JP5618801B2 - Air conditioner - Google Patents

Air conditioner Download PDF

Info

Publication number
JP5618801B2
JP5618801B2 JP2010274256A JP2010274256A JP5618801B2 JP 5618801 B2 JP5618801 B2 JP 5618801B2 JP 2010274256 A JP2010274256 A JP 2010274256A JP 2010274256 A JP2010274256 A JP 2010274256A JP 5618801 B2 JP5618801 B2 JP 5618801B2
Authority
JP
Japan
Prior art keywords
heat exchanger
temperature
refrigerant
main heat
air conditioner
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010274256A
Other languages
Japanese (ja)
Other versions
JP2012122677A (en
JP2012122677A5 (en
Inventor
牧野 浩招
浩招 牧野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2010274256A priority Critical patent/JP5618801B2/en
Publication of JP2012122677A publication Critical patent/JP2012122677A/en
Publication of JP2012122677A5 publication Critical patent/JP2012122677A5/ja
Application granted granted Critical
Publication of JP5618801B2 publication Critical patent/JP5618801B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/023Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units
    • F25B2313/0234Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units in series arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/025Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple outdoor units
    • F25B2313/0253Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple outdoor units in parallel arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/031Sensor arrangements
    • F25B2313/0314Temperature sensors near the indoor heat exchanger
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/12Inflammable refrigerants
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/01Geometry problems, e.g. for reducing size
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2513Expansion valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2116Temperatures of a condenser
    • F25B2700/21163Temperatures of a condenser of the refrigerant at the outlet of the condenser
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • F25B39/04Condensers

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Air Conditioning Control Device (AREA)

Description

この発明は、冷媒にR32(化学式CH、HFC32(ジフルオロメタン))単独、もしくはR32を少なくとも70重量パーセント含む混合冷媒を用いる空気調和機に関する。 The present invention relates to an air conditioner that uses R32 (chemical formula CH 2 F 2 , HFC32 (difluoromethane)) alone or a mixed refrigerant containing at least 70 percent by weight of R32 as the refrigerant.

冷媒を使用して冷凍サイクルを作動する空気調和機における地球環境への課題としては、オゾン層保護、地球温暖化対応(CO等排出抑制)、省エネルギー化、資源の再利用(リサイクル)などがある。 Challenges to the global environment in air conditioners that operate refrigeration cycles using refrigerants include protection of the ozone layer, global warming response (reducing CO 2 emissions, etc.), energy saving, and resource reuse (recycling). is there.

これらの地球環境に関する課題のうち、オゾン層保護については、使用する冷媒をオゾン破壊係数が高いR22(HFC22)から、オゾン破壊係数がゼロであるR410A(HFC32:HFC125=50:50(重量比))に切り替えた空気調和機が既に製品化されている。尚、HFC125は、化学式CHF−CF(化学名ペンタフルオロエタン)である。 Among these global environmental issues, for the protection of the ozone layer, the refrigerant used is R22 (HFC22), which has a high ozone destruction coefficient, and R410A (HFC32: HFC125 = 50: 50 (weight ratio)) where the ozone destruction coefficient is zero. The air conditioner switched to) has already been commercialized. Incidentally, HFC125 is a chemical formula CHF 2 -CF 3 (chemical name pentafluoroethane).

一方、地球温暖化防止対策への要求が益々高くなってきている。空気調和機においては、総等価温暖化影響TEWI(Total Equivalent Warming Impact)と呼ばれる地球温暖化の指標を用いて評価される。このTEWIは、冷媒の大気放出による影響(直接影響)と装置のエネルギー消費(間接影響)、並びに空気調和機を構成する素材を製造する際に消費されるエネルギーを作るために排出されるCOなどの総和で表される。 On the other hand, the demand for global warming prevention measures is increasing. In an air conditioner, evaluation is performed using a global warming index called a total equivalent warming impact (TEWI). This TEWI is the CO 2 that is emitted to produce the energy consumed when producing the materials that make up the air conditioner, as well as the effects (direct effects) due to the atmospheric release of the refrigerant and the energy consumption (indirect effects) of the device. It is expressed as the sum of

TEWIの算出には、冷媒の地球温暖化係数GWP(Global Warming Potential)、冷媒量、並びに空気調和機の効率を表す通年エネルギー消費効率APF(Annual Performance Factor)が用いられる。地球温暖化を防止するには、TEWIの値を小さくするべく、小さなGWP値と大きなAPF値とを持つ冷媒を選定する必要がある。   For the calculation of TEWI, the global warming potential GWP (Global Warming Potential) of refrigerant, the amount of refrigerant, and the annual energy consumption efficiency APF (Annual Performance Factor) representing the efficiency of the air conditioner are used. In order to prevent global warming, it is necessary to select a refrigerant having a small GWP value and a large APF value in order to reduce the TEWI value.

現在用いられているR410AのGWPは2090で、従来用いられていたR22の1810よりも大きな値となっている。そこで、地球温暖化防止のために、GWP値がゼロの冷媒として、炭化水素系のR290、GWPが50以下の低GWP冷媒としてHFO1234yfなどが開発されているが、可燃性や省エネ性の課題があるため、比較的GWPが低い冷媒としてR32(HFC32)が候補として挙げられている。   Currently used R410A has a GWP of 2090, which is larger than the conventionally used R22 of 1810. Therefore, in order to prevent global warming, hydrocarbon-based R290 has been developed as a refrigerant with a GWP value of zero, and HFO1234yf has been developed as a low GWP refrigerant with a GWP of 50 or less. Therefore, R32 (HFC32) is cited as a candidate as a refrigerant having a relatively low GWP.

このR32のGWP値は675であり、R22,R410AのGWP値と比較すると約1/3になり、地球温暖化への影響を軽減することが出来るが、R290やHFO1234yfと比べると低GWP冷媒とは言えないため、R32を使用する場合は冷媒量の削減が必要となる。   The GWP value of R32 is 675, which is about 1/3 compared to the GWP values of R22 and R410A, and can reduce the impact on global warming. However, compared to R290 and HFO1234yf, Therefore, when using R32, it is necessary to reduce the amount of refrigerant.

省エネルギーについては、空気調和機を運転した際の電力消費により間接的にCOを排出するため、空気調和機の性能を高めて、省エネルギー化することにより、地球温暖化防止に寄与する。 As for energy saving, CO 2 is indirectly discharged by power consumption when the air conditioner is operated. Therefore, the performance of the air conditioner is enhanced to save energy, thereby contributing to the prevention of global warming.

家庭用空気調和機では、使用時の電力消費による間接的なCO排出量が占める割合が大きいため、省エネルギー化を進めることで、CO排出量の削減に結びつけることが出来る。冷媒にR32を使用する場合には、前述のように低GWP冷媒ではないため、地球温暖化への影響を減らすために、冷媒量を削減しつつ、同時に省エネルギー化を実現する必要がある。 In home air conditioners, the proportion of indirect CO 2 emissions due to power consumption during use accounts for a large proportion. Therefore, by promoting energy saving, it is possible to reduce CO 2 emissions. When R32 is used as the refrigerant, it is not a low GWP refrigerant as described above. Therefore, in order to reduce the influence on global warming, it is necessary to reduce the amount of refrigerant while simultaneously realizing energy saving.

特開2001−194016号公報JP 2001-194016 A

地球環境の保全対策として、家庭用の冷凍サイクル装置の作動流体として使用する冷媒をオゾン層を破壊するフロンガスであるHCFCから、オゾン層を破壊しないHFCであるR410Aへの転換を行った。近年では、オゾン層の保護に加えて、地球温暖化防止の重要性が高まってきており、冷凍サイクル装置の作動流体として、オゾン層を破壊しないだけでなく、地球温暖化係数が小さい冷媒が求められるようになってきている。このため、GWPがR410Aの約1/3のR32を使用することが温暖化対策として有効である。ただし、R32は微燃性を持つため、温暖化対策、安全性の確保の両面から機器に封入する冷媒の量を出来るだけ少なくすることことが求められる。   As a conservation measure for the global environment, the refrigerant used as the working fluid of a household refrigeration cycle apparatus was changed from HCFC, which is a fluorocarbon gas that destroys the ozone layer, to R410A, which is an HFC that does not destroy the ozone layer. In recent years, in addition to protecting the ozone layer, the importance of preventing global warming has increased, and as a working fluid for refrigeration cycle devices, refrigerants that not only destroy the ozone layer but also have a low global warming potential are sought. It is getting to be. For this reason, it is effective as a countermeasure against global warming to use R32 which is about 1/3 of R410A GWP. However, since R32 has slight flammability, it is required to reduce the amount of refrigerant sealed in the device as much as possible from the viewpoints of global warming countermeasures and ensuring safety.

