WO2022018803A1 - Cold heat source unit and refrigeration cycle device - Google Patents

Cold heat source unit and refrigeration cycle device Download PDF

Info

Publication number
WO2022018803A1
WO2022018803A1 PCT/JP2020/028128 JP2020028128W WO2022018803A1 WO 2022018803 A1 WO2022018803 A1 WO 2022018803A1 JP 2020028128 W JP2020028128 W JP 2020028128W WO 2022018803 A1 WO2022018803 A1 WO 2022018803A1
Authority
WO
WIPO (PCT)
Prior art keywords
compressor
refrigerant
heat source
pressure
cold heat
Prior art date
Application number
PCT/JP2020/028128
Other languages
French (fr)
Japanese (ja)
Inventor
智隆 石川
宗 野本
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2020/028128 priority Critical patent/WO2022018803A1/en
Priority to JP2022538512A priority patent/JP7337278B2/en
Publication of WO2022018803A1 publication Critical patent/WO2022018803A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B31/00Compressor arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems

Definitions

  • This disclosure relates to a cold heat source unit and a refrigeration cycle device.
  • a high-pressure shell type compressor is used for the refrigerant circuit as a compressor for compressing the refrigerant in the cold heat source unit and the refrigerating cycle device constituting the refrigerant circuit configured to circulate the refrigerant.
  • the high-pressure shell type compressor is configured so that an inflow pipe for inflowing the refrigerant into the closed container is connected to the compression portion.
  • the refrigerant flowing through the inflow pipe is compressed by the compression unit and discharged into the closed container.
  • the compressed high-temperature and high-pressure gas refrigerant that fills the closed container is discharged from the closed container.
  • Patent Document 1 discloses an air conditioner including a high-pressure shell type compressor.
  • the air mixed in the refrigerant circuit comes into contact with the refrigerating machine oil accumulated in the high-pressure shell type compressor, and further becomes a high-temperature and high-pressure state in the compressor, which may cause a problem in the compressor and thus in the refrigerant circuit.
  • the present disclosure has been made to solve the above-mentioned problems, and even when the operating state of the compressor is a negative pressure operation, it is possible to avoid a problem in the compressor and thus in the refrigerant circuit. It is an object of the present invention to provide a cold heat source unit and a refrigeration cycle device.
  • the cold heat source unit can be connected to a load device including an expansion valve and an evaporator, and constitutes a refrigerant circuit configured to circulate the refrigerant.
  • the cold heat source unit includes at least one compressor, a condenser, and a control device for controlling the refrigerant circuit.
  • At least one compressor comprises a high pressure shell type first compressor. The control device stops the first compressor when the first compressor is in operation and the pressure on the suction port side of the first compressor is negative.
  • FIG. It is a figure which shows the structure of the refrigerating cycle apparatus which concerns on Embodiment 1.
  • FIG. It is a figure which shows the structure of the high pressure shell type compressor. It is a figure which shows the structure of the low pressure shell type compressor. It is a ph diagram for comparing a refrigerating cycle when air is not mixed in a refrigerant circuit, and a refrigerating cycle when air is mixed in a refrigerant circuit. It is a flowchart for demonstrating control of a refrigerant circuit by a control device. It is a figure which shows the structure of the refrigerating cycle apparatus which concerns on Embodiment 2.
  • FIG. 1 is a diagram showing a configuration of a refrigeration cycle device 1 according to a first embodiment. Note that FIG. 1 functionally shows the connection relationship and the arrangement configuration of each device in the refrigeration cycle device 1, and does not necessarily show the arrangement in the physical space.
  • the refrigeration cycle device 1 includes a refrigerant circuit 4, a control device 6, and an alarm device 7.
  • the cold heat source unit 5 includes a refrigerant circuit 4, a control device 6, and an alarm device 7.
  • the refrigerant circuit 4 is configured such that the cold heat source device 2 and the load device 3 are connected by each of the extension pipe 83 and the extension pipe 87.
  • the cold heat source device 2 has a refrigerant inlet port 201 which is an inlet of the refrigerant to the cold heat source device 2 and a refrigerant outlet port 202 which is an outlet of the refrigerant from the cold heat source device 2.
  • the load device 3 has a refrigerant inlet port 301 which is an inlet of the refrigerant to the load device 3 and a refrigerant outlet port 302 which is an outlet of the refrigerant from the load device 3.
  • the extension pipe 83 connects the refrigerant outlet port 202 of the cold heat source device 2 and the refrigerant inlet port 301 of the load device 3.
  • the extension pipe 87 connects the refrigerant outlet port 302 of the load device 3 and the refrigerant inlet port 201 of the cold heat source device 2.
  • the cold heat source unit 5 is configured to be connectable to the load device 3 via the extension pipe 83 and the extension pipe 87.
  • the load device 3 includes an expansion valve 50, an evaporator 60, a pipe 84, a pipe 85, and a pipe 86.
  • the pipe 84 connects the refrigerant inlet port 301 and the expansion valve 50.
  • the pipe 85 connects the expansion valve 50 and the evaporator 60.
  • the pipe 86 connects the evaporator 60 and the refrigerant outlet port 302.
  • the expansion valve 50 lowers the pressure of the high-temperature and high-pressure liquid refrigerant that has flowed in from the pipe 84, and causes the low-temperature and low-pressure liquid refrigerant to flow out to the evaporator 60 through the pipe 85.
  • the expansion valve 50 is, for example, a temperature expansion valve that is controlled independently of the cold heat source unit 5.
  • the expansion valve 50 may be an electronic expansion valve capable of reducing the pressure of the refrigerant.
  • the evaporator 60 is configured to exchange heat between the low-temperature low-pressure liquid refrigerant flowing from the expansion valve 50 and the air.
  • the evaporator 60 evaporates a low-temperature low-pressure liquid refrigerant by endothermic heat from the air in the cooling target space.
  • the low-temperature low-pressure liquid refrigerant is condensed and changed into a low-temperature low-pressure gas refrigerant.
  • the low-temperature low-pressure gas refrigerant obtained by the evaporator 60 flows out to the pipe 86.
  • the cold heat source unit 5 is not particularly limited, but is generally referred to as an outdoor unit or an outdoor unit because it is often arranged outdoors or outdoors.
  • the cold heat source device 2 of the cold heat source unit 5 includes a plurality of compressors 11 and 12, a condenser 20, a pipe 82, a pipe 88, and a pipe 93.
  • the condenser 20 has a refrigerant inlet port 221 which is an inlet of the refrigerant to the condenser 20 and a refrigerant outlet port 222 which is an outlet of the refrigerant from the condenser 20.
  • the compressor 11 has a suction port 111 for sucking the refrigerant and a discharge port 112 for discharging the refrigerant.
  • the compressor 12 has a suction port 121 for sucking the refrigerant and a discharge port 122 for discharging the refrigerant.
  • the pipe 82 connects the refrigerant outlet port 222 of the condenser 20 and the refrigerant outlet port 202 of the cold heat source device 2.
  • the pipe 88 branches into an inflow pipe 89 for inflowing the refrigerant into the compressor 11 and an inflow pipe 90 for inflowing the refrigerant into the compressor 12.
  • the inflow pipe 89 is connected to the suction port 111 of the compressor 11.
  • the inflow pipe 90 is connected to the suction port 121 of the compressor 12.
  • the pipe 88 and the inflow pipe 89 connect the refrigerant inlet port 201 of the cold heat source device 2 and the suction port 111 of the compressor 11.
  • the pipe 88 and the inflow pipe 90 connect the refrigerant inlet port 201 of the cold heat source device 2 and the suction port 121 of the compressor 12.
  • the pipe 93 branches into an outflow pipe 91 in which the refrigerant flows out from the compressor 11 and an outflow pipe 92 in which the refrigerant flows out from the compressor 12.
  • the outflow pipe 91 is connected to the discharge port 112 of the compressor 11.
  • the outflow pipe 92 is connected to the discharge port 122 of the compressor 12.
  • the pipe 93 and the outflow pipe 91 connect the discharge port 112 of the compressor 11 and the refrigerant inlet port 221 of the condenser 20.
  • the pipe 93 and the outflow pipe 92 connect the discharge port 122 of the compressor 12 and the refrigerant inlet port 221 of the condenser 20.
  • the compressor 11 and the compressor 12 are connected in parallel to the pipe 88 and the pipe 93.
  • the control device 6 can control the route through which the refrigerant passes by selectively operating or stopping the compressor 11 and the compressor 12. Specifically, when only the compressor 11 is operated, the control device 6 causes the refrigerant flowing from the refrigerant inlet port 201 to flow into the compressor 11 via the pipe 88 and the inflow pipe 89, and the compressor 11 causes the refrigerant to flow into the compressor 11.
  • the refrigerant can be compressed.
  • the control device 6 When only the compressor 12 is operated, the control device 6 causes the refrigerant flowing from the refrigerant inlet port 201 to flow into the compressor 12 through the pipe 88 and the inflow pipe 90, and the refrigerant is compressed by the compressor 12. Can be done. Further, when both the compressor 11 and the compressor 12 are operated, the control device 6 causes the refrigerant flowing from the refrigerant inlet port 201 to flow into the compressor 11 through the pipe 88 and the inflow pipe 89, and causes the compressor to flow. While the refrigerant is compressed by 11, the refrigerant can be made to flow into the compressor 12 through the pipe 88 and the inflow pipe 90, and the refrigerant can be compressed by the compressor 12.
  • the compressor 11 is a high-pressure shell type compressor.
  • FIG. 2 is a diagram showing a configuration of a high-pressure shell type compressor 11. With reference to FIG. 2, the compressor 11 has a closed container 151 and a compression unit 154 provided in the closed container 151. The compression unit 154 is directly connected to the inflow pipe 89. The compression unit 154 compresses the low-temperature and low-pressure gas refrigerant that has flowed in through the inflow pipe 89, and discharges the high-temperature and high-pressure gas refrigerant obtained by the compression from the discharge port 155 into the closed container 151.
  • the high-temperature and high-pressure gas refrigerant that fills the closed container 151 flows out to the pipe 93 connected to the condenser 20 via the outflow pipe 91.
  • the inside of the closed container 151 is filled with the high-temperature and high-pressure gas refrigerant.
  • the compressor 11 is configured to operate and stop, and further adjust the rotation speed during operation according to the control signal from the control device 6.
  • the control device 6 can adjust the circulation amount of the refrigerant by adjusting the rotation speed of the compressor 11, and as a result, the refrigerating capacity of the refrigerating cycle device 1 can be adjusted.
  • Various types of compressors 11 can be adopted, and for example, scroll type, rotary type, screw type and the like can be adopted.
  • the compressor 12 is a low pressure shell type compressor.
  • FIG. 3 is a diagram showing the configuration of the low pressure shell type compressor 12. With reference to FIG. 3, the compressor 12 has a closed container 161 and a compression unit 164 provided in the closed container 161. The compression unit 164 is directly connected to the outflow pipe 92. The low-temperature low-pressure gas refrigerant that has flowed in through the inflow pipe 90 fills the closed container 161. The low-temperature low-pressure gas refrigerant that fills the closed container 161 is sucked into the compression unit 164 via the suction port 165.
  • the compression unit 164 compresses the refrigerant sucked through the suction port 165, and the high-temperature and high-pressure gas refrigerant obtained by the compression flows out to the pipe 93 connected to the condenser 20 via the outflow pipe 92. .. As described above, in the compressor 12, the inside of the closed container 161 is filled with the low-temperature low-pressure gas refrigerant.
  • the compressor 12 is configured to operate and stop, and further adjust the rotation speed during operation according to the control signal from the control device 6.
  • the control device 6 can adjust the circulation amount of the refrigerant by adjusting the rotation speed of the compressor 12, and as a result, can adjust the refrigerating capacity of the refrigerating cycle device 1.
  • Various types of compressors 12 can be adopted, and for example, scroll type, rotary type, screw type and the like can be adopted.
  • the high-pressure shell type compressor 11 can separate the gas refrigerant and the refrigerating machine oil, and the gas refrigerant flows out to the pipe 93 through the outflow pipe 91, while the refrigerating machine oil is a closed container. It collects at the bottom of 151. As a result, if the refrigeration cycle is performed using the high-pressure shell type compressor 11, the amount of refrigerating machine oil carried out into the refrigerant circuit 2 can be reduced as much as possible.
  • the low-pressure shell type compressor 12 it is known that it is more difficult for the low-pressure shell type compressor 12 to separate the gas refrigerant and the refrigerating machine oil during operation than the high-pressure shell type compressor 11. Therefore, when the refrigerating cycle is performed using the compressor 12, the amount of refrigerating machine oil carried out into the refrigerant circuit 2 increases as compared with the case where the refrigerating cycle is performed using the compressor 11. The amount of refrigerating machine oil accumulated in the compressor 12 is reduced. If the amount of refrigerating machine oil accumulated in the compressor 12 is reduced, lubrication failure of the compressor 12 may occur. Therefore, if anything, it is preferable to operate the high-pressure shell type compressor 11 as the refrigerating cycle device 1.
  • the condenser 20 condenses the high-temperature and high-pressure gas refrigerant discharged from at least one of the compressor 11 and the compressor 12 and causes the gas refrigerant to flow out to the pipe 82.
  • the condenser 20 is configured to exchange heat between the discharged high-temperature and high-pressure gas refrigerant and the outside air.
  • the high-temperature and high-pressure gas refrigerant radiated by this heat exchange is condensed and changed into a high-temperature and high-pressure liquid refrigerant.
  • a fan 22 for sending outside air is attached to the condenser 20 in order to increase the efficiency of heat exchange.
  • the fan 22 supplies the outside air to the condenser 20 for the refrigerant to exchange heat in the condenser 20.
  • the cold heat source unit 5 further includes a pressure sensor 211, a temperature sensor 311 and a temperature sensor 312.
  • the pressure sensor 211 is provided on the suction port 111 side of the compressor 11 (the suction port 121 side of the compressor 12).
  • the pressure sensor 211 measures the pressure PL on the suction port 111 side of the compressor 11 (the suction port 121 side of the compressor 12), and outputs the measured value to the control device 6.
  • the temperature sensor 311 is provided on the refrigerant outlet port 222 side of the condenser 20.
  • the temperature sensor 311 measures the temperature T1 of the refrigerant flowing out of the condenser 20, and outputs the measured value to the control device 6.
  • the temperature sensor 312 is provided around the cold heat source device 2 (for example, around the condenser 20).
  • the temperature sensor 312 measures the temperature T2 of the outside air around the cold heat source device 2, and outputs the measured value to the control device 6.
  • the control device 6 includes a CPU (Central Processing Unit) 61, a storage medium memory 62 (ROM (Read Only Memory) and RAM (Random Access Memory)), and an input / output buffer (FIG.) for inputting / outputting various signals. (Not shown) etc. are included.
  • the CPU 61 expands the program stored in the ROM into a RAM or the like and executes the program.
  • the program stored in the ROM includes a control program in which the processing procedure of the control device 6 is described.
  • the control device 6 executes control of each part in the refrigerant circuit 4 according to these control programs. This control is not limited to software processing, but can also be processed by dedicated hardware (electronic circuit).
  • the alarm device 7 issues an alarm according to the control signal from the control device 6 to notify the outside that there is a possibility that a malfunction may occur in the refrigerant circuit 4.
  • the alarm by the alarm device 7 may be performed by displaying an alarm image on a display (not shown), by outputting an alarm sound from a speaker (not shown), or turning on an alarm lamp (not shown). It may be done by blinking.
  • the refrigerating machine oil carried out into the refrigerant circuit 2 is reduced as much as possible by operating the refrigerating cycle apparatus 1 using the high-pressure shell type compressor 11. Can be done. However, when the compressor is operated (negative pressure operation) in a negative pressure state where the refrigerant pressure on the suction port 111 side of the compressor 11 is lower than the atmospheric pressure (for example, 1013.25 hPa), the refrigerant circuit 4 is used. If there is a leak, air from the outside may enter the refrigerant circuit 4.
  • the air mixed in the refrigerant circuit 4 comes into contact with the refrigerating machine oil accumulated in the closed container 151 of the compressor 11, and further becomes a high temperature and high pressure state in the closed container 151, which causes a problem in the compressor 11 and thus in the refrigerant circuit 4. There is a risk.
  • control device 6 is configured to stop the compressor 11 when the compressor 11 is in operation and the pressure on the suction port 111 side of the compressor 11 is a negative pressure.
  • FIG. 4 is a ph diagram for comparing a refrigerating cycle when air is not mixed in the refrigerant circuit 4 and a refrigerating cycle when air is mixed in the refrigerant circuit 4.
  • the vertical axis represents the absolute pressure p
  • the horizontal axis represents the specific enthalpy h
  • the refrigeration cycle when air is not mixed in the refrigerant circuit 4 is represented by the reference numeral C1
  • air is mixed in the refrigerant circuit 4.
  • the refrigeration cycle at that time is represented by the reference numeral C2.
