JPH0336471A - Air conditioner - Google Patents

Air conditioner

Info

Publication number
JPH0336471A
JPH0336471A JP16836189A JP16836189A JPH0336471A JP H0336471 A JPH0336471 A JP H0336471A JP 16836189 A JP16836189 A JP 16836189A JP 16836189 A JP16836189 A JP 16836189A JP H0336471 A JPH0336471 A JP H0336471A
Authority
JP
Japan
Prior art keywords
electronic expansion
expansion valve
heat exchanger
degree
opening degree
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16836189A
Other languages
Japanese (ja)
Inventor
Toshihiko Enomoto
寿彦 榎本
Akio Fukushima
章雄 福嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP16836189A priority Critical patent/JPH0336471A/en
Publication of JPH0336471A publication Critical patent/JPH0336471A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/21Refrigerant outlet evaporator temperature

Landscapes

  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Abstract

PURPOSE:To properly control the opening of an electronic expansion valve by controlling the opening of said electronic expansion valve so that the dryness fraction of an indoor heat exchanger's outlet gas may be proper as a vaporizer during cooling operation and the subcooling of said indoor heat exchanger may be proper as a condenser during heating time. CONSTITUTION:The superheat SH at the outlet of a vaporizer 5 is calculated from the temperature data of temperature sensors 7 and 8 based on the equation SH = T8 - T7 during cooling operation. If SH >, the outlet of the vaporizer has superheat and indicates a dash of dryness. Therefore, it is possible to subtract a specified correction value a from the present opening of an electronic expansion valve 4 and determine a new opening. During heating the subcooling is calculated from temperature sensors 8 and 9 respectively. These calculated values are determined to see at which region they stay of these A, B, proper, C, and D. The specified correction values a and b are respectively added to the opening of the valve under the operation based on the result or correction values c and d are subtracted so that a new opening may be determined.

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は空気調和機、特に、その冷凍サイクルCおけ
る減圧装置である電子膨張弁の制御方式%式% (従来の技術) 第6図に、例えば特願昭60−263065号に開示さ
れた従来の空気調和機の冷媒回路図の一例を示す。
[Detailed Description of the Invention] (Industrial Application Field) This invention relates to an air conditioner, particularly a control method for an electronic expansion valve which is a pressure reducing device in its refrigeration cycle C. , for example, shows an example of a refrigerant circuit diagram of a conventional air conditioner disclosed in Japanese Patent Application No. 60-263065.

(構成〉 図において、lは圧縮機、3は室外熱交換器、4は絞り
機能を有する電子膨張弁、5は室内熱交換器、6は余剰
冷媒を貯留するためのアキュムレータであり、これらは
冷媒配管により順次連結され、冷凍サイクルを構成して
いる。15は、電子膨張弁4の前後から、室内熱交換器
5とアキュムレータ6とを連結する配管へと連通したバ
イパス配管であり、毛細管により構成されている。7は
前記バイパス配管15上に配設された温度検出器、8は
、前記室内熱交換器5とアキュムレータ6とを連結する
配管上に配設された温度検出器(センサ)である。10
は、各温度検出器7及び8からの温度データから温度差
を演算し、室内熱交換器出口ガスの過熱度を算出するた
めの手段、14は、この過熱度の値を判定するための手
段、11は、得られた過熱度より電子膨張弁4の開度を
決定するための手段、12は、電子膨張弁4の開度を駆
動することにより制御するための手段である。また、過
熱度算出手段10.過熱度判定手段14.弁開度決定手
段11及び弁開度制御手段12は、合体して電子膨張弁
制御装置13を構成している。
(Configuration) In the figure, l is a compressor, 3 is an outdoor heat exchanger, 4 is an electronic expansion valve with a throttling function, 5 is an indoor heat exchanger, and 6 is an accumulator for storing surplus refrigerant. They are sequentially connected by refrigerant pipes to form a refrigeration cycle. Reference numeral 15 denotes bypass pipes that communicate from the front and back of the electronic expansion valve 4 to the pipes connecting the indoor heat exchanger 5 and the accumulator 6. 7 is a temperature detector disposed on the bypass pipe 15, and 8 is a temperature detector (sensor) disposed on the pipe connecting the indoor heat exchanger 5 and the accumulator 6. It is.10
14 is a means for calculating the temperature difference from the temperature data from each temperature detector 7 and 8 and calculating the degree of superheating of the indoor heat exchanger outlet gas, and 14 is a means for determining the value of this degree of superheating. , 11 is a means for determining the opening degree of the electronic expansion valve 4 from the obtained superheat degree, and 12 is a means for controlling the opening degree of the electronic expansion valve 4 by driving. Also, superheat degree calculation means 10. Superheating degree determining means 14. The valve opening determining means 11 and the valve opening controlling means 12 are combined to form an electronic expansion valve control device 13.

