WO2015111222A1 - Refrigeration device - Google Patents

Refrigeration device Download PDF

Info

Publication number
WO2015111222A1
WO2015111222A1 PCT/JP2014/051690 JP2014051690W WO2015111222A1 WO 2015111222 A1 WO2015111222 A1 WO 2015111222A1 JP 2014051690 W JP2014051690 W JP 2014051690W WO 2015111222 A1 WO2015111222 A1 WO 2015111222A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerant
heat exchanger
liquid
temperature
refrigeration apparatus
Prior art date
Application number
PCT/JP2014/051690
Other languages
French (fr)
Japanese (ja)
Inventor
佐多 裕士
康敬 落合
章吾 玉木
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to CN201480042573.9A priority Critical patent/CN105408704B/en
Priority to JP2015558712A priority patent/JPWO2015111222A1/en
Priority to PCT/JP2014/051690 priority patent/WO2015111222A1/en
Publication of WO2015111222A1 publication Critical patent/WO2015111222A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/006Fluid-circulation arrangements optical fluid control arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B45/00Arrangements for charging or discharging refrigerant
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/13Economisers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/16Receivers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/01Geometry problems, e.g. for reducing size
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/23High amount of refrigerant in the system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/24Low amount of refrigerant in the system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2106Temperatures of fresh outdoor air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2116Temperatures of a condenser
    • F25B2700/21162Temperatures of a condenser of the refrigerant at the inlet of the condenser
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2116Temperatures of a condenser
    • F25B2700/21163Temperatures of a condenser of the refrigerant at the outlet of the condenser
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B40/00Subcoolers, desuperheaters or superheaters
    • F25B40/02Subcoolers