R32は冷媒の物性として、R410Aに比べて液密度が小さいという特徴がある。20℃での飽和液密度はR410Aが1083.1[kg/m]に対して、R32は981.4kg/m]でR32はR410Aに対して、約90.6%の液密度である。このため、同一内容積での冷媒質量はR32の方が少なくなる。 R32 is characterized in that the liquid density is smaller than that of R410A as a physical property of the refrigerant. Saturated liquid density at 20 ° C. for R410A is 1083.1 [kg / m 3], R32 is 981.4kg / m 3] at R32 for R410A, is a liquid density of about 90.6% . For this reason, the mass of the refrigerant with the same internal volume is smaller in R32.

また、R32はR410Aに比べて、配管通過時の圧力損失が小さく、約70%になるという特徴がある。   Further, R32 has a feature that the pressure loss when passing through the pipe is smaller than that of R410A and is about 70%.

R32の冷媒物性の特徴を考慮すると、冷媒量の削減のためには、熱交換器の配管を細径化することが有効である。但し、配管の断面積で7割以下まで細径化した場合には、管1本当たりの圧力損失が増加するため、パス数を増やすことで、圧力損失を低減するのが得策である。   Considering the characteristics of the refrigerant physical properties of R32, it is effective to reduce the pipe diameter of the heat exchanger in order to reduce the refrigerant amount. However, when the pipe cross-sectional area is reduced to 70% or less, the pressure loss per pipe increases, so it is a good idea to reduce the pressure loss by increasing the number of passes.

APFの算出において、暖房運転時のエネルギー消費効率(COP)が占める比率が高いため、高いAPF値を実現するためには暖房運転での効率を高めることが効果的で、高いエネルギー効率を得るためには熱交換器の持つ熱伝達性能を最大限に引き出すことが重要である。   In the calculation of APF, the ratio of energy consumption efficiency (COP) during heating operation is high, so in order to achieve a high APF value, it is effective to increase the efficiency in heating operation and to obtain high energy efficiency. It is important to maximize the heat transfer performance of heat exchangers.

熱交換器の伝熱性能は主にフィンと空気の間の熱伝達(管外熱伝達)、および配管の管内面と冷媒との熱伝達(管内熱伝達)で決まる。管内熱伝達は冷媒の状態が気液二相状態の時に高く、液単相になると熱伝達率が低下する。また、気液二相状態では、冷媒は潜熱変化するため、温度はほとんど変化しないが、液単相状態では顕熱変化するため、空気と熱交換することにより、出口に向かうにしたがって冷媒の温度が低下して空気と冷媒の温度差が小さくなり、管外熱伝達も低下する。特に、冷媒の温度がフィンを通過する空気の温度と同じになった場合には、熱交換が行われず、熱交換器として機能しなくなる。   The heat transfer performance of the heat exchanger is mainly determined by heat transfer between the fin and air (external heat transfer) and heat transfer between the pipe inner surface of the pipe and the refrigerant (internal heat transfer). The heat transfer in the tube is high when the state of the refrigerant is in the gas-liquid two-phase state, and the heat transfer coefficient decreases when the liquid single-phase state is reached. In the gas-liquid two-phase state, the refrigerant changes in latent heat, so the temperature hardly changes, but in the liquid single-phase state, the sensible heat changes, so by exchanging heat with air, the temperature of the refrigerant moves toward the outlet. Decreases, the temperature difference between the air and the refrigerant decreases, and heat transfer outside the tube also decreases. In particular, when the temperature of the refrigerant becomes the same as the temperature of the air passing through the fins, heat exchange is not performed, and the heat exchanger does not function.

熱交換器として高い性能を得るためには、冷媒が気液二相状態にある熱交換器の面積を広くし、かつ、熱交換器の入口から出口までのエンタルピー差を大きくするためにサブクールを大きくとれることが求められる。   In order to obtain high performance as a heat exchanger, subcooling should be used to increase the area of the heat exchanger where the refrigerant is in a gas-liquid two-phase state and to increase the enthalpy difference from the inlet to the outlet of the heat exchanger. It must be large.

この手段として、主熱交換器に加えて、補助熱交換器を搭載し、補助熱交換器でサブクールを確保する構成が用いられる。   As this means, a configuration in which an auxiliary heat exchanger is mounted in addition to the main heat exchanger and a subcooling is secured by the auxiliary heat exchanger is used.

液相であるサブクール領域は、補助熱交換器の中に収め、主熱交換器は気液二相状態となるように運転することが望ましい。   It is desirable that the subcool region, which is in the liquid phase, is stored in the auxiliary heat exchanger, and the main heat exchanger is operated so as to be in a gas-liquid two-phase state.

しかし、冷媒にR32を用いて、熱交換器の管を細径化した場合には、従来に比べて少量の冷媒で広い範囲をサブクール領域にすることができるため、膨張弁の絞りや冷媒封入量の変化に対するサブクール領域の変動の感度が高くなり、主熱交換器にサブクール領域が広がる現象が発生しやすくなる。   However, when the diameter of the heat exchanger tube is reduced using R32 as the refrigerant, a wide range can be made into a subcooling region with a small amount of refrigerant compared to the conventional case. The sensitivity of the change in the subcool region to the change in the amount becomes high, and the phenomenon that the subcool region expands in the main heat exchanger is likely to occur.

管内熱伝達率、管外熱伝達率が低いサブクール領域が主熱交換器に広がると、主熱交換器の伝熱性能が低下すると同時に、補助熱交換器の出口付近では冷媒の温度がフィンを通過する空気の温度に漸近して温度差が小さくなるため、補助熱交換器の伝熱性能も低下することになる。この結果として、COPが低下する。   If the subcooling region where the heat transfer coefficient in the tube and the heat transfer rate outside the tube are low spreads to the main heat exchanger, the heat transfer performance of the main heat exchanger decreases, and at the same time, the refrigerant temperature near the outlet of the auxiliary heat exchanger Since the temperature difference becomes small asymptotically approaching the temperature of the passing air, the heat transfer performance of the auxiliary heat exchanger is also lowered. As a result, COP decreases.

この発明は、上記のような課題を解決するためになされたもので、冷媒として地球温暖化係数GWPの小さいR32を用いて、従来よりも冷媒量を削減しつつ、高いエネルギー消費効率(COP)を安定的に達成できる地球温暖化対応省エネルギー型の空気調和機を提供する。   The present invention has been made to solve the above-described problems. By using R32 having a low global warming potential GWP as a refrigerant, the amount of refrigerant is reduced as compared with the conventional technique, and high energy consumption efficiency (COP) is achieved. To provide energy-saving air conditioners that respond to global warming.