(動作) 次に1以上の構成における冷房時の圧縮機の吸入ガスの
過熱度制御動作を、第4図に示すシーケンスフローチャ
ート及び第5図に示す過熱度のタイミングチャートに基
づいて説明する。第4図は、実行されるプログラムのシ
ーケンスフローチャートで、まずプログラムのスタート
にあたり、ステップ41において、電子膨張弁4の制御
時間間隔tを設定するタイマセットを行う。ステップ4
2でこのタイマのタイムカウントを行い、所定の設定時
間tが経過すると次のステップ43でタイムアツプを検
出し、さらに次のステップ44で、各温度センサ7.8
から入力される温度信号を読取り、それから室内熱交換
器5出ロガス、すなわち圧縮機l吸入ガスの過熱度を算
出する過熱度測定が行われる。
(Operation) Next, the superheat degree control operation of the suction gas of the compressor during cooling in one or more configurations will be explained based on the sequence flowchart shown in FIG. 4 and the superheat degree timing chart shown in FIG. 5. FIG. 4 is a sequence flowchart of the program to be executed. First, at the start of the program, in step 41, a timer is set to set the control time interval t of the electronic expansion valve 4. Step 4
2, this timer counts the time, and when a predetermined set time t has elapsed, a time-up is detected in the next step 43, and furthermore, in the next step 44, each temperature sensor 7.8
The degree of superheat measurement is performed by reading the temperature signal input from the indoor heat exchanger 5 and calculating the degree of superheat of the log gas output from the indoor heat exchanger 5, that is, the suction gas of the compressor 1.

次に、この測定された過熱度が、第5図におけるA、B
、適正、C,Dの何れの領域にあるかが、各ステップ4
5.46.47.48.49で判定され、その結果に基
づき、各ステップ50゜51.52,53.54で現在
出力中の弁開度S、−6に所定の各補正値a、bが加算
され、あるいは補正値c、dが減算されて新たな制御出
力弁開度Sjが決定される。電子膨張弁4と制御装置1
3の出力開度SJとの関係は、第3図に示すように直線
関係にある。また、適正領域にあれば5j−1がそのま
まSJとして決定され、次のステップ55に進む。
Next, this measured degree of superheat is determined by A and B in FIG.
, appropriate, C, or D is determined at each step 4.
5.46.47.48.49, and based on the results, predetermined correction values a, b are set for the valve opening S, -6 currently being output at each step 50°51.52, 53.54. is added or the correction values c and d are subtracted to determine a new control output valve opening degree Sj. Electronic expansion valve 4 and control device 1
3 has a linear relationship with the output opening degree SJ as shown in FIG. Further, if it is in the appropriate area, 5j-1 is directly determined as SJ, and the process proceeds to the next step 55.

ステップ55で、SJによって決定される電子膨張弁4
の開度を出力して、電子膨張弁制御装置13によって電
子W強弁4の弁開度の制御が行われ、プログラムの初期
に戻る。上記各補正値はa>b、d>cの関係にあり、
適正領域に近いほど、補正値を小さい植に設定する。
In step 55, electronic expansion valve 4 determined by SJ
The opening degree of the electronic expansion valve control device 13 controls the opening degree of the electronic W strong valve 4, and the program returns to the initial stage of the program. Each of the above correction values has a relationship of a>b, d>c,
The closer to the appropriate area, the smaller the correction value is set.

