apparatus of the second embodiment will be described. In the second embodiment, detailed description of the same configuration as that described in the first embodiment is omitted.
 図10は、本発明の実施の形態2における冷凍装置の一構成例を示す冷媒回路図である。図10は、図1Aに示した冷凍装置にインジェクション回路が設けられた場合を示しているが、インジェクション回路が設けられる冷凍装置は図1Aに示した冷凍装置に限定されない。インジェクション回路が設けられる冷凍装置は、実施の形態1で説明したように、図1Aに示した構成以外の冷凍装置であってもよい。 FIG. 10 is a refrigerant circuit diagram illustrating a configuration example of the refrigeration apparatus according to Embodiment 2 of the present invention. 10 illustrates a case where the injection circuit is provided in the refrigeration apparatus illustrated in FIG. 1A, the refrigeration apparatus provided with the injection circuit is not limited to the refrigeration apparatus illustrated in FIG. 1A. The refrigeration apparatus provided with the injection circuit may be a refrigeration apparatus other than the configuration shown in FIG. 1A as described in the first embodiment.
 図10に示すように、冷凍装置は、過冷却熱交換器5の出口側で冷媒回路から分岐して圧縮機1の中間ポートと接続される配管41と、配管41に直列に接続されたインジェクション膨張装置42およびアキュムレータ43とを含むインジェクション回路を有する。圧縮機1の中間ポートは、過冷却熱交換器5の出口側で冷媒回路からインジェクション回路を経由して冷媒を圧縮機1に注入するための入力ポートである。インジェクション膨張装置42は、例えば、膨張弁である。 As shown in FIG. 10, the refrigeration apparatus includes a pipe 41 branched from the refrigerant circuit on the outlet side of the supercooling heat exchanger 5 and connected to the intermediate port of the compressor 1, and an injection connected in series to the pipe 41. It has an injection circuit including an expansion device 42 and an accumulator 43. The intermediate port of the compressor 1 is an input port for injecting the refrigerant from the refrigerant circuit to the compressor 1 via the injection circuit on the outlet side of the supercooling heat exchanger 5. The injection expansion device 42 is, for example, an expansion valve.
 インジェクション回路は、圧縮機1の冷媒を冷却するために、過冷却熱交換器5の出口側の冷媒回路から冷媒を圧縮機1の中間ポートに注入する。インジェクション膨張装置42は、インジェクション回路を経由して圧縮機1に注入される冷媒の圧力を調整する。圧縮機1の中間ポートに、冷媒の温度を検出する温度センサ44が設けられている。図2に示した機能ブロック図において、制御部20はインジェクション膨張装置42および温度センサ44のそれぞれと信号線(不図示)を介して接続されている。 The injection circuit injects refrigerant from the refrigerant circuit on the outlet side of the supercooling heat exchanger 5 into the intermediate port of the compressor 1 in order to cool the refrigerant of the compressor 1. The injection expansion device 42 adjusts the pressure of the refrigerant that is injected into the compressor 1 via the injection circuit. A temperature sensor 44 that detects the temperature of the refrigerant is provided at an intermediate port of the compressor 1. In the functional block diagram shown in FIG. 2, the control unit 20 is connected to each of the injection expansion device 42 and the temperature sensor 44 via signal lines (not shown).
 図10に示す冷凍装置の場合、圧縮機1の吐出ガスの温度に関係するパラメータとして、次の2つのパラメータが考えられる。1つ目のパラメータは、インジェクション回路を介して圧縮機1の中間ポートに入力される冷媒の温度である。このパラメータをパラメータP3とする。2つ目のパラメータは、インジェクション回路のインジェクション膨張装置42の開度である。このパラメータをパラメータP4とする。パラメータP3の場合、圧縮機1の中間ポートに入力される冷媒の温度が予め決められた範囲の上限値以上になることが、冷媒量の不足に相当する。パラメータP4の場合、インジェクション膨張装置42の開度が予め決められた範囲の上限値以上になることが、冷媒量の不足に相当する。 In the case of the refrigeration apparatus shown in FIG. 10, the following two parameters can be considered as parameters related to the temperature of the discharge gas of the compressor 1. The first parameter is the temperature of the refrigerant input to the intermediate port of the compressor 1 via the injection circuit. This parameter is set as parameter P3. The second parameter is the opening degree of the injection expansion device 42 of the injection circuit. This parameter is set as parameter P4. In the case of the parameter P3, the fact that the temperature of the refrigerant input to the intermediate port of the compressor 1 is equal to or higher than the upper limit value in a predetermined range corresponds to the shortage of the refrigerant amount. In the case of the parameter P4, the fact that the opening of the injection expansion device 42 is equal to or greater than the upper limit value in a predetermined range corresponds to a shortage of the refrigerant amount.
 図11は、図10に示した冷凍装置において、冷媒量の不足の兆候を検知するパラメータの一例を説明するためのp-h線図である。図11において、縦軸は圧力[MPa]であり、横軸は比エンタルピ[kJ/kg]である。冷凍サイクルの4工程のうち、点J1→点J2は蒸発工程に相当し、点J2→点J3は圧縮工程に相当し、点J3→点J4は凝縮工程に相当し、点J4→点J1は膨張工程に相当する。 FIG. 11 is a ph diagram for explaining an example of parameters for detecting a sign of a shortage of the refrigerant amount in the refrigeration apparatus shown in FIG. In FIG. 11, the vertical axis represents pressure [MPa] and the horizontal axis represents specific enthalpy [kJ / kg]. Of the four steps of the refrigeration cycle, point J1 → point J2 corresponds to the evaporation step, point J2 → point J3 corresponds to the compression step, point J3 → point J4 corresponds to the condensation step, and point J4 → point J1 This corresponds to the expansion process.