  • the isotherm of the refrigerant having a temperature corresponding to the outside air temperature is represented by T. Note that FIG. 4 shows a ph diagram when only the compressor 11 is in operation for the sake of simplicity.
  • the change in the graph from point A1 to point A2 indicates the change in the state of the refrigerant in the compressor 11.
  • the change in the graph from point A2 to point A3 indicates the change in the state of the refrigerant in the condenser 20.
  • the change in the graph from point A3 to point A4 indicates a change in the state of the refrigerant in the expansion valve 50.
  • the change in the graph from point A4 to point A1 indicates the change in the state of the refrigerant in the evaporator 60.
  • the change in the graph from point B1 to point B2 indicates the change in the state of the refrigerant in the compressor 11.
  • the change in the graph from point B2 to point B3 indicates a change in the state of the refrigerant in the condenser 20.
  • the change in the graph from point B3 to point B4 indicates a change in the state of the refrigerant in the expansion valve 50.
  • the change in the graph from point B4 to point B1 indicates a change in the state of the refrigerant in the evaporator 60.
  • the pressure after compression of the refrigerant in the refrigeration cycle C2 (pressure between B2 and B3) is higher than the pressure after compression of the refrigerant in the refrigeration cycle C1 (pressure between A2 and A3).
  • the difference ⁇ 2 between the refrigerant temperature during condensation and the outside air temperature in the refrigeration cycle C2 is larger than the difference ⁇ 1 between the refrigerant temperature during condensation and the outside air temperature in the refrigeration cycle C1.
  • the supercooling degree ⁇ 2 of the refrigerant in the refrigerant outlet portion of the condenser 20 in the refrigeration cycle C2 is the supercooling of the refrigerant in the refrigerant outlet portion of the condenser 20 in the refrigeration cycle C1. Greater than degree ⁇ 1. Further, the difference ⁇ 2 between the refrigerant temperature and the outside air temperature of the refrigerant outlet portion of the condenser 20 in the refrigeration cycle C2 is smaller than the difference ⁇ 1 between the refrigerant temperature and the outside air temperature of the refrigerant outlet portion of the condenser 20 in the refrigeration cycle C1. ..
  • control device 6 is configured to determine whether or not air is mixed in the refrigerant circuit 4 based on the difference between the refrigerant temperature and the outside air temperature at the refrigerant outlet portion of the condenser 20.
  • control device 6 specifies the temperature T1 of the refrigerant at the refrigerant outlet portion of the condenser 20 based on the measured value of the temperature sensor 311.
  • the control device 6 specifies the temperature T2 of the outside air based on the measured value of the temperature sensor 312.
  • the control device 6 determines that air is mixed in the refrigerant circuit 4 when the difference between the refrigerant temperature T1 and the outside air temperature T2 is the first value or less (for example, 2K or less).
  • FIG. 5 is a flowchart for explaining the control of the refrigerant circuit 4 by the control device 6.
  • the control device 6 executes the processing of the flowchart shown in FIG. 5 by executing the control program stored in the memory 62.
  • the processing of this flowchart is called and executed from the main control routine of the refrigerating cycle apparatus 1 at regular time intervals.
  • the high pressure shell type compressor 11 is shown by the first compressor
  • the low pressure shell type compressor 12 is shown by the second compressor.
  • S is used as an abbreviation for "STEP".
  • the control device 6 determines whether or not the compressor 11 is in operation (S1). When the compressor 11 is in operation (YES in S1), the control device 6 determines whether or not the pressure on the suction port 111 side of the compressor 11 is a negative pressure (S2).
  • the control device 6 stops the compressor 11 by outputting a control signal to the compressor 11 (S3). At this time, when the low-pressure shell type compressor 12 is in operation, the control device 6 continues the operation of the compressor 12. On the other hand, when the compressor 12 is not in operation, the control device 6 outputs a control signal to the compressor 12 to operate the compressor 12.
  • the control device 6 returns control to the main control routine when the pressure on the suction port 111 side of the compressor 11 is not negative (NO in S2) or after the processing of S3.
  • the control device 6 determines whether or not the pressure on the suction port 111 side of the compressor 11 is a negative pressure (S4).
  • the control device 6 determines whether or not air is mixed in the refrigerant circuit 4 (S5). Specifically, in the control device 6, the difference between the refrigerant temperature T1 specified based on the measured value of the temperature sensor 311 and the outside air temperature T2 specified based on the measured value of the temperature sensor 312 is the first value or less (for example, 2K). The following) is determined.
  • the control device 6 determines that air is mixed in the refrigerant circuit 4 (YES in S5) and gives an alarm. By outputting a control signal to the device 7, an alarm is generated from the alarm device 7 (S7).
  • the control device 6 determines that air is not mixed in the refrigerant circuit 4 (NO in S5). , By outputting the control signal to the compressor 11, the compressor 11 is operated (S6).
  • the control device 6 returns control to the main control routine when the pressure on the suction port 111 side of the compressor 11 is not negative (NO in S4) or after the processing of S6 and S7.
  • control device 6 is predetermined in the processing of S6 so that when the compressor 11 is operated in S6, the compressor 11 is not stopped again in the processing of S3 in the flowchart shown in FIG. 5 executed at regular time intervals.
  • the compressor 11 may be continuously operated for a specified period (for example, 1 hour).
  • control device 6 is a refrigerant circuit by stopping the compressor 11 when the high-pressure shell type compressor 11 is in operation and the operating state of the compressor 11 is negative pressure operation. It is possible to avoid a problem in the compressor 11 and thus in the refrigerant circuit 4 due to the high temperature and high pressure state of the air mixed in the compressor 11 in the compressor 11.
  • the control device 6 controls to issue an alarm when the high-pressure shell type compressor 11 is not in operation, the operating state of the compressor 11 is negative pressure operation, and air is mixed in the refrigerant circuit 4. By doing so, it is possible to notify the outside that there is a possibility that a malfunction may occur in the refrigerant circuit 4 due to the inclusion of air in the refrigerant circuit 4.
  • the control device 6 operates the compressor 11 again when the high-pressure shell type compressor 11 is not in operation, the operating state of the compressor 11 is negative pressure operation, and air is not mixed in the refrigerant circuit. By doing so, the compressor 11 can be operated again after confirming that air is not mixed in the refrigerant circuit 4, and as a result, the refrigeration cycle using the compressor 11 can be performed again.
  • the control device 6 stops the compressor 11 when the high-pressure shell type compressor 11 and the low-pressure shell type compressor 12 are in operation and the operating state of the compressor 11 is negative pressure operation. By continuing the operation of the compressor 12, it is possible to avoid a problem in the compressor 11 and thus in the refrigerant circuit 4, while continuing the refrigeration cycle using the compressor 12 to melt the cooled material to be cooled. Can be prevented.
  • the control device 6 is a compressor when the high-pressure shell type compressor 11 is operating while the low-pressure shell type compressor 12 is not operating and the operating state of the compressor 11 is negative pressure operation.
  • the control device 6 is a refrigerant circuit based on the difference between the refrigerant temperature T1 of the refrigerant outlet portion of the condenser 20 specified based on the measured value of the temperature sensor 311 and the outside air temperature T2 specified based on the measured value of the temperature sensor 312. It can be determined whether or not air is mixed in 4.
  • FIG. 6 is a diagram showing the configuration of the refrigeration cycle device 100 according to the second embodiment. Note that FIG. 6 functionally shows the connection relationship and the arrangement configuration of each device in the refrigeration cycle device 100, and does not necessarily show the arrangement in the physical space.
  • the cold heat source device 200 of the cold heat source unit 500 further includes a liquid receiver (receiver) 30, a pipe 81, and a pressure sensor 212. .. Since the other configurations included in the cold heat source unit 500 are the same as the configurations included in the cold heat source unit 5 shown in FIG. 1, the description thereof will not be repeated.
  • the liquid receiver 30 is provided on the refrigerant outlet port 222 side of the condenser 20, and stores the liquid refrigerant flowing out from the refrigerant outlet port 222 of the condenser 20.
  • the liquid receiver 30 is connected to the refrigerant outlet port 222 of the condenser 20 via the pipe 81, and is connected to the refrigerant outlet port 202 of the cold heat source device 200 via the pipe 82.
  • the pressure sensor 212 is commonly provided on the discharge side of the compressor 11 and the discharge side of the compressor 12.
  • the pressure sensor 212 measures the pressure PH on the discharge side of the compressor 11 and the discharge side of the compressor 12, and outputs the measured values to the control device 6.
  • the degree of supercooling is almost 0 degree because the liquid refrigerant flowing out from the condenser 20 and the gas refrigerant coexist in the liquid receiver 30.
  • air is mixed in the refrigerant circuit 400
  • air is accumulated in the receiver 30 instead of the gas refrigerant, so that even if the receiver 30 is cooled, condensation does not occur and supercooling occurs. That is, when comparing the case where air is not mixed in the refrigerant circuit 400 and the time when air is mixed in the refrigerant circuit 400, when air is mixed, it is better than when air is not mixed. It can be seen that the degree of supercooling increases.
  • the control device 6 has the measured value (refrigerant temperature T1) of the temperature sensor 311 provided on the refrigerant outlet port 222 side of the condenser 20 in the process of S5 in the flowchart shown in FIG. ,
  • the degree of overcooling of the refrigerant is calculated based on the measured value (pressure PH) of the pressure sensor 212, and it is determined whether or not air is mixed in the refrigerant circuit 4 based on the calculated degree of overcooling. Has been done.
  • the control device 6 specifies the temperature T1 of the refrigerant at the refrigerant outlet portion of the condenser 20 based on the measured value of the temperature sensor 311.
  • the control device 6 specifies the pressure PH on the discharge side of the compressor 11 based on the measured value of the pressure sensor 212, and calculates the saturation temperature of the refrigerant corresponding to the specified pressure PH.
  • the control device 6 calculates the degree of supercooling by subtracting the temperature T1 of the refrigerant at the refrigerant outlet portion of the condenser 20 from the calculated saturation temperature of the refrigerant.
  • the control device 6 determines that air is mixed in the refrigerant circuit 4 when the calculated supercooling degree is the second value or more (for example, 2K or more).
  • the control device 6 has the refrigerant temperature T1 of the refrigerant outlet portion of the condenser 20 specified based on the measured value of the temperature sensor 311 and the measured value of the pressure sensor 212.
  • the degree of supercooling is calculated based on the pressure PH on the discharge side of the compressor 11 specified based on the above, and it is possible to determine whether or not air is mixed in the refrigerant circuit 4 based on the calculated degree of supercooling. can.
  • the cold heat source unit 5 according to the first embodiment and the cold heat source unit 500 according to the second embodiment both include one high-pressure shell type compressor 11 and one low-pressure shell type compressor 12.
  • the number of compressors 11 and 12 is not limited to this.
  • Each of the cold heat source unit 5 and the cold heat source unit 500 may be provided with at least one compressor 11, and may be provided with two or more compressors 11.
  • Each of the cold heat source unit 5 and the cold heat source unit 500 does not necessarily have to be provided with the compressor 12, but when at least one compressor 12 is provided, it is preferable to provide the same number or more of the compressors 11 as the compressor 12. According to such a configuration, the refrigerating cycle apparatus can perform the refrigerating cycle without reducing the amount of refrigerating machine oil brought into the refrigerant circuit as much as possible.
  • control device 6 may stop the operation of all or a part of the plurality of compressors 11 in the process of S3 in the flowchart shown in FIG.
  • the present disclosure relates to a cold heat source unit 5 which is connectable to a load device 3 including an expansion valve 50 and an evaporator 60 and constitutes a refrigerant circuit 4 configured to circulate a refrigerant.
  • the cold heat source unit 5 includes at least one compressors 11 and 12, a condenser 20, and a control device 6 for controlling the refrigerant circuit 4.
  • At least one compressor 11 and 12 includes a high pressure shell type compressor 11. The control device 6 stops the compressor 11 when the compressor 11 is in operation and the pressure on the suction port 111 side of the compressor 11 is negative.
  • the cold heat source unit 5 prevents the air mixed in the refrigerant circuit 4 from being in a high temperature and high pressure state in the compressor 11 and causing a problem in the compressor 11 and thus in the refrigerant circuit 4. be able to.
  • control device 6 issues an alarm when the compressor 11 is not in operation, the pressure on the suction port 111 side of the compressor 11 is negative, and air is mixed in the refrigerant circuit 4. Take control.
  • the cold heat source unit 5 can notify the outside that there is a possibility that a malfunction may occur in the refrigerant circuit 4 due to air being mixed in the refrigerant circuit 4.
  • the controller 6 controls the compressor 11 when the compressor 11 is not in operation, the pressure on the suction port 111 side of the compressor 11 is negative, and air is not mixed in the refrigerant circuit 4. To drive.
  • the cold heat source unit 5 can operate the compressor 11 again after confirming that air is not mixed in the refrigerant circuit 4, and as a result, the compressor 11 is used.
  • the refrigeration cycle that was used can be repeated.
  • the cold heat source unit 5 shown in FIG. 1 includes a temperature sensor 311 for measuring the temperature of the refrigerant at the refrigerant outlet portion of the condenser 20, and a temperature sensor 312 for measuring the temperature of the outside air supplied to the condenser 20. Further prepare. When the difference between the measured value of the temperature sensor 311 and the measured value of the temperature sensor 312 is equal to or less than the first value (for example, 2K or less), the control device 6 determines that air is mixed in the refrigerant circuit 4. ..
  • the cold heat source unit 5 uses the temperature sensor 311 provided at the refrigerant outlet portion of the condenser 20 and the temperature sensor 312 for measuring the temperature of the outside air to provide air to the refrigerant circuit 4. It is possible to judge whether or not the mixture is mixed.
  • the cold heat source unit 500 shown in FIG. 6 is provided at the refrigerant outlet portion of the condenser 20, and is a temperature sensor that measures the temperature of the refrigerant at the liquid receiver 30 that stores the refrigerant and the refrigerant outlet portion of the condenser 20.
  • 311 and a pressure sensor 212 for measuring the pressure of the refrigerant at the refrigerant inlet portion of the condenser 20 are further provided.
  • the control device 6 puts air in the refrigerant circuit 4. Is judged to be mixed.
  • the cold heat source unit 500 can determine whether or not air is mixed in the refrigerant circuit 4 based on the degree of supercooling.
  • At least one compressor 11 or 12 further includes a low pressure shell type compressor 12 connected in parallel with the compressor 11.
  • the control device 6 stops the compressor 11 while operating the compressor 12. To continue.
  • the cold heat source unit 5 can prevent the compressor 11 and thus the refrigerant circuit 4 from malfunctioning, while allowing the refrigeration cycle using the compressor 12 to continue, so that the cooling material can be cooled. Can be prevented from dissolving.
  • At least one compressor 11 or 12 further includes a low pressure shell type compressor 12 connected in parallel with the compressor 11.
  • the control device 6 stops the compressor 11 when the compressor 11 is operating while the compressor 12 is not operating and the pressure on the suction port 111 side of the compressor 11 is negative.
  • the compressor 12 is operated with.
  • the cooling heat source unit 5 avoids a malfunction in the compressor 11 and thus the refrigerant circuit 4, while causing the refrigeration cycle using the compressor 12 instead of the compressor 11 to be executed. It is possible to prevent the melting of the cooling material.
  • At least one compressor 11 and 12 includes the same number of compressors 11 as the compressor 12.
  • the cold heat source unit 5 can perform a refrigerating cycle without reducing the amount of refrigerating machine oil brought out into the refrigerant circuit 4 as much as possible.
  • the present disclosure relates to a refrigerating cycle device 1 including a cold heat source unit 5 and a load device 3 and a refrigerating cycle device 100 including a cold heat source unit 500 and a load device 3 in other aspects.
  • the refrigerating cycle devices 1,100 may be used as an air conditioner or the like.
  • 1,100 refrigeration cycle device 2,200 cold heat source device, 3 load device, 4,400 refrigerant circuit, 5,500 cold heat source unit, 6 control device, 7 alarm device, 11, 12 compressor, 20 condenser, 22 Fan, 30 receiver, 50 expansion valve, 60 evaporator, 62 memory, 81,82,84,85,86,88,93 piping, 83,87 extension piping, 89,90 inflow pipe, 91,92 outflow pipe , 111,121,165 Inhalation port, 112,122,155 Discharge port, 151,161 Sealed container, 154,164 Compressor, 2011,221,301 Refrigerant inlet port, 202,222,302 Refrigerant outlet port, 211,212 Pressure sensor, 311,312 temperature sensor.