いま、例えば第5図に示す過熱度のタイミングチャート
において、時点1oにおいてA領域に過熱度があったと
すれば、所定の補正値aが加えられ電子膨張弁4の弁開
度が開く、、を予膨張$4の弁開度が大になると過熱度
は減少し、を時間後の1、において測定された過熱度が
D領域にきたとすると、電子膨張弁4の弁開度が開きす
ぎということで補正値dが減算されて電子膨張弁4の弁
開度が閉じる。この時の補正値a、dの大小関係はad
dということになる。さらに、時刻t2において過熱度
がB領域にあったとすれば、今度は補正値すが加算され
、電子膨張弁4の弁開度がI制御される。その補正値は
当然a>bとする。時刻t3において今度はC領域に過
熱度があったとすれば補正値Cが減算され、電子膨張弁
4の弁開度が!!1JIIlされる。ここでは当然d>
cとする。このようにして最終的に過熱度が適正領域に
入るよう電子膨張弁4の弁開度が制御されるよう構成さ
れていた。
For example, in the timing chart of the degree of superheat shown in FIG. 5, if there is a degree of superheat in region A at time 1o, a predetermined correction value a is added and the valve opening of the electronic expansion valve 4 is opened. As the valve opening degree of pre-expansion valve 4 becomes large, the degree of superheating decreases, and if the degree of superheating measured at 1 after time 1 reaches the D region, the valve opening degree of electronic expansion valve 4 is said to be too open. As a result, the correction value d is subtracted, and the valve opening of the electronic expansion valve 4 is closed. The magnitude relationship between the correction values a and d at this time is ad
This means d. Furthermore, if the degree of superheat is in region B at time t2, the correction value S is added this time, and the valve opening degree of the electronic expansion valve 4 is controlled by I. Naturally, the correction value is set to be a>b. At time t3, if there is superheat in region C, the correction value C is subtracted, and the valve opening of the electronic expansion valve 4 becomes ! ! 1 JIIl is done. Of course here d>
Let it be c. In this way, the valve opening degree of the electronic expansion valve 4 is controlled so that the degree of superheating finally falls within the appropriate range.

〔発明が解決しようとする課題〕 しかしながら、前記従来例の電子膨張弁4の制御は以上
の構成のように、圧縮機の吸入ガスの過熱度が所定の範
囲に収まるように制御していたため、空調機C充填され
た冷媒量が比較的多口であって、アキュムレータ6に余
剰冷媒が貯留されるような状態では、過熱度を付与し難
く、適正な過熱度を確保するために必要以上に弁開度を
絞りすぎ、運転が不具合になるという問題点があった。
[Problems to be Solved by the Invention] However, the electronic expansion valve 4 in the conventional example was controlled so that the degree of superheat of the intake gas of the compressor was within a predetermined range, as described above. In a state where the amount of refrigerant charged in the air conditioner C is relatively large and surplus refrigerant is stored in the accumulator 6, it is difficult to provide a degree of superheat, and the amount of refrigerant charged in the air conditioner C is more than necessary to ensure an appropriate degree of superheat. There was a problem in that the valve opening was too narrow, causing operational problems.

この発明は、以上のような従来例の問題点を解決するた
めになされたもので、余剰冷媒を生じて過熱度を付与し
難いような冷媒量の場合においても、電子膨張弁の適切
な絞り制御を行うことができる空気調和機を提供するこ
とを目的としている。
This invention was made in order to solve the problems of the conventional example as described above, and even when the amount of refrigerant is such that surplus refrigerant is generated and it is difficult to impart a degree of superheat, it is possible to properly throttle the electronic expansion valve. The purpose is to provide an air conditioner that can be controlled.

(LAWを解決するための手段) このため、この発明に係る空気調和機においては、絞り
機能として用いる電子膨張弁の開度を制御することによ
り、冷房運転時においては、蒸発器としての室内熱交換
器出口ガスの乾き度を、あるいはまた暖房運転時におい
ては凝縮器としての上記出口ガスのサブクール(過冷却
度〉を適正な値に制御するよう構成することにより、前
記目的を達成しようとするものである。
(Means for solving LAW) Therefore, in the air conditioner according to the present invention, by controlling the opening degree of the electronic expansion valve used as a throttling function, indoor heat as an evaporator is The above objective is achieved by controlling the dryness of the exchanger outlet gas or, during heating operation, the subcooling (supercooling degree) of the outlet gas as a condenser to an appropriate value. It is something.