この発明に係る空気調和機は、作動流体としてHFC32(ジフルオロメタン)を使用し、前記作動流体を圧縮する圧縮機、前記作動流体の流れる方向を切り替える四方弁、室内熱交換器、減圧装置、室外熱交換器を順次接続してなる冷凍サイクルと、
冷凍サイクルの制御を行う制御部と、
を備え、冷房運転と暖房運転とで四方弁により冷凍サイクルの流れ方向を切り替える空気調和機において、
室内熱交換器は、
主熱交換器と、
補助熱交換器と、
暖房運転での冷媒の流れ方向において、主熱交換器の冷媒流路長の中間点付近に設けられ、凝縮温度を検知する凝縮温度サーミスタと、
暖房運転での冷媒の流れ方向において、補助熱交換器の入口付近の補助熱交換器配管温度を検知する補助熱交換器サーミスタと、を具備し、
制御部は、凝縮温度サーミスタと補助熱交換器サーミスタとの検知結果に基づいて、冷凍サイクルの液相であるサブクール領域が、補助熱交換器の中に収められるとともに、主熱交換器が気液二相状態となるように、減圧装置を制御するものである。
The air conditioner according to the present invention uses HFC32 (difluoromethane) as a working fluid, compresses the working fluid, a four-way valve that switches the flow direction of the working fluid, an indoor heat exchanger, a pressure reducing device, an outdoor A refrigeration cycle in which heat exchangers are sequentially connected;
A control unit for controlling the refrigeration cycle;
In an air conditioner that switches the flow direction of the refrigeration cycle by a four-way valve between cooling operation and heating operation,
The indoor heat exchanger
A main heat exchanger;
An auxiliary heat exchanger,
In the flow direction of the refrigerant in the heating operation, a condensation temperature thermistor that is provided near the middle point of the refrigerant flow path length of the main heat exchanger and detects the condensation temperature;
An auxiliary heat exchanger thermistor that detects an auxiliary heat exchanger pipe temperature near the inlet of the auxiliary heat exchanger in the flow direction of the refrigerant in the heating operation,
Based on the detection results of the condensing temperature thermistor and the auxiliary heat exchanger thermistor, the control unit stores the subcool region, which is the liquid phase of the refrigeration cycle, in the auxiliary heat exchanger, and the main heat exchanger The decompression device is controlled so as to be in a two-phase state.

この発明に係る空気調和機は、制御部が、凝縮温度サーミスタと補助熱交換器サーミスタとの検知結果に基づいて、冷凍サイクルの液相であるサブクール領域が、補助熱交換器の中に収められるとともに、主熱交換器が気液二相状態となるように、減圧装置を制御することにより、サブクール領域の範囲が安定し、空気調和機の暖房運転時のCOPを安定的に高く保つことが出来る。これにより、冷媒にR32を使用し、熱交換器を細径化して冷媒量を削減することができ、高い省エネルギー性と地球温暖化への影響が小さい空気調和機を実現することが出来る。   In the air conditioner according to the present invention, the control unit stores the subcool region, which is the liquid phase of the refrigeration cycle, in the auxiliary heat exchanger based on the detection results of the condensation temperature thermistor and the auxiliary heat exchanger thermistor. At the same time, by controlling the pressure reducing device so that the main heat exchanger is in a gas-liquid two-phase state, the range of the subcool region is stabilized, and the COP during the heating operation of the air conditioner can be stably kept high. I can do it. Thereby, R32 is used for a refrigerant | coolant, a heat exchanger can be reduced in diameter, a refrigerant | coolant amount can be reduced, and an air conditioner with a high energy-saving property and a small influence on global warming can be implement | achieved.

実施の形態1を示す図で、空気調和機100の冷媒回路図。FIG. 3 shows the first embodiment, and is a refrigerant circuit diagram of the air conditioner 100. FIG. 実施の形態1を示す図で、室内機100bの分解斜視図。FIG. 5 shows the first embodiment and is an exploded perspective view of the indoor unit 100b. 実施の形態1を示す図で、室内機100bの縦断面図。FIG. 5 shows the first embodiment and is a longitudinal sectional view of the indoor unit 100b. 実施の形態1を示す図で、室内熱交換器5の構成図。FIG. 3 shows the first embodiment and is a configuration diagram of the indoor heat exchanger 5. 実施の形態1を示す図で、暖房運転時の室内熱交換器5における冷媒の流れを示す概念図。Fig. 5 shows the first embodiment, and is a conceptual diagram showing a refrigerant flow in the indoor heat exchanger 5 during heating operation. 実施の形態1を示す図で、扁平管18を一部に用いた変形例の室内熱交換器105の構成図。The figure which shows Embodiment 1 and is a block diagram of the indoor heat exchanger 105 of the modification which used the flat tube 18 for a part. 実施の形態1を示す図で、室内熱交換器5の入口から出口に向かっての冷媒温度の変化を示す図。FIG. 5 shows the first embodiment, and shows the change in refrigerant temperature from the inlet to the outlet of the indoor heat exchanger 5. FIG. 実施の形態1を示す図で、室内熱交換器5でのサブクルール領域の範囲が適正な状態を示す図。The figure which shows Embodiment 1 and the figure which shows the state in which the range of the sub-crule area | region in the indoor heat exchanger 5 is appropriate. 実施の形態1を示す図で、室内熱交換器5でのサブクルール領域の範囲が広すぎる状態を示す図。The figure which shows Embodiment 1 and the figure which shows the state in which the range of the sub-crule area | region in the indoor heat exchanger 5 is too wide. 実施の形態2を示す図で、圧縮機1の縦断面図。FIG. 6 is a diagram illustrating the second embodiment, and is a longitudinal sectional view of the compressor 1.

実施の形態1.
図1は実施の形態1を示す図で、空気調和機100の冷媒回路図である。先ず、空気調和機の冷媒回路の一例を図1を参照しながら説明する。
Embodiment 1 FIG.
FIG. 1 is a diagram showing the first embodiment, and is a refrigerant circuit diagram of the air conditioner 100. First, an example of a refrigerant circuit of an air conditioner will be described with reference to FIG.

空気調和機100は、室外機100aと、室内機100bとを備える。室外機100aと室内機100bとは、延長配管(接続配管)であるガス管延長配管4及び液管延長配管6で接続される。   The air conditioner 100 includes an outdoor unit 100a and an indoor unit 100b. The outdoor unit 100a and the indoor unit 100b are connected by a gas pipe extension pipe 4 and a liquid pipe extension pipe 6 which are extension pipes (connection pipes).

室外機100aは、延長配管側の端部に、ガス管延長配管4が接続するチャージポート付き閉止弁3、液管延長配管6が接続する液管閉止弁7を備える。   The outdoor unit 100a includes a charge valve closed valve 3 connected to the gas pipe extension pipe 4 and a liquid pipe stop valve 7 connected to the liquid pipe extension pipe 6 at the end on the extension pipe side.

ガス管延長配管4及び液管延長配管6には、所定の径・長さの銅管が使用される。空気調和機100の据付時に、ガス管延長配管4及び液管延長配管6は現地の状況に合わせて作られる。   Copper pipes having a predetermined diameter and length are used for the gas pipe extension pipe 4 and the liquid pipe extension pipe 6. When the air conditioner 100 is installed, the gas pipe extension pipe 4 and the liquid pipe extension pipe 6 are made in accordance with the local situation.

室外機100aは、冷媒(作動流体)を圧縮する圧縮機1、冷媒の流れる方向を冷房運転と暖房運転とで切り替える四方弁2、熱源側熱交換器である室外熱交換器9、減圧装置8を備える。   The outdoor unit 100a includes a compressor 1 that compresses a refrigerant (working fluid), a four-way valve 2 that switches a refrigerant flow direction between a cooling operation and a heating operation, an outdoor heat exchanger 9 that is a heat source side heat exchanger, and a decompression device 8 Is provided.

冷媒を圧縮する圧縮機1には、例えば、回転式圧縮機やスクロール圧縮機等が用いられる。図示はしないが、圧縮機1は、圧縮機構(圧縮要素ともいう)と、この圧縮機構を駆動する電動機(電動要素ともいう)とを密閉容器内に収納するとともに、圧縮機構の摺動部を潤滑する冷凍機油を密閉容器内に封入している。電動機には、高効率で、トルク制御が可能なブラシレスDCモータが多く使用される。ブラシレスDCモータは、インバータにより駆動され、回転数が制御される。   As the compressor 1 that compresses the refrigerant, for example, a rotary compressor, a scroll compressor, or the like is used. Although not shown, the compressor 1 houses a compression mechanism (also referred to as a compression element) and an electric motor (also referred to as an electric element) for driving the compression mechanism in a hermetically sealed container, and includes a sliding portion of the compression mechanism. The refrigerating machine oil to be lubricated is enclosed in an airtight container. As the electric motor, a brushless DC motor capable of torque control with high efficiency is often used. The brushless DC motor is driven by an inverter and the rotation speed is controlled.