Abstract

A cold heat source unit (5) can be connected to a load device (3) equipped with an expansion valve (50) and an evaporator (60), and constitutes a refrigerant circuit (4) that is configured so as to circulate a refrigerant. The cold heat source unit (5) comprises at least one compressor (11), a condenser (20), and a control device (6) that controls the refrigerant circuit (4). The at least one compressor (11) comprises a high-pressure shell compressor (11). The control device (6) stops the compressor (11) when the compressor (11) is in operation and the pressure on the inlet port (111) side of the compressor (11) is negative.

Description

冷熱源ユニットおよび冷凍サイクル装置Cold heat source unit and refrigeration cycle equipment
 本開示は、冷熱源ユニットおよび冷凍サイクル装置に関する。 This disclosure relates to a cold heat source unit and a refrigeration cycle device.
 従来、冷媒を循環させるように構成された冷媒回路を構成する冷熱源ユニットおよび冷凍サイクル装置においては、冷媒を圧縮するための圧縮機として、高圧シェルタイプの圧縮機を冷媒回路に用いることが知られている。高圧シェルタイプの圧縮機は、密閉容器内に冷媒を流入させるための流入管が圧縮部に接続されるように構成されている。高圧シェルタイプの圧縮機においては、流入管を通って流入した冷媒が圧縮部で圧縮されて密閉容器内に吐出される。そして、密閉容器内に充満する圧縮後の高温高圧のガス冷媒が密閉容器から吐出される。このような高圧シェルタイプの圧縮機においては、潤滑作用、密封作用、および防錆作用などの役割を果たす冷凍機油を、密閉容器内で分離することが可能である。 Conventionally, it is known that a high-pressure shell type compressor is used for the refrigerant circuit as a compressor for compressing the refrigerant in the cold heat source unit and the refrigerating cycle device constituting the refrigerant circuit configured to circulate the refrigerant. Has been done. The high-pressure shell type compressor is configured so that an inflow pipe for inflowing the refrigerant into the closed container is connected to the compression portion. In the high-pressure shell type compressor, the refrigerant flowing through the inflow pipe is compressed by the compression unit and discharged into the closed container. Then, the compressed high-temperature and high-pressure gas refrigerant that fills the closed container is discharged from the closed container. In such a high-pressure shell type compressor, it is possible to separate the refrigerating machine oil, which plays a role of lubricating action, sealing action, rust prevention action, etc., in the closed container.
 特開2003-279176号公報(特許文献1)には、高圧シェルタイプの圧縮機を備える空気調和装置が開示されている。 Japanese Patent Application Laid-Open No. 2003-279176 (Patent Document 1) discloses an air conditioner including a high-pressure shell type compressor.
特開2003-279176号公報Japanese Unexamined Patent Publication No. 2003-279176
 特開2003-279176号公報に開示された空気調和装置のように、高圧シェルタイプの圧縮機を冷媒回路に用いれば、冷媒回路内へと持ち出される冷凍機油の量を極力減らすことができる。しかし、圧縮機の吸入ポート側の圧力が大気圧(たとえば、1013.25hPa)よりも低くなる負圧状態において圧縮機の運転(以下、単に「負圧運転」とも称する。)が行われた場合、冷媒回路に漏れ箇所があると、外部からの空気が冷媒回路に混入する虞がある。そうすると、冷媒回路に混入した空気が高圧シェルタイプの圧縮機内に溜まる冷凍機油に触れ、さらに圧縮機内で高温高圧状態となることで、圧縮機ひいては冷媒回路に不具合が生じる虞がある。 If a high-pressure shell type compressor is used in the refrigerant circuit as in the air conditioner disclosed in Japanese Patent Application Laid-Open No. 2003-279176, the amount of refrigerating machine oil brought into the refrigerant circuit can be reduced as much as possible. However, when the compressor is operated (hereinafter, also simply referred to as "negative pressure operation") in a negative pressure state where the pressure on the suction port side of the compressor is lower than the atmospheric pressure (for example, 1013.25 hPa). If there is a leak in the compressor circuit, there is a risk that air from the outside will enter the compressor circuit. Then, the air mixed in the refrigerant circuit comes into contact with the refrigerating machine oil accumulated in the high-pressure shell type compressor, and further becomes a high-temperature and high-pressure state in the compressor, which may cause a problem in the compressor and thus in the refrigerant circuit.
 本開示は、上記課題を解決するためになされたものであって、圧縮機の運転状態が負圧運転となった場合であっても、圧縮機ひいては冷媒回路に不具合が生じることを回避する、冷熱源ユニットおよび冷凍サイクル装置を提供することを目的とする。 The present disclosure has been made to solve the above-mentioned problems, and even when the operating state of the compressor is a negative pressure operation, it is possible to avoid a problem in the compressor and thus in the refrigerant circuit. It is an object of the present invention to provide a cold heat source unit and a refrigeration cycle device.
 本開示に係る冷熱源ユニットは、膨張弁および蒸発器を備える負荷装置に接続可能であり、冷媒を循環させるように構成された冷媒回路を構成する。冷熱源ユニットは、少なくとも1つの圧縮機と、凝縮器と、冷媒回路を制御する制御装置とを備える。少なくとも1つの圧縮機は、高圧シェルタイプの第1圧縮機を備える。制御装置は、第1圧縮機が運転中であり、かつ第1圧縮機の吸入ポート側の圧力が負圧であるときに、第1圧縮機を停止させる。 The cold heat source unit according to the present disclosure can be connected to a load device including an expansion valve and an evaporator, and constitutes a refrigerant circuit configured to circulate the refrigerant. The cold heat source unit includes at least one compressor, a condenser, and a control device for controlling the refrigerant circuit. At least one compressor comprises a high pressure shell type first compressor. The control device stops the first compressor when the first compressor is in operation and the pressure on the suction port side of the first compressor is negative.
 本開示によれば、圧縮機の運転状態が負圧運転となった場合であっても、圧縮機ひいては冷媒回路に不具合が生じることを回避することができる。 According to the present disclosure, even when the operating state of the compressor is negative pressure operation, it is possible to avoid a problem in the compressor and thus in the refrigerant circuit.
実施の形態1に係る冷凍サイクル装置の構成を示す図である。It is a figure which shows the structure of the refrigerating cycle apparatus which concerns on Embodiment 1. FIG. 高圧シェルタイプの圧縮機の構成を示す図である。It is a figure which shows the structure of the high pressure shell type compressor. 低圧シェルタイプの圧縮機の構成を示す図である。It is a figure which shows the structure of the low pressure shell type compressor. 冷媒回路に空気が混入していないときの冷凍サイクルと冷媒回路に空気が混入しているときの冷凍サイクルとを比較するためのp-h線図である。It is a ph diagram for comparing a refrigerating cycle when air is not mixed in a refrigerant circuit, and a refrigerating cycle when air is mixed in a refrigerant circuit. 制御装置による冷媒回路の制御を説明するためのフローチャートである。It is a flowchart for demonstrating control of a refrigerant circuit by a control device. 実施の形態2に係る冷凍サイクル装置の構成を示す図である。It is a figure which shows the structure of the refrigerating cycle apparatus which concerns on Embodiment 2.
 以下、本開示の実施の形態について、図面を参照しながら詳細に説明する。以下では、複数の実施の形態について説明するが、各実施の形態で説明された構成を適宜組み合わせることは出願当初から予定されている。なお、図中同一または相当部分には同一符号を付してその説明は繰り返さない。 Hereinafter, embodiments of the present disclosure will be described in detail with reference to the drawings. Hereinafter, a plurality of embodiments will be described, but it is planned from the beginning of the application to appropriately combine the configurations described in the respective embodiments. The same or corresponding parts in the drawings are designated by the same reference numerals and the description thereof will not be repeated.
 実施の形態1.
 図1は、実施の形態1に係る冷凍サイクル装置1の構成を示す図である。なお、図1では、冷凍サイクル装置1における各機器の接続関係および配置構成を機能的に示しており、物理的な空間における配置を必ずしも示すものではない。
Embodiment 1.
FIG. 1 is a diagram showing a configuration of a refrigeration cycle device 1 according to a first embodiment. Note that FIG. 1 functionally shows the connection relationship and the arrangement configuration of each device in the refrigeration cycle device 1, and does not necessarily show the arrangement in the physical space.
 図1を参照して、冷凍サイクル装置1は、冷媒回路4と、制御装置6と、警報装置7とを備える。冷熱源ユニット5は、冷媒回路4と、制御装置6と、警報装置7とを含んで構成されている。冷媒回路4は、冷熱源装置2と負荷装置3とが、延長配管83および延長配管87の各々によって接続されるように構成されている。 With reference to FIG. 1, the refrigeration cycle device 1 includes a refrigerant circuit 4, a control device 6, and an alarm device 7. The cold heat source unit 5 includes a refrigerant circuit 4, a control device 6, and an alarm device 7. The refrigerant circuit 4 is configured such that the cold heat source device 2 and the load device 3 are connected by each of the extension pipe 83 and the extension pipe 87.
 冷熱源装置2は、冷熱源装置2への冷媒の入り口である冷媒入口ポート201と、冷熱源装置2からの冷媒の出口である冷媒出口ポート202とを有する。負荷装置3は、負荷装置3への冷媒の入り口である冷媒入口ポート301と、負荷装置3からの冷媒の出口である冷媒出口ポート302とを有する。 The cold heat source device 2 has a refrigerant inlet port 201 which is an inlet of the refrigerant to the cold heat source device 2 and a refrigerant outlet port 202 which is an outlet of the refrigerant from the cold heat source device 2. The load device 3 has a refrigerant inlet port 301 which is an inlet of the refrigerant to the load device 3 and a refrigerant outlet port 302 which is an outlet of the refrigerant from the load device 3.
 延長配管83は、冷熱源装置2の冷媒出口ポート202と負荷装置3の冷媒入口ポート301とを接続する。延長配管87は、負荷装置3の冷媒出口ポート302と冷熱源装置2の冷媒入口ポート201とを接続する。このように、冷熱源ユニット5は、延長配管83および延長配管87を介して、負荷装置3に接続可能に構成されている。 The extension pipe 83 connects the refrigerant outlet port 202 of the cold heat source device 2 and the refrigerant inlet port 301 of the load device 3. The extension pipe 87 connects the refrigerant outlet port 302 of the load device 3 and the refrigerant inlet port 201 of the cold heat source device 2. As described above, the cold heat source unit 5 is configured to be connectable to the load device 3 via the extension pipe 83 and the extension pipe 87.
 負荷装置3は、膨張弁50と、蒸発器60と、配管84と、配管85と、配管86とを備える。配管84は、冷媒入口ポート301と、膨張弁50とを接続する。配管85は、膨張弁50と、蒸発器60とを接続する。配管86は、蒸発器60と、冷媒出口ポート302とを接続する。 The load device 3 includes an expansion valve 50, an evaporator 60, a pipe 84, a pipe 85, and a pipe 86. The pipe 84 connects the refrigerant inlet port 301 and the expansion valve 50. The pipe 85 connects the expansion valve 50 and the evaporator 60. The pipe 86 connects the evaporator 60 and the refrigerant outlet port 302.
 膨張弁50は、配管84から流入した高温高圧の液冷媒の圧力を下げ、配管85を介して、低温低圧の液冷媒を蒸発器60へと流出させる。膨張弁50は、たとえば、冷熱源ユニット5と独立して制御される温度膨張弁である。なお、膨張弁50は冷媒を減圧することができる電子膨張弁であってもよい。 The expansion valve 50 lowers the pressure of the high-temperature and high-pressure liquid refrigerant that has flowed in from the pipe 84, and causes the low-temperature and low-pressure liquid refrigerant to flow out to the evaporator 60 through the pipe 85. The expansion valve 50 is, for example, a temperature expansion valve that is controlled independently of the cold heat source unit 5. The expansion valve 50 may be an electronic expansion valve capable of reducing the pressure of the refrigerant.
 蒸発器60は、膨張弁50から流入した低温低圧の液冷媒と空気との間で熱交換を行うように構成されている。蒸発器60は、冷却対象空間の空気からの吸熱によって低温低圧の液冷媒を蒸発させる。この熱交換により、低温低圧の液冷媒は凝縮されて低温低圧のガス冷媒に変化する。蒸発器60によって得られた低温低圧のガス冷媒は、配管86に流出する。 The evaporator 60 is configured to exchange heat between the low-temperature low-pressure liquid refrigerant flowing from the expansion valve 50 and the air. The evaporator 60 evaporates a low-temperature low-pressure liquid refrigerant by endothermic heat from the air in the cooling target space. By this heat exchange, the low-temperature low-pressure liquid refrigerant is condensed and changed into a low-temperature low-pressure gas refrigerant. The low-temperature low-pressure gas refrigerant obtained by the evaporator 60 flows out to the pipe 86.
 冷熱源ユニット5は、特に限定されないが、一般的には室外または屋外に配置される場合が多いので、室外ユニットまたは屋外ユニットとも称される。冷熱源ユニット5の冷熱源装置2は、複数の圧縮機11,12と、凝縮器20と、配管82と、配管88と、配管93とを備える。 The cold heat source unit 5 is not particularly limited, but is generally referred to as an outdoor unit or an outdoor unit because it is often arranged outdoors or outdoors. The cold heat source device 2 of the cold heat source unit 5 includes a plurality of compressors 11 and 12, a condenser 20, a pipe 82, a pipe 88, and a pipe 93.
 凝縮器20は、凝縮器20への冷媒の入り口である冷媒入口ポート221と、凝縮器20からの冷媒の出口である冷媒出口ポート222とを有する。圧縮機11は、冷媒を吸入するための吸入ポート111と、冷媒を吐出するための吐出ポート112とを有する。圧縮機12は、冷媒を吸入するための吸入ポート121と、冷媒を吐出するための吐出ポート122とを有する。 The condenser 20 has a refrigerant inlet port 221 which is an inlet of the refrigerant to the condenser 20 and a refrigerant outlet port 222 which is an outlet of the refrigerant from the condenser 20. The compressor 11 has a suction port 111 for sucking the refrigerant and a discharge port 112 for discharging the refrigerant. The compressor 12 has a suction port 121 for sucking the refrigerant and a discharge port 122 for discharging the refrigerant.
 配管82は、凝縮器20の冷媒出口ポート222と冷熱源装置2の冷媒出口ポート202とを接続する。 The pipe 82 connects the refrigerant outlet port 222 of the condenser 20 and the refrigerant outlet port 202 of the cold heat source device 2.
 配管88は、圧縮機11に冷媒を流入させるための流入管89と、圧縮機12に冷媒を流入させるための流入管90とに分岐する。流入管89は、圧縮機11の吸入ポート111に接続されている。流入管90は、圧縮機12の吸入ポート121に接続されている。配管88および流入管89は、冷熱源装置2の冷媒入口ポート201と圧縮機11の吸入ポート111とを接続する。配管88および流入管90は、冷熱源装置2の冷媒入口ポート201と圧縮機12の吸入ポート121とを接続する。 The pipe 88 branches into an inflow pipe 89 for inflowing the refrigerant into the compressor 11 and an inflow pipe 90 for inflowing the refrigerant into the compressor 12. The inflow pipe 89 is connected to the suction port 111 of the compressor 11. The inflow pipe 90 is connected to the suction port 121 of the compressor 12. The pipe 88 and the inflow pipe 89 connect the refrigerant inlet port 201 of the cold heat source device 2 and the suction port 111 of the compressor 11. The pipe 88 and the inflow pipe 90 connect the refrigerant inlet port 201 of the cold heat source device 2 and the suction port 121 of the compressor 12.
 配管93は、圧縮機11から冷媒が流出する流出管91と、圧縮機12から冷媒が流出する流出管92とに分岐する。流出管91は、圧縮機11の吐出ポート112に接続されている。流出管92は、圧縮機12の吐出ポート122に接続されている。配管93および流出管91は、圧縮機11の吐出ポート112と凝縮器20の冷媒入口ポート221とを接続する。配管93および流出管92は、圧縮機12の吐出ポート122と凝縮器20の冷媒入口ポート221とを接続する。 The pipe 93 branches into an outflow pipe 91 in which the refrigerant flows out from the compressor 11 and an outflow pipe 92 in which the refrigerant flows out from the compressor 12. The outflow pipe 91 is connected to the discharge port 112 of the compressor 11. The outflow pipe 92 is connected to the discharge port 122 of the compressor 12. The pipe 93 and the outflow pipe 91 connect the discharge port 112 of the compressor 11 and the refrigerant inlet port 221 of the condenser 20. The pipe 93 and the outflow pipe 92 connect the discharge port 122 of the compressor 12 and the refrigerant inlet port 221 of the condenser 20.
 このように、冷熱源ユニット5では、配管88および配管93に対して、圧縮機11と圧縮機12とが並列接続されている。制御装置6は、圧縮機11および圧縮機12を選択的に運転または停止することで、冷媒が通るルートを制御することができる。具体的には、制御装置6は、圧縮機11のみを運転した場合は、冷媒入口ポート201から流入した冷媒を、配管88および流入管89を介して圧縮機11に流入させ、圧縮機11によって冷媒を圧縮させることができる。制御装置6は、圧縮機12のみを運転した場合は、冷媒入口ポート201から流入した冷媒を、配管88および流入管90を介して圧縮機12に流入させ、圧縮機12によって冷媒を圧縮させることができる。さらに、制御装置6は、圧縮機11および圧縮機12の両方を運転した場合は、冷媒入口ポート201から流入した冷媒を、配管88および流入管89を介して圧縮機11に流入させ、圧縮機11によって冷媒を圧縮させる一方で、配管88および流入管90を介して圧縮機12に流入させ、圧縮機12によって冷媒を圧縮させることができる。 As described above, in the cold heat source unit 5, the compressor 11 and the compressor 12 are connected in parallel to the pipe 88 and the pipe 93. The control device 6 can control the route through which the refrigerant passes by selectively operating or stopping the compressor 11 and the compressor 12. Specifically, when only the compressor 11 is operated, the control device 6 causes the refrigerant flowing from the refrigerant inlet port 201 to flow into the compressor 11 via the pipe 88 and the inflow pipe 89, and the compressor 11 causes the refrigerant to flow into the compressor 11. The refrigerant can be compressed. When only the compressor 12 is operated, the control device 6 causes the refrigerant flowing from the refrigerant inlet port 201 to flow into the compressor 12 through the pipe 88 and the inflow pipe 90, and the refrigerant is compressed by the compressor 12. Can be done. Further, when both the compressor 11 and the compressor 12 are operated, the control device 6 causes the refrigerant flowing from the refrigerant inlet port 201 to flow into the compressor 11 through the pipe 88 and the inflow pipe 89, and causes the compressor to flow. While the refrigerant is compressed by 11, the refrigerant can be made to flow into the compressor 12 through the pipe 88 and the inflow pipe 90, and the refrigerant can be compressed by the compressor 12.