Definitions

  • the present invention relates to a refrigeration apparatus.
  • showcases are mainly installed in food departments, but the number, size, type, arrangement, etc., vary depending on the store.
  • the internal volume of the evaporator arranged in the showcase differs accordingly.
  • the unit cooler has the same evaporator volume depending on the type.
  • the installation place of the refrigerator which accommodates the compressor, the condenser, and the liquid receiver also differs depending on the structure of the store, and may be installed on the back of the food department or on the roof, for example. Therefore, the distance between the evaporator, the compressor, the condenser, and the liquid receiver varies depending on the installation location of the refrigerator, and the lengths of the extension pipes such as the gas extension pipe and the liquid extension pipe also differ.
  • the refrigerant of the refrigerator is filled (enclosed) after configuring the refrigeration cycle on site.
  • the amount of refrigerant required for the refrigeration cycle varies depending on the state of the refrigeration cycle, and the state of the refrigeration cycle also varies depending on the outside air temperature, the operating state of the load-side equipment of the showcase, and the like. For this reason, normally, a large amount of refrigerant is charged so that the amount of refrigerant necessary for each component device such as a condenser and an evaporator is always distributed regardless of the operating state.
  • FIG. 7 is a diagram illustrating an example of a refrigerant circuit of a conventional refrigeration apparatus.
  • a sight glass 17 is provided in the liquid piping downstream of the receiver 4 as shown in FIG. 7, and the internal temperature (the temperature of the target space cooled by the evaporator) is set to the set temperature during the test operation.
  • the flash gas bubbles
  • the time is the amount of refrigerant with no surplus, so a method of charging a certain amount of refrigerant with respect to the amount of refrigerant has been proposed.
  • this filling amount becomes the surplus refrigerant amount corresponding to the fluctuation of the necessary refrigerant amount due to the state change of the refrigeration cycle.
  • This percentage is 5 to 10% of the amount of refrigerant sealed up to the point when the flash disappears according to the manufacturer's instructions, but it is the know-how of each supplier. Therefore, a large amount of refrigerant is often added.
  • a method of detecting the refrigerant liquid level in the receiver by using a capacitance sensor, determining that the refrigerant amount is excessive, appropriate, and insufficient, and calculating the insufficient refrigerant amount, and a sight glass on the side of the receiver A method has been proposed in which a human detects the liquid level visually and compares the relationship between the amount of refrigerant given as data and the liquid level position (height) to determine surplus, appropriateness, and shortage. And the amount of refrigerant
  • Japanese Patent No. 2997487 see, for example, pages 2 to 3 and FIG. 4.
  • the current situation is that the method for calculating the amount of refrigerant that is insufficient, determined by the capacitance sensor shown in Patent Document 1 as surplus, appropriate, and insufficient, is almost unpractical due to high costs.
  • the method of providing sight glass that can judge appropriate, surplus, and deficiency on the side of the receiver, it is appropriate for each refrigeration system in refrigerators with greatly different operating conditions such as the internal volume of the evaporator, the length of the extension pipe, and the internal temperature.
  • the surplus and deficient refrigerant amounts differ greatly. Therefore, a large sight glass is required to cope with the change in the refrigerant amount, but this is unrealistic, and even if implemented, the cost is high.
  • the present invention has been made to solve at least one of the above-described problems, and can easily and properly carry out refrigerant filling at the time of trial operation or service of a refrigeration apparatus, thereby suppressing overfilling.
  • An object of the present invention is to provide a refrigeration apparatus that can perform the above.
  • the refrigeration apparatus includes a compressor, a heat source side heat exchanger, a supercooling heat exchanger, a heat source side unit having at least a liquid receiver, and a load side unit having at least a load side expansion means and a load side heat exchanger.
  • a compressor a heat source side heat exchanger, a supercooling heat exchanger, a heat source side unit having at least a liquid receiver, and a load side unit having at least a load side expansion means and a load side heat exchanger.
  • the compressor the heat source side heat exchanger, the supercooling heat exchanger, the liquid receiver, the load side expansion means, and the load side heat exchanger.
  • a sight glass is provided on a side surface of the receiver, and the sight glass has a maximum refrigerant liquid level position throughout the year of the receiver during operation. It is provided at a position where it can be confirmed.
  • the sight glass that can confirm the refrigerant liquid level position of the receiver is installed, and the liquid level position indicates the maximum refrigerant liquid level position during operation.
  • the refrigerant filling at the time of service of the refrigeration apparatus can be carried out easily, quickly and accurately, and overfilling can be suppressed.
  • FIG. 1 is a diagram illustrating an example of a refrigerant circuit of a refrigeration apparatus according to Embodiment 1 of the present invention.
  • the refrigeration apparatus according to Embodiment 1 includes an outdoor unit 100 and an indoor unit 200.
  • the outdoor unit 100 includes a compressor 1, a condenser 3, a liquid receiver 4, and a supercooling heat exchanger 5. Further, downstream of the supercooling heat exchanger 5, the main unit 22 branches to a main flow path 22 toward the evaporator 7 of the indoor unit 200 and an injection flow path 23 toward the injection port 1 a of the compressor 1.
  • the liquid operation valve 10 is provided, and the expansion valve 8 is provided on the injection flow path 23 side.
  • the indoor unit 200 uses a showcase, a unit cooler, or the like.
  • the indoor unit 200 includes a liquid electromagnetic valve 9, an expansion valve 6, and an evaporator 7.
  • the indoor unit 200 is connected to the outdoor unit 100 by the liquid extension pipe 18 and the gas extension pipe 19.
  • the refrigerant circuit which circulates a refrigerant
  • the amount of refrigerant distributed to the condenser 3, the liquid receiver 4, the supercooling heat exchanger 5, the evaporator 7, the liquid extension pipe 18, and the gas extension pipe 19 is determined by the respective internal volume, performance, and operation state.
  • surplus refrigerant after each component device of the refrigeration cycle has an appropriate amount of refrigerant is stored in the liquid receiver 4.
  • the compressor 1 sucks refrigerant and compresses the refrigerant to a high temperature and high pressure state.
  • the injection port 1 a is an intermediate pressure port that allows the refrigerant to flow into the compression chamber in the middle of compression of the compressor 1.
  • the condenser 3 performs heat exchange between air supplied from a blower (not shown) and the refrigerant, and condenses the refrigerant into a liquid refrigerant.
  • the liquid receiver 4 is disposed between the condenser 3 and the evaporator 7 and stores excess refrigerant.
  • the liquid receiver 4 should just be a container which can store an excess refrigerant
  • the supercooling heat exchanger 5 performs heat exchange between air and refrigerant in the same manner as the condenser 3 to supercool the liquid refrigerant.
  • the expansion valves 6 and 8 expand the refrigerant by decompressing it.
  • the expansion valves 6 and 8 may be configured by a valve whose opening degree can be variably controlled, for example, a precise flow rate control means using an electronic expansion valve, an inexpensive refrigerant flow rate control means such as a capillary tube, or the like.
  • the evaporator 7 exchanges heat between air supplied from a blower (not shown) and the refrigerant to evaporate the refrigerant into a gas refrigerant. This evaporator 7 cools the target space such as a showcase.
  • the liquid electromagnetic valve 9 controls whether the refrigerant flows into the evaporator 7 by electronic opening and closing.
  • the liquid operation valve 10 is configured to allow the refrigerant to flow into the liquid extension pipe 18 or not by manual opening and closing.
  • the refrigeration apparatus includes refrigerant amount determination means 20 that determines whether or not the minimum amount of refrigerant charged in the refrigerant circuit is filled.
  • the refrigerant amount determination means 20 can be configured by a microcomputer or the like provided on the control board of the refrigeration apparatus, for example. Temperature information detected by the first temperature sensor (TH5), the second temperature sensor (TH8), and the third temperature sensor (TH6) is input to the refrigerant amount determination means 20.
  • the first temperature sensor (TH5) is located at any position on the outlet side of the condenser 3 or the flow path from the portion where the refrigerant is in a two-phase state in the condenser 3 to the inlet side of the supercooling heat exchanger 5. It is provided and detects the temperature of the refrigerant.
  • the second temperature sensor (TH8) is provided at any position in the flow path from the outlet side of the supercooling heat exchanger 5 to the inlet side of the expansion valve 6, and detects the temperature of the refrigerant.
  • the third temperature sensor (TH6) detects the temperature of the air before the condenser 3 exchanges heat with the refrigerant.
  • the refrigerant amount determination means 20 is provided with a display unit 21 that displays the determination result and various types of information.
  • the display unit 21 includes, for example, a 7-segment LED. Note that a cylinder (not shown) is used when the refrigerant circuit is filled with the refrigerant.
  • the refrigerant circulating in the refrigerant circuit is mainly present in the condenser 3, the liquid receiver 4, the liquid extension pipe 18, the evaporator 7, and the gas extension pipe 19.
  • the refrigerant is in the gas phase, the higher the temperature, the higher the density. Therefore, in the condenser 3 having a larger gas phase, the refrigerant is stored in the condenser 3 as the condensation temperature is higher.
  • the gas phase is dominant, and the higher the condensation temperature, the more the refrigerant is stored in the liquid receiver 4.
  • the density increases as the temperature decreases. Therefore, the refrigerant accumulates in the liquid extension pipe 18 as the liquid temperature decreases.
  • FIG. 2 is a Mollier diagram corresponding to different condensation temperatures of the refrigeration apparatus according to Embodiment 1 of the present invention.
  • Tc represents the condensation temperature
  • Te represents the evaporation temperature.
  • the two-phase refrigerant throttled by the expansion valve 6 evaporates into a gas phase.
  • the lower the condensation temperature the higher the wetness immediately after the expansion valve 6. Will store a lot of refrigerant. Therefore, the seasonal variation in the amount of refrigerant required to operate the refrigeration apparatus is a relative relationship between the volume of the condenser 3 and the volume of the liquid receiver 4 and the liquid extension pipe + evaporator volume if the evaporation temperature is constant.
  • the required refrigerant amount increases as the condensation temperature increases.
  • the required refrigerant amount decreases as the condensation temperature decreases. Become more.
  • the required volume of the liquid receiver 4 is required to enable the recovery of the refrigerant in the liquid receiver 4 by closing the liquid operation valve 10 downstream of the liquid receiver 4, so that the volume of the condenser 3 And the volume of the liquid extension pipe 18 are almost determined by the volume, and the following values are obtained.
  • Receiver volume (condenser volume + liquid extension pipe volume) x (125% ⁇ 25%)
  • FIG. 3 is a diagram showing a ratio of the liquid in the liquid receiver 4 with respect to the outside air temperature of the refrigeration apparatus according to Embodiment 1 of the present invention.
  • FIG. 4 is a diagram illustrating an example of the sight glass 14 of the refrigeration apparatus according to Embodiment 1 of the present invention.
  • the use range of the outside air temperature around the outdoor unit 100 is -15 to 43 ° C.
  • the graph shows how the amount of refrigerant in the liquid receiver 4 changes due to a change in the outside air temperature.
  • the volume of the showcase is larger than the volume of the unit cooler.
  • the graph of the condition of the pipe length of 100 m when the load in FIG. 3 is a showcase shows that the volume of the load is large, the extension pipe is long, the volume of the condenser 3 and the liquid receiver 4 is small, and the liquid in the liquid receiver 4 This is an example in which the rate of change of the ratio is maximized.
  • the maximum value of the rate of change in the liquid ratio in the receiver 4 is 22.7% of the volume of the receiver 4 when the refrigerant amount is 43 ° C., and 0.0% when the ambient temperature is ⁇ 15 ° C.
  • the change width is 22.7%. That is, since the required refrigerant is low at the outside air temperature of 43 ° C., a large amount of surplus refrigerant is stored in the liquid reservoir, and at the outside air temperature of ⁇ 15 ° C., the necessary refrigerant is large and the surplus refrigerant is eliminated and there is no refrigerant stored in the liquid reservoir. The required amount of refrigerant tends to increase as the outside air temperature decreases.
  • the sight glass 14 is placed on the side surface of the liquid receiver 4 so that the position of the refrigerant liquid surface 11 of the liquid receiver 4 can be confirmed, and the maximum amount of refrigerant in the liquid reservoir (22 above). 7%), a margin of about 10% is provided at a maximum position of 33.0%, and this position is set as the position of the refrigerant liquid surface 11 that becomes the maximum throughout the year.
  • the sight glass 14 is attached to a copper pipe 16 from the end plate and barrel of the liquid receiver 4.
  • the sight glass 14 has a function of determining the presence or absence of moisture, and has a size equal to or smaller than the size of the liquid extension pipe 18. Alternatively, it may be installed directly on the shell of the liquid receiver 4, but the refrigerant flow tends to disturb the refrigerant liquid level 11 in the liquid receiver 4, making it difficult to check the refrigerant liquid level 11.
  • FIG. 5 is a diagram illustrating another example of the refrigerant circuit of the refrigeration apparatus according to Embodiment 1 of the present invention.
  • the indoor unit 100A includes a compressor 1, a condenser 3, a liquid receiver 4, and a supercooling heat exchanger 5A as in FIG. 1, but the supercooling heat exchanger 5A includes a plate heat exchanger and a copper Heat exchange between the refrigerant and the refrigerant is possible with the double pipe of the pipe.
  • the main flow path 22 heading toward the evaporator 7 downstream of the supercooling heat exchanger 5A and the injection flow path 23 to the injection port 1a of the compressor 1 are branched.
  • the cooling heat exchanger 5A is connected in this order.
  • the “outdoor unit 100” corresponds to a “heat source side unit” in the present invention.
  • the “indoor unit 200” corresponds to the “load unit” in the present invention.
  • the “condenser 3” corresponds to the “heat source side heat exchanger” in the present invention.
  • the “expansion valve 6” corresponds to “load-side expansion means” in the present invention.
  • the “evaporator 7” corresponds to the “load side heat exchanger” in the present invention.
  • the “liquid extension pipe 18” corresponds to the “liquid pipe” in the present invention.
  • the “gas extension pipe 19” corresponds to the “gas pipe” in the present invention.
  • the high-temperature and high-pressure gas refrigerant discharged from the compressor 1 flows into the condenser 3.
  • the high-temperature and high-pressure gas refrigerant that has flowed into the condenser 3 is condensed by exchanging heat with air in the condenser 3, becomes high-pressure liquid refrigerant (liquid or two-phase state), and is stored in the liquid receiver 4.
  • the high-pressure liquid refrigerant stored in the liquid receiver 4 further exchanges heat with air in the supercooling heat exchanger 5 to become supercooled liquid refrigerant.
  • the liquid refrigerant is stored in the liquid receiver 4 only when the refrigerant amount of each component device other than the liquid receiver 4 of the refrigeration cycle becomes an appropriate amount and surplus refrigerant is generated.
  • the refrigerant amount of each component device other than 4 is insufficient, only the gas refrigerant is stored in the liquid receiver 4.
  • the high-temperature and high-pressure refrigerant branched to the injection flow path 23 downstream of the supercooling heat exchanger 5 is reduced to an intermediate pressure by the expansion valve 8 and then connected to a compression chamber in the middle of compression of the compressor 1.
  • the discharge temperature of the compressor 1 is reduced by directly flowing into the pressure injection port 1a.
  • the high-temperature and high-pressure refrigerant branched to the injection flow path 23 side is decompressed to an intermediate pressure by the expansion valve 8 and then exchanges heat with the high-temperature and high-pressure refrigerant by the supercooling heat exchanger 5. It flows into the injection port 1a of the compressor 1.
  • the refrigerant quantity determination means 20 in the first embodiment uses the temperature efficiency ⁇ of the supercooling heat exchanger 5 to check whether the refrigerant is filled with the minimum necessary quantity (the liquid refrigerant is stored in the receiver 4 and the refrigeration is performed). It is determined whether or not the refrigerant of each component device other than the liquid receiver 4 of the cycle is filled with an appropriate amount).
  • the temperature efficiency ⁇ of the supercooling heat exchanger 5 is determined by determining the degree of supercooling of the refrigerant at the outlet of the supercooling heat exchanger 5 (condenser 3 outlet temperature TH5—supercooling heat exchanger 5 outlet temperature TH8) by the maximum temperature difference ( It is a value divided by the condenser 3 outlet temperature TH5-the outside air temperature TH6) and is expressed by the following (Formula 1). For example, it is determined that the minimum necessary refrigerant amount is filled when ⁇ reaches 0.6.
  • N is displayed on the LED.
  • the operator performs refrigerant filling while confirming this display, and records the amount of refrigerant filled when the LED display changes from N to O (Oh) with a memo or the like.
  • the calculation of the amount of refrigerant filled is normally performed by measuring the mass of the cylinder before and after filling. Then, from the time when the display of the LED changes from N to O (O), the amount of refrigerant filled after that becomes the surplus refrigerant amount stored as liquid refrigerant in the liquid receiver 4.
  • the operator can check the coolant level 11 with the sight glass 14 while checking the sight glass 14 on the side of the liquid receiver 4. Add refrigerant in small increments until When the coolant level 11 can be confirmed with the sight glass 14, the amount of the coolant is 32.0% of the volume of the receiver 4 and therefore the amount of the coolant is insufficient even if conditions such as the outside air temperature change thereafter. There is no state.
  • the amount of refrigerant added from the time when the LED display changes from N to O (O) until the refrigerant liquid level 11 can be confirmed with the sight glass 14 on the side surface of the liquid receiver 4 becomes the surplus refrigerant. Since the outside air temperature, the evaporation temperature, and the operation frequency differ depending on the season, the necessary amount of refrigerant changes, but the amount of refrigerant that has changed can be filled. In addition, since the refrigerant
  • each sensor such as the outside air temperature TH6 when the LED display changes from N to O described above, the temperature inside the refrigerator or showcase, the length of the extension pipe, and the load are shown. If the controller in the refrigerator can recognize the local information such as the case or unit cooler from the graph in FIG. 3 or Japanese Patent Application Laid-Open No. 2012-132039, etc. Can be calculated. If the amount is displayed on the LED and can be sealed, it is not necessary to fill the coolant up to the position of the sight glass 14. For example, when the refrigerant is sealed at a value of the outside air temperature TH6 of ⁇ 15 ° C., the amount of additional refrigerant may be 10% of the capacity of the receiver 4 for the margin, and the amount is displayed.
  • the additional refrigerant amount is 12.1% of the volume of the receiver 4 + margin
  • the minute 10% 22.1% is sufficient, and the amount is displayed.
  • the refrigerant amount determination mode is set with a switch or the like on the control board of the refrigeration apparatus, and the LED is confirmed.
  • the display is N, it is understood that the amount of refrigerant is less than the minimum necessary amount of refrigerant, and a large amount of additional refrigerant is required.
  • O O
  • the minimum required refrigerant amount has been reached, so adding a small amount of refrigerant changes the outside air temperature, evaporation temperature, and operating frequency depending on the season, and the required refrigerant amount changes. It can be seen that there is a high possibility that a sufficient amount of refrigerant can be filled.
  • the sight glass 14 that can confirm the position of the refrigerant liquid 11 of the liquid receiver 4 is installed, and the liquid level indicates the maximum refrigerant liquid level 11 during operation.
  • Refrigerant charging at the time of service of the refrigeration apparatus can be carried out easily, quickly and accurately, and overfilling can be prevented. Therefore, by suppressing the increase in high pressure, it is possible to save energy and reduce the amount of refrigerant charged, so that the cost, environmental impact and damage can be reduced.
  • the liquid receiver 4, the accumulator (not shown), and the sight glass 14 can be made small, so that the product cost can be reduced and the product can be made compact.
  • the sight glass 14 on the side of the liquid receiver 4 is the same as or smaller than the size of the main liquid extension pipe 18 and has a moisture indicator (moisture detector), so that the product cost can be reduced and the refrigerant can be reduced. The presence or absence of moisture can be confirmed. Therefore, it is possible to prevent problems such as corrosion of the refrigerant circuit components, rust, and the oil return hole of the accumulator caused by the ice stack caused by the moisture mixed in the refrigerant circuit, and the reliability can be improved.
  • a moisture indicator moisture detector
  • the sight glass 14 is taken out from the end plate and barrel of the liquid receiver 4 with a copper pipe 16, and when not installed directly on the liquid receiver 4, the refrigerant liquid surface 11 is stabilized and the presence / absence of the refrigerant liquid surface 11 can be easily confirmed. can do.
  • FIG. FIG. 6 is a diagram illustrating an example of the sight glasses 14 and 15 of the refrigeration apparatus according to Embodiment 2 of the present invention.
  • the same parts as those in the first embodiment will be denoted by the same reference numerals and the description thereof will be omitted.
  • a description will be given of a case where the refrigerant filling amount is confirmed by changing the position of the refrigerant liquid surface 11 that is maximum throughout the year depending on the season, the outside air temperature, high pressure, and the like.
  • the refrigerant is charged until the coolant level 11 can be confirmed with the sight glass 14 after the LED on the control board changes from N to O (O), the refrigerant is more than necessary. May be filled. Therefore, the amount of refrigerant to be additionally charged may be changed according to the outside air temperature or the high pressure during operation of the refrigerator.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Air Conditioning Control Device (AREA)
  • Devices That Are Associated With Refrigeration Equipment (AREA)

Abstract

A refrigeration device wherein a heat-source-side unit and a load-side unit are connected via liquid piping and gas piping, the heat-source-side unit having at least a compressor (1), a heat-source-side heat exchanger, a supercooling heat exchanger (5), and a liquid receiver (4), and the load-side unit having at least a load-side expansion means and a load-side heat exchanger. A refrigerant circuit is formed to circulate refrigerant in the compressor (1), the heat-source-side heat exchanger, the supercooling heat exchanger (5), the liquid receiver (4), the load-side expansion means, and the load-side heat exchanger. A sight glass (14) is provided to a side surface of the liquid receiver (4). The sight glass (14) is arranged at a position that enables confirmation of the position of the maximum liquid level (11) of the refrigerant in the liquid receiver (4) during operation throughout the year.