 図10に示す冷凍装置では、インジェクション回路を経由して圧縮機1の中間ポートに注入される冷媒が圧縮機1を冷却する。そのため、圧縮工程は、図11に示す点J2→点J5→点J3という経路をたどる。図11に示す点J5における温度が圧縮機1の中間ポートに入力される冷媒の温度に相当する。圧縮機1の中間ポートに入力される冷媒の温度が上昇し、図11に示すように点J5が点J5’に遷移すると、破線で示すように、点J3が点J3’に遷移する。その結果、圧縮機1の吐出ガスの温度も上昇することになる。補助判定手段24は、温度センサ44が検出した温度が予め決められた範囲の上限値以上の場合、冷媒量が不足していると判定する。 10, the refrigerant injected into the intermediate port of the compressor 1 via the injection circuit cools the compressor 1. Therefore, the compression process follows the path of point J2 → point J5 → point J3 shown in FIG. The temperature at point J5 shown in FIG. 11 corresponds to the temperature of the refrigerant input to the intermediate port of the compressor 1. When the temperature of the refrigerant input to the intermediate port of the compressor 1 rises and the point J5 changes to the point J5 'as shown in FIG. 11, the point J3 changes to the point J3' as shown by the broken line. As a result, the temperature of the discharge gas of the compressor 1 also increases. The auxiliary determination unit 24 determines that the amount of refrigerant is insufficient when the temperature detected by the temperature sensor 44 is equal to or higher than the upper limit value in a predetermined range.
 また、冷媒回路を循環する冷媒量が少なくなり、圧縮機1の吐出温度が上昇すると、冷凍サイクル制御手段22が圧縮機1の中の冷媒を冷却するためにインジェクション膨張装置42の開度を大きくする。補助判定手段24は、インジェクション膨張装置42の開度が予め決められた範囲の上限値以上の場合、冷媒量が不足していると判定する。 Further, when the amount of refrigerant circulating in the refrigerant circuit decreases and the discharge temperature of the compressor 1 rises, the refrigeration cycle control means 22 increases the opening of the injection expansion device 42 in order to cool the refrigerant in the compressor 1. To do. The auxiliary determination means 24 determines that the amount of refrigerant is insufficient when the opening of the injection expansion device 42 is equal to or greater than the upper limit of a predetermined range.
 インジェクション回路を有する冷凍装置においては、冷媒量の不足の兆候を検知するパラメータとして、インジェクション回路に対応するパラメータが追加される。そのため、補助判定手段24はインジェクション回路に起因する、冷媒量の不足の兆候を検知することができる。 In a refrigeration apparatus having an injection circuit, a parameter corresponding to the injection circuit is added as a parameter for detecting a sign of insufficient refrigerant amount. Therefore, the auxiliary determination means 24 can detect a sign of a shortage of the refrigerant amount due to the injection circuit.
 なお、図10は冷凍装置に温度センサ44が設けられた構成を示しているが、補助判定手段24が冷媒不足判定に用いるパラメータに対応して、温度センサ44が設けられていなくてもよい。さらに、図10に示す冷凍装置においてアキュムレータ43は設けられていなくてもよい。 Although FIG. 10 shows a configuration in which the temperature sensor 44 is provided in the refrigeration apparatus, the temperature sensor 44 may not be provided corresponding to the parameter used by the auxiliary determination unit 24 for the refrigerant shortage determination. Furthermore, the accumulator 43 may not be provided in the refrigeration apparatus shown in FIG.
 本実施の形態2は、過冷却熱交換器5の出口側で冷媒回路から分岐して圧縮機1と接続され、冷媒回路から冷媒を圧縮機1に注入するインジェクション回路が設けられ、インジェクション回路には圧縮機1に注入される冷媒の圧力を調整するインジェクション膨張装置42が設けられている。そのため、圧縮機1の吐出ガスの温度に関係するパラメータとして、インジェクション回路を介して圧縮機1に注入される冷媒の温度と、インジェクション膨張装置42の開度のうち、いずれかを用いることができる。冷凍装置に設けられたインジェクション回路に対応して、圧縮機1の吐出ガスの温度に関係するパラメータを選択して冷媒不足の有無を判定することで、実施の形態1と同様な効果を得ることができる。 The second embodiment is provided with an injection circuit that branches from the refrigerant circuit on the outlet side of the supercooling heat exchanger 5 and is connected to the compressor 1 and injects refrigerant from the refrigerant circuit into the compressor 1. Is provided with an injection expansion device 42 for adjusting the pressure of the refrigerant injected into the compressor 1. Therefore, any one of the temperature of the refrigerant injected into the compressor 1 through the injection circuit and the opening degree of the injection expansion device 42 can be used as a parameter related to the temperature of the discharge gas of the compressor 1. . Corresponding to the injection circuit provided in the refrigeration apparatus, the same effect as in the first embodiment can be obtained by selecting the parameter related to the temperature of the discharge gas of the compressor 1 and determining the presence or absence of refrigerant shortage. Can do.
 1 圧縮機、2 油分離器、3 熱源側熱交換器、4 受液器、5 過冷却熱交換器、6 負荷側膨張装置、7 負荷側熱交換器、8 アキュムレータ、10 液延長配管、11 ガス延長配管、12~14、41 配管、15 延長配管、20 制御部、21 表示部、22 冷凍サイクル制御手段、23 冷媒量判定手段、24 補助判定手段、26、27 ファン、42 インジェクション膨張装置、43 アキュムレータ、44 温度センサ、51 吐出ガス温度センサ、52 吸入ガス温度センサ、100 熱源側ユニット、120 コントローラ、121 CPU、122 記憶部、150、151 圧縮ユニット、200 負荷側ユニット、501、502 矢印、ET 蒸発温度センサ、TH5 凝縮温度センサ、TH6 外気温度センサ、TH8 液冷媒温度センサ。 1 compressor, 2 oil separator, 3 heat source side heat exchanger, 4 liquid receiver, 5 supercooling heat exchanger, 6 load side expansion device, 7 load side heat exchanger, 8 accumulator, 10 liquid extension pipe, 11 Gas extension pipe, 12-14, 41 pipe, 15 extension pipe, 20 control section, 21 display section, 22 refrigeration cycle control means, 23 refrigerant quantity judgment means, 24 auxiliary judgment means, 26, 27 fan, 42 injection expansion device, 43 accumulator, 44 temperature sensor, 51 discharge gas temperature sensor, 52 intake gas temperature sensor, 100 heat source side unit, 120 controller, 121 CPU, 122 storage unit, 150, 151 compression unit, 200 load side unit, 501, 502 arrow, ET evaporation temperature sensor, TH5 condensation temperature sensor, TH6 Outside air temperature sensor, TH8 liquid refrigerant temperature sensor.