 圧縮機11は、高圧シェルタイプの圧縮機である。図2は、高圧シェルタイプの圧縮機11の構成を示す図である。図2を参照して、圧縮機11は、密閉容器151と、密閉容器151内に設けられた圧縮部154とを有する。圧縮部154は、流入管89に直接的に接続されている。圧縮部154は、流入管89を通って流入した低温低圧のガス冷媒を圧縮し、圧縮によって得られた高温高圧のガス冷媒を吐出ポート155から密閉容器151内に吐出する。密閉容器151内に充満する高温高圧のガス冷媒は、流出管91を介して、凝縮器20に接続された配管93へと流出する。このように、圧縮機11においては、密閉容器151内が高温高圧のガス冷媒によって満たされている。 The compressor 11 is a high-pressure shell type compressor. FIG. 2 is a diagram showing a configuration of a high-pressure shell type compressor 11. With reference to FIG. 2, the compressor 11 has a closed container 151 and a compression unit 154 provided in the closed container 151. The compression unit 154 is directly connected to the inflow pipe 89. The compression unit 154 compresses the low-temperature and low-pressure gas refrigerant that has flowed in through the inflow pipe 89, and discharges the high-temperature and high-pressure gas refrigerant obtained by the compression from the discharge port 155 into the closed container 151. The high-temperature and high-pressure gas refrigerant that fills the closed container 151 flows out to the pipe 93 connected to the condenser 20 via the outflow pipe 91. As described above, in the compressor 11, the inside of the closed container 151 is filled with the high-temperature and high-pressure gas refrigerant.
 圧縮機11は、制御装置6からの制御信号に従って、運転および停止、さらには運転時の回転速度を調整するように構成されている。制御装置6は、圧縮機11の回転速度を調整することによって、冷媒の循環量を調整し、その結果、冷凍サイクル装置1の冷凍能力を調整することができる。圧縮機11には種々のタイプのものを採用可能であり、たとえば、スクロールタイプ、ロータリータイプ、スクリュータイプなどのものを採用し得る。 The compressor 11 is configured to operate and stop, and further adjust the rotation speed during operation according to the control signal from the control device 6. The control device 6 can adjust the circulation amount of the refrigerant by adjusting the rotation speed of the compressor 11, and as a result, the refrigerating capacity of the refrigerating cycle device 1 can be adjusted. Various types of compressors 11 can be adopted, and for example, scroll type, rotary type, screw type and the like can be adopted.
 圧縮機12は、低圧シェルタイプの圧縮機である。図3は、低圧シェルタイプの圧縮機12の構成を示す図である。図3を参照して、圧縮機12は、密閉容器161と、密閉容器161内に設けられた圧縮部164とを有する。圧縮部164は、流出管92に直接的に接続されている。流入管90を通って流入した低温低圧のガス冷媒は、密閉容器161内に充満する。密閉容器161内に充満する低温低圧のガス冷媒は、吸入ポート165を介して圧縮部164に吸入される。圧縮部164は、吸入ポート165を介して吸入した冷媒を圧縮し、圧縮によって得られた高温高圧のガス冷媒を、流出管92を介して、凝縮器20に接続された配管93へと流出する。このように、圧縮機12においては、密閉容器161内が低温低圧のガス冷媒によって満たされている。 The compressor 12 is a low pressure shell type compressor. FIG. 3 is a diagram showing the configuration of the low pressure shell type compressor 12. With reference to FIG. 3, the compressor 12 has a closed container 161 and a compression unit 164 provided in the closed container 161. The compression unit 164 is directly connected to the outflow pipe 92. The low-temperature low-pressure gas refrigerant that has flowed in through the inflow pipe 90 fills the closed container 161. The low-temperature low-pressure gas refrigerant that fills the closed container 161 is sucked into the compression unit 164 via the suction port 165. The compression unit 164 compresses the refrigerant sucked through the suction port 165, and the high-temperature and high-pressure gas refrigerant obtained by the compression flows out to the pipe 93 connected to the condenser 20 via the outflow pipe 92. .. As described above, in the compressor 12, the inside of the closed container 161 is filled with the low-temperature low-pressure gas refrigerant.
 圧縮機12は、制御装置6からの制御信号に従って、運転および停止、さらには運転時の回転速度を調整するように構成されている。制御装置6は、圧縮機12の回転速度を調整することによって、冷媒の循環量を調整し、その結果、冷凍サイクル装置1の冷凍能力を調整することができる。圧縮機12には種々のタイプのものを採用可能であり、たとえば、スクロールタイプ、ロータリータイプ、スクリュータイプなどのものを採用し得る。 The compressor 12 is configured to operate and stop, and further adjust the rotation speed during operation according to the control signal from the control device 6. The control device 6 can adjust the circulation amount of the refrigerant by adjusting the rotation speed of the compressor 12, and as a result, can adjust the refrigerating capacity of the refrigerating cycle device 1. Various types of compressors 12 can be adopted, and for example, scroll type, rotary type, screw type and the like can be adopted.
 運転中において、高圧シェルタイプの圧縮機11は、ガス冷媒と冷凍機油とを分離することが可能であり、ガス冷媒は流出管91を介して配管93に流出する一方で、冷凍機油は密閉容器151の底部に溜まる。これにより、高圧シェルタイプの圧縮機11を用いて冷凍サイクルを行えば、冷媒回路2内へと持ち出される冷凍機油の量を極力減らすことができる。 During operation, the high-pressure shell type compressor 11 can separate the gas refrigerant and the refrigerating machine oil, and the gas refrigerant flows out to the pipe 93 through the outflow pipe 91, while the refrigerating machine oil is a closed container. It collects at the bottom of 151. As a result, if the refrigeration cycle is performed using the high-pressure shell type compressor 11, the amount of refrigerating machine oil carried out into the refrigerant circuit 2 can be reduced as much as possible.
 一方、運転中において、低圧シェルタイプの圧縮機12は、高圧シェルタイプの圧縮機11よりも、ガス冷媒と冷凍機油とを分離することが困難であることが知られている。このため、圧縮機12を用いて冷凍サイクルを行った場合は、圧縮機11を用いて冷凍サイクルを行った場合よりも、冷媒回路2内へと持ち出される冷凍機油の量が増え、その分、圧縮機12内に溜まる冷凍機油の量が減ってしまう。圧縮機12内に溜まる冷凍機油の量が減ると、圧縮機12の潤滑不良が発生する虞がある。このため、どちらかというと、冷凍サイクル装置1としては高圧シェルタイプの圧縮機11を運転させる方が好ましい。 On the other hand, it is known that it is more difficult for the low-pressure shell type compressor 12 to separate the gas refrigerant and the refrigerating machine oil during operation than the high-pressure shell type compressor 11. Therefore, when the refrigerating cycle is performed using the compressor 12, the amount of refrigerating machine oil carried out into the refrigerant circuit 2 increases as compared with the case where the refrigerating cycle is performed using the compressor 11. The amount of refrigerating machine oil accumulated in the compressor 12 is reduced. If the amount of refrigerating machine oil accumulated in the compressor 12 is reduced, lubrication failure of the compressor 12 may occur. Therefore, if anything, it is preferable to operate the high-pressure shell type compressor 11 as the refrigerating cycle device 1.
 再び図1を参照して、凝縮器20は、圧縮機11および圧縮機12の少なくともいずれか一方から吐出された高温高圧のガス冷媒を凝縮して配管82へと流出させる。凝縮器20は、吐出された高温高圧のガス冷媒と外気との間で熱交換を行うように構成されている。この熱交換により放熱した高温高圧のガス冷媒は凝縮されて高温高圧の液冷媒に変化する。凝縮器20には、熱交換の効率を上げるために外気を送るファン22が取り付けられている。ファン22は、凝縮器20において冷媒が熱交換を行うための外気を凝縮器20に供給する。 With reference to FIG. 1 again, the condenser 20 condenses the high-temperature and high-pressure gas refrigerant discharged from at least one of the compressor 11 and the compressor 12 and causes the gas refrigerant to flow out to the pipe 82. The condenser 20 is configured to exchange heat between the discharged high-temperature and high-pressure gas refrigerant and the outside air. The high-temperature and high-pressure gas refrigerant radiated by this heat exchange is condensed and changed into a high-temperature and high-pressure liquid refrigerant. A fan 22 for sending outside air is attached to the condenser 20 in order to increase the efficiency of heat exchange. The fan 22 supplies the outside air to the condenser 20 for the refrigerant to exchange heat in the condenser 20.
 冷熱源ユニット5は、さらに、圧力センサ211と、温度センサ311と、温度センサ312とを備える。 The cold heat source unit 5 further includes a pressure sensor 211, a temperature sensor 311 and a temperature sensor 312.
 圧力センサ211は、圧縮機11の吸入ポート111側(圧縮機12の吸入ポート121側)に設けられている。圧力センサ211は、圧縮機11の吸入ポート111側(圧縮機12の吸入ポート121側)の圧力PLを測定し、その測定値を制御装置6に出力する。 The pressure sensor 211 is provided on the suction port 111 side of the compressor 11 (the suction port 121 side of the compressor 12). The pressure sensor 211 measures the pressure PL on the suction port 111 side of the compressor 11 (the suction port 121 side of the compressor 12), and outputs the measured value to the control device 6.
 温度センサ311は、凝縮器20の冷媒出口ポート222側に設けられている。温度センサ311は、凝縮器20から流出した冷媒の温度T1を測定し、その測定値を制御装置6に出力する。温度センサ312は、冷熱源装置2の周囲(たとえば、凝縮器20の周囲)に設けられている。温度センサ312は、冷熱源装置2の周囲の外気の温度T2を測定し、その測定値を制御装置6に出力する。 The temperature sensor 311 is provided on the refrigerant outlet port 222 side of the condenser 20. The temperature sensor 311 measures the temperature T1 of the refrigerant flowing out of the condenser 20, and outputs the measured value to the control device 6. The temperature sensor 312 is provided around the cold heat source device 2 (for example, around the condenser 20). The temperature sensor 312 measures the temperature T2 of the outside air around the cold heat source device 2, and outputs the measured value to the control device 6.
 制御装置6は、CPU(Central Processing Unit)61と、記憶媒体であるメモリ62(ROM(Read Only Memory)およびRAM(Random Access Memory))と、各種信号を入出力するための入出力バッファ(図示せず)などを含んで構成されている。CPU61は、ROMに格納されているプログラムをRAMなどに展開して実行する。ROMに格納されるプログラムは、制御装置6の処理手順が記された制御プログラムを含む。制御装置6は、これらの制御プログラムに従って、冷媒回路4における各部の制御を実行する。この制御については、ソフトウェアによる処理に限られず、専用のハードウェア(電子回路)で処理することも可能である。 The control device 6 includes a CPU (Central Processing Unit) 61, a storage medium memory 62 (ROM (Read Only Memory) and RAM (Random Access Memory)), and an input / output buffer (FIG.) for inputting / outputting various signals. (Not shown) etc. are included. The CPU 61 expands the program stored in the ROM into a RAM or the like and executes the program. The program stored in the ROM includes a control program in which the processing procedure of the control device 6 is described. The control device 6 executes control of each part in the refrigerant circuit 4 according to these control programs. This control is not limited to software processing, but can also be processed by dedicated hardware (electronic circuit).
 警報装置7は、制御装置6からの制御信号に従って警報を発することで、冷媒回路4に不具合が生じる虞がある旨を外部に知らせる。警報装置7による警報は、図示しないディスプレイに警報画像を表示することで行われてもよいし、図示しないスピーカから警報音を出力することで行われてもよいし、図示しない警報ランプを点灯または点滅することで行われてもよい。 The alarm device 7 issues an alarm according to the control signal from the control device 6 to notify the outside that there is a possibility that a malfunction may occur in the refrigerant circuit 4. The alarm by the alarm device 7 may be performed by displaying an alarm image on a display (not shown), by outputting an alarm sound from a speaker (not shown), or turning on an alarm lamp (not shown). It may be done by blinking.
 上述したような構成を備える冷凍サイクル装置1においては、高圧シェルタイプの圧縮機11を用いて冷凍サイクル装置1を運転することで、冷媒回路2内へと持ち出される冷凍機油の量を極力減らすことができる。しかし、圧縮機11の吸入ポート111側の冷媒圧力が大気圧(たとえば、1013.25hPa)よりも低くなる負圧状態で圧縮機の運転(負圧運転)が行われた場合、冷媒回路4に漏れ箇所があると、外部からの空気が冷媒回路4に混入する虞がある。そうすると、冷媒回路4に混入した空気が圧縮機11の密閉容器151内に溜まる冷凍機油に触れ、さらに密閉容器151内で高温高圧状態となることで、圧縮機11ひいては冷媒回路4に不具合が生じる虞がある。 In the refrigerating cycle apparatus 1 having the above-described configuration, the refrigerating machine oil carried out into the refrigerant circuit 2 is reduced as much as possible by operating the refrigerating cycle apparatus 1 using the high-pressure shell type compressor 11. Can be done. However, when the compressor is operated (negative pressure operation) in a negative pressure state where the refrigerant pressure on the suction port 111 side of the compressor 11 is lower than the atmospheric pressure (for example, 1013.25 hPa), the refrigerant circuit 4 is used. If there is a leak, air from the outside may enter the refrigerant circuit 4. Then, the air mixed in the refrigerant circuit 4 comes into contact with the refrigerating machine oil accumulated in the closed container 151 of the compressor 11, and further becomes a high temperature and high pressure state in the closed container 151, which causes a problem in the compressor 11 and thus in the refrigerant circuit 4. There is a risk.
 そこで、制御装置6は、圧縮機11が運転中であり、かつ圧縮機11の吸入ポート111側の圧力が負圧であるときに、圧縮機11を停止させるように構成されている。 Therefore, the control device 6 is configured to stop the compressor 11 when the compressor 11 is in operation and the pressure on the suction port 111 side of the compressor 11 is a negative pressure.
 図4を参照して、冷媒回路4に空気が混入していないときの冷凍サイクルと冷媒回路4に空気が混入しているときの冷凍サイクルとを比較する。図4は、冷媒回路4に空気が混入していないときの冷凍サイクルと冷媒回路4に空気が混入しているときの冷凍サイクルとを比較するためのp-h線図である。 With reference to FIG. 4, the refrigerating cycle when air is not mixed in the refrigerant circuit 4 and the refrigerating cycle when air is mixed in the refrigerant circuit 4 are compared. FIG. 4 is a ph diagram for comparing a refrigerating cycle when air is not mixed in the refrigerant circuit 4 and a refrigerating cycle when air is mixed in the refrigerant circuit 4.
 図4では、縦軸に絶対圧力p、横軸に比エンタルピーhをとり、冷媒回路4に空気が混入していないときの冷凍サイクルが符号C1で表され、冷媒回路4に空気が混入しているときの冷凍サイクルが符号C2で表されている。さらに、外気温度に相当する温度の冷媒の等温線はTで表されている。なお、図4においては、説明を簡単にするために、圧縮機11のみが運転している場合のp-h線図を示す。 In FIG. 4, the vertical axis represents the absolute pressure p, the horizontal axis represents the specific enthalpy h, and the refrigeration cycle when air is not mixed in the refrigerant circuit 4 is represented by the reference numeral C1, and air is mixed in the refrigerant circuit 4. The refrigeration cycle at that time is represented by the reference numeral C2. Further, the isotherm of the refrigerant having a temperature corresponding to the outside air temperature is represented by T. Note that FIG. 4 shows a ph diagram when only the compressor 11 is in operation for the sake of simplicity.
 冷凍サイクルC1について、点A1から点A2に至るまでのグラフの変化は、圧縮機11における冷媒の状態の変化を示す。点A2から点A3に至るまでのグラフの変化は、凝縮器20における冷媒の状態の変化を示す。点A3から点A4に至るまでのグラフの変化は、膨張弁50における冷媒の状態の変化を示す。点A4から点A1に至るまでのグラフの変化は、蒸発器60における冷媒の状態の変化を示す。 For the refrigeration cycle C1, the change in the graph from point A1 to point A2 indicates the change in the state of the refrigerant in the compressor 11. The change in the graph from point A2 to point A3 indicates the change in the state of the refrigerant in the condenser 20. The change in the graph from point A3 to point A4 indicates a change in the state of the refrigerant in the expansion valve 50. The change in the graph from point A4 to point A1 indicates the change in the state of the refrigerant in the evaporator 60.