Description

冷凍装置Refrigeration equipment
 本発明は、冷凍装置に関するものである。 The present invention relates to a refrigeration apparatus.
 従来、スーパーマーケットのショーケースの冷却、ユニットクーラによる冷蔵倉庫の冷却などに用いられる冷凍装置において、ショーケースは主に食品売り場に設置されるが、その数、大きさ、種類、配置などは店によって異なり、それによってショーケース内に配置される蒸発器の内容積も異なる。なお、ユニットクーラも種類などによって蒸発器の容積が異なるのは同様である。また、圧縮機、凝縮器、受液器を収納している冷凍機の設置場所も店の構造によって異なり、例えば、食品売り場の裏手や屋上に設置される場合がある。そのため、冷凍機の設置場所によって、蒸発器と、圧縮機、凝縮器、受液器との距離が変わり、ガス延長配管、液延長配管などの延長配管の長さも異なる。 Conventionally, in refrigeration equipment used for cooling of supermarket showcases, cooling of refrigerated warehouses with unit coolers, etc., showcases are mainly installed in food departments, but the number, size, type, arrangement, etc., vary depending on the store. The internal volume of the evaporator arranged in the showcase differs accordingly. The unit cooler has the same evaporator volume depending on the type. Moreover, the installation place of the refrigerator which accommodates the compressor, the condenser, and the liquid receiver also differs depending on the structure of the store, and may be installed on the back of the food department or on the roof, for example. Therefore, the distance between the evaporator, the compressor, the condenser, and the liquid receiver varies depending on the installation location of the refrigerator, and the lengths of the extension pipes such as the gas extension pipe and the liquid extension pipe also differ.
 冷凍サイクルが所定の性能を発揮するためには冷凍サイクルの内容積に適した冷媒量が必要であるが、蒸発器の内容積または延長配管の長さが異なると、冷凍サイクルで必要となる冷媒量(以下、必要冷媒量と称する)も異なる。そのため、冷凍機の冷媒は、現地で冷凍サイクルを構成した後に充填(封入)される。また、冷凍サイクルの必要冷媒量は、冷凍サイクルの状態によっても異なり、冷凍サイクルの状態は、外気温度、ショーケースの負荷側機器の運転状態などによっても異なる。そのため、通常は運転状態によらず、凝縮器、蒸発器など、各構成機器に必要な冷媒量が常時配分されるように、冷媒を充填する際は多めに充填する。 In order for the refrigeration cycle to exhibit a predetermined performance, an amount of refrigerant suitable for the internal volume of the refrigeration cycle is required, but if the internal volume of the evaporator or the length of the extension pipe is different, the refrigerant required for the refrigeration cycle The amount (hereinafter referred to as the necessary refrigerant amount) is also different. Therefore, the refrigerant of the refrigerator is filled (enclosed) after configuring the refrigeration cycle on site. Further, the amount of refrigerant required for the refrigeration cycle varies depending on the state of the refrigeration cycle, and the state of the refrigeration cycle also varies depending on the outside air temperature, the operating state of the load-side equipment of the showcase, and the like. For this reason, normally, a large amount of refrigerant is charged so that the amount of refrigerant necessary for each component device such as a condenser and an evaporator is always distributed regardless of the operating state.
 図7は、従来の冷凍装置の冷媒回路の一例を示す図である。
 冷媒量を判定する方法として、図7に示すようにサイトグラス17を受液器4下流の液配管に設け、試運転中に庫内温度(蒸発器により冷却される対象空間の温度)が設定温度まで低下し、運転が安定した時点で冷媒中のフラッシュガス(気泡)を目視により確認する。そして、フラッシュガスが消えたらその時が余剰なしの冷媒量であるため、その冷媒量に対し、ある割合の冷媒を充填する方法が提案されている。なお、この充填量が冷凍サイクルの状態変化による必要冷媒量の変動に対応する余剰冷媒量となる。この割合は、あるメーカの説明書ではフラッシュが消えた時点までに封入した冷媒量に対し5~10%としているが、各業者のノウハウとなっており、少なすぎると冷媒不足となり、冷却不良となるため、冷媒を多めに追加する場合が多い。
FIG. 7 is a diagram illustrating an example of a refrigerant circuit of a conventional refrigeration apparatus.
As a method of determining the amount of refrigerant, a sight glass 17 is provided in the liquid piping downstream of the receiver 4 as shown in FIG. 7, and the internal temperature (the temperature of the target space cooled by the evaporator) is set to the set temperature during the test operation. When the operation is stabilized, the flash gas (bubbles) in the refrigerant is visually confirmed. Then, when the flash gas disappears, the time is the amount of refrigerant with no surplus, so a method of charging a certain amount of refrigerant with respect to the amount of refrigerant has been proposed. In addition, this filling amount becomes the surplus refrigerant amount corresponding to the fluctuation of the necessary refrigerant amount due to the state change of the refrigeration cycle. This percentage is 5 to 10% of the amount of refrigerant sealed up to the point when the flash disappears according to the manufacturer's instructions, but it is the know-how of each supplier. Therefore, a large amount of refrigerant is often added.
 また、静電容量センサによって受液器内の冷媒液面を検知し、冷媒量を余剰、適正、不足と判定し、不足の冷媒量を算出する方法、及び、受液器側面にサイトグラスを設け、人間が目視によって液面を検知し、資料として与えられる冷媒量と液面位置(高さ)との関係を比較して、余剰、適正、不足を判断する方法が提案されている。そして、余剰分、不足分の冷媒量を算出し、余剰であれば、冷媒を抜き、不足であれば充填する方法が提案されている(特許文献1参照)。 In addition, a method of detecting the refrigerant liquid level in the receiver by using a capacitance sensor, determining that the refrigerant amount is excessive, appropriate, and insufficient, and calculating the insufficient refrigerant amount, and a sight glass on the side of the receiver A method has been proposed in which a human detects the liquid level visually and compares the relationship between the amount of refrigerant given as data and the liquid level position (height) to determine surplus, appropriateness, and shortage. And the amount of refrigerant | coolants for a surplus part and a deficiency is calculated, and if it is surplus, the refrigerant | coolant will be extracted, and if it is deficient, the method of filling will be proposed (refer patent document 1).
特許第2997487号(例えば、2~3頁、図4参照)Japanese Patent No. 2997487 (see, for example, pages 2 to 3 and FIG. 4)
 フラッシュガスを目視にて確認する方法において、一旦フラッシュガスが消え受液器内に液冷媒が貯留している場合は、実際には受液器内にどの程度の冷媒量が貯留しているか分からない。特に誤って多くの冷媒量を充填してしまっても、受液器内を確認することができないため、不要な冷媒を充填したまま過充填状態となる場合が多かった。また、機器の不具合、サービスなどで冷媒漏洩が発生してしまった場合の後、機器が正常に戻り、冷凍機の運転を再開したときにフラッシュガスが発生していない場合は、受液器内の冷媒量がぎりぎりか、受液器内の冷媒量が十分かが不明である。そのため、余裕を見て冷媒を充填するが、受液器内の冷媒量が十分だった場合は、結果として不要な冷媒を充填することになってしまい、冷媒過充填となってしまう。 In the method of visually checking the flash gas, if the flash gas disappears once and the liquid refrigerant is stored in the receiver, it can be determined how much refrigerant is actually stored in the receiver. Absent. In particular, even if a large amount of refrigerant is accidentally charged, the inside of the liquid receiver cannot be confirmed, so that there are many cases where an overfilled state is left with unnecessary refrigerant filled. In addition, if a refrigerant leak has occurred due to equipment malfunction or service, etc., if the equipment returns to normal and flash gas is not generated when the refrigerator is restarted, It is not clear whether the amount of refrigerant in the receiver is sufficient or the amount of refrigerant in the receiver is sufficient. For this reason, the refrigerant is charged with a margin, but if the amount of refrigerant in the liquid receiver is sufficient, as a result, unnecessary refrigerant is filled, resulting in refrigerant overfilling.
 冷媒過充填となった場合、冷媒過充填分がコスト高となることに加え、以下のデメリットが生じる。凝縮器内に貯留する液冷媒量が多くなり、熱交換器性能が低下して高圧上昇する。そして、COPが低下し、消費電力量が増加し、最悪の場合は高圧異常により冷凍機の運転が停止する。また、蒸発器の不具合などで、冷凍機に冷媒が蒸発せずに液状態で戻る液バックが発生した場合、通常アキュムレータに余剰冷媒分がたまると高圧側が冷媒不足となり凝縮器出口が液状態から2相状態となるため膨張弁6を通過する冷媒流量が減少し、アキュムレータから冷媒があふれにくくなる。これに対し余剰冷媒が多いとアキュムレータに冷媒満液となったとしても高圧側が冷媒不足とならず凝縮器出口が液相のままで冷媒流量が減少せず、アキュムレータを保有していたとしてもアキュムレータから液冷媒があふれてしまう。そして、そのあふれた液冷媒が圧縮機吸入に戻り、圧縮機内の油濃度低下、圧縮機からの油持ち出しなどにより圧縮機が破損する場合がある。 In the case of refrigerant overfilling, the following disadvantages occur in addition to the high cost of the refrigerant overfilling. The amount of liquid refrigerant stored in the condenser increases, the heat exchanger performance decreases, and the pressure increases. Then, the COP decreases, the power consumption increases, and in the worst case, the operation of the refrigerator is stopped due to a high pressure abnormality. Also, if a refrigerant back is returned to the refrigerator without evaporating due to a malfunction of the evaporator, etc., if excess refrigerant accumulates in the normal accumulator, the high-pressure side becomes insufficient and the outlet of the condenser becomes liquid. Since it becomes a two-phase state, the refrigerant | coolant flow rate which passes the expansion valve 6 reduces, and it becomes difficult for a refrigerant | coolant to overflow from an accumulator. On the other hand, if there is a large amount of excess refrigerant, even if the accumulator is full of refrigerant, the high pressure side will not run out of refrigerant, the condenser outlet will remain in the liquid phase, the refrigerant flow rate will not decrease, and even if the accumulator is held The liquid refrigerant overflows. Then, the overflowing liquid refrigerant returns to the suction of the compressor, and the compressor may be damaged due to a decrease in oil concentration in the compressor, oil take-out from the compressor, or the like.
 また、冷媒を過充填した場合を想定して、液バック時の被害を小さくするためにアキュムレータを設置したり、アキュムレータの容積を大きくしたりする必要があるため、コスト高、かつ製品外形が大きくなっていた。また、受液器下流の液操作弁、液電磁弁を閉とすることにより受液器内に冷媒の回収を可能とするため、受液器容積を大きくする必要があり、コスト高、かつ製品外形が大きくなっていた。 In addition, assuming that the refrigerant is overfilled, it is necessary to install an accumulator or reduce the volume of the accumulator in order to reduce the damage at the time of liquid back. It was. In addition, by closing the liquid operation valve and liquid electromagnetic valve downstream of the liquid receiver, it is possible to recover the refrigerant in the liquid receiver. The outline was large.
 また、フラッシュガスの確認のため、図7に示すようにサイトグラス17を受液器4下流の液配管に液配管のサイズに応じて設置する必要があり、コスト高となっていた。
 また、万が一、機器の不具合などで冷媒が漏洩した場合、環境に与える被害がより大きくなっていた。
Further, in order to check the flash gas, it is necessary to install the sight glass 17 in the liquid pipe downstream of the receiver 4 according to the size of the liquid pipe as shown in FIG.
Also, in the unlikely event that the refrigerant leaks due to equipment malfunctions, the damage to the environment was greater.
 また、特許文献1に示す静電容量センサによって冷媒量を余剰、適正、不足と判定し、不足の冷媒量を算出する方法はコスト高でほとんど実用化に至っていないのが現状である。また、受液器側面に適正、余剰、不足判断できるサイトグラスを設ける方法では、蒸発器の内容積や延長配管の長さや庫内温度など、運転条件が大きく異なる冷凍機では冷凍システムごとに適正、余剰、不足の冷媒量が大きく異なる。そのため、その冷媒量の変化に対応するためには大きなサイトグラスが必要となるが、それは非現実的であり、実施するとしてもコスト高となる。 In addition, the current situation is that the method for calculating the amount of refrigerant that is insufficient, determined by the capacitance sensor shown in Patent Document 1 as surplus, appropriate, and insufficient, is almost unpractical due to high costs. In addition, in the method of providing sight glass that can judge appropriate, surplus, and deficiency on the side of the receiver, it is appropriate for each refrigeration system in refrigerators with greatly different operating conditions such as the internal volume of the evaporator, the length of the extension pipe, and the internal temperature. The surplus and deficient refrigerant amounts differ greatly. Therefore, a large sight glass is required to cope with the change in the refrigerant amount, but this is unrealistic, and even if implemented, the cost is high.
 本発明は、以上のような課題のうち少なくとも一つを解決するためになされたもので、試運転時、または冷凍装置のサービス時の冷媒充填を容易かつ適正に実施でき、過充填を抑制することができる冷凍装置を提供することを目的としている。 The present invention has been made to solve at least one of the above-described problems, and can easily and properly carry out refrigerant filling at the time of trial operation or service of a refrigeration apparatus, thereby suppressing overfilling. An object of the present invention is to provide a refrigeration apparatus that can perform the above.
 本発明に係る冷凍装置は、圧縮機、熱源側熱交換器、過冷却熱交換器、受液器を少なくとも有する熱源側ユニットと、負荷側膨張手段および負荷側熱交換器を少なくとも有する負荷側ユニットとが、液配管およびガス配管を介して接続され、前記圧縮機、前記熱源側熱交換器、前記過冷却熱交換器、前記受液器、前記負荷側膨張手段、および前記負荷側熱交換器に冷媒を循環させる冷媒回路が形成される冷凍装置において、前記受液器の側面にサイトグラスを備え、前記サイトグラスは、運転中における前記受液器の年間を通して最大となる冷媒液面位置を確認できる位置に設けられたものである。 The refrigeration apparatus according to the present invention includes a compressor, a heat source side heat exchanger, a supercooling heat exchanger, a heat source side unit having at least a liquid receiver, and a load side unit having at least a load side expansion means and a load side heat exchanger. Are connected via a liquid pipe and a gas pipe, the compressor, the heat source side heat exchanger, the supercooling heat exchanger, the liquid receiver, the load side expansion means, and the load side heat exchanger. In the refrigeration apparatus in which the refrigerant circuit for circulating the refrigerant is formed, a sight glass is provided on a side surface of the receiver, and the sight glass has a maximum refrigerant liquid level position throughout the year of the receiver during operation. It is provided at a position where it can be confirmed.