冷媒の流れる方向を冷房運転と暖房運転とで切り替える四方弁2は、図1では、冷房運転時の冷媒の流路を実線で示している。また、暖房運転時の冷媒の流路を破線で示している。   In FIG. 1, the four-way valve 2 that switches the refrigerant flow direction between the cooling operation and the heating operation is indicated by a solid line in FIG. Moreover, the flow path of the refrigerant | coolant at the time of heating operation is shown with the broken line.

熱源側熱交換器である室外熱交換器9は、冷房運転時は凝縮器として動作し、暖房運転時は蒸発器として動作する。また、室外送風機(図示せず)により室外熱交換器9に送風が行われて冷媒と空気との熱交換が促進される。   The outdoor heat exchanger 9 which is a heat source side heat exchanger operates as a condenser during the cooling operation, and operates as an evaporator during the heating operation. Moreover, ventilation is performed to the outdoor heat exchanger 9 by an outdoor blower (not shown), and heat exchange between the refrigerant and the air is promoted.

減圧装置8には、例えば、電子膨張弁が使用される。   For the decompression device 8, for example, an electronic expansion valve is used.

また、圧縮機1には、圧縮機1から吐出される吐出ガスの温度を測定する吐出温度サーミスタ10が所定の位置に取り付けられている(例えば、図示しない吐出管)。   In addition, a discharge temperature thermistor 10 that measures the temperature of the discharge gas discharged from the compressor 1 is attached to the compressor 1 at a predetermined position (for example, a discharge pipe (not shown)).

室内機100bは、利用側熱交換器である室内熱交換器5を備える。室内熱交換器5は、冷房運転時は蒸発器として動作する。また、暖房運転時は凝縮器として動作する。また、室内送風機(図示せず)により室内熱交換器5に送風が行われて冷媒と空気との熱交換が促進されるとともに、調和空気を空調空間に送出する。   The indoor unit 100b includes an indoor heat exchanger 5 that is a use side heat exchanger. The indoor heat exchanger 5 operates as an evaporator during the cooling operation. Moreover, it operates as a condenser during heating operation. In addition, air is sent to the indoor heat exchanger 5 by an indoor blower (not shown) to promote heat exchange between the refrigerant and the air, and conditioned air is sent to the conditioned space.

後述するが、室内熱交換器5の内部の所定の位置に、通常は開で、再熱除湿運転時に閉じる除湿弁35が設けられる。除湿弁35については、説明を省略する。   As will be described later, a dehumidifying valve 35 that is normally open and closed during reheat dehumidifying operation is provided at a predetermined position inside the indoor heat exchanger 5. Description of the dehumidifying valve 35 is omitted.

空気調和機100の冷媒回路には、作動流体として、比較的GWPが低い冷媒としてR32(HFC32)が使用される。   In the refrigerant circuit of the air conditioner 100, R32 (HFC32) is used as a working fluid as a refrigerant having a relatively low GWP.

図2は実施の形態1を示す図で、室内機100bの分解斜視図である。本実施の形態は、室内機100bの室内熱交換器5もしくは室内熱交換器5に装着する部品(後述する)に特徴があるが、先ず室内機100bの全体構成について説明する。   FIG. 2 shows the first embodiment, and is an exploded perspective view of the indoor unit 100b. The present embodiment is characterized by the indoor heat exchanger 5 of the indoor unit 100b or parts (described later) attached to the indoor heat exchanger 5. First, the overall configuration of the indoor unit 100b will be described.

図2に示すように、室内機100bは、以下に示す要素を備える。
(1)正面開閉パネル41:正面開閉パネル41は、室内機100bの正面に開閉自在に取り付けられる。
(2)前面枠体42:前面枠体42は、室内機100bの外郭の前面を構成し、正面開閉パネル41を支持する。
(3)ドレンパン43:ドレンパン43は、室内熱交換器5から発生する除霜水を受ける。また、ドレンパン43の裏面は、室内送風機46から吹出口(後述する)に至る風路の上面を構成する調和空気流のガイド部になっている。
(4)フィルタ自動清掃機構44:フィルタ自動清掃機構44は、室内の空気に含まれる塵埃を除去するフィルタ(図示せず)を自動清掃する機構である。
(5)室内熱交換器5:室内熱交換器5の詳細は、後述する。
(6)電気品箱45:電気品箱45には、例えば、室内の制御を行う制御部を構成するマイコン等が実装される基板が収納される。
(7)室内送風機46:室内送風機46は、室内熱交換器5で生成される調和空気を室内に送風する。通常、室内送風機46には、クロスフローファンが使用される。室内送風機46のクロスフローファンを駆動する駆動部には、インバータ部が実装された基板を内蔵したモールド固定子と、永久磁石(通常、樹脂マグネット)を用いる回転子(軸、軸受けを含む)と、ブラケットとを備える電動機が使用される。
(8)支持枠体47:室内機100bの外郭の背面を構成し、室内熱交換器5、室内送風機46等を支持している。
As shown in FIG. 2, the indoor unit 100b includes the following elements.
(1) Front opening / closing panel 41: The front opening / closing panel 41 is attached to the front of the indoor unit 100b so as to be freely opened and closed.
(2) Front frame body 42: The front frame body 42 constitutes the front surface of the outer wall of the indoor unit 100b and supports the front opening / closing panel 41.
(3) Drain pan 43: The drain pan 43 receives defrost water generated from the indoor heat exchanger 5. Moreover, the back surface of the drain pan 43 serves as a conditioned air flow guide portion that constitutes the upper surface of the air path from the indoor blower 46 to the outlet (described later).
(4) Automatic filter cleaning mechanism 44: The automatic filter cleaning mechanism 44 is a mechanism for automatically cleaning a filter (not shown) that removes dust contained in indoor air.
(5) Indoor heat exchanger 5: Details of the indoor heat exchanger 5 will be described later.
(6) Electrical component box 45: The electrical component box 45 stores, for example, a board on which a microcomputer or the like constituting a control unit that performs indoor control is mounted.
(7) Indoor blower 46: The indoor blower 46 blows conditioned air generated by the indoor heat exchanger 5 into the room. Normally, a cross flow fan is used for the indoor blower 46. The drive unit that drives the crossflow fan of the indoor blower 46 includes a mold stator that includes a substrate on which the inverter unit is mounted, and a rotor (including a shaft and a bearing) that uses a permanent magnet (usually a resin magnet). An electric motor provided with a bracket is used.
(8) Support frame 47: It constitutes the back of the outer wall of the indoor unit 100b and supports the indoor heat exchanger 5, the indoor blower 46, and the like.

図3は実施の形態1を示す図で、室内機100bの縦断面図である。図3に示すように、室内機100bの上面に室内空気を吸い込む吸込口48が形成されている。吸込口48付近には、フィルタ自動清掃機構44のフィルタ(図示せず)が配置され、室内空気の塵埃を除去する。   FIG. 3 shows the first embodiment and is a longitudinal sectional view of the indoor unit 100b. As shown in FIG. 3, a suction port 48 for sucking room air is formed on the upper surface of the indoor unit 100b. In the vicinity of the suction port 48, a filter (not shown) of the automatic filter cleaning mechanism 44 is arranged to remove dust from indoor air.

吸込口48に対向するように、略逆V字形状の室内熱交換器5が配置される。室内熱交換器5の詳細については、後述する。   A substantially inverted V-shaped indoor heat exchanger 5 is disposed so as to face the suction port 48. Details of the indoor heat exchanger 5 will be described later.

略逆V字形状の室内熱交換器5の内側(吸込口48と反対側)に、室内送風機46が配置される。   An indoor blower 46 is disposed inside the substantially inverted V-shaped indoor heat exchanger 5 (on the side opposite to the suction port 48).

室内機100bの下部には、室内に開口する吹出口49が形成され、吹出口49には、調和空気の風向を制御する風向制御部50が設けられる。図3に図示している風向制御部50は、上下方向の風向を制御する。図示はしないが、左右方向の風向を制御するものも用いられる。   An air outlet 49 that opens into the room is formed in the lower part of the indoor unit 100b. The air outlet 49 is provided with a wind direction control unit 50 that controls the air direction of the conditioned air. The wind direction control unit 50 illustrated in FIG. 3 controls the wind direction in the vertical direction. Although not shown, a device that controls the wind direction in the left-right direction is also used.