 冷凍サイクルC2について、点B1から点B2に至るまでのグラフの変化は、圧縮機11における冷媒の状態の変化を示す。点B2から点B3に至るまでのグラフの変化は、凝縮器20における冷媒の状態の変化を示す。点B3から点B4に至るまでのグラフの変化は、膨張弁50における冷媒の状態の変化を示す。点B4から点B1に至るまでのグラフの変化は、蒸発器60における冷媒の状態の変化を示す。 For the refrigeration cycle C2, the change in the graph from point B1 to point B2 indicates the change in the state of the refrigerant in the compressor 11. The change in the graph from point B2 to point B3 indicates a change in the state of the refrigerant in the condenser 20. The change in the graph from point B3 to point B4 indicates a change in the state of the refrigerant in the expansion valve 50. The change in the graph from point B4 to point B1 indicates a change in the state of the refrigerant in the evaporator 60.
 冷凍サイクルC1と冷凍サイクルC2とを比較すると、以下のような結果が得られる。冷凍サイクルC2における冷媒の圧縮後の圧力(B2-B3間の圧力)は、冷凍サイクルC1における冷媒の圧縮後の圧力(A2-A3間の圧力)よりも高くなる。また、冷凍サイクルC2における凝縮中の冷媒温度と外気温度との差α2は、冷凍サイクルC1における凝縮中の冷媒温度と外気温度との差α1よりも大きくなる。これらは、冷媒回路4に空気が混入することで、凝縮器20内における伝熱が阻害されて凝縮温度が上昇すること、および、凝縮温度の上昇分に相当する凝縮圧力に対して、混入した空気の分圧が加えられることによると考えられる。 Comparing the refrigeration cycle C1 and the refrigeration cycle C2, the following results can be obtained. The pressure after compression of the refrigerant in the refrigeration cycle C2 (pressure between B2 and B3) is higher than the pressure after compression of the refrigerant in the refrigeration cycle C1 (pressure between A2 and A3). Further, the difference α2 between the refrigerant temperature during condensation and the outside air temperature in the refrigeration cycle C2 is larger than the difference α1 between the refrigerant temperature during condensation and the outside air temperature in the refrigeration cycle C1. When air is mixed in the refrigerant circuit 4, heat transfer in the condenser 20 is hindered and the condensation temperature rises, and these are mixed in with respect to the condensation pressure corresponding to the rise in the condensation temperature. It is considered that the partial pressure of air is applied.
 また、凝縮温度および凝縮圧力の上昇に起因して、冷凍サイクルC2における凝縮器20の冷媒出口部分の冷媒の過冷却度β2は、冷凍サイクルC1における凝縮器20の冷媒出口部分の冷媒の過冷却度β1よりも大きくなる。また、冷凍サイクルC2における凝縮器20の冷媒出口部分の冷媒温度と外気温度との差γ2は、冷凍サイクルC1における凝縮器20の冷媒出口部分の冷媒温度と外気温度との差γ1よりも小さくなる。 Further, due to the increase in the condensation temperature and the condensation pressure, the supercooling degree β2 of the refrigerant in the refrigerant outlet portion of the condenser 20 in the refrigeration cycle C2 is the supercooling of the refrigerant in the refrigerant outlet portion of the condenser 20 in the refrigeration cycle C1. Greater than degree β1. Further, the difference γ2 between the refrigerant temperature and the outside air temperature of the refrigerant outlet portion of the condenser 20 in the refrigeration cycle C2 is smaller than the difference γ1 between the refrigerant temperature and the outside air temperature of the refrigerant outlet portion of the condenser 20 in the refrigeration cycle C1. ..
 このように、冷媒回路4に空気が混入していないときの冷凍サイクルC1と、冷媒回路4に空気が混入しているときの冷凍サイクルC2とを比較すると、空気が混入しているときは、空気が混入していないときよりも、凝縮器20の冷媒出口部分の冷媒温度と外気温度との差が小さくなることが分かる。 As described above, comparing the refrigerating cycle C1 when air is not mixed in the refrigerant circuit 4 and the refrigerating cycle C2 when air is mixed in the refrigerant circuit 4, when air is mixed, it is found that the refrigerating cycle C1 is mixed. It can be seen that the difference between the refrigerant temperature and the outside air temperature at the refrigerant outlet portion of the condenser 20 is smaller than when air is not mixed.
 そこで、制御装置6は、凝縮器20の冷媒出口部分の冷媒温度と外気温度との差に基づき、冷媒回路4に空気が混入しているか否かを判断するように構成されている。 Therefore, the control device 6 is configured to determine whether or not air is mixed in the refrigerant circuit 4 based on the difference between the refrigerant temperature and the outside air temperature at the refrigerant outlet portion of the condenser 20.
 具体的には、制御装置6は、温度センサ311の測定値に基づき凝縮器20の冷媒出口部分の冷媒の温度T1を特定する。制御装置6は、温度センサ312の測定値に基づき外気の温度T2を特定する。制御装置6は、冷媒温度T1と外気温度T2との差が第1値以下(たとえば、2K以下)であるときに、冷媒回路4に空気が混入していると判断する。 Specifically, the control device 6 specifies the temperature T1 of the refrigerant at the refrigerant outlet portion of the condenser 20 based on the measured value of the temperature sensor 311. The control device 6 specifies the temperature T2 of the outside air based on the measured value of the temperature sensor 312. The control device 6 determines that air is mixed in the refrigerant circuit 4 when the difference between the refrigerant temperature T1 and the outside air temperature T2 is the first value or less (for example, 2K or less).
 図5は、制御装置6による冷媒回路4の制御を説明するためのフローチャートである。制御装置6は、メモリ62に格納された制御プログラムを実行することで、図5に示すフローチャートの処理を実行する。このフローチャートの処理は、一定時間ごとに冷凍サイクル装置1の主制御ルーチンから呼び出されて実行される。なお、図5においては、高圧シェルタイプの圧縮機11が第1圧縮機で示され、低圧シェルタイプの圧縮機12が第2圧縮機で示されている。図中において、「S」は「STEP」の略称として用いられる。 FIG. 5 is a flowchart for explaining the control of the refrigerant circuit 4 by the control device 6. The control device 6 executes the processing of the flowchart shown in FIG. 5 by executing the control program stored in the memory 62. The processing of this flowchart is called and executed from the main control routine of the refrigerating cycle apparatus 1 at regular time intervals. In FIG. 5, the high pressure shell type compressor 11 is shown by the first compressor, and the low pressure shell type compressor 12 is shown by the second compressor. In the figure, "S" is used as an abbreviation for "STEP".
 制御装置6は、圧縮機11が運転中であるか否かを判定する(S1)。制御装置6は、圧縮機11が運転中である場合(S1でYES)、圧縮機11の吸入ポート111側の圧力が負圧であるか否かを判定する(S2)。 The control device 6 determines whether or not the compressor 11 is in operation (S1). When the compressor 11 is in operation (YES in S1), the control device 6 determines whether or not the pressure on the suction port 111 side of the compressor 11 is a negative pressure (S2).
 制御装置6は、圧縮機11の吸入ポート111側の圧力が負圧である場合(S2でYES)、圧縮機11に制御信号を出力することで、圧縮機11を停止させる(S3)。このとき、制御装置6は、低圧シェルタイプの圧縮機12が運転中である場合、圧縮機12の運転を継続する。一方、制御装置6は、圧縮機12が運転中でない場合、圧縮機12に制御信号を出力することで、圧縮機12を運転させる。 When the pressure on the suction port 111 side of the compressor 11 is negative (YES in S2), the control device 6 stops the compressor 11 by outputting a control signal to the compressor 11 (S3). At this time, when the low-pressure shell type compressor 12 is in operation, the control device 6 continues the operation of the compressor 12. On the other hand, when the compressor 12 is not in operation, the control device 6 outputs a control signal to the compressor 12 to operate the compressor 12.
 制御装置6は、圧縮機11の吸入ポート111側の圧力が負圧でない場合(S2でNO)、または、S3の処理の後、主制御ルーチンに制御を戻す。 The control device 6 returns control to the main control routine when the pressure on the suction port 111 side of the compressor 11 is not negative (NO in S2) or after the processing of S3.
 制御装置6は、圧縮機11が運転中でない場合(S1でNO)、圧縮機11の吸入ポート111側の圧力が負圧であるか否かを判定する(S4)。制御装置6は、圧縮機11の吸入ポート111側の圧力が負圧である場合(S4でYES)、冷媒回路4に空気が混入しているか否かを判定する(S5)。具体的には、制御装置6は、温度センサ311の測定値に基づき特定した冷媒温度T1と、温度センサ312の測定値に基づき特定した外気温度T2との差が第1値以下(たとえば、2K以下)であるか否かを判定する。 When the compressor 11 is not in operation (NO in S1), the control device 6 determines whether or not the pressure on the suction port 111 side of the compressor 11 is a negative pressure (S4). When the pressure on the suction port 111 side of the compressor 11 is negative (YES in S4), the control device 6 determines whether or not air is mixed in the refrigerant circuit 4 (S5). Specifically, in the control device 6, the difference between the refrigerant temperature T1 specified based on the measured value of the temperature sensor 311 and the outside air temperature T2 specified based on the measured value of the temperature sensor 312 is the first value or less (for example, 2K). The following) is determined.
 制御装置6は、冷媒温度T1と外気温度T2との差が第1値以下(たとえば、2K以下)である場合、冷媒回路4に空気が混入していると判断し(S5でYES)、警報装置7に制御信号を出力することで、警報装置7から警報を発生させる(S7)。 When the difference between the refrigerant temperature T1 and the outside air temperature T2 is equal to or less than the first value (for example, 2K or less), the control device 6 determines that air is mixed in the refrigerant circuit 4 (YES in S5) and gives an alarm. By outputting a control signal to the device 7, an alarm is generated from the alarm device 7 (S7).
 一方、制御装置6は、冷媒温度T1と外気温度T2との差が第1値未満(たとえば、2K未満)である場合、冷媒回路4に空気が混入していないと判断し(S5でNO)、圧縮機11に制御信号を出力することで、圧縮機11を運転させる(S6)。 On the other hand, when the difference between the refrigerant temperature T1 and the outside air temperature T2 is less than the first value (for example, less than 2K), the control device 6 determines that air is not mixed in the refrigerant circuit 4 (NO in S5). , By outputting the control signal to the compressor 11, the compressor 11 is operated (S6).
 制御装置6は、圧縮機11の吸入ポート111側の圧力が負圧でない場合(S4でNO)、または、S6、S7の処理の後、主制御ルーチンに制御を戻す。 The control device 6 returns control to the main control routine when the pressure on the suction port 111 side of the compressor 11 is not negative (NO in S4) or after the processing of S6 and S7.
 なお、制御装置6は、S6において圧縮機11を運転させた場合、一定時間ごとに実行する図5に示すフローチャートのS3の処理において再び圧縮機11を停止しないように、S6の処理では予め定められた期間(たとえば、1時間)に亘って圧縮機11の運転を継続するものであってもよい。 It should be noted that the control device 6 is predetermined in the processing of S6 so that when the compressor 11 is operated in S6, the compressor 11 is not stopped again in the processing of S3 in the flowchart shown in FIG. 5 executed at regular time intervals. The compressor 11 may be continuously operated for a specified period (for example, 1 hour).
 以上のように、制御装置6は、高圧シェルタイプの圧縮機11が運転中であり、かつ圧縮機11の運転状態が負圧運転であるときに、圧縮機11を停止させることで、冷媒回路4に混入した空気が圧縮機11内で高温高圧状態となることによって圧縮機11ひいては冷媒回路4に不具合が生じることを回避することができる。 As described above, the control device 6 is a refrigerant circuit by stopping the compressor 11 when the high-pressure shell type compressor 11 is in operation and the operating state of the compressor 11 is negative pressure operation. It is possible to avoid a problem in the compressor 11 and thus in the refrigerant circuit 4 due to the high temperature and high pressure state of the air mixed in the compressor 11 in the compressor 11.
 制御装置6は、高圧シェルタイプの圧縮機11が運転中でなく、圧縮機11の運転状態が負圧運転であり、かつ冷媒回路4に空気が混入しているときに、警報を発する制御を行うことで、冷媒回路4に空気が混入していることによって冷媒回路4に不具合が生じる虞がある旨を外部に知らせることができる。 The control device 6 controls to issue an alarm when the high-pressure shell type compressor 11 is not in operation, the operating state of the compressor 11 is negative pressure operation, and air is mixed in the refrigerant circuit 4. By doing so, it is possible to notify the outside that there is a possibility that a malfunction may occur in the refrigerant circuit 4 due to the inclusion of air in the refrigerant circuit 4.
 制御装置6は、高圧シェルタイプの圧縮機11が運転中でなく、圧縮機11の運転状態が負圧運転であり、かつ冷媒回路に空気が混入していないときに、圧縮機11を再び運転させることで、冷媒回路4に空気が混入していないことを確認した上で圧縮機11を再び運転させることができ、その結果、圧縮機11を用いた冷凍サイクルを再び行うことができる。 The control device 6 operates the compressor 11 again when the high-pressure shell type compressor 11 is not in operation, the operating state of the compressor 11 is negative pressure operation, and air is not mixed in the refrigerant circuit. By doing so, the compressor 11 can be operated again after confirming that air is not mixed in the refrigerant circuit 4, and as a result, the refrigeration cycle using the compressor 11 can be performed again.
 制御装置6は、高圧シェルタイプの圧縮機11および低圧シェルタイプの圧縮機12が運転中であり、かつ圧縮機11の運転状態が負圧運転であるときに、圧縮機11を停止させる一方で圧縮機12の運転を継続させることで、圧縮機11ひいては冷媒回路4に不具合が生じることを回避する一方で、圧縮機12を用いた冷凍サイクルを継続させて冷却対象である冷却物の溶解を防止することができる。 The control device 6 stops the compressor 11 when the high-pressure shell type compressor 11 and the low-pressure shell type compressor 12 are in operation and the operating state of the compressor 11 is negative pressure operation. By continuing the operation of the compressor 12, it is possible to avoid a problem in the compressor 11 and thus in the refrigerant circuit 4, while continuing the refrigeration cycle using the compressor 12 to melt the cooled material to be cooled. Can be prevented.
 制御装置6は、高圧シェルタイプの圧縮機11が運転中である一方で低圧シェルタイプの圧縮機12が運転中でなく、かつ圧縮機11の運転状態が負圧運転であるときに、圧縮機11を停止させる一方で圧縮機12を運転させることで、圧縮機11ひいては冷媒回路4に不具合が生じることを回避する一方で、圧縮機11の代わりに圧縮機12を用いた冷凍サイクルを実行させて冷却物の溶解を防止することができる。 The control device 6 is a compressor when the high-pressure shell type compressor 11 is operating while the low-pressure shell type compressor 12 is not operating and the operating state of the compressor 11 is negative pressure operation. By operating the compressor 12 while stopping the 11th, it is possible to avoid a problem in the compressor 11 and thus the refrigerant circuit 4, while executing a refrigeration cycle using the compressor 12 instead of the compressor 11. It is possible to prevent the cooling material from melting.
 制御装置6は、温度センサ311の測定値に基づき特定した凝縮器20の冷媒出口部分の冷媒温度T1と、温度センサ312の測定値に基づき特定した外気温度T2との差に基づいて、冷媒回路4に空気が混入しているか否かを判断することができる。 The control device 6 is a refrigerant circuit based on the difference between the refrigerant temperature T1 of the refrigerant outlet portion of the condenser 20 specified based on the measured value of the temperature sensor 311 and the outside air temperature T2 specified based on the measured value of the temperature sensor 312. It can be determined whether or not air is mixed in 4.
 実施の形態2.
 図6は、実施の形態2に係る冷凍サイクル装置100の構成を示す図である。なお、図6では、冷凍サイクル装置100における各機器の接続関係および配置構成を機能的に示しており、物理的な空間における配置を必ずしも示すものではない。
Embodiment 2.
FIG. 6 is a diagram showing the configuration of the refrigeration cycle device 100 according to the second embodiment. Note that FIG. 6 functionally shows the connection relationship and the arrangement configuration of each device in the refrigeration cycle device 100, and does not necessarily show the arrangement in the physical space.
 図6を参照して、実施の形態2に係る冷凍サイクル装置100において、冷熱源ユニット500の冷熱源装置200は、受液器(レシーバ)30と、配管81と、圧力センサ212とをさらに備える。冷熱源ユニット500が備えるその他の構成については、図1に示す冷熱源ユニット5が備える構成と同じであるので、説明は繰り返さない。 With reference to FIG. 6, in the refrigeration cycle device 100 according to the second embodiment, the cold heat source device 200 of the cold heat source unit 500 further includes a liquid receiver (receiver) 30, a pipe 81, and a pressure sensor 212. .. Since the other configurations included in the cold heat source unit 500 are the same as the configurations included in the cold heat source unit 5 shown in FIG. 1, the description thereof will not be repeated.
 受液器30は、凝縮器20の冷媒出口ポート222側に設けられ、凝縮器20の冷媒出口ポート222から流出された液冷媒を貯留する。受液器30は、配管81を介して凝縮器20の冷媒出口ポート222に接続され、配管82を介して冷熱源装置200の冷媒出口ポート202に接続されている。 The liquid receiver 30 is provided on the refrigerant outlet port 222 side of the condenser 20, and stores the liquid refrigerant flowing out from the refrigerant outlet port 222 of the condenser 20. The liquid receiver 30 is connected to the refrigerant outlet port 222 of the condenser 20 via the pipe 81, and is connected to the refrigerant outlet port 202 of the cold heat source device 200 via the pipe 82.
 圧力センサ212は、圧縮機11の吐出側および圧縮機12の吐出側に共通に設けられている。圧力センサ212は、圧縮機11の吐出側および圧縮機12の吐出側の圧力PHを測定し、その測定値を制御装置6に出力する。 The pressure sensor 212 is commonly provided on the discharge side of the compressor 11 and the discharge side of the compressor 12. The pressure sensor 212 measures the pressure PH on the discharge side of the compressor 11 and the discharge side of the compressor 12, and outputs the measured values to the control device 6.
 冷媒回路400に空気が混入していない場合、受液器30内には凝縮器20から流出した液冷媒とガス冷媒とが共存しているため、過冷却度はほぼ0度である。一方、冷媒回路400に空気が混入した場合、ガス冷媒に代わって受液器30内に空気が溜まるため、受液器30が冷やされたとしても凝縮が起こらず、過冷却が生じる。つまり、冷媒回路400に空気が混入していないときと、冷媒回路400に空気が混入しているときとを比較すると、空気が混入しているときは、空気が混入していないときよりも、過冷却度が大きくなることが分かる。 When air is not mixed in the refrigerant circuit 400, the degree of supercooling is almost 0 degree because the liquid refrigerant flowing out from the condenser 20 and the gas refrigerant coexist in the liquid receiver 30. On the other hand, when air is mixed in the refrigerant circuit 400, air is accumulated in the receiver 30 instead of the gas refrigerant, so that even if the receiver 30 is cooled, condensation does not occur and supercooling occurs. That is, when comparing the case where air is not mixed in the refrigerant circuit 400 and the time when air is mixed in the refrigerant circuit 400, when air is mixed, it is better than when air is not mixed. It can be seen that the degree of supercooling increases.
 そこで、実施の形態2に係る制御装置6は、図5に示すフローチャートのS5の処理において、凝縮器20の冷媒出口ポート222側に設けられた温度センサ311の測定値(冷媒の温度T1)と、圧力センサ212の測定値(圧力PH)とに基づき、冷媒の過冷却度を算出し、算出した過冷却度に基づき、冷媒回路4に空気が混入しているか否かを判断するように構成されている。 Therefore, the control device 6 according to the second embodiment has the measured value (refrigerant temperature T1) of the temperature sensor 311 provided on the refrigerant outlet port 222 side of the condenser 20 in the process of S5 in the flowchart shown in FIG. , The degree of overcooling of the refrigerant is calculated based on the measured value (pressure PH) of the pressure sensor 212, and it is determined whether or not air is mixed in the refrigerant circuit 4 based on the calculated degree of overcooling. Has been done.
 具体的には、制御装置6は、温度センサ311の測定値に基づき凝縮器20の冷媒出口部分の冷媒の温度T1を特定する。制御装置6は、圧力センサ212の測定値に基づき圧縮機11の吐出側の圧力PHを特定し、特定した圧力PHに対応する冷媒の飽和温度を算出する。制御装置6は、算出した冷媒の飽和温度から、凝縮器20の冷媒出口部分の冷媒の温度T1を減算することで、過冷却度を算出する。制御装置6は、算出した過冷却度が第2値以上(たとえば、2K以上)であるときに、冷媒回路4に空気が混入していると判断する。 Specifically, the control device 6 specifies the temperature T1 of the refrigerant at the refrigerant outlet portion of the condenser 20 based on the measured value of the temperature sensor 311. The control device 6 specifies the pressure PH on the discharge side of the compressor 11 based on the measured value of the pressure sensor 212, and calculates the saturation temperature of the refrigerant corresponding to the specified pressure PH. The control device 6 calculates the degree of supercooling by subtracting the temperature T1 of the refrigerant at the refrigerant outlet portion of the condenser 20 from the calculated saturation temperature of the refrigerant. The control device 6 determines that air is mixed in the refrigerant circuit 4 when the calculated supercooling degree is the second value or more (for example, 2K or more).
 このように、実施の形態2に係る冷凍サイクル装置100において、制御装置6は、温度センサ311の測定値に基づき特定した凝縮器20の冷媒出口部分の冷媒温度T1と、圧力センサ212の測定値に基づき特定した圧縮機11の吐出側の圧力PHとに基づき、過冷却度を算出し、算出した過冷却度に基づいて、冷媒回路4に空気が混入しているか否かを判断することができる。 As described above, in the refrigerating cycle device 100 according to the second embodiment, the control device 6 has the refrigerant temperature T1 of the refrigerant outlet portion of the condenser 20 specified based on the measured value of the temperature sensor 311 and the measured value of the pressure sensor 212. The degree of supercooling is calculated based on the pressure PH on the discharge side of the compressor 11 specified based on the above, and it is possible to determine whether or not air is mixed in the refrigerant circuit 4 based on the calculated degree of supercooling. can.
 上述した実施の形態1に係る冷熱源ユニット5および実施の形態2に係る冷熱源ユニット500は、いずれも、高圧シェルタイプの圧縮機11および低圧シェルタイプの圧縮機12を1つずつ備えるものであったが、圧縮機11および圧縮機12の数はこれに限らない。冷熱源ユニット5および冷熱源ユニット500の各々は、少なくとも1つの圧縮機11を備えるものであればよく、2つ以上の圧縮機11を備えるものであってもよい。 The cold heat source unit 5 according to the first embodiment and the cold heat source unit 500 according to the second embodiment both include one high-pressure shell type compressor 11 and one low-pressure shell type compressor 12. However, the number of compressors 11 and 12 is not limited to this. Each of the cold heat source unit 5 and the cold heat source unit 500 may be provided with at least one compressor 11, and may be provided with two or more compressors 11.
 冷熱源ユニット5および冷熱源ユニット500の各々は、必ずしも圧縮機12を備える必要はないが、少なくとも1つの圧縮機12を備える場合、圧縮機12と同数以上の圧縮機11を備えることが好ましい。このような構成によれば、冷凍サイクル装置は、冷媒回路内へと持ち出される冷凍機油の量を極力減らすことなく、冷凍サイクルを行うことができる。 Each of the cold heat source unit 5 and the cold heat source unit 500 does not necessarily have to be provided with the compressor 12, but when at least one compressor 12 is provided, it is preferable to provide the same number or more of the compressors 11 as the compressor 12. According to such a configuration, the refrigerating cycle apparatus can perform the refrigerating cycle without reducing the amount of refrigerating machine oil brought into the refrigerant circuit as much as possible.
 なお、圧縮機11が複数設けられる場合、制御装置6は、図5に示すフローチャートのS3の処理において、複数の圧縮機11の全部または一部の運転を停止させてもよい。 When a plurality of compressors 11 are provided, the control device 6 may stop the operation of all or a part of the plurality of compressors 11 in the process of S3 in the flowchart shown in FIG.
 (まとめ)
 本開示は、膨張弁50および蒸発器60を備える負荷装置3に接続可能であり、冷媒を循環させるように構成された冷媒回路4を構成する冷熱源ユニット5に関する。冷熱源ユニット5は、少なくとも1つの圧縮機11,12と、凝縮器20と、冷媒回路4を制御する制御装置6とを備える。少なくとも1つの圧縮機11,12は、高圧シェルタイプの圧縮機11を備える。制御装置6は、圧縮機11が運転中であり、かつ圧縮機11の吸入ポート111側の圧力が負圧であるときに、圧縮機11を停止させる。
(summary)
The present disclosure relates to a cold heat source unit 5 which is connectable to a load device 3 including an expansion valve 50 and an evaporator 60 and constitutes a refrigerant circuit 4 configured to circulate a refrigerant. The cold heat source unit 5 includes at least one compressors 11 and 12, a condenser 20, and a control device 6 for controlling the refrigerant circuit 4. At least one compressor 11 and 12 includes a high pressure shell type compressor 11. The control device 6 stops the compressor 11 when the compressor 11 is in operation and the pressure on the suction port 111 side of the compressor 11 is negative.
 このような構成を備えることによって、冷熱源ユニット5は、冷媒回路4に混入した空気が圧縮機11内で高温高圧状態となることによって圧縮機11ひいては冷媒回路4に不具合が生じることを回避することができる。 By providing such a configuration, the cold heat source unit 5 prevents the air mixed in the refrigerant circuit 4 from being in a high temperature and high pressure state in the compressor 11 and causing a problem in the compressor 11 and thus in the refrigerant circuit 4. be able to.
 好ましくは、制御装置6は、圧縮機11が運転中でなく、圧縮機11の吸入ポート111側の圧力が負圧であり、かつ冷媒回路4に空気が混入しているときに、警報を発する制御を行う。 Preferably, the control device 6 issues an alarm when the compressor 11 is not in operation, the pressure on the suction port 111 side of the compressor 11 is negative, and air is mixed in the refrigerant circuit 4. Take control.
 このような構成を備えることによって、冷熱源ユニット5は、冷媒回路4に空気が混入していることによって冷媒回路4に不具合が生じる虞がある旨を外部に知らせることができる。 By providing such a configuration, the cold heat source unit 5 can notify the outside that there is a possibility that a malfunction may occur in the refrigerant circuit 4 due to air being mixed in the refrigerant circuit 4.
 好ましくは、制御装置6は、圧縮機11が運転中でなく、圧縮機11の吸入ポート111側の圧力が負圧であり、かつ冷媒回路4に空気が混入していないときに、圧縮機11を運転させる。 Preferably, the controller 6 controls the compressor 11 when the compressor 11 is not in operation, the pressure on the suction port 111 side of the compressor 11 is negative, and air is not mixed in the refrigerant circuit 4. To drive.
 このような構成を備えることによって、冷熱源ユニット5は、冷媒回路4に空気が混入していないことを確認した上で圧縮機11を再び運転させることができ、その結果、圧縮機11を用いた冷凍サイクルを再び行うことができる。 By providing such a configuration, the cold heat source unit 5 can operate the compressor 11 again after confirming that air is not mixed in the refrigerant circuit 4, and as a result, the compressor 11 is used. The refrigeration cycle that was used can be repeated.
 好ましくは、図1に示す冷熱源ユニット5は、凝縮器20の冷媒出口部分における冷媒の温度を測定する温度センサ311と、凝縮器20に供給される外気の温度を測定する温度センサ312とをさらに備える。制御装置6は、温度センサ311の測定値と温度センサ312の測定値との差が第1値以下(たとえば、2K以下)であるときに、冷媒回路4に空気が混入していると判断する。 Preferably, the cold heat source unit 5 shown in FIG. 1 includes a temperature sensor 311 for measuring the temperature of the refrigerant at the refrigerant outlet portion of the condenser 20, and a temperature sensor 312 for measuring the temperature of the outside air supplied to the condenser 20. Further prepare. When the difference between the measured value of the temperature sensor 311 and the measured value of the temperature sensor 312 is equal to or less than the first value (for example, 2K or less), the control device 6 determines that air is mixed in the refrigerant circuit 4. ..
 このような構成を備えることによって、冷熱源ユニット5は、凝縮器20の冷媒出口部分に設けられた温度センサ311と、外気の温度を測定する温度センサ312とを用いて、冷媒回路4に空気が混入しているか否かを判断することができる。 By providing such a configuration, the cold heat source unit 5 uses the temperature sensor 311 provided at the refrigerant outlet portion of the condenser 20 and the temperature sensor 312 for measuring the temperature of the outside air to provide air to the refrigerant circuit 4. It is possible to judge whether or not the mixture is mixed.
 好ましくは、図6に示す冷熱源ユニット500は、凝縮器20の冷媒出口部分に設けられ、冷媒を貯留する受液器30と、凝縮器20の冷媒出口部分における冷媒の温度を測定する温度センサ311と、凝縮器20の冷媒入口部分における冷媒の圧力を測定する圧力センサ212とをさらに備える。制御装置6は、温度センサ311の測定値と圧力センサ212の測定値とに基づき算出される冷媒の過冷却度が第2値以上(たとえば、2K以上)であるときに、冷媒回路4に空気が混入していると判断する。 Preferably, the cold heat source unit 500 shown in FIG. 6 is provided at the refrigerant outlet portion of the condenser 20, and is a temperature sensor that measures the temperature of the refrigerant at the liquid receiver 30 that stores the refrigerant and the refrigerant outlet portion of the condenser 20. 311 and a pressure sensor 212 for measuring the pressure of the refrigerant at the refrigerant inlet portion of the condenser 20 are further provided. When the degree of overcooling of the refrigerant calculated based on the measured value of the temperature sensor 311 and the measured value of the pressure sensor 212 is the second value or more (for example, 2K or more), the control device 6 puts air in the refrigerant circuit 4. Is judged to be mixed.
 このような構成を備えることによって、冷熱源ユニット500は、過冷却度に基づき、冷媒回路4に空気が混入しているか否かを判断することができる。 By providing such a configuration, the cold heat source unit 500 can determine whether or not air is mixed in the refrigerant circuit 4 based on the degree of supercooling.
 好ましくは、少なくとも1つの圧縮機11,12は、圧縮機11と並列接続された低圧シェルタイプの圧縮機12をさらに備える。制御装置6は、圧縮機11および圧縮機12が運転中であり、かつ圧縮機11の吸入ポート111側の圧力が負圧であるときに、圧縮機11を停止させる一方で圧縮機12の運転を継続させる。 Preferably, at least one compressor 11 or 12 further includes a low pressure shell type compressor 12 connected in parallel with the compressor 11. When the compressor 11 and the compressor 12 are in operation and the pressure on the suction port 111 side of the compressor 11 is negative, the control device 6 stops the compressor 11 while operating the compressor 12. To continue.
 このような構成を備えることによって、冷熱源ユニット5は、圧縮機11ひいては冷媒回路4に不具合が生じることを回避する一方で、圧縮機12を用いた冷凍サイクルを継続させることができ、冷却物の溶解を防止することができる。 By providing such a configuration, the cold heat source unit 5 can prevent the compressor 11 and thus the refrigerant circuit 4 from malfunctioning, while allowing the refrigeration cycle using the compressor 12 to continue, so that the cooling material can be cooled. Can be prevented from dissolving.
 好ましくは、少なくとも1つの圧縮機11,12は、圧縮機11と並列接続された低圧シェルタイプの圧縮機12をさらに備える。制御装置6は、圧縮機11が運転中である一方で圧縮機12が運転中でなく、かつ圧縮機11の吸入ポート111側の圧力が負圧であるときに、圧縮機11を停止させる一方で圧縮機12を運転させる。 Preferably, at least one compressor 11 or 12 further includes a low pressure shell type compressor 12 connected in parallel with the compressor 11. The control device 6 stops the compressor 11 when the compressor 11 is operating while the compressor 12 is not operating and the pressure on the suction port 111 side of the compressor 11 is negative. The compressor 12 is operated with.
 このような構成を備えることによって、冷熱源ユニット5は、圧縮機11ひいては冷媒回路4に不具合が生じることを回避する一方で、圧縮機11の代わりに圧縮機12を用いた冷凍サイクルを実行させることができ、冷却物の溶解を防止することができる。 By providing such a configuration, the cooling heat source unit 5 avoids a malfunction in the compressor 11 and thus the refrigerant circuit 4, while causing the refrigeration cycle using the compressor 12 instead of the compressor 11 to be executed. It is possible to prevent the melting of the cooling material.
 好ましくは、少なくとも1つの圧縮機11,12は、圧縮機12と同数以上の圧縮機11を備える。 Preferably, at least one compressor 11 and 12 includes the same number of compressors 11 as the compressor 12.
 このような構成を備えることによって、冷熱源ユニット5は、冷媒回路4内へと持ち出される冷凍機油の量を極力減らすことなく、冷凍サイクルを行うことができる。 By providing such a configuration, the cold heat source unit 5 can perform a refrigerating cycle without reducing the amount of refrigerating machine oil brought out into the refrigerant circuit 4 as much as possible.
 本開示は、他の局面では、冷熱源ユニット5と負荷装置3とを備える冷凍サイクル装置1、および、冷熱源ユニット500と負荷装置3とを備える冷凍サイクル装置100に関する。 The present disclosure relates to a refrigerating cycle device 1 including a cold heat source unit 5 and a load device 3 and a refrigerating cycle device 100 including a cold heat source unit 500 and a load device 3 in other aspects.
 以上、冷凍サイクル装置1,100を備える冷凍機を例示して本実施の形態を説明したが、冷凍サイクル装置1,100は、空気調和機などに利用されても良い。 Although the present embodiment has been described above by exemplifying a refrigerator equipped with the refrigerating cycle devices 1,100, the refrigerating cycle devices 1,100 may be used as an air conditioner or the like.
 今回開示された実施の形態は、すべての点で例示であって制限的なものではないと考えられるべきである。本開示の範囲は、上記した実施の形態の説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。 The embodiments disclosed this time should be considered to be exemplary in all respects and not restrictive. The scope of the present disclosure is set forth by the scope of claims rather than the description of the embodiments described above, and is intended to include all modifications within the meaning and scope of the claims.
 1,100 冷凍サイクル装置、2,200 冷熱源装置、3 負荷装置、4,400 冷媒回路、5,500 冷熱源ユニット、6 制御装置、7 警報装置、11,12 圧縮機、20 凝縮器、22 ファン、30 受液器、50 膨張弁、60 蒸発器、62 メモリ、81,82,84,85,86,88,93 配管、83,87 延長配管、89,90 流入管、91,92 流出管、111,121,165 吸入ポート、112,122,155 吐出ポート、151,161 密閉容器、154,164 圧縮部、201,221,301 冷媒入口ポート、202,222,302 冷媒出口ポート、211,212 圧力センサ、311,312 温度センサ。 1,100 refrigeration cycle device, 2,200 cold heat source device, 3 load device, 4,400 refrigerant circuit, 5,500 cold heat source unit, 6 control device, 7 alarm device, 11, 12 compressor, 20 condenser, 22 Fan, 30 receiver, 50 expansion valve, 60 evaporator, 62 memory, 81,82,84,85,86,88,93 piping, 83,87 extension piping, 89,90 inflow pipe, 91,92 outflow pipe , 111,121,165 Inhalation port, 112,122,155 Discharge port, 151,161 Sealed container, 154,164 Compressor, 2011,221,301 Refrigerant inlet port, 202,222,302 Refrigerant outlet port, 211,212 Pressure sensor, 311,312 temperature sensor.

Claims (9)

  1.  膨張弁および蒸発器を備える負荷装置に接続可能であり、冷媒を循環させるように構成された冷媒回路を構成する冷熱源ユニットであって、
     少なくとも1つの圧縮機と、
     凝縮器と、
     前記冷媒回路を制御する制御装置とを備え、
     前記少なくとも1つの圧縮機は、高圧シェルタイプの第1圧縮機を備え、
     前記制御装置は、前記第1圧縮機が運転中であり、かつ前記第1圧縮機の吸入ポート側の圧力が負圧であるときに、前記第1圧縮機を停止させる、冷熱源ユニット。
    A cold heat source unit that can be connected to a load device including an expansion valve and an evaporator and constitutes a refrigerant circuit configured to circulate the refrigerant.
    With at least one compressor,
    Condensator and
    A control device for controlling the refrigerant circuit is provided.
    The at least one compressor comprises a high pressure shell type first compressor.
    The control device is a cold heat source unit that stops the first compressor when the first compressor is in operation and the pressure on the suction port side of the first compressor is negative.
  2.  前記制御装置は、前記第1圧縮機が運転中でなく、前記第1圧縮機の前記吸入ポート側の圧力が負圧であり、かつ前記冷媒回路に空気が混入しているときに、警報を発する制御を行う、請求項1に記載の冷熱源ユニット。 The control device issues an alarm when the first compressor is not in operation, the pressure on the suction port side of the first compressor is negative, and air is mixed in the refrigerant circuit. The cold heat source unit according to claim 1, which controls the generation.
  3.  前記制御装置は、前記第1圧縮機が運転中でなく、前記第1圧縮機の前記吸入ポート側の圧力が負圧であり、かつ前記冷媒回路に空気が混入していないときに、前記第1圧縮機を運転させる、請求項1に記載の冷熱源ユニット。 The control device is described when the first compressor is not in operation, the pressure on the suction port side of the first compressor is negative, and air is not mixed in the refrigerant circuit. 1 The cold heat source unit according to claim 1, which operates a compressor.
  4.  前記凝縮器の冷媒出口部分における冷媒の温度を測定する第1温度センサと、
     前記凝縮器に供給される外気の温度を測定する第2温度センサとをさらに備え、
     前記制御装置は、前記第1温度センサの測定値と前記第2温度センサの測定値との差が第1値以下であるときに、前記冷媒回路に空気が混入していると判断する、請求項2または請求項3に記載の冷熱源ユニット。
    A first temperature sensor that measures the temperature of the refrigerant at the refrigerant outlet portion of the condenser, and
    Further equipped with a second temperature sensor for measuring the temperature of the outside air supplied to the condenser.
    The controller determines that air is mixed in the refrigerant circuit when the difference between the measured value of the first temperature sensor and the measured value of the second temperature sensor is equal to or less than the first value. The cold heat source unit according to claim 2 or claim 3.
  5.  前記凝縮器の冷媒出口部分に設けられ、冷媒を貯留する受液器と、
     前記凝縮器の前記冷媒出口部分における冷媒の温度を測定する第1温度センサと、
     前記凝縮器の冷媒入口部分における冷媒の圧力を測定する圧力センサとをさらに備え、
     前記制御装置は、前記第1温度センサの測定値と前記圧力センサの測定値とに基づき算出される冷媒の過冷却度が第2値以上であるときに、前記冷媒回路に空気が混入していると判断する、請求項2または請求項3に記載の冷熱源ユニット。
    A liquid receiver provided at the refrigerant outlet portion of the condenser and storing the refrigerant, and
    A first temperature sensor that measures the temperature of the refrigerant at the refrigerant outlet portion of the condenser, and
    Further provided with a pressure sensor for measuring the pressure of the refrigerant at the refrigerant inlet portion of the condenser.
    In the control device, when the degree of overcooling of the refrigerant calculated based on the measured value of the first temperature sensor and the measured value of the pressure sensor is the second value or more, air is mixed in the refrigerant circuit. The cooling heat source unit according to claim 2 or 3, which is determined to be present.
  6.  前記少なくとも1つの圧縮機は、前記第1圧縮機と並列接続された低圧シェルタイプの第2圧縮機をさらに備え、
     前記制御装置は、前記第1圧縮機および前記第2圧縮機が運転中であり、かつ前記第1圧縮機の前記吸入ポート側の圧力が負圧であるときに、前記第1圧縮機を停止させる一方で前記第2圧縮機の運転を継続させる、請求項1に記載の冷熱源ユニット。
    The at least one compressor further comprises a low pressure shell type second compressor connected in parallel with the first compressor.
    The control device stops the first compressor when the first compressor and the second compressor are in operation and the pressure on the suction port side of the first compressor is negative. The cold heat source unit according to claim 1, wherein the operation of the second compressor is continued while the operation is performed.
  7.  前記少なくとも1つの圧縮機は、前記第1圧縮機と並列接続された低圧シェルタイプの第2圧縮機をさらに備え、
     前記制御装置は、前記第1圧縮機が運転中である一方で前記第2圧縮機が運転中でなく、かつ前記第1圧縮機の前記吸入ポート側の圧力が負圧であるときに、前記第1圧縮機を停止させる一方で前記第2圧縮機を運転させる、請求項1に記載の冷熱源ユニット。
    The at least one compressor further comprises a low pressure shell type second compressor connected in parallel with the first compressor.
    The control device is described when the first compressor is in operation while the second compressor is not in operation and the pressure on the suction port side of the first compressor is negative. The cold heat source unit according to claim 1, wherein the second compressor is operated while the first compressor is stopped.
  8.  前記少なくとも1つの圧縮機は、前記第2圧縮機と同数以上の前記第1圧縮機を備える、請求項6または請求項7に記載の冷熱源ユニット。 The cold heat source unit according to claim 6 or 7, wherein the at least one compressor includes the same number or more of the first compressors as the second compressor.
  9.  請求項1~8のいずれか1項に記載の前記冷熱源ユニットと、前記負荷装置とを備える冷凍サイクル装置。 A refrigeration cycle device including the cold heat source unit according to any one of claims 1 to 8 and the load device.
PCT/JP2020/028128 2020-07-20 2020-07-20 Cold heat source unit and refrigeration cycle device WO2022018803A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2020/028128 WO2022018803A1 (en) 2020-07-20 2020-07-20 Cold heat source unit and refrigeration cycle device
JP2022538512A JP7337278B2 (en) 2020-07-20 2020-07-20 Cold heat source unit and refrigeration cycle device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/028128 WO2022018803A1 (en) 2020-07-20 2020-07-20 Cold heat source unit and refrigeration cycle device