 本発明に係る冷凍装置によれば、受液器の冷媒液面位置が確認できるサイトグラスを設置し、その液面位置が運転中の最大の冷媒液面位置を示すものとしたため、試運転時、または冷凍装置のサービス時の冷媒充填を容易、迅速、かつ正確に実施でき、過充填を抑制することができる。 According to the refrigeration apparatus according to the present invention, the sight glass that can confirm the refrigerant liquid level position of the receiver is installed, and the liquid level position indicates the maximum refrigerant liquid level position during operation. Or the refrigerant filling at the time of service of the refrigeration apparatus can be carried out easily, quickly and accurately, and overfilling can be suppressed.
本発明の実施の形態1に係る冷凍装置の冷媒回路の一例を示す図である。It is a figure which shows an example of the refrigerant circuit of the freezing apparatus which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る冷凍装置の異なる凝縮温度に対応したモリエル線図である。It is a Mollier diagram corresponding to the different condensation temperature of the refrigerating device concerning Embodiment 1 of the present invention. 本発明の実施の形態1に係る冷凍装置の外気温度に対する受液器内液比率を示す図である。It is a figure which shows the liquid receiver internal liquid ratio with respect to the external temperature of the freezing apparatus which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る冷凍装置のサイトグラスの一例を示す図である。It is a figure which shows an example of the sight glass of the freezing apparatus which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る冷凍装置の冷媒回路の他の例を示す図である。It is a figure which shows the other example of the refrigerant circuit of the freezing apparatus which concerns on Embodiment 1 of this invention. 本発明の実施の形態2に係る冷凍装置のサイトグラスの一例を示す図である。It is a figure which shows an example of the sight glass of the freezing apparatus which concerns on Embodiment 2 of this invention. 従来の冷凍装置の冷媒回路の一例を示す図である。It is a figure which shows an example of the refrigerant circuit of the conventional freezing apparatus.
 以下、本発明の実施の形態を図面に基づいて説明する。なお、以下に説明する実施の形態によって本発明が限定されるものではない。また、以下の図面では各構成部材の大きさの関係が実際のものとは異なる場合がある。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. The present invention is not limited to the embodiments described below. Moreover, in the following drawings, the relationship of the size of each component may be different from the actual one.
 実施の形態1.
 図1は、本発明の実施の形態1に係る冷凍装置の冷媒回路の一例を示す図である。
 本実施の形態1に係る冷凍装置は、室外ユニット100及び室内ユニット200を備えている。
 室外ユニット100は、圧縮機1、凝縮器3、受液器4、及び過冷却熱交換器5を備えている。
 また、過冷却熱交換器5の下流で、室内ユニット200の蒸発器7へ向かうメイン流路22と、圧縮機1のインジェクションポート1aへ向かうインジェクション流路23とに分岐され、メイン流路22側には液操作弁10が、インジェクション流路23側には膨張弁8が、それぞれ設けられている。なお、室内ユニット200は、ショーケース、ユニットクーラなどが利用される。
Embodiment 1 FIG.
1 is a diagram illustrating an example of a refrigerant circuit of a refrigeration apparatus according to Embodiment 1 of the present invention.
The refrigeration apparatus according to Embodiment 1 includes an outdoor unit 100 and an indoor unit 200.
The outdoor unit 100 includes a compressor 1, a condenser 3, a liquid receiver 4, and a supercooling heat exchanger 5.
Further, downstream of the supercooling heat exchanger 5, the main unit 22 branches to a main flow path 22 toward the evaporator 7 of the indoor unit 200 and an injection flow path 23 toward the injection port 1 a of the compressor 1. The liquid operation valve 10 is provided, and the expansion valve 8 is provided on the injection flow path 23 side. The indoor unit 200 uses a showcase, a unit cooler, or the like.
 室内ユニット200は、液電磁弁9、膨張弁6、及び蒸発器7を備えている。また、室内ユニット200は、液延長配管18及びガス延長配管19により室外ユニット100と接続される。そして、圧縮機1、凝縮器3、受液器4、過冷却熱交換器5、膨張弁6、及び蒸発器7に順次冷媒を循環させる冷媒回路が形成される。 The indoor unit 200 includes a liquid electromagnetic valve 9, an expansion valve 6, and an evaporator 7. The indoor unit 200 is connected to the outdoor unit 100 by the liquid extension pipe 18 and the gas extension pipe 19. And the refrigerant circuit which circulates a refrigerant | coolant sequentially to the compressor 1, the condenser 3, the liquid receiver 4, the supercooling heat exchanger 5, the expansion valve 6, and the evaporator 7 is formed.
 凝縮器3、受液器4、過冷却熱交換器5、蒸発器7、液延長配管18、及びガス延長配管19に配分される冷媒量は、それぞれの内容積、性能、及び運転状態によって決まり、冷凍サイクルに充填された冷媒の内、冷凍サイクルの各構成機器が適正冷媒量になった後の余剰冷媒は、受液器4の中に貯留されることになる。 The amount of refrigerant distributed to the condenser 3, the liquid receiver 4, the supercooling heat exchanger 5, the evaporator 7, the liquid extension pipe 18, and the gas extension pipe 19 is determined by the respective internal volume, performance, and operation state. Of the refrigerant filled in the refrigeration cycle, surplus refrigerant after each component device of the refrigeration cycle has an appropriate amount of refrigerant is stored in the liquid receiver 4.
 圧縮機1は、冷媒を吸入し、その冷媒を圧縮して高温・高圧の状態にするものである。また、インジェクションポート1aは、圧縮機1の圧縮途中の圧縮室に冷媒を流入させる、中間圧のポートである。凝縮器3は、図示省略の送風機から供給される空気と冷媒との間で熱交換を行い、冷媒を凝縮して液冷媒にするものである。 The compressor 1 sucks refrigerant and compresses the refrigerant to a high temperature and high pressure state. The injection port 1 a is an intermediate pressure port that allows the refrigerant to flow into the compression chamber in the middle of compression of the compressor 1. The condenser 3 performs heat exchange between air supplied from a blower (not shown) and the refrigerant, and condenses the refrigerant into a liquid refrigerant.
 受液器4は、凝縮器3と蒸発器7との間に配置され、余剰冷媒を貯留するものである。なお、受液器4は、余剰冷媒を貯留できる容器であればよい。過冷却熱交換器5は、凝縮器3と同様に空気と冷媒との間で熱交換を行い、液冷媒を過冷却するものである。膨張弁6、8は、冷媒を減圧して膨張させるものである。この膨張弁6、8は、開度が可変に制御可能なもの、たとえば電子式膨張弁による緻密な流量制御手段や、毛細管等の安価な冷媒流量調節手段等で構成するとよい。 The liquid receiver 4 is disposed between the condenser 3 and the evaporator 7 and stores excess refrigerant. In addition, the liquid receiver 4 should just be a container which can store an excess refrigerant | coolant. The supercooling heat exchanger 5 performs heat exchange between air and refrigerant in the same manner as the condenser 3 to supercool the liquid refrigerant. The expansion valves 6 and 8 expand the refrigerant by decompressing it. The expansion valves 6 and 8 may be configured by a valve whose opening degree can be variably controlled, for example, a precise flow rate control means using an electronic expansion valve, an inexpensive refrigerant flow rate control means such as a capillary tube, or the like.
 蒸発器7は、図示省略の送風機から供給される空気と冷媒との間で熱交換を行い、冷媒を蒸発してガス冷媒にするものである。この蒸発器7により、ショーケースなどの対象空間が冷却される。液電磁弁9は、電子式の開閉により、冷媒を蒸発器7に流入させるかの制御をするものである。液操作弁10は、手動式の開閉により、冷媒を液延長配管18に流入させたり、させなかったりするものである。 The evaporator 7 exchanges heat between air supplied from a blower (not shown) and the refrigerant to evaporate the refrigerant into a gas refrigerant. This evaporator 7 cools the target space such as a showcase. The liquid electromagnetic valve 9 controls whether the refrigerant flows into the evaporator 7 by electronic opening and closing. The liquid operation valve 10 is configured to allow the refrigerant to flow into the liquid extension pipe 18 or not by manual opening and closing.
 また、本実施の形態1に係る冷凍装置は、冷媒回路に充填された冷媒が、最低必要な量充填されているかを判定する冷媒量判定手段20を備えている。冷媒量判定手段20は、例えば冷凍装置の制御基板上に設けられるマイコンなどにより構成することができる。この冷媒量判定手段20には、第1温度センサ(TH5)、第2温度センサ(TH8)、及び第3温度センサ(TH6)により検知された温度情報が入力される。 In addition, the refrigeration apparatus according to the first embodiment includes refrigerant amount determination means 20 that determines whether or not the minimum amount of refrigerant charged in the refrigerant circuit is filled. The refrigerant amount determination means 20 can be configured by a microcomputer or the like provided on the control board of the refrigeration apparatus, for example. Temperature information detected by the first temperature sensor (TH5), the second temperature sensor (TH8), and the third temperature sensor (TH6) is input to the refrigerant amount determination means 20.
 第1温度センサ(TH5)は、凝縮器3の出口側、または凝縮器3内で冷媒が二相状態となる部分から過冷却熱交換器5の入口側に至る流路のいずれかの位置に設けられ、冷媒の温度を検知する。
 第2温度センサ(TH8)は、過冷却熱交換器5の出口側から膨張弁6の入口側に至る流路のいずれかの位置に設けられ、冷媒の温度を検知する。
 第3温度センサ(TH6)は、凝縮器3が冷媒と熱交換する前の空気の温度を検知する。
The first temperature sensor (TH5) is located at any position on the outlet side of the condenser 3 or the flow path from the portion where the refrigerant is in a two-phase state in the condenser 3 to the inlet side of the supercooling heat exchanger 5. It is provided and detects the temperature of the refrigerant.
The second temperature sensor (TH8) is provided at any position in the flow path from the outlet side of the supercooling heat exchanger 5 to the inlet side of the expansion valve 6, and detects the temperature of the refrigerant.
The third temperature sensor (TH6) detects the temperature of the air before the condenser 3 exchanges heat with the refrigerant.
 また、冷媒量判定手段20には、判定結果及び各種情報を表示する表示部21が設けられており、この表示部21は、例えば7セグメントLEDなどにより構成される。
 なお、冷媒回路には冷媒を充填する際には、図示省略のボンベが用いられる。
In addition, the refrigerant amount determination means 20 is provided with a display unit 21 that displays the determination result and various types of information. The display unit 21 includes, for example, a 7-segment LED.
Note that a cylinder (not shown) is used when the refrigerant circuit is filled with the refrigerant.
 冷媒回路を循環する冷媒は、主に凝縮器3、受液器4、液延長配管18、蒸発器7、及びガス延長配管19に存在している。冷媒が気相の場合、温度が高いほど密度が高くなるため、気相が多い凝縮器3では凝縮温度が高いほど凝縮器3に冷媒が貯留する。受液器4についても気相が支配的であり凝縮温度が高いほど受液器4に冷媒が貯留する。また、液相の場合、温度が低いほど密度が高くなるため、液温度が低いほど液延長配管18に冷媒が貯留する。 The refrigerant circulating in the refrigerant circuit is mainly present in the condenser 3, the liquid receiver 4, the liquid extension pipe 18, the evaporator 7, and the gas extension pipe 19. When the refrigerant is in the gas phase, the higher the temperature, the higher the density. Therefore, in the condenser 3 having a larger gas phase, the refrigerant is stored in the condenser 3 as the condensation temperature is higher. As for the liquid receiver 4, the gas phase is dominant, and the higher the condensation temperature, the more the refrigerant is stored in the liquid receiver 4. In the case of the liquid phase, the density increases as the temperature decreases. Therefore, the refrigerant accumulates in the liquid extension pipe 18 as the liquid temperature decreases.
 図2は、本発明の実施の形態1に係る冷凍装置の異なる凝縮温度に対応したモリエル線図である。なお、図2中のTcは凝縮温度、Teは蒸発温度を表している。
 蒸発器7では膨張弁6で絞られた2相冷媒が蒸発し気相となるが、図2に示すとおり、凝縮温度が低いほど膨張弁6直後の湿り度が大きくなるため蒸発器7内には多くの冷媒が貯留することになる。
よって、冷凍装置を運転するのに必要な冷媒量の季節による変動は、蒸発温度が一定であれば、凝縮器3容積、受液器4容積と液延長配管+蒸発器容積の相対的な関係により決まり、凝縮器3、受液器4容積の割合が多くなると凝縮温度が高いほど必要冷媒量が多くなり、液延長配管+蒸発器容積の割合が多くなると凝縮温度が低いほど必要冷媒量は多くなる。
FIG. 2 is a Mollier diagram corresponding to different condensation temperatures of the refrigeration apparatus according to Embodiment 1 of the present invention. In FIG. 2, Tc represents the condensation temperature, and Te represents the evaporation temperature.
In the evaporator 7, the two-phase refrigerant throttled by the expansion valve 6 evaporates into a gas phase. However, as shown in FIG. 2, the lower the condensation temperature, the higher the wetness immediately after the expansion valve 6. Will store a lot of refrigerant.
Therefore, the seasonal variation in the amount of refrigerant required to operate the refrigeration apparatus is a relative relationship between the volume of the condenser 3 and the volume of the liquid receiver 4 and the liquid extension pipe + evaporator volume if the evaporation temperature is constant. When the proportion of the volume of the condenser 3 and the receiver 4 increases, the required refrigerant amount increases as the condensation temperature increases. When the proportion of the liquid extension pipe + evaporator volume increases, the required refrigerant amount decreases as the condensation temperature decreases. Become more.
 また、受液器4の必要容積は、受液器4下流の液操作弁10を閉とすることにより受液器4内に冷媒の回収を可能とすることが必要なため、凝縮器3容積と液延長配管18容積とを加えた容積によりほぼ決まり、以下の値となる。 Further, the required volume of the liquid receiver 4 is required to enable the recovery of the refrigerant in the liquid receiver 4 by closing the liquid operation valve 10 downstream of the liquid receiver 4, so that the volume of the condenser 3 And the volume of the liquid extension pipe 18 are almost determined by the volume, and the following values are obtained.
 [数式1]
 受液器容積 = (凝縮器容積+液延長配管容積)×(125%±25%)
[Formula 1]
Receiver volume = (condenser volume + liquid extension pipe volume) x (125% ± 25%)
 図3は、本発明の実施の形態1に係る冷凍装置の外気温度に対する受液器4内液比率を示す図である。図4は、本発明の実施の形態1に係る冷凍装置のサイトグラス14の一例を示す図である。
 図3は、外気温度が変化することで、受液器4内液比率(=受液器4内の液冷媒が存在する部分の容積÷受液器4容積)がどのように変化するかを条件別に示している。
FIG. 3 is a diagram showing a ratio of the liquid in the liquid receiver 4 with respect to the outside air temperature of the refrigeration apparatus according to Embodiment 1 of the present invention. FIG. 4 is a diagram illustrating an example of the sight glass 14 of the refrigeration apparatus according to Embodiment 1 of the present invention.
FIG. 3 shows how the liquid ratio in the liquid receiver 4 (= the volume of the liquid refrigerant in the liquid receiver 4 ÷ the volume of the liquid receiver 4) changes as the outside air temperature changes. It shows by condition.