室内熱交換器5の下方に、ドレンパン43が設けられる。ドレンパン43は、室内熱交換器5で生じる除霜水を受け、ドレンパン43に一時的に貯留された除霜水は、ドレンパン43に接続されるドレンホースから室外に排出される。尚、背面にもドレンパンが設けられているが、説明は省略する。   A drain pan 43 is provided below the indoor heat exchanger 5. The drain pan 43 receives the defrost water generated in the indoor heat exchanger 5, and the defrost water temporarily stored in the drain pan 43 is discharged from the drain hose connected to the drain pan 43 to the outside. In addition, although the drain pan is provided also in the back surface, description is abbreviate | omitted.

図4、図5は実施の形態1を示す図で、図4は室内熱交換器5の構成図、図5は暖房運転時の室内熱交換器5における冷媒の流れを示す概念図である。図4に示すように、略逆V字形状の室内熱交換器5は、主熱交換器14と補助熱交換器15とからなる。   4 and 5 are diagrams showing Embodiment 1, FIG. 4 is a configuration diagram of the indoor heat exchanger 5, and FIG. 5 is a conceptual diagram showing a refrigerant flow in the indoor heat exchanger 5 during heating operation. As shown in FIG. 4, the substantially inverted V-shaped indoor heat exchanger 5 includes a main heat exchanger 14 and an auxiliary heat exchanger 15.

主熱交換器14は、略逆V字形状に形成され、前面上部主熱交換器14a、前面下部主熱交換器14b、背面主熱交換器14cを備える。   The main heat exchanger 14 is formed in a substantially inverted V shape, and includes a front upper main heat exchanger 14a, a front lower main heat exchanger 14b, and a rear main heat exchanger 14c.

主熱交換器14の冷媒回路は、前面下部主熱交換器14bと背面主熱交換器14cとが並列に接続され、これらに除湿弁35を間に介して前面上部主熱交換器14aが接続される。   In the refrigerant circuit of the main heat exchanger 14, the front lower main heat exchanger 14b and the rear main heat exchanger 14c are connected in parallel, and the front upper main heat exchanger 14a is connected to these via a dehumidification valve 35 therebetween. Is done.

除湿弁35と、前面上部主熱交換器14aとの間に、凝縮温度サーミスタ12が設けられる。   The condensation temperature thermistor 12 is provided between the dehumidification valve 35 and the front upper main heat exchanger 14a.

補助熱交換器15は、前面上部補助熱交換器15aと前面下部補助熱交換器15bとを備える。そして、前面上部補助熱交換器15aと前面下部補助熱交換器15bとの冷媒回路は、直列に接続される。   The auxiliary heat exchanger 15 includes a front upper auxiliary heat exchanger 15a and a front lower auxiliary heat exchanger 15b. The refrigerant circuits of the front upper auxiliary heat exchanger 15a and the front lower auxiliary heat exchanger 15b are connected in series.

前面下部補助熱交換器15bに、補助熱交換器配管17の温度を検出する補助熱交換器サーミスタ13が設けられる。   An auxiliary heat exchanger thermistor 13 that detects the temperature of the auxiliary heat exchanger pipe 17 is provided in the front lower auxiliary heat exchanger 15b.

例えば、空気調和機100の暖房運転時において、図4、図5に示すように、四方弁2を通過したガス冷媒は、前面下部主熱交換器14b(2パス)と背面主熱交換器14c(2パス)に流入する。その後、除湿弁35に流入し、除湿弁35を出た冷媒は、前面上部主熱交換器14a(2パス)に流入する。さらに、前面下部補助熱交換器15b(1パス)、前面上部補助熱交換器15a(1パス)の順に流れた後、減圧装置8へ向かう。   For example, during the heating operation of the air conditioner 100, as shown in FIGS. 4 and 5, the gas refrigerant that has passed through the four-way valve 2 is converted into the front lower main heat exchanger 14b (two passes) and the rear main heat exchanger 14c. (2 passes). Thereafter, the refrigerant that flows into the dehumidifying valve 35 and exits the dehumidifying valve 35 flows into the front upper main heat exchanger 14a (two passes). Further, after flowing in the order of the front lower auxiliary heat exchanger 15b (1 pass) and the front upper auxiliary heat exchanger 15a (1 pass), the flow proceeds to the decompression device 8.

冷媒回路中の封入冷媒量を削減するため、主熱交換器14の主熱交換器配管16には、R410Aで広く使われている外径が7mmの円管ではなく、外径が5mmまたは4mmの円管、または、図6に示すような管内が隔壁により複数空間に分割された扁平管18を用いても良い。   To reduce the amount of refrigerant enclosed in the refrigerant circuit, the main heat exchanger pipe 16 of the main heat exchanger 14 is not a circular pipe having an outer diameter of 7 mm widely used in R410A, but an outer diameter of 5 mm or 4 mm. Or a flat tube 18 in which the inside of the tube is divided into a plurality of spaces by partition walls as shown in FIG.

図6は実施の形態1を示す図で、扁平管18を一部に用いた変形例の室内熱交換器105の構成図である。変形例の室内熱交換器105は、図4に示す室内熱交換器5と略同様の構成で、主熱交換器114(前面上部主熱交換器114a、前面下部主熱交換器114b、背面主熱交換器114c)と、補助熱交換器115(前面上部補助熱交換器115a、前面下部補助熱交換器115b)とを備える。   FIG. 6 is a diagram showing the first embodiment, and is a configuration diagram of a modified indoor heat exchanger 105 in which the flat tube 18 is partially used. The indoor heat exchanger 105 of the modified example has substantially the same configuration as the indoor heat exchanger 5 shown in FIG. 4 and has a main heat exchanger 114 (front upper main heat exchanger 114a, front lower main heat exchanger 114b, rear main heat exchanger 114). Heat exchanger 114c) and auxiliary heat exchanger 115 (front upper auxiliary heat exchanger 115a, front lower auxiliary heat exchanger 115b).

変形例の室内熱交換器105の特徴は、主熱交換器114の配管に、扁平管18を用いる点である。扁平管18は、管内が隔壁により複数空間に分割されたものであり、冷媒回路中の封入冷媒量の削減に寄与する。   A feature of the indoor heat exchanger 105 of the modification is that a flat tube 18 is used for the piping of the main heat exchanger 114. The flat tube 18 is divided into a plurality of spaces by a partition wall, and contributes to a reduction in the amount of refrigerant enclosed in the refrigerant circuit.

一方、空気との伝熱面積の確保のため、および、主熱交換器14での通風抵抗を増加させないために、フィン19の面積はR410Aの場合と同等にする。主熱交換器配管16の断面積は、外径7mmの管に対して、外径5mmの管で約半分、外径4mmの管で約3分の1である。   On the other hand, in order to secure the heat transfer area with the air and not to increase the ventilation resistance in the main heat exchanger 14, the area of the fin 19 is made equal to the case of R410A. The cross-sectional area of the main heat exchanger pipe 16 is about half of the outer diameter of 5 mm and about one third of the outer diameter of 4 mm compared to the outer diameter of 7 mm.

室内熱交換器5の温度を検知するため、暖房運転時の冷媒の流れにおける補助熱交換器15の入口付近の配管(前面下部補助熱交換器15bの配管)に、冷媒の温度を検知する補助熱交換器サーミスタ13を設ける。この補助熱交換器サーミスタ13の検知温度を、TSCinとする。 In order to detect the temperature of the indoor heat exchanger 5, an auxiliary for detecting the temperature of the refrigerant in a pipe near the inlet of the auxiliary heat exchanger 15 (pipe of the lower front auxiliary heat exchanger 15b) in the refrigerant flow during the heating operation. A heat exchanger thermistor 13 is provided. The detected temperature of the auxiliary heat exchanger thermistor 13 is TSCin .

また、主熱交換器14の冷媒流路長の中間地点付近(除湿弁35と前面上部主熱交換器14aとの間の配管)に、凝縮温度を検知するための凝縮温度サーミスタ12を設置する。この凝縮温度サーミスタ12の検知温度を、Tとする。 Further, a condensation temperature thermistor 12 for detecting the condensation temperature is installed near the intermediate point of the refrigerant flow path length of the main heat exchanger 14 (a pipe between the dehumidification valve 35 and the front upper main heat exchanger 14a). . The detected temperature of the condensation temperature thermistor 12, and T C.