〔作用〕[Effect]

以上のような構成のこの発明による空気調和機は、電子
膨張弁を絞りとして用いることにより、冷房運転時にお
いては、蒸発器としての室内熱交換器出口ガスの乾き度
を、例えばまず過熱度が丁度Oとなるように電子膨張弁
開度を調整した後、所定の開度だけ電子膨張弁を開くこ
とにより、はぼ一定の値となるよう制御して、余剰冷媒
を生ずるような運転においても絞り過ぎることなく安定
した制御が行われる。
The air conditioner according to the present invention configured as described above uses an electronic expansion valve as a throttle, so that during cooling operation, the dryness of the outlet gas of the indoor heat exchanger serving as an evaporator is controlled, for example, by first adjusting the degree of superheat. After adjusting the opening of the electronic expansion valve so that the opening is exactly O, the electronic expansion valve is opened by a predetermined opening to control the opening to a more or less constant value, even in operations that generate surplus refrigerant. Stable control is performed without over-throttling.

あるいはまた、暖房運転時においては、例えば凝縮器と
しての室内熱交換器出口ガスのサブクールを、予め設定
された適正サブクール領域を中心とした複数の領域の何
れにあるかを判定し、そのサブクールがその何れの領域
にあるかによって異なった所定の補正値を現在の弁開度
に加算あるいは減算するようにして弁開度を制御するこ
とにより、サブクールが適正な値で運転が行われる。
Alternatively, during heating operation, for example, it is determined in which of a plurality of regions centered around a preset appropriate subcooling region the subcooling of the indoor heat exchanger outlet gas as a condenser is located, and the subcooling is By controlling the valve opening degree by adding or subtracting a predetermined correction value that differs depending on which region it is in to the current valve opening degree, the subcooling is operated at an appropriate value.

〔実施例〕〔Example〕

以下に、この発明を実施例に基づいて説明する。第1図
に、この発明に係る空気調和機の冷媒回路の一実施例を
示し、前記従来例第6図におけると同一(相当)構成要
素は同一符号で表わす。
The present invention will be explained below based on examples. FIG. 1 shows an embodiment of the refrigerant circuit of an air conditioner according to the present invention, and the same (equivalent) components as in the conventional example shown in FIG. 6 are denoted by the same reference numerals.

(構成) 第1図において、1は圧縮機、2は冷暖房切換え用の四
方弁で、この冷房運転時には実線位置を、暖房運転時に
は点線位置をとるものとする。
(Structure) In FIG. 1, 1 is a compressor, 2 is a four-way valve for switching between air conditioning and heating, and the solid line position is taken during cooling operation, and the dotted line position is taken during heating operation.

3は室外熱交換器、4は、減圧用の絞り機能を有する電
子膨張弁、5は室内熱交換器、6はアキュムレータであ
り、これらは冷媒配管により順次連結され、冷凍サイク
ルを構成している。7.8゜9は各温度検出器(センサ
)であり、それぞれ室内熱交換器5と四方弁2とを連結
する配管上、室内熱交換器5の中央及び室内熱交換器5
と電子膨張fP4とを連結する配管上に配設されている
3 is an outdoor heat exchanger, 4 is an electronic expansion valve having a throttling function for pressure reduction, 5 is an indoor heat exchanger, and 6 is an accumulator, which are sequentially connected by refrigerant piping to form a refrigeration cycle. . 7.8° 9 is each temperature detector (sensor), which is located on the piping connecting the indoor heat exchanger 5 and the four-way valve 2, at the center of the indoor heat exchanger 5, and at the center of the indoor heat exchanger 5.
and the electronic expansion fP4 are arranged on a pipe that connects them.

10は、各温度検出器7゜8.9からの信号を入力デー
タとする温度差演算手段であり、各温度検出器7および
8の温度検出結果より冷房運転時の過熱度を、また各温
度検出器8および9の温度検出結果より暖房運転のサブ
クール(過冷却度)を演算する。11は、温度差演算手
段10により演算された過熱度またはサブクールのデー
タを基に、電子膨張弁4の弁開度を決定するための弁開
度決定手段である。12は、電子膨張弁4の開度を直接
駆動し制御するための弁開度制御手段である0以上の1
0.11.12は、合体して電子膨張弁制御装置13を
構成している。
Reference numeral 10 denotes a temperature difference calculation means which receives signals from each temperature sensor 7°8.9 as input data, and calculates the degree of superheating during cooling operation from the temperature detection results of each temperature sensor 7 and 8, and calculates each temperature. Based on the temperature detection results of the detectors 8 and 9, the subcool (supercooling degree) of the heating operation is calculated. Reference numeral 11 denotes a valve opening determining means for determining the valve opening of the electronic expansion valve 4 based on the superheat degree or subcooling data calculated by the temperature difference calculating means 10. 12 is a valve opening control means for directly driving and controlling the opening of the electronic expansion valve 4;
0.11.12 are combined to form the electronic expansion valve control device 13.

(動作) つぎに1以上の構成における動作を説明する。(motion) Next, operations in one or more configurations will be explained.

まず、第1図により、冷凍サイクルの動作を説明する。First, the operation of the refrigeration cycle will be explained with reference to FIG.

冷房運転においては、四方弁2は図の実線の位置にあり
、圧縮機1より吐出された高温高圧のガス冷媒は、凝縮
器として作用する室外熱交換@3で熱交換することによ
り凝縮し、高圧の液冷媒となり、電子膨張弁4で減圧さ
れ低圧の2相冷媒となる。さらに、室内熱交換器5は蒸
発器として作用し、ここで蒸発して過熱ガスまたは液冷
媒を少量含んだ2相冷媒となり、四方弁2を通りアキュ
ムレータ6に余剰液冷媒を貯え、圧縮機lへ吸入される
というサイクルを繰返す。
During cooling operation, the four-way valve 2 is located at the position indicated by the solid line in the figure, and the high-temperature, high-pressure gas refrigerant discharged from the compressor 1 is condensed by exchanging heat in the outdoor heat exchanger @3, which acts as a condenser. It becomes a high-pressure liquid refrigerant, and is depressurized by the electronic expansion valve 4 to become a low-pressure two-phase refrigerant. Furthermore, the indoor heat exchanger 5 acts as an evaporator, where it evaporates into a two-phase refrigerant containing a small amount of superheated gas or liquid refrigerant, passes through the four-way valve 2, stores the surplus liquid refrigerant in the accumulator 6, and then the compressor l The cycle of being inhaled into the body is repeated.

一方、暖房運転においては、四方弁2は図の破線の位置
にあり、室内熱交換I$5が凝縮器として室外熱交換I
3が蒸発器として作用することを除き、冷房運転と同様
のサイクルを繰返す。
On the other hand, in heating operation, the four-way valve 2 is located at the position indicated by the broken line in the figure, and the indoor heat exchanger I$5 is used as a condenser for the outdoor heat exchanger I$5.
The same cycle as in the cooling operation is repeated except that No. 3 acts as an evaporator.

冷房運転においては、各温度検出器7,8は、それぞれ
蒸発器比ロ温度T?、蒸発温度T6を検出しており、過
熱度は次式により算出される。
During cooling operation, each temperature detector 7, 8 detects the evaporator ratio temperature T? , the evaporation temperature T6 is detected, and the degree of superheating is calculated by the following equation.

過熱度冨TフーT6 f[房運転においては、各温度検出器8.9はそれぞれ
凝縮温度Ta 、a縮量出口温度T11を検出しており
、サブタールは次式により算出される。
In the cell operation, each temperature detector 8.9 detects the condensation temperature Ta and the condensation amount outlet temperature T11, and the subtar is calculated by the following formula.

サブクール冨Ta−”r。Subcool Tomi Ta-”r.