 室外ユニット100の周囲の外気温度の使用範囲は-15~43℃とする。グラフは外気温度の変化で受液器4内の冷媒量がどのように変化するかを示している。通常ショーケースの容積はユニットクーラの容積よりも大きくなる。図3の負荷がショーケースの場合で配管長100mの条件のグラフは、負荷の容積が大きく、延長配管が長く、凝縮器3、及び受液器4の容積が小さい、受液器4内液比率の変化率が最大となる例である。受液器4内液比率の変化率の最大値は、冷媒量が外気温度43℃時では受液器4容積の22.7%に対し、外気温度-15℃時では0.0%となり、その変化幅は22.7%となる。
 つまり、外気温度43℃は必要冷媒が少ないため余剰冷媒が液だめ内に多く貯留し、外気温度-15℃では必要冷媒が多いため余剰冷媒がなくなり液だめ内に貯留する冷媒はなくなる。外気温度が低くなるほど必要冷媒量が増える傾向にあり、これは凝縮器3、受液器4内冷媒量の変化量よりも液延長配管+蒸発器容積内冷媒量の変化量が多いためである。外気温度5℃以下で受液器内液比率の変化がないのは凝縮器3のファン風量をコントロールして凝縮温度を一定に保つ制御を実施しているためである。
The use range of the outside air temperature around the outdoor unit 100 is -15 to 43 ° C. The graph shows how the amount of refrigerant in the liquid receiver 4 changes due to a change in the outside air temperature. Usually, the volume of the showcase is larger than the volume of the unit cooler. The graph of the condition of the pipe length of 100 m when the load in FIG. 3 is a showcase shows that the volume of the load is large, the extension pipe is long, the volume of the condenser 3 and the liquid receiver 4 is small, and the liquid in the liquid receiver 4 This is an example in which the rate of change of the ratio is maximized. The maximum value of the rate of change in the liquid ratio in the receiver 4 is 22.7% of the volume of the receiver 4 when the refrigerant amount is 43 ° C., and 0.0% when the ambient temperature is −15 ° C. The change width is 22.7%.
That is, since the required refrigerant is low at the outside air temperature of 43 ° C., a large amount of surplus refrigerant is stored in the liquid reservoir, and at the outside air temperature of −15 ° C., the necessary refrigerant is large and the surplus refrigerant is eliminated and there is no refrigerant stored in the liquid reservoir. The required amount of refrigerant tends to increase as the outside air temperature decreases. This is because the amount of change in the amount of refrigerant in the liquid extension pipe + evaporator volume is greater than the amount of change in the amount of refrigerant in the condenser 3 and the receiver 4. . The reason why there is no change in the liquid ratio in the receiver when the outside air temperature is 5 ° C. or less is that control is performed to keep the condensation temperature constant by controlling the fan air volume of the condenser 3.
 そこで、図4に示すようにサイトグラス14を、受液器4の冷媒液面11の位置が確認できるように受液器4の側面に、かつ、液だめ内冷媒量の最大値(上記22.7%)に対し、約10%の余裕を見て最大33.0%の位置に設け、この位置を、年間を通して最大となる冷媒液面11位置とする。サイトグラス14は、受液器4の鏡板、胴からの銅配管16に取り付ける。また、サイトグラス14は、水分有無の判定機能を有し、液延長配管18のサイズと同じかそれよりも小さいサイズとする。または、直接受液器4のシェルに設置してもよいが、冷媒の流れが受液器4内の冷媒液面11を乱しやすく、冷媒液面11は確認しづらくなる。 Therefore, as shown in FIG. 4, the sight glass 14 is placed on the side surface of the liquid receiver 4 so that the position of the refrigerant liquid surface 11 of the liquid receiver 4 can be confirmed, and the maximum amount of refrigerant in the liquid reservoir (22 above). 7%), a margin of about 10% is provided at a maximum position of 33.0%, and this position is set as the position of the refrigerant liquid surface 11 that becomes the maximum throughout the year. The sight glass 14 is attached to a copper pipe 16 from the end plate and barrel of the liquid receiver 4. The sight glass 14 has a function of determining the presence or absence of moisture, and has a size equal to or smaller than the size of the liquid extension pipe 18. Alternatively, it may be installed directly on the shell of the liquid receiver 4, but the refrigerant flow tends to disturb the refrigerant liquid level 11 in the liquid receiver 4, making it difficult to check the refrigerant liquid level 11.
 図5は、本発明の実施の形態1に係る冷凍装置の冷媒回路の他の例を示す図である。
 室内ユニット100Aは、図1と同様に圧縮機1、凝縮器3、受液器4、及び過冷却熱交換器5Aを備えているが、過冷却熱交換器5Aは、プレート熱交換器や銅管の2重管で冷媒と冷媒との熱交換が可能となっている。過冷却熱交換器5Aの下流で蒸発器7へ向かうメイン流路22と、圧縮機1のインジェクションポート1aへのインジェクション流路23とに分岐され、インジェクション流路23側では、膨張弁8、過冷却熱交換器5Aの順に接続されている。
FIG. 5 is a diagram illustrating another example of the refrigerant circuit of the refrigeration apparatus according to Embodiment 1 of the present invention.
The indoor unit 100A includes a compressor 1, a condenser 3, a liquid receiver 4, and a supercooling heat exchanger 5A as in FIG. 1, but the supercooling heat exchanger 5A includes a plate heat exchanger and a copper Heat exchange between the refrigerant and the refrigerant is possible with the double pipe of the pipe. The main flow path 22 heading toward the evaporator 7 downstream of the supercooling heat exchanger 5A and the injection flow path 23 to the injection port 1a of the compressor 1 are branched. The cooling heat exchanger 5A is connected in this order.
 なお、「室外ユニット100」は、本発明における「熱源側ユニット」に相当する。
 なお、「室内ユニット200」は、本発明における「負荷側ユニット」に相当する。
 なお、「凝縮器3」は、本発明における「熱源側熱交換器」に相当する。
 なお、「膨張弁6」は、本発明における「負荷側膨張手段」に相当する。
 なお、「蒸発器7」は、本発明における「負荷側熱交換器」に相当する。
 なお、「液延長配管18」は、本発明における「液配管」に相当する。
 なお、「ガス延長配管19」は、本発明における「ガス配管」に相当する。
The “outdoor unit 100” corresponds to a “heat source side unit” in the present invention.
The “indoor unit 200” corresponds to the “load unit” in the present invention.
The “condenser 3” corresponds to the “heat source side heat exchanger” in the present invention.
The “expansion valve 6” corresponds to “load-side expansion means” in the present invention.
The “evaporator 7” corresponds to the “load side heat exchanger” in the present invention.
The “liquid extension pipe 18” corresponds to the “liquid pipe” in the present invention.
The “gas extension pipe 19” corresponds to the “gas pipe” in the present invention.
 次に、本発明の実施の形態1に係る冷凍装置の冷媒の流れについて、図1及び図5に基づいて説明する。
 圧縮機1から吐出された高温高圧のガス冷媒は、凝縮器3へ流入する。凝縮器3へ流入した高温高圧のガス冷媒は、凝縮器3において空気と熱交換して凝縮され、高圧液冷媒(液または二相状態)となり、受液器4に貯留される。受液器4に貯留された高圧液冷媒は、さらに過冷却熱交換器5で空気と熱交換して、過冷却された液冷媒となる。
 ここで、受液器4に液冷媒が貯留されるのは、冷凍サイクルの受液器4以外の各構成機器の冷媒量が適正量になって余剰冷媒が生じた場合のみで、受液器4以外の各構成機器の冷媒量が不足している場合は、受液器4に貯留されるのはガス冷媒のみとなる。
Next, the flow of the refrigerant in the refrigeration apparatus according to Embodiment 1 of the present invention will be described with reference to FIGS.
The high-temperature and high-pressure gas refrigerant discharged from the compressor 1 flows into the condenser 3. The high-temperature and high-pressure gas refrigerant that has flowed into the condenser 3 is condensed by exchanging heat with air in the condenser 3, becomes high-pressure liquid refrigerant (liquid or two-phase state), and is stored in the liquid receiver 4. The high-pressure liquid refrigerant stored in the liquid receiver 4 further exchanges heat with air in the supercooling heat exchanger 5 to become supercooled liquid refrigerant.
Here, the liquid refrigerant is stored in the liquid receiver 4 only when the refrigerant amount of each component device other than the liquid receiver 4 of the refrigeration cycle becomes an appropriate amount and surplus refrigerant is generated. When the refrigerant amount of each component device other than 4 is insufficient, only the gas refrigerant is stored in the liquid receiver 4.
 また、過冷却熱交換器5の下流でインジェクション流路23側に分岐された高温高圧の冷媒は、膨張弁8で中間圧に減圧された後、圧縮機1の圧縮途中の圧縮室につながる中間圧のインジェクションポート1aに直接流入することで、圧縮機1の吐出温度を低減させる。
また、図5の場合において、インジェクション流路23側に分岐された高温高圧の冷媒は、膨張弁8で中間圧に減圧された後、過冷却熱交換器5で高温高圧冷媒と熱交換し、圧縮機1のインジェクションポート1aに流入する。
Further, the high-temperature and high-pressure refrigerant branched to the injection flow path 23 downstream of the supercooling heat exchanger 5 is reduced to an intermediate pressure by the expansion valve 8 and then connected to a compression chamber in the middle of compression of the compressor 1. The discharge temperature of the compressor 1 is reduced by directly flowing into the pressure injection port 1a.
Further, in the case of FIG. 5, the high-temperature and high-pressure refrigerant branched to the injection flow path 23 side is decompressed to an intermediate pressure by the expansion valve 8 and then exchanges heat with the high-temperature and high-pressure refrigerant by the supercooling heat exchanger 5. It flows into the injection port 1a of the compressor 1.
 本実施の形態1における冷媒量判定手段20は、過冷却熱交換器5の温度効率εを用いて、冷媒が最低必要な量充填されているか(受液器4に液冷媒が貯留され、冷凍サイクルの受液器4以外の各構成機器の冷媒が適正量充填されているかどうか)を判定する。過冷却熱交換器5の温度効率εは、過冷却熱交換器5の出口における冷媒の過冷却度(凝縮器3出口温度TH5-過冷却熱交換器5出口温度TH8)を、最大温度差(凝縮器3出口温度TH5-外気温度TH6)で除算した値であり、下記(数式1)で表される。例えば、εが0.6に達した時点で最低必要冷媒量が充填されたと判定する。 The refrigerant quantity determination means 20 in the first embodiment uses the temperature efficiency ε of the supercooling heat exchanger 5 to check whether the refrigerant is filled with the minimum necessary quantity (the liquid refrigerant is stored in the receiver 4 and the refrigeration is performed). It is determined whether or not the refrigerant of each component device other than the liquid receiver 4 of the cycle is filled with an appropriate amount). The temperature efficiency ε of the supercooling heat exchanger 5 is determined by determining the degree of supercooling of the refrigerant at the outlet of the supercooling heat exchanger 5 (condenser 3 outlet temperature TH5—supercooling heat exchanger 5 outlet temperature TH8) by the maximum temperature difference ( It is a value divided by the condenser 3 outlet temperature TH5-the outside air temperature TH6) and is expressed by the following (Formula 1). For example, it is determined that the minimum necessary refrigerant amount is filled when ε reaches 0.6.
 [数式2]
 ε = (TH5-TH8)÷(TH5-TH6)
[Formula 2]
ε = (TH5-TH8) ÷ (TH5-TH6)
(試運転時の冷媒充填方法)
 次に、このような温度効率εと、図4に示す受液器4のサイトグラス14を用いた試運転時の冷媒充填の具体的な方法について説明する。
 まず、冷凍装置の回路内の真空引きを実施した後、冷凍装置を停止した状態で冷媒を充填する。その後、冷凍装置を運転しながら冷媒を少しずつ充填する。このとき、冷凍装置の制御基板上のスイッチなどで冷媒量判定モードとすることで、基板のLED上に冷媒が最低必要な量充填されているかを上記εに基づいて表示する。例えば、εの値が0.6以上となり、冷媒が最低必要な量に達している場合、LEDにO(オー)を表示する。
(Refrigerant charging method during trial operation)
Next, a specific method for charging the refrigerant during the trial operation using the temperature efficiency ε and the sight glass 14 of the liquid receiver 4 shown in FIG. 4 will be described.
First, after evacuating the circuit of the refrigeration apparatus, the refrigerant is charged in a state where the refrigeration apparatus is stopped. Thereafter, the refrigerant is filled little by little while operating the refrigeration apparatus. At this time, by setting the refrigerant amount determination mode with a switch or the like on the control board of the refrigeration apparatus, whether or not the minimum amount of refrigerant is filled on the LED of the board is displayed based on the above ε. For example, when the value of ε is 0.6 or more and the refrigerant reaches the minimum required amount, O (O) is displayed on the LED.
 また、εの値が0.6未満で、最低必要な量に達していない場合は、LEDにNを表示する。作業者は、この表示を確認しながら冷媒充填を実施し、NからO(オー)にLEDの表示が変化した時点で充填した冷媒量をメモなどで記録する。充填した冷媒量の算出は、通常充填前、及び充填後のボンベの質量を計ることで実施する。そして、NからO(オー)にLEDの表示が変化した時点から、それ以降に冷媒を充填した量が受液器4内に液冷媒として貯留する余剰の冷媒量となる。 Also, if the value of ε is less than 0.6 and the minimum required amount is not reached, N is displayed on the LED. The operator performs refrigerant filling while confirming this display, and records the amount of refrigerant filled when the LED display changes from N to O (Oh) with a memo or the like. The calculation of the amount of refrigerant filled is normally performed by measuring the mass of the cylinder before and after filling. Then, from the time when the display of the LED changes from N to O (O), the amount of refrigerant filled after that becomes the surplus refrigerant amount stored as liquid refrigerant in the liquid receiver 4.
 その後、ある程度冷凍装置内が目標温度に近づき、運転が安定した状態になった後、作業者は受液器4側面のサイトグラス14を確認しながら、冷媒液面11がサイトグラス14で確認できるようになるまで、少しずつ冷媒を追加する。冷媒液面11がサイトグラス14で確認できた時点で、冷媒量は受液器4容積の32.0%の位置にあるため、その後、外気温度など条件が変化したとしても、冷媒量が不足状態となることはない。 Then, after the inside of the refrigeration apparatus approaches the target temperature to some extent and the operation becomes stable, the operator can check the coolant level 11 with the sight glass 14 while checking the sight glass 14 on the side of the liquid receiver 4. Add refrigerant in small increments until When the coolant level 11 can be confirmed with the sight glass 14, the amount of the coolant is 32.0% of the volume of the receiver 4 and therefore the amount of the coolant is insufficient even if conditions such as the outside air temperature change thereafter. There is no state.
 すなわち、NからO(オー)にLEDの表示が変化した時点から、受液器4側面のサイトグラス14で冷媒液面11が確認できるまで冷媒を追加した量が、余剰の冷媒となる。そして、季節によって、外気温度、蒸発温度、運転周波数が異なるため、必要な冷媒量が変化するが、その変化する分の冷媒量が充填できたことになる。
 なお、冷媒液面11がサイトグラス14で確認できた時点で充填した冷媒量は十分であるため、それ以上冷媒を充填しないようにする。
That is, the amount of refrigerant added from the time when the LED display changes from N to O (O) until the refrigerant liquid level 11 can be confirmed with the sight glass 14 on the side surface of the liquid receiver 4 becomes the surplus refrigerant. Since the outside air temperature, the evaporation temperature, and the operation frequency differ depending on the season, the necessary amount of refrigerant changes, but the amount of refrigerant that has changed can be filled.
In addition, since the refrigerant | coolant amount with which the refrigerant | coolant liquid level 11 was confirmed with the sight glass 14 is enough, it is made not to fill with a refrigerant | coolant any more.
 また、上記に記載のNからOにLEDの表示が変化した時点の外気温度TH6などの各部センサの読み取り値、冷蔵やショーケースなどの庫内温度、延長配管の長さ、及び、負荷がショーケースかユニットクーラかなどの現地情報を、冷凍機内の制御器が認識できれば図3のグラフ、または特開2012-132639号公報などから、あと冷媒を何Kg追加すれば年間通して十分な冷媒量が封入できるか算出できる。その量をLEDに表示し、封入できるようにすれば、サイトグラス14の位置まで冷媒を封入する必要はない。例えば外気温度TH6の値が-15℃で冷媒封入を実施していた場合、追加冷媒量は余裕分の受液器4容積の10%で良く、その量を表示する。また外気温度TH6の値が30℃、延長配管の長さが80m、負荷がショーケースの場合で冷媒封入を実施していた場合、追加冷媒量は受液器4容積の12.1%+余裕分10%=22.1%で良く、その量を表示する。 In addition, the reading values of each sensor such as the outside air temperature TH6 when the LED display changes from N to O described above, the temperature inside the refrigerator or showcase, the length of the extension pipe, and the load are shown. If the controller in the refrigerator can recognize the local information such as the case or unit cooler from the graph in FIG. 3 or Japanese Patent Application Laid-Open No. 2012-132039, etc. Can be calculated. If the amount is displayed on the LED and can be sealed, it is not necessary to fill the coolant up to the position of the sight glass 14. For example, when the refrigerant is sealed at a value of the outside air temperature TH6 of −15 ° C., the amount of additional refrigerant may be 10% of the capacity of the receiver 4 for the margin, and the amount is displayed. In addition, when the outside air temperature TH6 is 30 ° C, the length of the extension pipe is 80m, the load is a showcase, and the refrigerant is sealed, the additional refrigerant amount is 12.1% of the volume of the receiver 4 + margin The minute 10% = 22.1% is sufficient, and the amount is displayed.
(サービス時の冷媒充填方法)
 次に、製品をサービスする場合など、ある程度冷媒回路内に冷媒が残っている状態での冷媒充填方法について説明する。
 作業者は冷凍装置を運転しながら、受液器4側面のサイトグラス14を確認する。液冷媒が確認できる場合は、季節によって、外気温度、蒸発温度、運転周波数が異なり、必要な冷媒量が変化する分も含めて十分な冷媒量が充填されているため、特に冷媒を追加する必要がない。逆に、冷媒を多く充填しすぎている可能性がある場合は、冷媒液面11が確認できるまで冷媒を回収する。
(Method of charging refrigerant at the time of service)
Next, a refrigerant charging method in a state where the refrigerant remains in the refrigerant circuit to some extent, such as when servicing a product, will be described.
The operator checks the sight glass 14 on the side of the liquid receiver 4 while operating the refrigeration apparatus. If the liquid refrigerant can be confirmed, the outside air temperature, evaporation temperature, and operating frequency differ depending on the season, and it is necessary to add a refrigerant in particular because it is filled with a sufficient amount of refrigerant including the necessary amount of refrigerant. There is no. On the contrary, when there is a possibility that a large amount of refrigerant is filled, the refrigerant is collected until the refrigerant liquid level 11 can be confirmed.
 また、冷媒液面11が確認できない場合は、冷凍装置の制御基板上のスイッチなどで冷媒量判定モードとし、LEDを確認する。表示がNの場合は、最低必要冷媒量未満の冷媒量であり、冷媒追加量は多く必要となることが分かる。表示がO(オー)の場合は、最低必要冷媒量には達しているため、少しの冷媒を追加することで、季節によって、外気温度、蒸発温度、運転周波数が異なり、必要な冷媒量が変化する分も含めて十分な冷媒量が充填できている可能性が高いことが分かる。特に、冬場などで外気温度が低い場合に表示がO(オー)である場合は、年間通して十分な冷媒量が充填できている可能性が高いことがわかる。
 なお、サービス時も冷媒液面11がサイトグラス14で確認できた時点で充填した冷媒量は十分であるため、それ以上冷媒を充填しないようにする。
When the refrigerant liquid level 11 cannot be confirmed, the refrigerant amount determination mode is set with a switch or the like on the control board of the refrigeration apparatus, and the LED is confirmed. When the display is N, it is understood that the amount of refrigerant is less than the minimum necessary amount of refrigerant, and a large amount of additional refrigerant is required. When the display is O (O), the minimum required refrigerant amount has been reached, so adding a small amount of refrigerant changes the outside air temperature, evaporation temperature, and operating frequency depending on the season, and the required refrigerant amount changes. It can be seen that there is a high possibility that a sufficient amount of refrigerant can be filled. In particular, when the display is O (o) when the outside air temperature is low, such as in winter, it can be seen that there is a high possibility that a sufficient amount of refrigerant can be filled throughout the year.
In addition, since the refrigerant | coolant amount with which the refrigerant | coolant liquid level 11 was able to be confirmed with the sight glass 14 is enough also at the time of service, it is made not to fill with a refrigerant | coolant any more.
 次に、サイトグラス14により冷媒回路内の水分有無を確認する方法を説明する。
 冷凍装置運転中に液電磁弁9または液操作弁10を閉じることで、受液器4内に冷媒を回収するポンプダウンを実施する。これにより、受液器4側面のサイトグラス14が満液状態となり、サイトグラス14に付属の図示省略のモイスチャインジケータ(水分検知器)により、冷媒回路内の水分有無を確認できる。
Next, a method for confirming the presence or absence of moisture in the refrigerant circuit using the sight glass 14 will be described.
By closing the liquid electromagnetic valve 9 or the liquid operation valve 10 during the operation of the refrigeration apparatus, the pump down for collecting the refrigerant in the liquid receiver 4 is performed. Thereby, the sight glass 14 on the side surface of the liquid receiver 4 becomes full, and the presence or absence of moisture in the refrigerant circuit can be confirmed by a not-shown moisture indicator (moisture detector) attached to the sight glass 14.
 以上のように、受液器4の冷媒液面11位置が確認できるサイトグラス14を設置し、その液面位置が運転中の最大の冷媒液面11位置を示すものとしたため、試運転時、または冷凍装置のサービス時の冷媒充填を容易、迅速、かつ正確に実施でき、過充填を防止することができる。よって、高圧上昇を抑えることで省エネとなり、かつ冷媒充填量を少なくできるため、コスト、環境に与える影響、被害を小さくできる。さらには、受液器4、図示省略のアキュムレータ、サイトグラス14を小さくでき、製品コストを下げ、コンパクトにできる。 As described above, the sight glass 14 that can confirm the position of the refrigerant liquid 11 of the liquid receiver 4 is installed, and the liquid level indicates the maximum refrigerant liquid level 11 during operation. Refrigerant charging at the time of service of the refrigeration apparatus can be carried out easily, quickly and accurately, and overfilling can be prevented. Therefore, by suppressing the increase in high pressure, it is possible to save energy and reduce the amount of refrigerant charged, so that the cost, environmental impact and damage can be reduced. Furthermore, the liquid receiver 4, the accumulator (not shown), and the sight glass 14 can be made small, so that the product cost can be reduced and the product can be made compact.
 また、受液器4側面のサイトグラス14をメインの液延長配管18のサイズと同じかそれよりも小さく、かつモイスチャインジケータ(水分検知器)付きとすることで、製品コストを低減でき、かつ冷媒内の水分有無を確認できる。そのため、冷媒回路内に水分が混入することで生じる冷媒回路部品の腐食、さび、アイススタックによるアキュムレータの油戻し穴つまりなどの不具合を防止でき、信頼性を向上させることができる。
 また、サイトグラス14は受液器4の鏡板、胴から銅配管16で取り出し、受液器4に直接設置しない場合は冷媒液面11を安定化させ、冷媒液面11有無の確認を容易とすることができる。
Further, the sight glass 14 on the side of the liquid receiver 4 is the same as or smaller than the size of the main liquid extension pipe 18 and has a moisture indicator (moisture detector), so that the product cost can be reduced and the refrigerant can be reduced. The presence or absence of moisture can be confirmed. Therefore, it is possible to prevent problems such as corrosion of the refrigerant circuit components, rust, and the oil return hole of the accumulator caused by the ice stack caused by the moisture mixed in the refrigerant circuit, and the reliability can be improved.
Further, the sight glass 14 is taken out from the end plate and barrel of the liquid receiver 4 with a copper pipe 16, and when not installed directly on the liquid receiver 4, the refrigerant liquid surface 11 is stabilized and the presence / absence of the refrigerant liquid surface 11 can be easily confirmed. can do.
 実施の形態2.
 図6は、本発明の実施の形態2に係る冷凍装置のサイトグラス14、15の一例を示す図である。
 なお、本実施の形態2では本実施の形態1との相違点を中心に説明し、本実施の形態1と同一部分には、同一符号を付して説明を省略するものとしている。
 実施の形態2では、季節、外気温度、高圧などにより、年間を通して最大となる冷媒液面11位置を変化させて冷媒充填量を確認する場合について説明する。
Embodiment 2. FIG.
FIG. 6 is a diagram illustrating an example of the sight glasses 14 and 15 of the refrigeration apparatus according to Embodiment 2 of the present invention.
In the second embodiment, differences from the first embodiment will be mainly described, and the same parts as those in the first embodiment will be denoted by the same reference numerals and the description thereof will be omitted.
In the second embodiment, a description will be given of a case where the refrigerant filling amount is confirmed by changing the position of the refrigerant liquid surface 11 that is maximum throughout the year depending on the season, the outside air temperature, high pressure, and the like.
 冬季などで冷媒充填作業中に外気温度が低い場合、制御基板のLEDがNからO(オー)になってからサイトグラス14で冷媒液面11を確認できるまで冷媒を充填すると、必要以上に冷媒を充填してしまう場合がある。そこで、外気温度、または冷凍機運転時の高圧によって追加充填する冷媒量を変更してもよい。 If the outside air temperature is low during the refrigerant charging operation in winter or the like, if the refrigerant is charged until the coolant level 11 can be confirmed with the sight glass 14 after the LED on the control board changes from N to O (O), the refrigerant is more than necessary. May be filled. Therefore, the amount of refrigerant to be additionally charged may be changed according to the outside air temperature or the high pressure during operation of the refrigerator.
 すなわち、図3に示すとおり、最も受液器4内冷媒量の変動が大きい延長配管の長さが100m、ショーケース負荷の場合において、外気温度が30℃から-15℃に変動した場合の受液器4内冷媒量の減少は12.1%である。そのため、外気温度32℃で試運転により冷媒調整を実施している場合は、LEDがNからO(オー)になってからの追加充填冷媒量は12.1%+余裕分10%=22.1%でよい。 That is, as shown in FIG. 3, when the length of the extension pipe with the largest fluctuation of the refrigerant amount in the receiver 4 is 100 m and the showcase load is received, The decrease in the refrigerant amount in the liquid container 4 is 12.1%. Therefore, when the refrigerant is adjusted by a trial run at an outside air temperature of 32 ° C., the amount of additional charged refrigerant after the LED is changed from N to O (Oh) is 12.1% + the margin is 10% = 22.1. % Is acceptable.
 そこで、外気温度が30℃より低い場合に冷媒充填作業をする場合の対応として、図6のように22.1%(=12.1%+余裕分10%)の位置にサイトグラス(夏季確認用)15を設置し、この位置を外気温度が30℃より低い場合の冷媒液面12位置とする。すなわち、実施の形態1のサイトグラス14の位置に対し、実施の形態2ではサイトグラス(外気温度が30℃より低い場合用)15を追加し、2個のサイトグラスで冷媒液面11、12を確認する。 Therefore, as a countermeasure when the refrigerant is charged when the outside air temperature is lower than 30 ° C., the sight glass (summer check) is located at 22.1% (= 12.1% + margin 10%) as shown in FIG. 15) is set, and this position is set as the refrigerant liquid level 12 position when the outside air temperature is lower than 30 ° C. That is, in the second embodiment, a sight glass (for the case where the outside air temperature is lower than 30 ° C.) 15 is added to the position of the sight glass 14 of the first embodiment. Confirm.
 このようにすることで、実施の形態1よりもさらに、試運転時または冷凍装置のサービス時の冷媒充填を正確に実施でき、過充填を防止することができる。よって、高圧上昇を抑えることで省エネとなり、かつ冷媒充填量を少なくできるため、コスト、環境に与える影響、被害を小さくできる。さらには、受液器4、アキュムレータ、サイトグラス14、15を小さくでき、製品コストを下げ、コンパクトにできる。 By doing in this way, it is possible to accurately carry out refrigerant filling at the time of trial operation or service of the refrigeration apparatus, and to prevent overfilling, as compared with the first embodiment. Therefore, by suppressing the increase in high pressure, it is possible to save energy and reduce the amount of refrigerant charged, so that the cost, environmental impact and damage can be reduced. Furthermore, the liquid receiver 4, the accumulator, and the sight glasses 14 and 15 can be reduced, and the product cost can be reduced and the apparatus can be made compact.
 1 圧縮機、1a インジェクションポート、3 凝縮器、4 受液器、5 過冷却熱交換器、6 膨張弁、7 蒸発器、8 膨張弁、9 液電磁弁、10 液操作弁、11 冷媒液面、12 冷媒液面(夏季)、14 サイトグラス、15 サイトグラス(夏季確認用)、16 銅配管、17 サイトグラス、18 液延長配管、19 ガス延長配管、20 冷媒量判定手段、21 表示部、22 メイン流路、23 インジェクション流路、100 室外ユニット、100A 室外ユニット、100B 室外ユニット、200 室内ユニット、200A 室内ユニット、200B 室内ユニット。 1 compressor, 1a injection port, 3 condenser, 4 receiver, 5 supercooling heat exchanger, 6 expansion valve, 7 evaporator, 8 expansion valve, 9 liquid solenoid valve, 10 liquid operation valve, 11 refrigerant liquid level , 12 Refrigerant liquid level (summer), 14 sight glass, 15 sight glass (for summer check), 16 copper piping, 17 sight glass, 18 liquid extension piping, 19 gas extension piping, 20 refrigerant quantity judging means, 21 display section, 22 main flow path, 23 injection flow path, 100 outdoor unit, 100A outdoor unit, 100B outdoor unit, 200 indoor unit, 200A indoor unit, 200B indoor unit.