図7は実施の形態1を示す図で、室内熱交換器5の入口から出口に向かっての冷媒温度の変化を示す図、図8は室内熱交換器5でのサブクルール領域の範囲が適正な状態を示す図、図9は室内熱交換器5でのサブクルール領域の範囲が広すぎる状態を示す図である。   FIG. 7 is a diagram showing the first embodiment, and is a diagram showing a change in refrigerant temperature from the inlet to the outlet of the indoor heat exchanger 5, and FIG. 8 is an appropriate range of the sub-crule area in the indoor heat exchanger 5. FIG. 9 is a diagram showing a state where the range of the sub-clur region in the indoor heat exchanger 5 is too wide.

図7の横軸は、室内熱交換器5の入口からの配管長[m]、縦軸は冷媒温度[℃]である。尚、図7には、凝縮温度サーミスタ12、補助熱交換器サーミスタ13の位置を示している。   The horizontal axis of FIG. 7 is the pipe length [m] from the inlet of the indoor heat exchanger 5, and the vertical axis is the refrigerant temperature [° C.]. FIG. 7 shows the positions of the condensation temperature thermistor 12 and the auxiliary heat exchanger thermistor 13.

凝縮温度サーミスタ12の検知温度Tと、補助熱交換器サーミスタ13の検知温度TSCinとの差を、ΔTとする。
ΔT = T − TSCin (1)
A detected temperature T C of the condensation temperature thermistor 12, the difference between the detected temperature T SCIN of the auxiliary heat exchanger thermistor 13, and [Delta] T.
ΔT = T C - T SCin ( 1)

暖房運転時のエネルギー消費効率(COP)がもっとも良くなるのは、主熱交換器14内で冷媒の状態が液相にならずに(気液二相状態)、サブクールがもっとも大きくなる状態である。すなわち、補助熱交換器15では冷媒が液相状態になり、主熱交換器14では冷媒が気液二相状態になるように(例えば、図8参照)、制御することが望ましい。   The energy consumption efficiency (COP) at the time of heating operation is the best when the refrigerant is not in the liquid phase (gas-liquid two-phase state) in the main heat exchanger 14 and the subcool is the largest. . That is, it is desirable to control the auxiliary heat exchanger 15 so that the refrigerant is in a liquid phase and the main heat exchanger 14 is in a gas-liquid two-phase state (see, for example, FIG. 8).

図示しない制御部は、この状態を安定的に保つために、ΔTの目標値の範囲をTaからTbに設定し(Ta<Tb)、ΔTとTa、Tbの値の関係から、減圧装置8の絞りを制御する。   In order to keep this state stable, the control unit (not shown) sets the target value range of ΔT from Ta to Tb (Ta <Tb), and from the relationship between ΔT and the values of Ta and Tb, Control the aperture.

図7に示すように、補助熱交換器15に取り付けた補助熱交換器サーミスタ13はサブクールが適正な状態でも、凝縮温度よりも温度が低い位置に取り付けるため、取り付け位置に応じてTaとTbの値を設定する。   As shown in FIG. 7, the auxiliary heat exchanger thermistor 13 attached to the auxiliary heat exchanger 15 is attached to a position where the temperature is lower than the condensing temperature even when the subcool is in an appropriate state. Set the value.

ΔT<Taの時は、サブクール領域が小さいため、制御部は、減圧装置8を絞る制御を行う。   When ΔT <Ta, since the subcool region is small, the control unit performs control to narrow down the decompression device 8.

Ta<ΔT<Tbの時は、サブクールが適正なため、制御部は、制御を行わない。   When Ta <ΔT <Tb, since the subcool is appropriate, the control unit does not perform control.

Tb<ΔTの時は、サブクールが大きいため、サブクール領域が主熱交換器14の一部まで広がり(例えば、図9参照)、暖房運転時のエネルギー消費効率(COP)が、サブクールが適正な場合に比べ低下する。そのため、制御部は、減圧装置8を開く制御を行う。   When Tb <ΔT, since the subcool is large, the subcool region extends to a part of the main heat exchanger 14 (see, for example, FIG. 9), and the energy consumption efficiency (COP) during heating operation is appropriate for the subcool. Compared to Therefore, the control unit performs control to open the decompression device 8.

制御部が、上記の制御を行うことで、サブクール領域が安定的に室内熱交換器5の所定の範囲に収めることが出来、安定的に室内熱交換器5の効率が高い状態で、空気調和機100を運転することが出来る。   By performing the above control, the control unit can stably keep the subcool region within the predetermined range of the indoor heat exchanger 5, and stably adjust the air conditioning in a state where the efficiency of the indoor heat exchanger 5 is high. The machine 100 can be operated.

実施の形態2.
図10は実施の形態2を示す図で、圧縮機1の縦断面図である。図1の空気調和機100の冷媒回路を構成する圧縮機1は、例えば、図10に示すような2気筒回転式圧縮機である。2気筒回転式圧縮機は公知のものであるから、詳細な説明は割愛する。
Embodiment 2. FIG.
FIG. 10 shows the second embodiment and is a longitudinal sectional view of the compressor 1. The compressor 1 which comprises the refrigerant circuit of the air conditioner 100 of FIG. 1 is a 2-cylinder rotary compressor as shown in FIG. 10, for example. Since the two-cylinder rotary compressor is a known one, a detailed description is omitted.

圧縮機1は、密閉容器1d内に、冷媒を圧縮する2気筒回転式の圧縮機構部1a、圧縮機構部1aを駆動する電動機1b(例えば、ブラシレスDCモータ)等を収納している。電動機1bにより圧縮機構部1aが駆動されると、冷媒(R32)を圧縮し、密閉容器1d内に高温・高圧の冷媒ガスが吐出される。この吐出ガスは電動機1bを通過し、吐出管1cから冷媒回路の四方弁2へ向かう。   The compressor 1 stores a two-cylinder rotary compression mechanism 1a that compresses refrigerant, an electric motor 1b (for example, a brushless DC motor) that drives the compression mechanism 1a, and the like in a sealed container 1d. When the compression mechanism 1a is driven by the electric motor 1b, the refrigerant (R32) is compressed, and high-temperature and high-pressure refrigerant gas is discharged into the sealed container 1d. The discharged gas passes through the electric motor 1b and travels from the discharge pipe 1c to the four-way valve 2 of the refrigerant circuit.

吐出管1cには、圧縮機1から吐出される吐出ガスの温度を検出する吐出温度サーミスタ10が取り付けられている。   A discharge temperature thermistor 10 that detects the temperature of the discharge gas discharged from the compressor 1 is attached to the discharge pipe 1c.

また、吐出管1c近傍の密閉容器1dの上面に、密閉容器1dの温度を検出する密閉容器温度サーミスタ11が取り付けられている。   A sealed container temperature thermistor 11 that detects the temperature of the sealed container 1d is attached to the upper surface of the sealed container 1d near the discharge pipe 1c.

但し、吐出温度サーミスタ10もしくは密閉容器温度サーミスタ11のいずれかが取り付けられる。   However, either the discharge temperature thermistor 10 or the closed container temperature thermistor 11 is attached.

上記の実施の形態1の冷媒回路と熱交換器の構成において、減圧装置8の絞りの制御に、圧縮機1の吐出管1cに取り付けた吐出温度サーミスタ10で検知した温度(吐出温度)を用いる。   In the configuration of the refrigerant circuit and the heat exchanger of the first embodiment, the temperature (discharge temperature) detected by the discharge temperature thermistor 10 attached to the discharge pipe 1c of the compressor 1 is used to control the throttle of the decompression device 8. .

また、吐出温度サーミスタ10の代わりに、吐出管1c近傍の密閉容器1dの上面に取り付けられた密閉容器温度サーミスタ11で検知した密閉容器温度を用いても良い。   Further, instead of the discharge temperature thermistor 10, the closed container temperature detected by the closed container temperature thermistor 11 attached to the upper surface of the closed container 1d near the discharge pipe 1c may be used.