Claims (3)

  1.  圧縮機、熱源側熱交換器、過冷却熱交換器、負荷側膨張装置および負荷側熱交換器に冷媒を循環させる冷媒回路と、
     前記冷媒回路における冷凍サイクルを制御する制御部と、を有し、
     前記制御部は、
     前記冷凍サイクルを制御する冷凍サイクル制御手段と、
     前記過冷却熱交換器の温度効率を監視し、該温度効率が予め決められた閾値以上である場合、前記冷媒回路に充填された冷媒量が正常と判定し、前記温度効率が前記閾値未満である場合、冷媒漏れがあると判定する冷媒量判定手段と、
     前記冷媒量判定手段が冷媒漏れがあると判定した場合、前記圧縮機の吐出ガスの温度に関係するパラメータの値が予め決められた範囲を逸脱するか否かを判定し、該パラメータの値が該範囲を逸脱する場合、前記冷媒量が不足していると判定する補助判定手段と、
    を有する、冷凍装置。
    A refrigerant circuit that circulates the refrigerant to the compressor, the heat source side heat exchanger, the supercooling heat exchanger, the load side expansion device, and the load side heat exchanger;
    A control unit for controlling the refrigeration cycle in the refrigerant circuit,
    The controller is
    Refrigeration cycle control means for controlling the refrigeration cycle;
    The temperature efficiency of the supercooling heat exchanger is monitored, and when the temperature efficiency is equal to or higher than a predetermined threshold, it is determined that the amount of refrigerant charged in the refrigerant circuit is normal, and the temperature efficiency is less than the threshold. If there is a refrigerant amount determining means for determining that there is a refrigerant leak,
    When the refrigerant amount determining means determines that there is a refrigerant leak, it is determined whether or not a parameter value related to the temperature of the discharge gas of the compressor deviates from a predetermined range, and the parameter value is Auxiliary determination means for determining that the amount of refrigerant is insufficient when deviating from the range;
    A refrigeration apparatus.
  2.  前記パラメータは、前記圧縮機の吸入口の過熱度および前記負荷側熱交換器の冷媒の圧力のうち、いずれかである、請求項1に記載の冷凍装置。 The refrigeration apparatus according to claim 1, wherein the parameter is any one of a superheat degree of an inlet of the compressor and a pressure of a refrigerant of the load side heat exchanger.
  3.  前記過冷却熱交換器の出口側で前記冷媒回路から分岐して前記圧縮機と接続され、該冷媒回路から冷媒を前記圧縮機に注入するインジェクション回路と、
     前記インジェクション回路に設けられ、前記圧縮機に注入される冷媒の圧力を調整するインジェクション膨張装置と、をさらに有し、
     前記パラメータは、前記インジェクション回路を介して前記圧縮機に注入される冷媒の温度および前記インジェクション膨張装置の開度のうち、いずれかである、請求項1に記載の冷凍装置。
    An injection circuit that branches from the refrigerant circuit on the outlet side of the supercooling heat exchanger and is connected to the compressor, and injects refrigerant from the refrigerant circuit into the compressor;
    An injection expansion device that is provided in the injection circuit and adjusts the pressure of the refrigerant injected into the compressor;
    The refrigeration apparatus according to claim 1, wherein the parameter is any one of a temperature of a refrigerant injected into the compressor via the injection circuit and an opening degree of the injection expansion device.
PCT/JP2016/064857 2016-05-19 2016-05-19 Refrigerating device WO2017199391A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2016/064857 WO2017199391A1 (en) 2016-05-19 2016-05-19 Refrigerating device
JP2018518016A JP6611929B2 (en) 2016-05-19 2016-05-19 Refrigeration equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/064857 WO2017199391A1 (en) 2016-05-19 2016-05-19 Refrigerating device

Publications (1)

Publication Number Publication Date
WO2017199391A1 true WO2017199391A1 (en) 2017-11-23

Family

ID=60325790

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/064857 WO2017199391A1 (en) 2016-05-19 2016-05-19 Refrigerating device

Country Status (2)

Country Link
JP (1) JP6611929B2 (en)
WO (1) WO2017199391A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020208714A1 (en) * 2019-04-09 2020-10-15 三菱電機株式会社 Refrigeration device
JPWO2021048905A1 (en) * 2019-09-09 2021-03-18
WO2021049463A1 (en) * 2019-09-09 2021-03-18 ダイキン工業株式会社 Refrigerant leakage determination system
CN114450524A (en) * 2019-09-30 2022-05-06 大金工业株式会社 Air conditioner ventilation system

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06137725A (en) * 1992-10-28 1994-05-20 Hitachi Ltd Refrigerant leakage detection method for refrigeration device
JP2005207644A (en) * 2004-01-21 2005-08-04 Mitsubishi Electric Corp Apparatus diagnosing device, refrigeration cycle device, fluid circuit diagnosing method, apparatus monitoring system and refrigeration cycle monitoring system
JP2009524797A (en) * 2006-09-29 2009-07-02 キャリア コーポレイション Refrigerant vapor compression system with flash tank receiver
JP2011226704A (en) * 2010-04-20 2011-11-10 Mitsubishi Electric Corp Refrigerating air conditioner, and refrigerating air conditioning system
JP2012132639A (en) * 2010-12-22 2012-07-12 Mitsubishi Electric Corp Refrigeration unit
JP2016035355A (en) * 2014-08-01 2016-03-17 ダイキン工業株式会社 Refrigerating device
JP2016050680A (en) * 2014-08-28 2016-04-11 三菱電機株式会社 Refrigeration air conditioner

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06137725A (en) * 1992-10-28 1994-05-20 Hitachi Ltd Refrigerant leakage detection method for refrigeration device
JP2005207644A (en) * 2004-01-21 2005-08-04 Mitsubishi Electric Corp Apparatus diagnosing device, refrigeration cycle device, fluid circuit diagnosing method, apparatus monitoring system and refrigeration cycle monitoring system
JP2009524797A (en) * 2006-09-29 2009-07-02 キャリア コーポレイション Refrigerant vapor compression system with flash tank receiver
JP2011226704A (en) * 2010-04-20 2011-11-10 Mitsubishi Electric Corp Refrigerating air conditioner, and refrigerating air conditioning system
JP2012132639A (en) * 2010-12-22 2012-07-12 Mitsubishi Electric Corp Refrigeration unit
JP2016035355A (en) * 2014-08-01 2016-03-17 ダイキン工業株式会社 Refrigerating device
JP2016050680A (en) * 2014-08-28 2016-04-11 三菱電機株式会社 Refrigeration air conditioner

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2020208714A1 (en) * 2019-04-09 2021-11-25 三菱電機株式会社 Refrigeration equipment
WO2020208714A1 (en) * 2019-04-09 2020-10-15 三菱電機株式会社 Refrigeration device
JP7118248B2 (en) 2019-04-09 2022-08-15 三菱電機株式会社 refrigeration equipment
JP7199554B2 (en) 2019-09-09 2023-01-05 三菱電機株式会社 Outdoor unit and refrigeration cycle equipment
EP4030122A4 (en) * 2019-09-09 2022-09-21 Mitsubishi Electric Corporation Outdoor unit and refrigeration cycle device
WO2021048905A1 (en) 2019-09-09 2021-03-18 三菱電機株式会社 Outdoor unit and refrigeration cycle device
CN114364934A (en) * 2019-09-09 2022-04-15 三菱电机株式会社 Outdoor unit and refrigeration cycle device
CN114364925A (en) * 2019-09-09 2022-04-15 大金工业株式会社 Refrigerant leakage determination system
JP7401795B2 (en) 2019-09-09 2023-12-20 ダイキン工業株式会社 Refrigerant leak determination system
WO2021049463A1 (en) * 2019-09-09 2021-03-18 ダイキン工業株式会社 Refrigerant leakage determination system
JPWO2021049463A1 (en) * 2019-09-09 2021-03-18
EP4015945A4 (en) * 2019-09-09 2022-09-28 Daikin Industries, Ltd. Refrigerant leakage determination system
JPWO2021048905A1 (en) * 2019-09-09 2021-03-18
CN114364934B (en) * 2019-09-09 2023-03-21 三菱电机株式会社 Outdoor unit and refrigeration cycle device
CN114364925B (en) * 2019-09-09 2023-10-20 大金工业株式会社 Refrigerant leakage determination system
CN114450524B (en) * 2019-09-30 2023-10-03 大金工业株式会社 Air-conditioning ventilation system
CN114450524A (en) * 2019-09-30 2022-05-06 大金工业株式会社 Air conditioner ventilation system

Also Published As

Publication number Publication date
JP6611929B2 (en) 2019-11-27
JPWO2017199391A1 (en) 2018-12-06

Similar Documents

Publication Publication Date Title
US11131490B2 (en) Refrigeration device having condenser unit connected to compressor unit with on-site pipe interposed therebetween and remote from the compressor unit
US11041666B2 (en) Refrigeration apparatus
JP5674452B2 (en) Refrigeration equipment
JP6611929B2 (en) Refrigeration equipment
JP6403887B2 (en) Refrigeration cycle apparatus, remote monitoring system, remote monitoring apparatus, and abnormality determination method
CN111094877B (en) Refrigeration cycle device and refrigeration device
JP6509013B2 (en) Refrigerating apparatus and refrigerator unit
JPH10122711A (en) Refrigerating cycle control device
KR101900901B1 (en) Air conditional and method for controlling the same
GB2585418A (en) Refrigeration air conditioner
US9851134B2 (en) Air-conditioning apparatus
CN109073304B (en) Refrigerating device
JP6628833B2 (en) Refrigeration cycle device
WO2015111222A1 (en) Refrigeration device
JP6373475B2 (en) Refrigerant amount abnormality detection device and refrigeration device
JP3490908B2 (en) Refrigerant refrigerant leak detection system
CN107110586B (en) Refrigerating device
JP2017067397A (en) Refrigerator
JP6590945B2 (en) Refrigeration equipment
WO2023002520A1 (en) Refrigeration cycle device and refrigeration air-conditioning device
JP5538064B2 (en) Refrigeration equipment
JP6289727B2 (en) Refrigeration equipment
EP3988871A1 (en) Outdoor unit, refrigeration cycle device, and refrigerator
JP2019207103A (en) Refrigeration device
CN116136318A (en) Air conditioner

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2018518016

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16902410

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 16902410

Country of ref document: EP

Kind code of ref document: A1