Claims (9)

  1.  圧縮機、熱源側熱交換器、過冷却熱交換器、受液器を少なくとも有する熱源側ユニットと、負荷側膨張手段および負荷側熱交換器を少なくとも有する負荷側ユニットとが、液配管およびガス配管を介して接続され、
     前記圧縮機、前記熱源側熱交換器、前記過冷却熱交換器、前記受液器、前記負荷側膨張手段、および前記負荷側熱交換器に冷媒を循環させる冷媒回路が形成される冷凍装置において、
     前記受液器の側面にサイトグラスを備え、
     前記サイトグラスは、運転中における前記受液器の年間を通して最大となる冷媒液面位置を確認できる位置に設けられた
     ことを特徴とする冷凍装置。
    A heat source side unit having at least a compressor, a heat source side heat exchanger, a supercooling heat exchanger, and a liquid receiver, and a load side unit having at least a load side expansion means and a load side heat exchanger include a liquid pipe and a gas pipe. Connected through
    In the compressor, the heat source side heat exchanger, the supercooling heat exchanger, the liquid receiver, the load side expansion means, and a refrigeration apparatus in which a refrigerant circuit for circulating a refrigerant in the load side heat exchanger is formed. ,
    A sight glass is provided on the side of the receiver,
    The said sight glass was provided in the position which can confirm the refrigerant | coolant liquid level position which becomes the maximum through the year of the said receiver during a driving | operation. The refrigeration apparatus characterized by the above-mentioned.
  2.  前記受液器の容積は、
     前記熱源側熱交換器の容積と前記液配管の容積との和の、125%±25%の範囲内に決定される
     ことを特徴とする請求項1に記載の冷凍装置。
    The volume of the receiver is
    2. The refrigeration apparatus according to claim 1, wherein the refrigeration apparatus is determined within a range of 125% ± 25% of a sum of a volume of the heat source side heat exchanger and a volume of the liquid pipe.
  3.  前記サイトグラスは、冷媒が前記受液器の容積の33%以下であるときの冷媒液面位置を確認できる位置に設けられた
     ことを特徴とする請求項1または2に記載の冷凍装置。
    3. The refrigeration apparatus according to claim 1, wherein the sight glass is provided at a position where a refrigerant liquid level position can be confirmed when the refrigerant is 33% or less of the volume of the liquid receiver.
  4.  外気温度を限定した場合の最高液面位置を確認できる位置に、前記サイトグラスを少なくともさらに1つ設けた
     ことを特徴とする請求項1~3のいずれか一項に記載の冷凍装置。
    The refrigeration apparatus according to any one of claims 1 to 3, wherein at least one sight glass is provided at a position where the highest liquid level position when the outside air temperature is limited can be confirmed.
  5.  前記冷媒回路に充填された冷媒が、冷媒不足でない量充填されているかを判定する冷媒量判定手段を備えた
     ことを特徴とする請求項1~4のいずれか一項に記載の冷凍装置。
    The refrigeration apparatus according to any one of claims 1 to 4, further comprising a refrigerant amount determination unit that determines whether or not the refrigerant charged in the refrigerant circuit is charged in an amount that is not insufficient for the refrigerant.
  6.  前記熱源側熱交換器の出口側から前記過冷却熱交換器の入口側に至る流路のいずれかの位置に設けられ、前記冷媒の温度を検出する第1温度センサと、
     前記過冷却熱交換器の出口側から前記負荷側膨張手段の入口側に至る流路のいずれかの位置に設けられ、前記冷媒の温度を検出する第2温度センサと、
     前記熱源側熱交換器が前記冷媒と熱交換する空気の温度を検出する外気温度センサと、を備え、
     前記冷媒量判定手段は、
     前記第1温度センサの検出温度と、前記第2温度センサの検出温度との温度差により、過冷却度を求め、
     前記第1温度センサの検出温度と、前記外気温度センサの検出温度との温度差により、前記過冷却熱交換器の最大温度差を求める
     ことを特徴とする請求項5に記載の冷凍装置。
    A first temperature sensor that is provided at any position in the flow path from the outlet side of the heat source side heat exchanger to the inlet side of the subcooling heat exchanger, and detects the temperature of the refrigerant;
    A second temperature sensor that is provided at any position in the flow path from the outlet side of the supercooling heat exchanger to the inlet side of the load side expansion means, and detects the temperature of the refrigerant;
    An outside air temperature sensor that detects the temperature of the air with which the heat source side heat exchanger exchanges heat with the refrigerant, and
    The refrigerant amount determination means includes
    The degree of supercooling is obtained from the temperature difference between the detected temperature of the first temperature sensor and the detected temperature of the second temperature sensor,
    The refrigeration apparatus according to claim 5, wherein a maximum temperature difference of the supercooling heat exchanger is obtained from a temperature difference between a temperature detected by the first temperature sensor and a temperature detected by the outside air temperature sensor.
  7.  前記冷媒量判定手段は表示部を備え、
     前記冷媒回路に充填された冷媒が、冷媒不足でない量充填されているかの判定結果を前記表示部に表示する
     ことを特徴とする請求項5または6に記載の冷凍装置。
    The refrigerant amount determination means includes a display unit,
    The refrigeration apparatus according to claim 5 or 6, wherein the display unit displays a determination result as to whether or not the refrigerant charged in the refrigerant circuit is filled in an amount that is not insufficient for the refrigerant.
  8.  前記表示部は7セグメントLEDにより構成された
     ことを特徴とする請求項7に記載の冷凍装置。
    The refrigeration apparatus according to claim 7, wherein the display unit includes a 7-segment LED.
  9.  前記サイトグラスは、水分検知機能付きである
     ことを特徴とする請求項1~8のいずれか一項に記載の冷凍装置。
    The refrigeration apparatus according to any one of claims 1 to 8, wherein the sight glass has a moisture detection function.
PCT/JP2014/051690 2014-01-27 2014-01-27 Refrigeration device WO2015111222A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201480042573.9A CN105408704B (en) 2014-01-27 2014-01-27 Refrigerating plant
JP2015558712A JPWO2015111222A1 (en) 2014-01-27 2014-01-27 Refrigeration equipment
PCT/JP2014/051690 WO2015111222A1 (en) 2014-01-27 2014-01-27 Refrigeration device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/051690 WO2015111222A1 (en) 2014-01-27 2014-01-27 Refrigeration device