圧縮機1の回転数毎に目標とする吐出温度を設定し、目標の設定温度になるように減圧装置8の絞りを、制御部が制御する。制御部は、検知した吐出温度が目標値よりも低い時には、減圧装置8の開度を絞り、目標値よりも高い場合には減圧装置8の開度を開く。   The target discharge temperature is set for each rotation speed of the compressor 1, and the control unit controls the throttle of the decompression device 8 so that the target set temperature is reached. The controller throttles the opening of the decompression device 8 when the detected discharge temperature is lower than the target value, and opens the opening of the decompression device 8 when the detected discharge temperature is higher than the target value.

上記の吐出温度制御に、サブクール領域を安定化するために、吐出温度の目標温度に補正を加える。   In order to stabilize the subcool region in the above discharge temperature control, correction is made to the target temperature of the discharge temperature.

ΔT<Taの時は、吐出温度の目標温度をα℃高く補正する。   When ΔT <Ta, the target temperature of the discharge temperature is corrected to be higher by α ° C.

Ta<ΔT<Tbの時は、目標吐出温度の補正は行わない。   When Ta <ΔT <Tb, the target discharge temperature is not corrected.

Tb<ΔTの時は、吐出温度の目標温度をβ℃低く補正する。   When Tb <ΔT, the target temperature of the discharge temperature is corrected to be lower by β ° C.

目標温度の補正値α、βは、室内熱交換器5の仕様に応じて設定する。   The target temperature correction values α and β are set according to the specifications of the indoor heat exchanger 5.

このように、減圧装置8の開度を制御する基本制御の目標値に補正を加えることで、基本制御に大きな変更を加えることなく、サブクール領域を安定化する制御を実現することが出来る。   As described above, by correcting the target value of the basic control for controlling the opening degree of the decompression device 8, it is possible to realize the control that stabilizes the subcool region without greatly changing the basic control.

1 圧縮機、1a 圧縮機構部、1b 電動機、1c 吐出管、1d 密閉容器、2 四方弁、3 チャージポート付き閉止弁、4 ガス管延長配管、5 室内熱交換器、6 液管延長配管、7 液管閉止弁、8 減圧装置、9 室外熱交換器、10 吐出温度サーミスタ、11 密閉容器温度サーミスタ、12 凝縮温度サーミスタ、13 補助熱交換器サーミスタ、14 主熱交換器、14a 前面上部主熱交換器、14b 前面下部主熱交換器、14c 背面主熱交換器、15 補助熱交換器、15a 前面上部補助熱交換器、15b 前面下部補助熱交換器、16 主熱交換器配管、17 補助熱交換器配管、18 扁平管、35 除湿弁、41 正面開閉パネル、42 前面枠体、43 ドレンパン、44 フィルタ自動清掃機構、45 電気品箱、46 室内送風機、47 支持枠体、48 吸込口、49 吹出口、50 風向制御部、100 空気調和機、100a 室外機、100b 室内機。   DESCRIPTION OF SYMBOLS 1 Compressor, 1a Compression mechanism part, 1b Electric motor, 1c Discharge pipe, 1d Sealed container, 2 Four-way valve, 3 Close valve with charge port, 4 Gas pipe extension pipe, 5 Indoor heat exchanger, 6 Liquid pipe extension pipe, 7 Liquid pipe closing valve, 8 Pressure reducing device, 9 Outdoor heat exchanger, 10 Discharge temperature thermistor, 11 Sealed container temperature thermistor, 12 Condensation temperature thermistor, 13 Auxiliary heat exchanger thermistor, 14 Main heat exchanger, 14a Front upper main heat exchange 14b Front lower main heat exchanger, 14c Rear main heat exchanger, 15 Auxiliary heat exchanger, 15a Front upper auxiliary heat exchanger, 15b Front lower auxiliary heat exchanger, 16 Main heat exchanger piping, 17 Auxiliary heat exchange Equipment piping, 18 flat tube, 35 dehumidification valve, 41 front open / close panel, 42 front frame, 43 drain pan, 44 filter automatic cleaning mechanism, 45 electrical box, 46 Indoor blower, 47 support frame, 48 suction port, 49 air outlet, 50 air direction control unit, 100 air conditioner, 100a outdoor unit, 100b indoor unit.

Claims (8)