(1制御動作) 次に、上記冷房時の過熱度または暖房時のサブクールを
それぞれ制御する動作を、第2図及び前記第4図の各フ
ローチャートならびに第5図及び第7図の各制御タイミ
ングチャートに基づいて説明する。すなわち、第2図、
第5図により冷房時の動作を、また第4図、第7図によ
り暖房時の動作をそれぞれ説明する。ここに、電子膨張
弁4の関係とIIJ御装置出力開度S、との関係は、前
述第3図に示すような直線関係にあるものとする。
(1 Control Operation) Next, the operations for controlling the degree of superheating during cooling or the subcooling during heating are explained in the flowcharts shown in FIG. 2 and FIG. 4, and the control timing charts shown in FIGS. 5 and 7. The explanation will be based on. That is, Fig. 2,
The operation during cooling will be explained with reference to FIG. 5, and the operation during heating will be explained with reference to FIGS. 4 and 7. Here, it is assumed that the relationship between the electronic expansion valve 4 and the IIJ control device output opening degree S is a linear relationship as shown in FIG. 3 described above.

l)冷房運転時 第2図において、まず冷房運転のスタートにあたり、ス
テップ21において、電子膨張弁4の初期開度S0を設
定し、弁開度制御袋3113の開度出力5j−S、に設
定する。各ステップ22゜23.24においては、冷凍
サイクルが冷房運転の起動後の過渡的な状態が終了し、
はぼ安定な運転になるまでの時間をタイマlとしてセッ
トしくステップ22)、所定時間1.をカウントする。
l) During cooling operation In FIG. 2, at the start of cooling operation, in step 21, the initial opening degree S0 of the electronic expansion valve 4 is set, and the opening degree output 5j-S of the valve opening control bag 3113 is set. do. In each step 22, 23, and 24, the refrigeration cycle completes the transient state after starting the cooling operation, and
Step 22) Set the time until stable operation is achieved as a timer 1. count.

この間、電子膨張弁4の開度は5j=S、に保持される
0次に各ステップ25,26.27において、タイマ2
により電子膨張弁4の開度制御の時間間隔が所定時間t
2にてセットされカウントされる0次にステップ28で
は、温度センサ7.8の温度データTア、Taから蒸発
!15の出口の過熱度SHを 5H−Ta−Tt により算出する。SHは正または0の値となって測定さ
れ、負になることはない、ステップ29において、SH
>0ならば蒸発器出口は過熱度を有し、乾き気味である
ため、ステップ30に進み、現在の電子膨張弁開度S 
J−1から′s5図における所定の補正値aを減算し、
新たな開度SJを決定する。この時、ステップ31にて
フラグ1をセットする。この新しい開度SJは、ステッ
プ32にて電子膨張弁制御装置13により制御される。
During this time, the opening degree of the electronic expansion valve 4 is maintained at 5j=S. At each step 25, 26, and 27, the timer 2
As a result, the time interval of the opening degree control of the electronic expansion valve 4 becomes a predetermined time t.
In step 28, the temperature data Ta of the temperature sensor 7.8 is evaporated from Ta! The degree of superheating SH at the outlet of No. 15 is calculated by 5H-Ta-Tt. In step 29, SH is measured to be a positive or zero value and never negative.
If >0, the evaporator outlet has a degree of superheat and is a little dry, so the process proceeds to step 30 and the current electronic expansion valve opening degree S
Subtract the predetermined correction value a in the 's5 diagram from J-1,
Determine a new opening degree SJ. At this time, flag 1 is set in step 31. This new opening degree SJ is controlled by the electronic expansion valve control device 13 in step 32.

一方、ステップ29において、5H−0ならばステップ
33へ進み、ここでフラグ1がセット(F、−1)され
ていればステップ34へ進み、現在の関度S J−1に
所定の補正値すを加えた新たなステップ21 富Sj−
+ +bを設定する。さらにステップ35ではリセット
してF、−0とし、ステップ36ではフラグ2をセット
し、F2=1とする。ステップ33,34.35.36
では、過熱度SH>0の状態から初めて5H=0となっ
た時に、その弁開度からさらに補正値すだけ開度ステッ
プを大きくする動作である。ステップ33において、フ
ラグ1がセットされていなければ、ステップ37へ進み
、ここでフラグ2がセットされていれば、そのままの弁
開度S、をステップ32により出力する。ステップ37
において、フラグ2がセットされていればステップ38
へ進み、補正値Cだけ現在の開度S J−1より減算し
、新たな開度SJ =Sj−、−cを出力する。
On the other hand, in step 29, if 5H-0, the process advances to step 33, and if flag 1 is set (F, -1), the process advances to step 34, where a predetermined correction value is set to the current function S J-1. A new step 21 with the addition of
+ Set +b. Furthermore, in step 35, the flag is reset to F, -0, and in step 36, flag 2 is set, making F2=1. Steps 33, 34, 35, 36
In this case, when the superheat degree SH>0 becomes 5H=0 for the first time, the opening degree step is further increased by the correction value from that valve opening degree. In step 33, if flag 1 is not set, the process proceeds to step 37, and if flag 2 is set here, the valve opening degree S is output as is in step 32. Step 37
If flag 2 is set in step 38
Then, the correction value C is subtracted from the current opening degree SJ-1, and a new opening degree SJ=Sj-, -c is output.

以上の動作により実現される動作は、初期状態でSH>
0ならば5H=Oとなるまで弁開度Sjを補正値aずつ
大きくすることによりSHを減少させ、初めて5H=O
となった時に、さらに補正値すだけ弁開度SJ増大させ
て保持する。また、初期状態で5)I=OならばSH>
Oとなるまで弁開度SJを補正値Cずつ小さくし、初め
てSH>0となったならば、それ以後は前記初期状態が
SH>Oとなった時と同じ動作を行う。
The operation achieved by the above operation is that in the initial state SH>
If it is 0, SH is decreased by increasing the valve opening degree Sj by the correction value a until 5H=O, and for the first time 5H=O.
When , the valve opening degree SJ is further increased by the correction value and held. Also, in the initial state 5) If I=O then SH>
The valve opening SJ is decreased by the correction value C until SH becomes O, and when SH>0 for the first time, the same operation as when the initial state becomes SH>O is performed.

2)暖房運転時 次に、暖房時の動作を、前記第4図のフローチャート及
び第7図のサブクール制御タイミングチャートに基づい
て説明する。なお、暖房時社は四方弁2は点線の位置に
あり、また第4図において、暖房時にはステップ44に
おける“過熱度測定”を“サブクール測定“と読替える
ものとする。
2) During Heating Operation Next, the operation during heating will be explained based on the flowchart of FIG. 4 and the subcool control timing chart of FIG. 7. In the case of heating, the four-way valve 2 is located at the position indicated by the dotted line, and in FIG. 4, during heating, "superheat measurement" in step 44 is replaced with "subcool measurement."

第4図は、実行されるプログラムのシーケンスフローチ
ャートで、先ずプログラムのスタートにあたり、ステッ
プ41において、電子膨張弁4の制御時間間隔tを設定
するタイマセットを行う。
FIG. 4 is a sequence flowchart of the program to be executed. First, at the start of the program, in step 41, a timer is set to set the control time interval t of the electronic expansion valve 4.

ステップ42でこのタイマのタイムカウントを行い、所
定の設定時間tが経過すると次のステップ43でタイム
アツプを検出し、さらに次のステップ44で、各温度セ
ンサ8,9からサブクールを算出するサブクール測定が
行われる。
In step 42, this timer counts the time, and when a predetermined set time t has elapsed, a time-up is detected in the next step 43, and in the next step 44, subcool measurement is performed to calculate the subcool from each temperature sensor 8, 9. It will be done.

次に、この測定されたサブクールが、A、B。Next, the measured subcools are A and B.

適正、、C,Dの何れの領域にあるかが、各ステップ4
5.4B、47.48.49で判定され、その結果に基
づき、各ステップ50,51,52゜53.54で現在
出力中の弁開度S、−1に所定の各補正値a、bが加算
され、あるいは補正値c、dが減算されて新たな弁開度
S、が決定され、また、適正領域にあれば5j−1がそ
のままSjとして決定され、次のステップ55に進む。
Each step 4 determines whether the area is appropriate, C, or D.
5.4B, 47.48.49, and based on the results, predetermined correction values a, b are set for the valve opening S, -1 currently being output in each step 50, 51, 52°53.54. is added or the correction values c and d are subtracted to determine a new valve opening S, and if it is within the appropriate range, 5j-1 is determined as Sj, and the process proceeds to the next step 55.

ステップ55で、Sjによって決定される弁開度を出力
して、電子膨張弁制御袋@13によって電子膨張弁4の
弁開度の制御が行われ、プログラムの初期に戻る。上記
各補正値はa>b、d>cの関係にあり、適正領域に近
いほど、補正値を小さい値に設定する。
In step 55, the valve opening determined by Sj is output, and the electronic expansion valve control bag @13 controls the valve opening of the electronic expansion valve 4, and the program returns to the beginning. The above correction values have the relationship a>b and d>c, and the closer the correction value is to the appropriate area, the smaller the correction value is set.