Publications (1)

Publication Number Publication Date
WO2015111222A1 true WO2015111222A1 (en) 2015-07-30

Family

ID=53681048

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/051690 WO2015111222A1 (en) 2014-01-27 2014-01-27 Refrigeration device

Country Status (3)

Country Link
JP (1) JPWO2015111222A1 (en)
CN (1) CN105408704B (en)
WO (1) WO2015111222A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017195248A1 (en) * 2016-05-09 2017-11-16 三菱電機株式会社 Refrigeration device
US20190390885A1 (en) * 2018-06-22 2019-12-26 Emerson Climate Technologies Retail Solutions, Inc. Systems And Methods For Optical Detection Of Refrigeration System Abnormalities
WO2020242736A1 (en) * 2019-05-24 2020-12-03 Carrier Corporation Low refrigerant charge detection in transport refrigeration system

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113614473B (en) * 2019-03-26 2022-12-20 三菱电机株式会社 Outdoor unit and refrigeration cycle device provided with same
CN110763273A (en) * 2019-10-30 2020-02-07 无锡纽思铁科能源科技有限公司 Ice plug forming process detection device

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4973752A (en) * 1972-11-18 1974-07-16
JPS63156979A (en) * 1986-12-19 1988-06-30 松下電器産業株式会社 Heat pump type air conditioner
JPH03204574A (en) * 1990-01-04 1991-09-06 Sanden Corp Receiver drier for air-conditioning system
JPH0571835A (en) * 1991-09-12 1993-03-23 Daikin Ind Ltd Receiver
JPH0933139A (en) * 1995-07-18 1997-02-07 Denso Corp Refrigeration cycle
JPH09243215A (en) * 1996-03-07 1997-09-19 Calsonic Corp Steam compression type refrigerating machine and refrigerant quantity judging apparatus
JPH10281599A (en) * 1997-04-02 1998-10-23 Hitachi Ltd Refrigerant amount determining apparatus
JPH11182990A (en) * 1997-12-18 1999-07-06 Yamaha Motor Co Ltd Refrigerant recirculating type heat transfer device
JP2997487B2 (en) * 1989-12-13 2000-01-11 株式会社日立製作所 Refrigeration apparatus and method for indicating amount of refrigerant in refrigeration apparatus
JP2002295915A (en) * 2001-03-30 2002-10-09 Mitsubishi Electric Corp Air conditioner
JP2003207230A (en) * 2001-12-19 2003-07-25 Halla Aircon Co Ltd Refrigerating cycle and method of determining volume of receiver of refrigerating cycle
JP2012132639A (en) * 2010-12-22 2012-07-12 Mitsubishi Electric Corp Refrigeration unit

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101769655A (en) * 2010-01-25 2010-07-07 大连三洋压缩机有限公司 Automatic recovery and fill system of refrigeration system
CN201935493U (en) * 2011-03-01 2011-08-17 合肥天鹅制冷科技有限公司 Liquid storage tank

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4973752A (en) * 1972-11-18 1974-07-16
JPS63156979A (en) * 1986-12-19 1988-06-30 松下電器産業株式会社 Heat pump type air conditioner
JP2997487B2 (en) * 1989-12-13 2000-01-11 株式会社日立製作所 Refrigeration apparatus and method for indicating amount of refrigerant in refrigeration apparatus
JPH03204574A (en) * 1990-01-04 1991-09-06 Sanden Corp Receiver drier for air-conditioning system
JPH0571835A (en) * 1991-09-12 1993-03-23 Daikin Ind Ltd Receiver
JPH0933139A (en) * 1995-07-18 1997-02-07 Denso Corp Refrigeration cycle
JPH09243215A (en) * 1996-03-07 1997-09-19 Calsonic Corp Steam compression type refrigerating machine and refrigerant quantity judging apparatus
JPH10281599A (en) * 1997-04-02 1998-10-23 Hitachi Ltd Refrigerant amount determining apparatus
JPH11182990A (en) * 1997-12-18 1999-07-06 Yamaha Motor Co Ltd Refrigerant recirculating type heat transfer device
JP2002295915A (en) * 2001-03-30 2002-10-09 Mitsubishi Electric Corp Air conditioner
JP2003207230A (en) * 2001-12-19 2003-07-25 Halla Aircon Co Ltd Refrigerating cycle and method of determining volume of receiver of refrigerating cycle
JP2012132639A (en) * 2010-12-22 2012-07-12 Mitsubishi Electric Corp Refrigeration unit

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017195248A1 (en) * 2016-05-09 2017-11-16 三菱電機株式会社 Refrigeration device
JPWO2017195248A1 (en) * 2016-05-09 2018-11-08 三菱電機株式会社 Refrigeration equipment
GB2564312A (en) * 2016-05-09 2019-01-09 Mitsubishi Electric Corp Refrigeration device
GB2564312B (en) * 2016-05-09 2020-11-11 Mitsubishi Electric Corp Refrigerating device
US11131490B2 (en) 2016-05-09 2021-09-28 Mitsubishi Electric Corporation Refrigeration device having condenser unit connected to compressor unit with on-site pipe interposed therebetween and remote from the compressor unit
US20190390885A1 (en) * 2018-06-22 2019-12-26 Emerson Climate Technologies Retail Solutions, Inc. Systems And Methods For Optical Detection Of Refrigeration System Abnormalities
US11085683B2 (en) * 2018-06-22 2021-08-10 Emerson Climate Technologies Retail Solutions, Inc. Systems and methods for optical detection of refrigeration system abnormalities
WO2020242736A1 (en) * 2019-05-24 2020-12-03 Carrier Corporation Low refrigerant charge detection in transport refrigeration system
CN112424545A (en) * 2019-05-24 2021-02-26 开利公司 Low refrigerant charge detection in transport refrigeration systems
CN112424545B (en) * 2019-05-24 2023-10-20 开利公司 Low refrigerant charge detection in a transport refrigeration system
US11988428B2 (en) 2019-05-24 2024-05-21 Carrier Corporation Low refrigerant charge detection in transport refrigeration system

Also Published As

Publication number Publication date
JPWO2015111222A1 (en) 2017-03-23
CN105408704B (en) 2017-10-24
CN105408704A (en) 2016-03-16

Similar Documents

Publication Publication Date Title
JP6475346B2 (en) Refrigeration cycle equipment
CN105157266B (en) Operation of refrigerant vapor compression system
JP5196452B2 (en) Transcritical refrigerant vapor compression system with charge control
US9869499B2 (en) Method for detection of loss of refrigerant
US7065979B2 (en) Refrigeration system
US20190203995A1 (en) Refrigeration device
KR101900901B1 (en) Air conditional and method for controlling the same
WO2015111222A1 (en) Refrigeration device
JP2009079842A (en) Refrigerating cycle device and its control method
JPWO2019053858A1 (en) Refrigeration cycle device and refrigeration device
EP2257749B1 (en) Refrigerating system and method for operating the same
JP2012087978A (en) Refrigerating device
JP2011012958A (en) Method for controlling refrigeration cycle apparatus
JP5971548B2 (en) Refrigeration equipment
JP4476946B2 (en) Refrigeration equipment
JP6490237B2 (en) Refrigerant amount management apparatus and refrigerant amount management system
JP2006292214A (en) Addition method of refrigerant amount determining function of air conditioner, and air conditioner
WO2017199391A1 (en) Refrigerating device
WO2017179210A1 (en) Refrigerating device
JP2015049024A (en) Refrigeration device and refrigerant amount adjustment method of refrigeration device
JP6373475B2 (en) Refrigerant amount abnormality detection device and refrigeration device
JP2015049021A (en) Refrigeration device and airtightness test method of refrigeration device
JP6157182B2 (en) Refrigeration equipment
CN107110586B (en) Refrigerating device
JPWO2018189826A1 (en) Refrigeration cycle equipment

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480042573.9

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14879860

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015558712

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14879860

Country of ref document: EP

Kind code of ref document: A1