冷媒としてHFC32(ジフルオロメタン)を使用し、少なくとも圧縮機、室内熱交換器、膨張弁、室外熱交換器が順番に接続されてなる冷凍サイクルと、
前記冷凍サイクルの制御を行う制御部と
を備え、
前記室内熱交換器は、
室内機の外郭の内側で前記室内機の前面側かつ上部と前面側かつ下部と背面側とに分けて配置され、暖房運転時において、前記圧縮機で圧縮されてガス状態になった前記冷媒と空気との熱交換を行う主熱交換器と、
前記室内機の外郭の内側で前記室内機の前後方向に前記主熱交換器と重ねて配置され、前記主熱交換器で熱交換が行われた前記冷媒と空気との熱交換を行う補助熱交換器と、
前記主熱交換器の温度を検知する凝縮温度サーミスタと、
前記補助熱交換器の入口付近の温度を検知する補助熱交換器サーミスタと
を具備し、
前記制御部は、
前記凝縮温度サーミスタと前記補助熱交換器サーミスタとの検知結果に基づいて、前記主熱交換器で熱交換が行われて気液二相状態になった前記冷媒が前記主熱交換器から流出するまでは気液二相状態を保ち、かつ、前記補助熱交換器の入口付近では液相状態になっているかどうか判定し、判定結果に応じて、前記膨張弁の開度を制御することにより、サブクール領域が前記補助熱交換器の中に収まるように制御することを特徴とする空気調和機。
A refrigeration cycle in which HFC32 (difluoromethane) is used as a refrigerant, and at least a compressor, an indoor heat exchanger, an expansion valve, and an outdoor heat exchanger are connected in order,
A control unit for controlling the refrigeration cycle,
The indoor heat exchanger is
The refrigerant which is arranged inside the outer wall of the indoor unit and divided into a front side, an upper side, a front side, a lower side and a back side of the indoor unit, and compressed into the gas state by the compressor during heating operation A main heat exchanger that exchanges heat with air;
Auxiliary heat for exchanging heat between the refrigerant and the air that is arranged inside the outer wall of the indoor unit and overlaps with the main heat exchanger in the front-rear direction of the indoor unit and has exchanged heat with the main heat exchanger An exchange,
A condensation temperature thermistor for detecting the temperature of the main heat exchanger;
An auxiliary heat exchanger thermistor for detecting the temperature near the inlet of the auxiliary heat exchanger;
The controller is
Based on the detection results of the condensing temperature thermistor and the auxiliary heat exchanger thermistor, the refrigerant that has undergone heat exchange in the main heat exchanger and is in a gas-liquid two-phase state flows out of the main heat exchanger. Until the gas-liquid two-phase state is maintained, and it is determined whether or not it is in a liquid phase state near the inlet of the auxiliary heat exchanger, and according to the determination result, by controlling the opening of the expansion valve, An air conditioner that is controlled so that a subcooling region is accommodated in the auxiliary heat exchanger.
前記補助熱交換器は、前記室内機の外郭の内側で前記室内機の前面側かつ上部と前面側かつ下部とに分けて、それぞれ前記室内機の前面側かつ上部の前記主熱交換器と前面側かつ下部の前記主熱交換器と重ねて配置されることを特徴とする請求項1に記載の空気調和機。The auxiliary heat exchanger is divided into a front side, an upper part, a front side, and a lower part of the indoor unit inside the outer wall of the indoor unit, and the main heat exchanger and the front part on the front side and the upper part of the indoor unit, respectively. The air conditioner according to claim 1, wherein the air conditioner is disposed so as to overlap with the main heat exchanger on the side and the lower part. 記凝縮温度サーミスタは、前記室内機の前面側かつ下部の前記主熱交換器及び背面側の前記主熱交換器と前記室内機の前面側かつ上部の前記主熱交換器を直列接続する配管に設けられていることを特徴とする請求項1又は2に記載の空気調和機。 Before SL condensation temperature thermistor, connected in series and a front side and a lower portion of the main heat exchanger and the front side of the rear side of the main heat exchanger and the indoor unit and the upper portion of the main heat exchanger of the indoor unit It is provided in piping, The air conditioner of Claim 1 or 2 characterized by the above-mentioned. 前記制御部は、
前記凝縮温度サーミスタの検知温度と前記補助熱交換器サーミスタの検知温度との差ΔTが下限値Taより小さければ、前記主熱交換器で熱交換が行われて気液二相状態になった前記冷媒が前記補助熱交換器の入口付近で液相状態になっていないと判定し、前記膨張弁の開度を下げ、差ΔTが上限値Tbより大きければ、前記主熱交換器で熱交換が行われて気液二相状態になった前記冷媒が前記主熱交換器から流出するまで気液二相状態を保っていないと判定し、前記膨張弁の開度を上げることを特徴とする請求項1から3のいずれかに記載の空気調和機。
The controller is
If the difference ΔT between the detected temperature of the condensation temperature thermistor and the detected temperature of the auxiliary heat exchanger thermistor is smaller than the lower limit Ta, the heat exchange is performed in the main heat exchanger and the gas-liquid two-phase state is obtained. If it is determined that the refrigerant is not in a liquid phase near the inlet of the auxiliary heat exchanger, the opening of the expansion valve is lowered, and if the difference ΔT is larger than the upper limit value Tb, heat exchange is performed in the main heat exchanger. It is determined that the gas-liquid two-phase state is not maintained until the refrigerant that has been put into a gas-liquid two-phase state flows out of the main heat exchanger, and the opening degree of the expansion valve is increased. Item 4. The air conditioner according to any one of Items 1 to 3 .
前記圧縮機で圧縮されてガス状態になった前記冷媒が前記圧縮機から吐出される際の前記冷媒の温度を検知する吐出温度サーミスタ
を備え、
前記制御部は、
前記吐出温度サーミスタの検知温度が目標の設定温度になるように、前記膨張弁の開度を制御するとともに、差ΔTが下限値Taより小さければ、前記目標の設定温度をより高く設定し、差ΔTが上限値Tbより大きければ、前記目標の設定温度をより低く設定することを特徴とする請求項4に記載の空気調和機。
A discharge temperature thermistor for detecting the temperature of the refrigerant when the refrigerant compressed in the compressor and in a gas state is discharged from the compressor;
The controller is
The opening of the expansion valve is controlled so that the detected temperature of the discharge temperature thermistor becomes a target set temperature, and if the difference ΔT is smaller than the lower limit value Ta, the target set temperature is set higher. The air conditioner according to claim 4 , wherein if the ΔT is larger than the upper limit value Tb, the target set temperature is set lower.
前記圧縮機の密閉容器の温度を検知する密閉容器温度サーミスタ
を備え、
前記制御部は、
前記密閉容器温度サーミスタの検知温度が目標の設定温度になるように、前記膨張弁の開度を制御するとともに、差ΔTが下限値Taより小さければ、前記目標の設定温度をより高く設定し、差ΔTが上限値Tbより大きければ、前記目標の設定温度をより低く設定することを特徴とする請求項4に記載の空気調和機。
A closed vessel temperature thermistor for detecting the temperature of the closed vessel of the compressor;
The controller is
The opening of the expansion valve is controlled so that the detected temperature of the hermetic container temperature thermistor becomes a target set temperature, and if the difference ΔT is smaller than the lower limit value Ta, the target set temperature is set higher, The air conditioner according to claim 4 , wherein if the difference ΔT is larger than the upper limit value Tb, the target set temperature is set lower.
前記主熱交換器の熱交換用の配管に、外径が4〜5mmの円管が用いられていることを特徴とする請求項1から6のいずれかに記載の空気調和機。 The air conditioner according to any one of claims 1 to 6 , wherein a circular pipe having an outer diameter of 4 to 5 mm is used for a heat exchange pipe of the main heat exchanger. 前記主熱交換器の熱交換用の配管に、管内が隔壁により複数空間に分割された扁平管が用いられていることを特徴とする請求項1から6のいずれかに記載の空気調和機。 The air conditioner according to any one of claims 1 to 6 , wherein a flat tube in which the inside of the tube is divided into a plurality of spaces by partition walls is used for the heat exchange pipe of the main heat exchanger.
JP2010274256A 2010-12-09 2010-12-09 Air conditioner Expired - Fee Related JP5618801B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010274256A JP5618801B2 (en) 2010-12-09 2010-12-09 Air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010274256A JP5618801B2 (en) 2010-12-09 2010-12-09 Air conditioner

Publications (3)

Publication Number Publication Date
JP2012122677A JP2012122677A (en) 2012-06-28
JP2012122677A5 JP2012122677A5 (en) 2012-09-06
JP5618801B2 true JP5618801B2 (en) 2014-11-05

Family

ID=46504295

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010274256A Expired - Fee Related JP5618801B2 (en) 2010-12-09 2010-12-09 Air conditioner

Country Status (1)

Country Link
JP (1) JP5618801B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5672290B2 (en) 2012-10-31 2015-02-18 ダイキン工業株式会社 Air conditioner
JP2014142168A (en) * 2012-12-28 2014-08-07 Daikin Ind Ltd Freezer
JP6381712B2 (en) * 2017-03-09 2018-08-29 三菱電機株式会社 Refrigeration cycle equipment
CN109185976A (en) * 2018-09-04 2019-01-11 珠海格力电器股份有限公司 Multi-joint unit, its degree of supercooling control method, computer equipment and storage medium
CN112178795A (en) * 2020-11-02 2021-01-05 珠海格力电器股份有限公司 Outdoor heat exchanger and air conditioning device

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0336471A (en) * 1989-06-30 1991-02-18 Mitsubishi Electric Corp Air conditioner
JP3155645B2 (en) * 1993-03-30 2001-04-16 東芝キヤリア株式会社 Air conditioner
JP3277665B2 (en) * 1993-12-29 2002-04-22 ダイキン工業株式会社 Air conditioner
JP2007085730A (en) * 2006-12-18 2007-04-05 Mitsubishi Electric Corp Air conditioner and method of operating air conditioner
JP2010078289A (en) * 2008-09-29 2010-04-08 Mitsubishi Electric Corp Heat exchanger and air conditioner equipped with the same
JP5353167B2 (en) * 2008-09-30 2013-11-27 ダイキン工業株式会社 Refrigeration equipment
JP2010243018A (en) * 2009-04-03 2010-10-28 Daikin Ind Ltd Air conditioner
JP2010249343A (en) * 2009-04-13 2010-11-04 Mitsubishi Electric Corp Fin tube type heat exchanger and air conditioner using the same

Also Published As

Publication number Publication date
JP2012122677A (en) 2012-06-28

Similar Documents

Publication Publication Date Title
JP6935720B2 (en) Refrigeration equipment
JP3679323B2 (en) Refrigeration cycle apparatus and control method thereof
JP5933031B2 (en) Air conditioner
JP5618801B2 (en) Air conditioner
WO2013088638A1 (en) Refrigerating cycle device
JP2005249384A (en) Refrigerating cycle device
JP5908183B1 (en) Air conditioner
JP6257809B2 (en) Refrigeration cycle equipment
WO2014049673A1 (en) Combined air-conditioning and hot-water supply system
JP2015068610A (en) Air conditioner
JP4488712B2 (en) Air conditioner
JPWO2015140885A1 (en) Refrigeration cycle equipment
WO2015140880A1 (en) Compressor and refrigeration cycle apparatus
WO2015140881A1 (en) Refrigeration cycle apparatus
JP2013124801A (en) Refrigerating cycle device
WO2000052397A1 (en) Refrigerating device
JP6537629B2 (en) Air conditioner
JP3838267B2 (en) Air conditioner
JP6238202B2 (en) Air conditioner
WO2016207992A1 (en) Air conditioner
JP3698036B2 (en) Air conditioner
JP2016200363A (en) Refrigeration device
JP7139827B2 (en) refrigeration cycle equipment
JP7139850B2 (en) refrigeration cycle equipment
JP2021025700A (en) Air conditioner

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120719

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120719

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130702

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130703

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130729

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140204

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140304

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140819

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140916

R150 Certificate of patent or registration of utility model

Ref document number: 5618801

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees