JP3698036B2 - Air conditioner - Google Patents

Air conditioner Download PDF

Info

Publication number
JP3698036B2
JP3698036B2 JP2000258967A JP2000258967A JP3698036B2 JP 3698036 B2 JP3698036 B2 JP 3698036B2 JP 2000258967 A JP2000258967 A JP 2000258967A JP 2000258967 A JP2000258967 A JP 2000258967A JP 3698036 B2 JP3698036 B2 JP 3698036B2
Authority
JP
Japan
Prior art keywords
compressor
temperature
air conditioner
heating
cooling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000258967A
Other languages
Japanese (ja)
Other versions
JP2002071187A (en
Inventor
義浩 田辺
秀明 永友
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2000258967A priority Critical patent/JP3698036B2/en
Publication of JP2002071187A publication Critical patent/JP2002071187A/en
Application granted granted Critical
Publication of JP3698036B2 publication Critical patent/JP3698036B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Air Conditioning Control Device (AREA)
  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、空気調和装置の冷房および暖房の定格運転における能力値に関するものである。
【0002】
【従来の技術】
家庭用空気調和装置(ルームエアコン)市場は、冷房定格能力が5.0kW以下の直吹き形(ダクト接続タイプでないもの)で壁掛け形の形態で、1台の室外機に1台の室内機を設ける方式(マルチ方式でないもの)の空気調和装置が主流であり、市場の90%以上を占めている。さらに家庭用空気調和装置の80%以上は冷房及び暖房兼用型であり、その主流は冷凍サイクルの圧縮機の回転数可変が可能なインバータ駆動の空気調和装置である。
【0003】
地球温暖化抑制さらに環境問題として、ルームエアコンの省エネ化が進むにつれて、近年ルームエアコンは熱交換器等の大型化が進み空気調和装置の大型化及び高重量化してきている。
また、2001年施行される家電リサイクル法においては、家庭用のルームエアコンは対象品目であり、リサイクル促進は製造業者の大きな課題である。すなわち廃棄物の回収及び再資源化促進に向けて、ルームエアコンの小型化、軽量化に取り組む必要があるが、省エネ化推進によるエアコンの大型化、高重量化はその妨げになっている。そのためルームアエコンの総重量の主流を占める、圧縮機の小型化は社会的な取り組みになりつつある。
また、市場で主流である直吹き形で壁掛け形の形態で1台の室外機に対し1台の室内機を設ける方式の空気調和装置は、家電リサイクル法で対象となる空気調和装置の中で、主流となる形態であるとともに、省エネ法規制値も他の形態区分に比べ極めて高い規制値が設定されている。さらに、前記形態は、これまで様々な断熱構造の住宅にも対応が図れるように、能力不足になりやすい暖房定格能力を冷房定格能力に比べて大幅に高い値を設定していた。
【0004】
これまで、JISC9612で定められた空気条件で機器が連続運転可能な冷房定格能力と暖房定格能力において、現在のルームエアコンは暖房定格能力と冷房定格能力の比率(暖房定格能力/冷房定格能力)を図10に示す値に1.35〜1.64に設定している。このとき冷房及び暖房定格能力運転時の圧縮機の軸受け等の信頼性に関わる、圧縮仕事及び圧縮負荷トルクを比較すると、暖房運転の方が高く、圧縮機の信頼性は暖房運転に耐えうる機構を設ける必要があった。
【0005】
圧縮機の圧縮仕事及び圧縮負荷トルクは圧縮機の信頼性設計を行う上で、重要な項目である。
圧縮機がする圧縮仕事Wは、
W=Ps・Vp・N/(N−1)・{(Pd/Ps)^((N−1)/N)−1}
ここに、Ps:圧縮機吸入圧力(低圧)、
Pd:圧縮機吐出圧力(高圧)、
Vp:押しのけ量、
N:比熱比で示される。
また、圧縮中に加わるトルクTは、
T=W/rpm
ここに、rpmは圧縮機の回転数で示される。
この中で、Pd(高圧)圧力は、圧縮仕事及び負荷トルクへの影響が高く、圧縮機の運転周波数を低下すること、すなわち能力を低下しなければ圧縮機の信頼性を高めることができない。
【0006】
図11は、ルームエアコン運転におけるモリエル線図であり、縦軸に圧力、横軸にエンタルピーをとってある。実線が高い能力で運転している場合を示し、点線が低めの能力で運転している場合を示している。高い能力で運転を行うと、高圧(Pd)が上昇する動作を表している。
従来のルームエアコンは前記図10に示すように、冷房運転時に比べ暖房運転時が能力が高いので、上記圧縮仕事Wの式及び負荷トルクTの式にもとづいて算出することにより、従来の暖房能力運転時の圧縮仕事及び負荷トルクは、冷房運転時に比べ高くなることがわかる(後述の図4、図5にて再度説明する)。すなわち、暖房能力に耐えうる圧縮機の圧縮部及び軸受け等の機構を設ける必要があり、圧縮機の小形化が図れなかった。
【0007】
また、環境問題であるオゾン層破壊抑制などの対応として、これまで使用してきた塩素分を含むHCFC系冷媒であるR22の代替として、塩素分を含まないHFC系冷媒であるR410Aにかわりつつある。しかし、この代替冷媒は高圧冷媒であり、これまで使用してきたR22冷媒より約1.6倍圧力が上昇する特徴を有している。そのため、圧縮機に吸入されるガス冷媒は高密度化するため加わる軸負荷等が増加し、圧縮機の信頼性をさらに高める必要があり、圧縮機の小形化が図れない問題があった。
【0008】
【発明が解決しようとする課題】
地球温暖化抑制及びオゾン層破壊抑制により、近年ルームエアコンが大型化及び高重量化が進んでいるが、これに相反しリサイクル促進の妨げになっている。
そのため圧縮機の小形化及び省エネ化の推進は社会的な取り組みになっている。
しかし、近年の代替冷媒として高圧冷媒を使用することにより、圧縮機の軸負荷が高まり、圧縮機の信頼性を高める必要があることと、これまで冷房定格能力運転に比べ、暖房定格能力運転の方が圧縮機の信頼性確保が厳しく、圧縮機の小形化が図りにくい問題があった。
【0009】
この発明は上記のような問題点を解決するためになされたもので、冷房及び暖房運転が可能なエアコンの小形化により、原材料削減、製品輸送、保管、据付け、廃棄及びエアコン使用時の省エネ化に至るライフサイクルアセスメントの改善を図ることを目的とする。
【0010】
【課題を解決するための手段】
本発明の請求項1に係る空気調和装置は、圧縮機の回転速度を制御可能なインバータ駆動の圧縮機、四方弁、凝縮側熱交換器、減圧装置、蒸発側熱交換器を接続して構成され、凝縮温度が50℃における飽和圧力が2500kPa以上となる飽和温度を有した冷媒を使用し、四方弁の切換えにより冷房サイクル及び暖房サイクル運転が可能な、直吹き壁掛け形の形態で、1台の室外機に1台の室内機を設ける空気調和装置において、圧縮機の圧縮仕事が暖房運転時と冷房運転時ともほぼ同じとなるように暖房定格能力が冷房定格能力より大きく1.3倍以下に設定したものである。
本発明の請求項2に係る空気調和装置は、冷房定格能力は、室内乾球温度27℃、室内湿球温度19℃、室外乾球温度35℃、室外湿球温度24℃の空気条件で、また暖房定格能力は、室内乾球温度20℃、室外乾球温度7℃、室外湿球温度6℃の空気条件でそれぞれ連続運転を保証するものである。
【0011】
本発明の請求項3に係る空気調和装置は、冷房定格能力が5.0kW以下に設定したものである。
【0012】
本発明の請求項4に係る空気調和装置は、圧縮機の回転速度を制御可能なインバータ駆動の圧縮機、四方弁、凝縮側熱交換器、減圧装置、蒸発側熱交換器を接続して構成され、凝縮温度が50℃における飽和圧力が2500kPa以上となる飽和温度を有した冷媒を使用し、四方弁の切換えにより冷房サイクル及び暖房サイクル運転が可能な空気調和装置において、暖房定格能力が冷房定格能力の1.0倍以上、1.3倍以下に設定され、少なくとも、圧縮機の最大回転数または最大運転電流のどちらか一方を、所定時間増加可能としたものである。
本発明の請求項5に係る空気調和装置は、外部操作により、圧縮機の最大回転数または最大運転電流を所定時間増加可能としたものである。
【0013】
本発明の請求項6に係る空気調和装置は、室内温度と設定温度との差を算出する演算手段、または外気温度を検出する外気温度検出手段を備え、演算手段からの信号が所定値を越えた場合、または外気温度検出手段からの信号が所定値以下となった場合のいずれかにより、圧縮機の最大回転数または最大運転電流を所定時間増加可能としたものである。
【0014】
本発明の請求項7に係る空気調和装置は、圧縮機の容器温度を検出する容器温度検知手段を設け、容器温度検知手段による検出信号に応じて少なくとも圧縮機の最大回転数の増加または最大運転電流の増加のどちらか一方を可能としたものである。
【0015】
本発明の請求項8に係る空気調和装置は、圧縮機の運転電流を検出する運転電流検出手段を設け、運転電流検出手段による検出信号に応じて少なくとも圧縮機の最大運転電流の増加または圧縮機の最大回転数の増加のどちらか一方を可能としたものである。
【0016】
本発明の請求項9に係る空気調和装置は、外部操作により、少なくとも室内ファン回転数または室外ファン回転数のどちらか一方を増加させたものである。
【0017】
【発明の実施の形態】
実施の形態1.
以下、本発明の実施の形態1について図1から図8にて説明する。図1は本発明に係る空気調和装置を示す冷媒回路図と制御回路図、図2は冷房運転時の冷媒の流れ方向を示す冷媒回路図、図3は暖房運転時の冷媒の流れ方向を示す冷媒回路図、図4は空気調和装置の圧縮機の圧縮仕事を示す特性図、図5は空気調和装置の圧縮機の負荷トルクを示す特性図、図6は住宅の空調負荷の説明図、図7は空気調和装置の能力と消費電力量の関係図、図8は空気調和装置の暖房定格能力値を示す説明図である。
【0018】
図1において、電動圧縮機1、冷媒流路切換弁5(以下、四方弁という)、室外熱交換器8、減圧器7、室内熱交換器6を順次接続した冷媒圧縮サイクルを備えると共に、その室外熱交換器8及び室内熱交換器6に送風機9、10を夫々備えた空気調和装置は、その電動圧縮機1への供給電源の周波数及び電圧を制御するインバータ制御方式である。これは、室温18と室温設定値により室内側マイコン制御部12が室温と設定温度との差を算出することにより建物空調負荷を検知し、その負荷に応じて室外の圧縮機の運転回転速度を演算し、室外マイコン制御部14に情報を送る。そして室外マイコン制御部14では、室内マイコン制御部12からの情報に基づき自動的に圧縮機の回転速度制御を行う冷凍サイクル装置である。
【0019】
さらに、室内マイコン制御部12からの冷房運転または暖房運転の指令を室外マイコン制御部14は受け取り、冷房運転時は、図2に示すように室外熱交換器8を凝縮器として、室内熱交換器6を蒸発器として用いるように冷媒の流れを制御する四方弁5を制御する。また一方、暖房運転時は、図3に示すように逆に室内熱交換器6を凝縮器として、室外熱交換器8を蒸発器として冷媒を流すように四方弁5を制御する。
【0020】
また、冷媒としてHFC冷媒であるR410Aを使用しており、従来のR22に比べ、高圧冷媒であるため、圧縮機に吸入される低圧ガス冷媒のガス密度が高まる。
【0021】
この空気調和装置は、JISC9612に規定された空気条件である室内乾球温度27℃、室内湿球温度19℃、そして室外乾球温度35℃、室外湿球温度24℃の空気温度条件で連続運転を保証する冷房定格能力が、例えば2.8kWを発揮し、室内乾球温度20℃、室外乾球温度7℃、室外湿球温度6℃における空気温度条件で連続運転を保証する暖房定格能力は、例えば3.2kWに設定している。
【0022】
図4、図5に上記冷房及び暖房定格能力を運転している時の、圧縮機の圧縮仕事Wと圧縮負荷トルクTの関係を示している。
この図に示すように、冷房定格運転時に圧縮機に加わる圧縮負荷トルク及び圧縮仕事と、暖房運転時に加わる圧縮負荷トルク及び圧縮仕事はほぼ同一である。
すなわち、圧縮機の信頼性にかかる圧縮機に加わる負荷及び仕事がほぼ冷房運転時及び暖房運転時ともほぼ同一であるため、従来の様に圧縮機に加わる負荷の高い暖房運転に耐えうる機構を特別に設定する必要がなくなり、圧縮機の軸受け機構等が簡素化が図れるとともに、圧縮機の小形化が可能となる。
【0023】
本発明によれば、従来の暖房定格能力値に比べ約20%低く能力を設定しているため、その分暖房能力は低下することになる。
図6では、従来の住宅建物構造での冷房建物負荷と暖房建物負荷の関係と、近年の建物負荷との関係を示している。この図から明確であるが、近年の建物は外気との断熱性が高まり、暖房の建物負荷が著しく低下してきている。冷房時の建物負荷も低下しているが、冷房運転時は顕熱負荷に加えて潜熱負荷に大きく影響されるため、その寄与度は暖房より小さい。従って、本発明に示す暖房定格能力の低下率程度であれば、実使用上能力不足になることは少ない。
【0024】
さらに、図7に暖房能力と消費電力量の関係を示している。
暖房定格能力における消費電力量は従来の暖房定格能力における消費電力量より約20%以上低減できる。このように運転効率の悪い高能力での運転を控えることにより、省エネ化が図れるとともに、運転電流のピークを抑えることも可能になり、家庭内でのブレーカー飛びを抑制する効果もある。
以上、冷房定格能力が2.8kWの空気調和装置を例に説明したが、その他の能力帯でも同様の効果が得られ、図8に他の冷房定格能力帯での暖房定格能力値の例を示す。
【0025】
実施の形態2.
図9はこの発明の実施の形態2を示し、外部操作部としてワイヤレスリモコンの説明図である。図において、31はワイヤレスリモコン本体、32は空調機本体へ運転指令の信号を送信する送信部、33は運転状態を液晶などで表示する表示部、35は操作スイッチ34の中の「暖房パワー調整」ボタンである。空気調和装置本体は実施の形態1と同様となるので説明を省略する。
【0026】
次に動作について説明する。「暖房パワー調整」ボタン35により、「標準」運転または「強」運転の切り換えが可能であり、通常運転では「標準」を選定するが、暖房運転使用時に部屋の窓を開けて、一時的に建物空調負荷が増加した時や極端に建物構造の断熱性の低い住宅の運転立ち上がり時など、一時的に暖房能力を高めたい時に「暖房パワー調整」ボタン35を操作して「強」運転に設定する。
【0027】
この操作を行うと、「標準」運転で使用していた時よりも、限られた時間のみ暖房能力を高める運転を行う。すなわち、最大能力運転可能な最大運転電流を向上し、圧縮機の運転周波数を高めに設定する。したがって、高めの暖房能力が発揮でき、快適性の向上が図れる。この時の圧縮機に加わる負荷トルク及び圧縮仕事は「標準」設定より高くなるが、限られた時間内のみの運転であるため、圧縮機の信頼性を損なうことがない。
【0028】
また、上述では「暖房パワー調整」ボタンの操作により運転切り換え可能としたが、設定温度と室内温度の差が所定以上ひらいている場合、限られた時間内で「標準」に設定した時の圧縮機の最大回転数または最大電流値よりも高めに変更して、暖房能力を高める運転を許可しても同様の効果が得られる。
【0029】
または、外気温度検出装置からの検出信号に応じて、外気が低く能力を高めたいと判断した場合に、限られた時間内に「標準」に設定した時の圧縮機の最大回転数または最大運転電流より高めに変更し、暖房運転を高める運転を許可しても良く、同様の効果が得られる。
【0030】
さらに、または圧縮機容器の温度または運転電流からの検出信号に応じ圧縮機の温度が低く、または運転電流が低く運転されていて、暖房能力を高めた運転を行っても問題ないと判断した場合に、限られた時間内で「標準」に設定した場合よりも暖房能力を高める運転を許可しても良く、同様の効果が得られる。
【0031】
以上は「暖房パワー調整」ボタンで「強」運転に設定した時、限られた時間内のみ暖房能力を発揮することを許可する動作を説明したが、「強」運転に設定した時、最大電流を上昇させ、圧縮機の運転周波数を向上する動作を行うとともに、さらに室内ファンの回転数を高めに設定し、凝縮圧力を低減させて圧縮機に加わる負荷トルク及び圧縮仕事を低減させ、さらに室外ファンの回転数も「標準」より高めに設定し、蒸発圧力を上昇させて圧縮機の運転周波数を低減することにより、圧縮機に加わる負荷トルク及び圧縮仕事を低減させ、長時間暖房能力を高める運転を可能にしても良い。但し、この時は室内または室外のファン回転数が上昇するため、運転騒音が増加することになる。
【0032】
【発明の効果】
本発明の請求項1に係る空気調和装置は、圧縮機の回転速度を制御可能なインバータ駆動の圧縮機、四方弁、凝縮側熱交換器、減圧装置、蒸発側熱交換器を接続して構成され、凝縮温度が50℃における飽和圧力が2500kPa以上となる飽和温度を有した冷媒を使用し、四方弁の切換えにより冷房サイクル及び暖房サイクル運転が可能な、直吹き壁掛け形の形態で、1台の室外機に1台の室内機を設ける空気調和装置において、圧縮機の圧縮仕事が暖房運転時と冷房運転時ともほぼ同じとなるように暖房定格能力が冷房定格能力より大きく1.3倍以下に設定したので、冷房及び暖房定格能力運転時に加わる圧縮機の負荷トルク及び圧縮仕事がほぼ同一となり、圧縮機の小型化及び軽量化が図れる効果を奏する。
本発明の請求項2に係る空気調和装置は、冷房定格能力は、室内乾球温度27℃、室内湿球温度19℃、室外乾球温度35℃、室外湿球温度24℃の空気条件で、また暖房定格能力は、室内乾球温度20℃、室外乾球温度7℃、室外湿球温度6℃の空気条件でそれぞれ連続運転を保証するので、快適な空調が保たれる効果を奏する。
【0033】
本発明の請求項3に係る空気調和装置は、冷房定格能力が5.0kW以下に設定したので、暖房定格能力値を従来より低めに設定して、空気調和装置の起動時における消費電力量を低く運転することができると共に、省エネ化及び電力ピークを低く運転できるので、家庭内での電流容量オーバーによるブレーカー飛びを防止できる効果を奏する。
【0034】
本発明の請求項4に係る空気調和装置は、圧縮機の回転速度を制御可能なインバータ駆動の圧縮機、四方弁、凝縮側熱交換器、減圧装置、蒸発側熱交換器を接続して構成され、凝縮温度が50℃における飽和圧力が2500kPa以上となる飽和温度を有した冷媒を使用し、四方弁の切換えにより冷房サイクル及び暖房サイクル運転が可能な空気調和装置において、暖房定格能力が冷房定格能力の1.0倍以上、1.3倍以下に設定され、少なくとも、圧縮機の最大回転数または最大運転電流のどちらか一方を、所定時間増加可能としたので、冷房及び暖房定格能力運転時に加わる圧縮機の負荷トルク及び圧縮仕事がほぼ同一となり、圧縮機の小型化及び軽量化が図れるとともに、急激な空調負荷増加時にも快適性が保たれる効果を奏する。
本発明の請求項5に係る空気調和装置は、外部操作により、圧縮機の最大回転数または最大運転電流を所定時間増加可能としたので、空気調和装置の使用者が一時的に能力を高めたいときに設定でき快適性の向上が図れる効果を奏する。
【0035】
本発明の請求項6に係る空気調和装置は、室内温度と設定温度との差を算出する演算手段、または外気温度を検出する外気温度検出手段を備え、演算手段からの信号が所定値を越えた場合、または外気温度検出手段からの信号が所定値以下となった場合のいずれかにより、圧縮機の最大回転数または最大運転電流を所定時間増加可能としたので、急激な空調負荷増加時にも快適性が保たれる効果を奏する。
【0036】
本発明の請求項7に係る空気調和装置は、圧縮機の容器温度を検出する容器温度検知手段を設け、容器温度検知手段による検出信号に応じて少なくとも圧縮機の最大回転数の増加または最大運転電流の増加のどちらか一方を可能としたので、自動的に空調負荷変化に対応できる効果を奏する。
【0037】
本発明の請求項8に係る空気調和装置は、圧縮機の運転電流を検出する運転電流検出手段を設け、運転電流検出手段による検出信号に応じて少なくとも圧縮機の最大運転電流の増加または圧縮機の最大回転数の増加のどちらか一方を可能としたので、自動的に空調負荷変化に対応できる効果を奏する。
【0038】
本発明の請求項9に係る空気調和装置は、外部操作により、少なくとも室内ファン回転数または室外ファン回転数のどちらか一方を増加させたので、長時間暖房能力を高める運転が可能となり、さらに快適性の向上が図れる効果を奏する。
【図面の簡単な説明】
【図1】 本発明の実施形態1に係わる空気調和装置の冷媒回路図と制御回路図である。
【図2】 本発明の実施形態1に係わる空気調和装置の冷房運転時の冷媒回路図である。
【図3】 本発明の実施形態1に係わる空気調和装置の暖房運転時の冷媒回路図である。
【図4】 本発明の実施形態1に係わる空気調和装置の圧縮機の圧縮仕事を示す特性図である。
【図5】 本発明の実施形態1に係わる空気調和装置の圧縮機の負荷トルクを示す特性図である。
【図6】 本発明の実施形態1に係わる住宅の空調負荷の説明図である。
【図7】 本発明の実施形態1に係わる空気調和装置の能力と消費電力量の関係図である。
【図8】 本発明の実施形態1に係わる空気調和装置の暖房定格能力値を示す説明図である。
【図9】 本発明の実施形態2に係わる空気調和装置のワイヤレスリモコンの構成図である。
【図10】 従来の空気調和装置の暖房定格能力値の説明図である。
【図11】 従来の空気調和装置のモリエル線図である。
【符号の説明】
1 電動圧縮機、2 吐出配管、3 吸入配管、4 アキュームレータ、5 四方弁、6 室内側熱交換器、7a 減圧装置(毛細管)、7b 減圧装置(電子制御式膨張弁)、7c 減圧装置(毛細管)、8 室外熱交換器、9 室内ファン、10 室外ファン、11a 室内外接続配管(液管)、11b 室内外接続配管(ガス管)、12 室内マイコン制御部,13 室内ファン駆動装置、14 室外マイコン制御部、15 圧縮機駆動装置、16 室外ファン駆動装置、17 圧縮機温度サーミスタ、18 室温検知サーミスタ、19 霜取検知サーミスタ、20 室内管温サーミスタ、21 外気温サーミスタ、31 ワイヤレスリモコン本体、32 送信部、33 表示部、34 操作スイッチ、35 暖房パワー調整ボタン。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a capability value in rated operation of cooling and heating of an air conditioner.
[0002]
[Prior art]
In the domestic air conditioner (room air conditioner) market, a direct blow type (non-duct connection type) with a rated cooling capacity of 5.0 kW or less is a wall-mounted type, and one indoor unit is installed in one outdoor unit. The air conditioner of the system to be installed (those that are not multi systems) is the mainstream, accounting for over 90% of the market. Further, more than 80% of home air conditioners are used for both cooling and heating, and the mainstream is inverter-driven air conditioners that can change the rotation speed of the compressor in the refrigeration cycle.
[0003]
Global warming suppression As an environmental issue, as room air conditioners have become more energy efficient, in recent years, room air conditioners have become larger in size, such as heat exchangers, and air conditioners have become larger and heavier.
Further, in the Home Appliance Recycling Law enforced in 2001, room air conditioners for home use are subject items, and promotion of recycling is a major issue for manufacturers. In other words, it is necessary to reduce the size and weight of room air conditioners for the purpose of collecting waste and promoting recycling. However, the increase in size and weight of air conditioners through the promotion of energy conservation has been a hindrance. Therefore, the downsizing of the compressor, which accounts for the total weight of the room air conditioner, is becoming a social initiative.
In addition, the air conditioner of the type in which one indoor unit is provided for one outdoor unit in the form of a direct blow type and wall mounted, which is the mainstream in the market, is one of the air conditioners that are subject to the Home Appliance Recycling Law. In addition to the mainstream form, the energy conservation law regulation value is also set to an extremely high regulation value compared to other form categories. Furthermore, the said form has set the heating rated capacity which tends to be insufficient in capacity so that it can respond also to the house of various heat insulation structures compared with the cooling rated capacity until now.
[0004]
Up to now, the current room air conditioner has the ratio between the rated heating capacity and the rated cooling capacity (heating rated capacity / cooling rated capacity) in the rated cooling capacity and the rated heating capacity that allow the equipment to operate continuously under the air conditions defined in JISC9612. The values shown in FIG. 10 are set to 1.35 to 1.64. At this time, when comparing the compression work and the compression load torque related to the reliability of the bearings of the compressor during cooling and heating rated capacity operation, the heating operation is higher, and the reliability of the compressor can withstand the heating operation It was necessary to provide.
[0005]
The compression work and compression load torque of the compressor are important items in designing the reliability of the compressor.
The compression work W performed by the compressor is
W = Ps * Vp * N / (N-1) * {(Pd / Ps) ^ ((N-1) / N) -1}
Where Ps: compressor suction pressure (low pressure),
Pd: compressor discharge pressure (high pressure),
Vp: displacement,
N: Shown in specific heat ratio.
The torque T applied during compression is
T = W / rpm
Here, rpm is indicated by the number of rotations of the compressor.
Among these, the Pd (high pressure) pressure has a high influence on the compression work and load torque, and the reliability of the compressor cannot be increased unless the operating frequency of the compressor is lowered, that is, the capacity is not lowered.
[0006]
FIG. 11 is a Mollier diagram in room air conditioner operation, in which the vertical axis represents pressure and the horizontal axis represents enthalpy. The solid line shows the case of driving with high capacity, and the dotted line shows the case of driving with low capacity. When the operation is performed with high capacity, the high pressure (Pd) is increased.
As shown in FIG. 10, the conventional room air conditioner has a higher capacity in the heating operation than in the cooling operation. Therefore, the conventional room air conditioner is calculated based on the compression work W expression and the load torque T expression. It can be seen that the compression work and the load torque during the operation are higher than those during the cooling operation (described again in FIGS. 4 and 5 described later). That is, it is necessary to provide a compressor such as a compressor and a bearing that can withstand the heating capacity, and the compressor cannot be miniaturized.
[0007]
Further, as countermeasures for ozone layer destruction suppression, which is an environmental problem, R410A, which is an HFC refrigerant not containing chlorine, is being replaced as an alternative to R22, which is an HCFC refrigerant containing chlorine, which has been used so far. However, this alternative refrigerant is a high-pressure refrigerant, and has a feature that the pressure rises about 1.6 times that of the R22 refrigerant used so far. For this reason, the gas refrigerant sucked into the compressor is increased in density to increase the axial load and the like, and it is necessary to further improve the reliability of the compressor, and there is a problem that the compressor cannot be reduced in size.
[0008]
[Problems to be solved by the invention]
In recent years, room air conditioners have become larger and heavier due to the suppression of global warming and the destruction of the ozone layer, which contradicts this and hinders the promotion of recycling.
For this reason, the miniaturization of compressors and the promotion of energy saving are social efforts.
However, the use of high-pressure refrigerant as an alternative refrigerant in recent years has increased the axial load of the compressor, and it is necessary to improve the reliability of the compressor. However, the reliability of the compressor is stricter and there is a problem that it is difficult to reduce the size of the compressor.
[0009]
The present invention has been made to solve the above-described problems, and by reducing the size of an air conditioner capable of cooling and heating, it is possible to reduce raw materials, transport products, store, install, discard, and save energy when using an air conditioner. The purpose is to improve the life cycle assessment leading to.
[0010]
[Means for Solving the Problems]
An air conditioner according to claim 1 of the present invention is configured by connecting an inverter-driven compressor, a four-way valve, a condensing side heat exchanger, a decompression device, and an evaporation side heat exchanger that can control the rotational speed of the compressor. One unit is used in the form of a direct-blowing wall type that uses a refrigerant having a saturation temperature at a condensation temperature of 50 ° C. and a saturation pressure of 2500 kPa or more and can be operated in a cooling cycle and a heating cycle by switching a four-way valve. In the air conditioner with one indoor unit in the outdoor unit, the heating rated capacity is larger than the cooling rated capacity and 1.3 times or less so that the compression work of the compressor is almost the same during heating operation and cooling operation Is set.
In the air conditioner according to claim 2 of the present invention, the rated cooling capacity is an air condition of an indoor dry bulb temperature of 27 ° C., an indoor wet bulb temperature of 19 ° C., an outdoor dry bulb temperature of 35 ° C., and an outdoor wet bulb temperature of 24 ° C. The rated heating capacity guarantees continuous operation under air conditions of an indoor dry bulb temperature of 20 ° C, an outdoor dry bulb temperature of 7 ° C, and an outdoor wet bulb temperature of 6 ° C.
[0011]
In the air conditioner according to claim 3 of the present invention, the cooling rated capacity is set to 5.0 kW or less.
[0012]
An air conditioner according to a fourth aspect of the present invention is configured by connecting an inverter-driven compressor, a four-way valve, a condensing side heat exchanger, a pressure reducing device, and an evaporation side heat exchanger that can control the rotational speed of the compressor. In the air conditioner that uses a refrigerant having a saturation temperature at a condensation temperature of 50 ° C. and a saturation pressure of 2500 kPa or more, and can perform a cooling cycle and a heating cycle operation by switching a four-way valve, the heating rated capacity is the cooling rating. It is set to 1.0 times or more and 1.3 times or less of the capacity, and at least one of the maximum rotation speed and the maximum operating current of the compressor can be increased for a predetermined time.
The air conditioner according to claim 5 of the present invention is capable of increasing the maximum rotational speed or the maximum operating current of the compressor for a predetermined time by an external operation.
[0013]
An air conditioner according to a sixth aspect of the present invention includes a calculation means for calculating the difference between the room temperature and the set temperature, or an outside air temperature detection means for detecting the outside air temperature, and the signal from the calculation means exceeds a predetermined value. The maximum rotational speed or the maximum operating current of the compressor can be increased for a predetermined time by either the case where the signal is detected or the signal from the outside air temperature detection means becomes a predetermined value or less.
[0014]
The air conditioner according to claim 7 of the present invention is provided with a container temperature detecting means for detecting the container temperature of the compressor, and at least an increase in the maximum rotational speed of the compressor or a maximum operation according to a detection signal from the container temperature detecting means. Either increase in current is possible.
[0015]
The air conditioner according to claim 8 of the present invention is provided with an operating current detection means for detecting the operating current of the compressor, and at least the increase in the maximum operating current of the compressor or the compressor according to the detection signal from the operating current detection means. Either one of the maximum rotation speeds can be increased.
[0016]
The air conditioner according to claim 9 of the present invention is such that at least one of the indoor fan rotation speed and the outdoor fan rotation speed is increased by an external operation.
[0017]
DETAILED DESCRIPTION OF THE INVENTION
Embodiment 1 FIG.
Hereinafter, Embodiment 1 of the present invention will be described with reference to FIGS. FIG. 1 is a refrigerant circuit diagram and a control circuit diagram showing an air conditioner according to the present invention, FIG. 2 is a refrigerant circuit diagram showing a refrigerant flow direction during cooling operation, and FIG. 3 is a refrigerant flow direction during heating operation. FIG. 4 is a characteristic diagram showing the compression work of the compressor of the air conditioner, FIG. 5 is a characteristic diagram showing the load torque of the compressor of the air conditioner, and FIG. 6 is an explanatory diagram of the air conditioning load of the house. 7 is a diagram showing the relationship between the capacity of the air conditioner and the amount of power consumption, and FIG. 8 is an explanatory diagram showing the heating rated capacity value of the air conditioner.
[0018]
In FIG. 1, an electric compressor 1, a refrigerant flow switching valve 5 (hereinafter referred to as a four-way valve), an outdoor heat exchanger 8, a pressure reducer 7, and an indoor heat exchanger 6 are provided, and a refrigerant compression cycle is provided. The air conditioner provided with the fans 9 and 10 in the outdoor heat exchanger 8 and the indoor heat exchanger 6 is an inverter control system that controls the frequency and voltage of the power supply to the electric compressor 1. This is because the indoor-side microcomputer controller 12 detects the building air conditioning load by calculating the difference between the room temperature and the set temperature from the room temperature 18 and the room temperature set value, and the operating rotational speed of the outdoor compressor is determined according to the load. Calculate and send information to the outdoor microcomputer control unit 14. The outdoor microcomputer control unit 14 is a refrigeration cycle apparatus that automatically controls the rotational speed of the compressor based on information from the indoor microcomputer control unit 12.
[0019]
Further, the outdoor microcomputer control unit 14 receives a cooling operation or heating operation command from the indoor microcomputer control unit 12, and during the cooling operation, the outdoor heat exchanger 8 is used as a condenser as shown in FIG. The four-way valve 5 that controls the flow of the refrigerant is controlled so that 6 is used as an evaporator. On the other hand, during the heating operation, the four-way valve 5 is controlled so that the refrigerant flows through the indoor heat exchanger 6 as a condenser and the outdoor heat exchanger 8 as an evaporator as shown in FIG.
[0020]
Further, R410A, which is an HFC refrigerant, is used as the refrigerant, and is a high-pressure refrigerant as compared with the conventional R22, so that the gas density of the low-pressure gas refrigerant sucked into the compressor is increased.
[0021]
This air conditioner is continuously operated under the air conditions defined in JISC9612, which are an indoor dry bulb temperature of 27 ° C., an indoor wet bulb temperature of 19 ° C., an outdoor dry bulb temperature of 35 ° C., and an outdoor wet bulb temperature of 24 ° C. The rated cooling capacity that guarantees 2.8 kW, for example, is the rated heating capacity that guarantees continuous operation under air temperature conditions of 20 ° C, 20 ° C, and 7 ° C. For example, it is set to 3.2 kW.
[0022]
4 and 5 show the relationship between the compression work W of the compressor and the compression load torque T when the cooling and heating rated capacities are operated.
As shown in this figure, the compression load torque and compression work applied to the compressor during the cooling rated operation are substantially the same as the compression load torque and compression work applied during the heating operation.
That is, since the load and work applied to the compressor related to the reliability of the compressor are almost the same during the cooling operation and the heating operation, a mechanism that can withstand the heating operation with a high load applied to the compressor as in the prior art. There is no need for special setting, the bearing mechanism of the compressor can be simplified, and the compressor can be miniaturized.
[0023]
According to the present invention, since the capacity is set about 20% lower than the conventional heating rated capacity value, the heating capacity is reduced accordingly.
FIG. 6 shows the relationship between the cooling building load and the heating building load in the conventional residential building structure and the recent building load. As is clear from this figure, recent buildings have increased heat insulation from the outside air, and the building load of heating has been significantly reduced. The building load during cooling is also reduced, but during cooling operation it is greatly influenced by the latent heat load in addition to the sensible heat load, so the contribution is smaller than the heating. Therefore, if it is about the rate of decrease in the rated heating capacity shown in the present invention, it is unlikely that the actual capacity will be insufficient.
[0024]
Further, FIG. 7 shows the relationship between heating capacity and power consumption.
The power consumption in the heating rated capacity can be reduced by about 20% or more than the power consumption in the conventional heating rated capacity. By refraining from driving at high capacity with low driving efficiency in this way, energy saving can be achieved, and the peak of the driving current can be suppressed, and there is an effect of suppressing breaker jumping in the home.
As mentioned above, although the air conditioning apparatus with a cooling rated capacity of 2.8 kW has been described as an example, the same effect can be obtained in other capacity bands, and FIG. 8 shows examples of heating rated capacity values in other cooling rated capacity bands. Show.
[0025]
Embodiment 2. FIG.
FIG. 9 shows a second embodiment of the present invention and is an explanatory diagram of a wireless remote controller as an external operation unit. In the figure, 31 is a wireless remote control main body, 32 is a transmission unit that transmits an operation command signal to the air conditioner main body, 33 is a display unit that displays an operation state with liquid crystal, and 35 is a “heating power adjustment” in the operation switch 34. Button. Since the air conditioner main body is the same as that of the first embodiment, the description thereof is omitted.
[0026]
Next, the operation will be described. The “heating power adjustment” button 35 can be used to switch between “standard” operation and “strong” operation. In normal operation, “standard” is selected, but when using the heating operation, the room window is opened to temporarily When you want to temporarily increase the heating capacity, such as when the building air-conditioning load increases or when the operation of a house with extremely low heat insulation of the building structure is started, operate the "Heating power adjustment" button 35 to set to "Strong" operation To do.
[0027]
When this operation is performed, an operation is performed in which the heating capacity is increased only for a limited time, compared to when the system is used in the “standard” operation. That is, the maximum operating current capable of operating at the maximum capacity is improved, and the operating frequency of the compressor is set higher. Therefore, a higher heating capacity can be exhibited and the comfort can be improved. Although the load torque and compression work applied to the compressor at this time are higher than the “standard” setting, the operation is performed only within a limited time, and thus the reliability of the compressor is not impaired.
[0028]
In addition, in the above description, the operation can be switched by operating the “heating power adjustment” button. However, when the difference between the set temperature and the room temperature is more than a predetermined value, the compression when set to “standard” within a limited time is possible. The same effect can be obtained by changing the maximum rotation speed or maximum current value of the machine to allow the operation to increase the heating capacity.
[0029]
Or, when it is determined that the outside air is low and the capacity is to be increased according to the detection signal from the outside air temperature detection device, the maximum rotation speed or maximum operation of the compressor when set to “Standard” within a limited time. The operation may be changed to be higher than the current, and the operation for increasing the heating operation may be permitted, and the same effect can be obtained.
[0030]
In addition, when the compressor temperature is low or the operating current is low, depending on the detection signal from the compressor container temperature or operating current, and it is determined that there is no problem even if the heating capacity is increased. In addition, an operation that increases the heating capacity may be permitted as compared with the case of setting to “standard” within a limited time, and the same effect can be obtained.
[0031]
The above describes the operation that allows the heating capacity to be demonstrated only for a limited time when set to “strong” operation with the “heating power adjustment” button, but the maximum current when set to “strong” operation. To increase the operating frequency of the compressor, set the rotational speed of the indoor fan higher, reduce the condensation pressure to reduce the load torque and compression work applied to the compressor, and The fan speed is also set higher than “Standard”, and the evaporation pressure is increased to reduce the operating frequency of the compressor, thereby reducing the load torque and compression work applied to the compressor and increasing the heating capacity for a long time. Driving may be enabled. However, at this time, the fan rotation speed increases indoors or outdoors, so that the operating noise increases.
[0032]
【The invention's effect】
An air conditioner according to claim 1 of the present invention is configured by connecting an inverter-driven compressor, a four-way valve, a condensing side heat exchanger, a decompression device, and an evaporation side heat exchanger that can control the rotational speed of the compressor. One unit is used in the form of a direct-blowing wall type that uses a refrigerant having a saturation temperature at a condensation temperature of 50 ° C. and a saturation pressure of 2500 kPa or more and can be operated in a cooling cycle and a heating cycle by switching a four-way valve. In the air conditioner with one indoor unit in the outdoor unit, the heating rated capacity is larger than the cooling rated capacity and 1.3 times or less so that the compression work of the compressor is almost the same during heating operation and cooling operation Therefore, the load torque and compression work of the compressor applied during the cooling and heating rated capacity operation are almost the same, and the compressor can be reduced in size and weight.
In the air conditioner according to claim 2 of the present invention, the rated cooling capacity is an air condition of an indoor dry bulb temperature of 27 ° C., an indoor wet bulb temperature of 19 ° C., an outdoor dry bulb temperature of 35 ° C., and an outdoor wet bulb temperature of 24 ° C. Moreover, since the heating rated capacity guarantees continuous operation under air conditions of an indoor dry bulb temperature of 20 ° C., an outdoor dry bulb temperature of 7 ° C., and an outdoor wet bulb temperature of 6 ° C., it has an effect of maintaining comfortable air conditioning.
[0033]
Since the air conditioning apparatus according to claim 3 of the present invention has the cooling rated capacity set to 5.0 kW or less, the heating rated capacity value is set lower than the conventional one, and the power consumption at the time of starting the air conditioning apparatus is reduced. Since it can be driven low, energy saving and low power peak operation can be achieved, so that it is possible to prevent breaker jumps due to overcurrent capacity in the home.
[0034]
An air conditioner according to a fourth aspect of the present invention is configured by connecting an inverter-driven compressor, a four-way valve, a condensing side heat exchanger, a pressure reducing device, and an evaporation side heat exchanger that can control the rotational speed of the compressor. In the air conditioner that uses a refrigerant having a saturation temperature at a condensation temperature of 50 ° C. and a saturation pressure of 2500 kPa or more, and can perform a cooling cycle and a heating cycle operation by switching a four-way valve, the heating rated capacity is the cooling rating. It is set to 1.0 times or more and 1.3 times or less of the capacity, and at least one of the maximum rotation speed and the maximum operation current of the compressor can be increased for a predetermined time. The applied load torque and compression work of the compressor to be applied are substantially the same, so that the compressor can be reduced in size and weight, and the comfort can be maintained even when the air conditioning load is suddenly increased.
In the air conditioner according to claim 5 of the present invention, the maximum rotational speed or the maximum operating current of the compressor can be increased for a predetermined time by an external operation, so the user of the air conditioner wants to temporarily increase the capability. It can be set occasionally and has the effect of improving comfort.
[0035]
An air conditioner according to a sixth aspect of the present invention includes a calculation means for calculating the difference between the room temperature and the set temperature, or an outside air temperature detection means for detecting the outside air temperature, and the signal from the calculation means exceeds a predetermined value. The maximum rotation speed or maximum operating current of the compressor can be increased for a predetermined period of time, either when the signal from the outside air temperature detection means falls below a predetermined value. It has the effect of maintaining comfort.
[0036]
The air conditioner according to claim 7 of the present invention is provided with a container temperature detecting means for detecting the container temperature of the compressor, and at least an increase in the maximum rotational speed of the compressor or a maximum operation according to a detection signal from the container temperature detecting means. Since either one of the current increases is possible, there is an effect that can automatically cope with a change in the air conditioning load.
[0037]
The air conditioner according to claim 8 of the present invention is provided with an operating current detection means for detecting the operating current of the compressor, and at least the increase in the maximum operating current of the compressor or the compressor according to the detection signal from the operating current detection means. Since either one of the maximum rotation speeds can be increased, it is possible to automatically cope with changes in the air conditioning load.
[0038]
In the air conditioner according to claim 9 of the present invention, at least one of the indoor fan rotation speed and the outdoor fan rotation speed is increased by an external operation, so that it is possible to perform an operation for increasing the heating capacity for a long time, and more comfortably. The effect which can aim at the improvement of property is produced.
[Brief description of the drawings]
FIG. 1 is a refrigerant circuit diagram and a control circuit diagram of an air-conditioning apparatus according to Embodiment 1 of the present invention.
FIG. 2 is a refrigerant circuit diagram during cooling operation of the air-conditioning apparatus according to Embodiment 1 of the present invention.
FIG. 3 is a refrigerant circuit diagram during heating operation of the air-conditioning apparatus according to Embodiment 1 of the present invention.
FIG. 4 is a characteristic diagram showing compression work of the compressor of the air-conditioning apparatus according to Embodiment 1 of the present invention.
FIG. 5 is a characteristic diagram showing load torque of the compressor of the air-conditioning apparatus according to Embodiment 1 of the present invention.
FIG. 6 is an explanatory diagram of the air conditioning load of the house according to the first embodiment of the present invention.
FIG. 7 is a relationship diagram between the capacity of the air-conditioning apparatus according to Embodiment 1 of the present invention and power consumption.
FIG. 8 is an explanatory diagram showing a heating rated capacity value of the air-conditioning apparatus according to Embodiment 1 of the present invention.
FIG. 9 is a configuration diagram of a wireless remote controller of an air-conditioning apparatus according to Embodiment 2 of the present invention.
FIG. 10 is an explanatory diagram of a heating rated capacity value of a conventional air conditioner.
FIG. 11 is a Mollier diagram of a conventional air conditioner.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Electric compressor, 2 discharge piping, 3 suction | inhalation piping, 4 accumulator, 5 way valve, 6 indoor side heat exchanger, 7a decompression device (capillary tube), 7b decompression device (electronic control type expansion valve), 7c decompression device (capillary tube) ), 8 outdoor heat exchanger, 9 indoor fan, 10 outdoor fan, 11a indoor / outdoor connection pipe (liquid pipe), 11b indoor / outdoor connection pipe (gas pipe), 12 indoor microcomputer control unit, 13 indoor fan drive device, 14 outdoor Microcomputer control unit, 15 compressor drive device, 16 outdoor fan drive device, 17 compressor temperature thermistor, 18 room temperature detection thermistor, 19 defrost detection thermistor, 20 indoor tube temperature thermistor, 21 outdoor temperature thermistor, 31 wireless remote control body, 32 Transmitter, 33 Display, 34 Operation switch, 35 Heating power adjustment button.

Claims (9)

圧縮機の回転速度を制御可能なインバータ駆動の圧縮機、四方弁、凝縮側熱交換器、減圧装置、蒸発側熱交換器を接続して構成され、凝縮温度が50℃における飽和圧力が2500kPa以上となる飽和温度を有した冷媒を使用し、前記四方弁の切換えにより冷房サイクル及び暖房サイクル運転が可能な、直吹き壁掛け形の形態で、1台の室外機に1台の室内機を設ける空気調和装置において、前記圧縮機の圧縮仕事が暖房運転時と冷房運転時ともほぼ同じとなるように暖房定格能力が冷房定格能力より大きく1.3倍以下に設定したことを特徴とする空気調和装置。Composed of an inverter-driven compressor that can control the rotation speed of the compressor, a four-way valve, a condensation side heat exchanger, a pressure reducing device, and an evaporation side heat exchanger, and a saturation pressure at a condensation temperature of 50 ° C. is 2500 kPa or more. Air that provides one indoor unit in one outdoor unit in the form of a direct-blow wall-mounted type that uses a refrigerant having a saturation temperature to be able to perform a cooling cycle and a heating cycle operation by switching the four-way valve. in conditioner, air conditioner, characterized in that warm Boteikaku ability to compression work becomes about the same as when during the cooling operation heating operation of the compressor is set below 1.3 times greater than the cooling rated capacity apparatus. 冷房定格能力は、室内乾球温度27℃、室内湿球温度19℃、室外乾球温度35℃、室外湿球温度24℃の空気条件で、また暖房定格能力は、室内乾球温度20℃、室外乾球温度7℃、室外湿球温度6℃の空気条件でそれぞれ連続運転を保証することを特徴とする請求項1に記載の空気調和装置。The rated cooling capacity is an indoor dry bulb temperature of 27 ° C., an indoor wet bulb temperature of 19 ° C., an outdoor dry bulb temperature of 35 ° C., and an outdoor wet bulb temperature of 24 ° C., and the heating rated capacity is an indoor dry bulb temperature of 20 ° C. The air conditioner according to claim 1, wherein continuous operation is guaranteed under air conditions of an outdoor dry bulb temperature of 7 ° C and an outdoor wet bulb temperature of 6 ° C. 冷房定格能力が5.0kW以下に設定したことを特徴とする請求項1または請求項2に記載の空気調和装置。The air conditioning apparatus according to claim 1 or 2 , wherein the cooling rated capacity is set to 5.0 kW or less. 圧縮機の回転速度を制御可能なインバータ駆動の圧縮機、四方弁、凝縮側熱交換器、減圧装置、蒸発側熱交換器を接続して構成され、凝縮温度が50℃における飽和圧力が2500kPa以上となる飽和温度を有した冷媒を使用し、前記四方弁の切換えにより冷房サイクル及び暖房サイクル運転が可能な空気調和装置において、暖房定格能力が冷房定格能力の1.0倍以上、1.3倍以下に設定され、少なくとも、圧縮機の最大回転数または最大運転電流のどちらか一方を、所定時間増加可能としたことを特徴とする空気調和装置。 Composed of an inverter-driven compressor that can control the rotation speed of the compressor, a four-way valve, a condensation side heat exchanger, a pressure reducing device, and an evaporation side heat exchanger, and a saturation pressure at a condensation temperature of 50 ° C. is 2500 kPa or more. In the air conditioner capable of operating the cooling cycle and the heating cycle by switching the four-way valve, the heating rated capacity is 1.0 times or more and 1.3 times the cooling rated capacity. An air conditioner set as described below, wherein at least one of the maximum rotation speed and the maximum operating current of the compressor can be increased for a predetermined time. 外部操作により、圧縮機の最大回転数または最大運転電流を所定時間増加可能としたことを特徴とする請求項4記載の空気調和機。The air conditioner according to claim 4, wherein the maximum rotation speed or the maximum operating current of the compressor can be increased for a predetermined time by an external operation. 室内温度と設定温度との差を算出する演算手段、または外気温度を検出する外気温度検出手段を備え、前記演算手段からの信号が所定値を越えた場合、または前記外気温度検出手段からの信号が所定値以下となった場合のいずれかにより、圧縮機の最大回転数または最大運転電流を所定時間増加可能としたことを特徴とする請求項記載の空気調和装置。Computation means for calculating the difference between the room temperature and the set temperature, or outside air temperature detection means for detecting the outside air temperature. When the signal from the computation means exceeds a predetermined value, or the signal from the outside air temperature detection means There by either if equal to or less than a predetermined value, the air conditioning apparatus according to claim 4, wherein the maximum rotational speed or maximum operating current of the compressor is characterized in that to enable increased by a predetermined time. 圧縮機の容器温度を検出する容器温度検知手段を設け、前記容器温度検知手段による検出信号に応じて少なくとも圧縮機の最大回転数の増加または最大運転電流の増加のどちらか一方を可能としたことを特徴とする請求項記載の空気調和装置。A container temperature detecting means for detecting the container temperature of the compressor is provided, and at least one of an increase in the maximum rotation speed of the compressor or an increase in the maximum operating current is enabled according to a detection signal from the container temperature detecting means. The air conditioning apparatus according to claim 4 . 圧縮機の運転電流を検出する運転電流検出手段を設け、前記運転電流検出手段による検出信号に応じて少なくとも圧縮機の最大運転電流の増加または圧縮機の最大回転数の増加のどちらか一方を可能としたことを特徴とする請求項記載の空気調和装置。An operating current detecting means for detecting the operating current of the compressor is provided, and at least one of an increase in the maximum operating current of the compressor or an increase in the maximum rotational speed of the compressor is possible according to a detection signal from the operating current detecting means. The air conditioner according to claim 4, wherein 外部操作により、少なくとも室内ファン回転数または室外ファン回転数のどちらか一方を増加させたことを特徴とする請求項乃至請求項のいずれかに記載の空気調和装置。The air conditioner according to any one of claims 4 to 8 , wherein at least one of the indoor fan rotation speed and the outdoor fan rotation speed is increased by an external operation.
JP2000258967A 2000-08-29 2000-08-29 Air conditioner Expired - Lifetime JP3698036B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000258967A JP3698036B2 (en) 2000-08-29 2000-08-29 Air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000258967A JP3698036B2 (en) 2000-08-29 2000-08-29 Air conditioner

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2005155172A Division JP3838267B2 (en) 2005-05-27 2005-05-27 Air conditioner

Publications (2)

Publication Number Publication Date
JP2002071187A JP2002071187A (en) 2002-03-08
JP3698036B2 true JP3698036B2 (en) 2005-09-21

Family

ID=18747196

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000258967A Expired - Lifetime JP3698036B2 (en) 2000-08-29 2000-08-29 Air conditioner

Country Status (1)

Country Link
JP (1) JP3698036B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2416308T3 (en) * 2003-03-28 2013-07-31 Toshiba Carrier Corporation Air conditioner
EP3012546B1 (en) 2013-06-17 2021-06-16 Mitsubishi Electric Corporation Air conditioning system control device and air conditioning system control method
US10627145B2 (en) * 2016-07-07 2020-04-21 Rocky Research Vector drive for vapor compression systems
CN112728739B (en) * 2020-12-28 2022-07-26 博锐尚格科技股份有限公司 Method and device for determining set value of air supply temperature of air conditioning box based on algorithm prediction

Also Published As

Publication number Publication date
JP2002071187A (en) 2002-03-08

Similar Documents

Publication Publication Date Title
JP6328049B2 (en) Air conditioner
KR100208322B1 (en) Heat pump airconditioner for cold area
JP4497234B2 (en) Air conditioner
EP1605214A2 (en) Apparatus and method for controlling air-conditioner
JP6270996B2 (en) Air conditioner
EP1632737A2 (en) Air-conditioner and method for controlling driving thereof
WO2002039025A1 (en) Air conditioner
JPWO2010095238A1 (en) User side unit and air conditioner
JP3835453B2 (en) Air conditioner
KR20130012743A (en) Multi air conditioner and method for controlling the same
JP5618801B2 (en) Air conditioner
KR101151321B1 (en) Multi system air conditioner and control method thereof
JP5125695B2 (en) Air conditioning system
JP3698036B2 (en) Air conditioner
JP3838267B2 (en) Air conditioner
JP7316759B2 (en) Air conditioner and air conditioning system
JP2002147819A (en) Refrigeration unit
KR20040080860A (en) Device and method for controlling outdoor fan of air conditioner
JP3853550B2 (en) Air conditioner
JP2005016884A (en) Air conditioner
KR100667097B1 (en) Operation method for multi type air conditioner
JP7082306B1 (en) Air conditioner
JP7466786B2 (en) Air Conditioning Equipment
WO2022244806A1 (en) Refrigeration cycle device and refrigerant leakage determination system
WO2016002052A1 (en) Refrigerating and air-conditioning apparatus

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20040630

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050329

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050527

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050614

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050627

R151 Written notification of patent or utility model registration

Ref document number: 3698036

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090715

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100715

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100715

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110715

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110715

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120715

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120715

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130715

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term