Publications (1)

Publication Number Publication Date
WO2022018803A1 true WO2022018803A1 (en) 2022-01-27

Family

ID=79729111

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/028128 WO2022018803A1 (en) 2020-07-20 2020-07-20 Cold heat source unit and refrigeration cycle device

Country Status (2)

Country Link
JP (1) JP7337278B2 (en)
WO (1) WO2022018803A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60149857A (en) * 1984-01-18 1985-08-07 ダイキン工業株式会社 Alarm device for water cooling type condenser
JPH0719680A (en) * 1993-06-30 1995-01-20 Daikin Ind Ltd Operation controller for refrigerator
JP2000251137A (en) * 1999-02-26 2000-09-14 Matsushita Refrig Co Ltd Cooling system for automatic vending machine
JP2003130473A (en) * 2001-10-23 2003-05-08 Daikin Ind Ltd Refrigeration device
JP2003279176A (en) * 2002-03-25 2003-10-02 Sanyo Electric Co Ltd Air conditioning device
JP2006105580A (en) * 2004-09-13 2006-04-20 Daikin Ind Ltd Refrigerating device
JP2019086260A (en) * 2017-11-09 2019-06-06 ダイキン工業株式会社 Refrigeration air conditioner

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60149857A (en) * 1984-01-18 1985-08-07 ダイキン工業株式会社 Alarm device for water cooling type condenser
JPH0719680A (en) * 1993-06-30 1995-01-20 Daikin Ind Ltd Operation controller for refrigerator
JP2000251137A (en) * 1999-02-26 2000-09-14 Matsushita Refrig Co Ltd Cooling system for automatic vending machine
JP2003130473A (en) * 2001-10-23 2003-05-08 Daikin Ind Ltd Refrigeration device
JP2003279176A (en) * 2002-03-25 2003-10-02 Sanyo Electric Co Ltd Air conditioning device
JP2006105580A (en) * 2004-09-13 2006-04-20 Daikin Ind Ltd Refrigerating device
JP2019086260A (en) * 2017-11-09 2019-06-06 ダイキン工業株式会社 Refrigeration air conditioner

Also Published As

Publication number Publication date
JP7337278B2 (en) 2023-09-01
JPWO2022018803A1 (en) 2022-01-27

Similar Documents

Publication Publication Date Title
EP2232169B1 (en) Vapor compression system
JP2010107187A (en) Device and method of diagnosing leakage, and refrigerating device
US11149999B2 (en) Refrigeration cycle apparatus having foreign substance release control
US10180269B2 (en) Refrigeration device
JP2008241069A (en) Air conditioning device
JP6588626B2 (en) Refrigeration equipment
JP6732862B2 (en) Refrigeration equipment
WO2020208752A1 (en) Outdoor unit, refrigeration cycle device, and refrigerating machine
KR101329752B1 (en) Air conditioning system
WO2022018803A1 (en) Cold heat source unit and refrigeration cycle device
US20200049383A1 (en) Refrigeration cycle device
JP3714348B2 (en) Refrigeration equipment
JP7447761B2 (en) air conditioner
JP6449979B2 (en) Refrigeration equipment
JP5556170B2 (en) Container refrigeration equipment
WO2021048905A1 (en) Outdoor unit and refrigeration cycle device
JP6590945B2 (en) Refrigeration equipment
WO2021084713A1 (en) Outdoor unit and refrigeration cycle device
WO2022013975A1 (en) Cold heat source unit and refrigeration cycle device
JP6785381B2 (en) Refrigeration cycle equipment
JP2019207103A (en) Refrigeration device
JP2022027894A (en) Refrigerator
EP3978828A1 (en) Refrigeration cycle device
JP2022070152A (en) Air conditioner
JP2021028549A (en) Heat source unit, and refrigeration device comprising the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20946260

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022538512

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20946260

Country of ref document: EP

Kind code of ref document: A1