いま、例えば第7図に示すサブクール制御のタイミング
チャートにおいて、時点toにおいてA領域にサブクー
ルがあったとすれば、所定の補正値aが加えられ電子膨
張弁4の弁開度が開く。電子膨張弁4の弁開度が大にな
るとサブタールは減少し、を時間後のtlにおいて測定
されたサブクールがD領域にきたとすると、電子膨張弁
4の弁開度が開きすぎということで補正値dが減算され
て電子膨張弁4の弁開度が閉じる。この時の補正値a、
dの大小関係はaddということになる。さらに、時刻
t、においてサブクールがB領域にあったとすれば、今
度は補正値すが加算され、電子膨張弁4の弁開度が制御
される。その補正値は当然a>bとする0時刻t3にお
いて今度はC領域にサブクールがあったとすれば補正値
Cが減算され、電子膨張弁4の弁開度が制御される。こ
こでは当然d>cとする。このようにして最終的にサブ
クールが適正領域に入るよう電子膨張弁4の弁開度が制
御される。
For example, in the subcool control timing chart shown in FIG. 7, if there is subcool in area A at time to, a predetermined correction value a is added and the valve opening of the electronic expansion valve 4 is opened. As the valve opening of the electronic expansion valve 4 increases, the subtar decreases, and if the subcool measured at tl after the time has reached the D region, the valve opening of the electronic expansion valve 4 is corrected because it is too open. The value d is subtracted and the valve opening of the electronic expansion valve 4 is closed. At this time, the correction value a,
The magnitude relationship of d is add. Furthermore, if the subcooling was in region B at time t, the correction value S is added this time, and the valve opening degree of the electronic expansion valve 4 is controlled. Assuming that the correction value naturally satisfies a>b, at time 0 t3, if there is subcooling in region C, the correction value C is subtracted, and the valve opening degree of the electronic expansion valve 4 is controlled. Naturally, it is assumed here that d>c. In this way, the valve opening degree of the electronic expansion valve 4 is controlled so that the subcooling finally falls within the appropriate range.

(他の実施例) なお、以上の実施例は、冷暖房切換え用四方弁2を備え
ると共に、室内熱交換器5の入口側に温度検出器9を配
設した空気調和機の事例について説明したが、つぎに、
他の実施例として、前記従来例構成第6図に、この発明
原理を通用した事例について、その冷凍サイクルの動作
を前記第6図と第2図とに基づいて説明する。
(Other Embodiments) In the above embodiments, an air conditioner is provided with a four-way valve 2 for switching between air conditioning and heating, and a temperature detector 9 is disposed on the inlet side of the indoor heat exchanger 5. ,next,
As another embodiment, the operation of the refrigeration cycle will be explained based on FIG. 6 and FIG. 2, in which the principles of the present invention are applied to the conventional configuration shown in FIG.

l〉動作 圧縮機1より吐出された高温高圧のガス冷媒は、凝縮器
として作用する室外熱交換器3で熱交換することにより
凝縮し、高圧の液冷媒となり、電子膨張弁4で減圧され
低圧の2相冷媒となる。
l〉Operation The high-temperature, high-pressure gas refrigerant discharged from the compressor 1 is condensed by heat exchange in the outdoor heat exchanger 3, which acts as a condenser, and becomes a high-pressure liquid refrigerant, which is then depressurized by the electronic expansion valve 4 and reduced to a low pressure. It becomes a two-phase refrigerant.

さらに、室内熱交換l15は蒸発器として作用し、ここ
で蒸発して過熱ガスまたは液冷媒を少量含んだ2相冷媒
となり、アキュムレータ6に余剰液冷媒を貯え、圧縮機
1へ吸入されるというサイクルを繰返す。
Furthermore, the indoor heat exchanger 115 acts as an evaporator, where it evaporates into a two-phase refrigerant containing a small amount of superheated gas or liquid refrigerant, stores excess liquid refrigerant in the accumulator 6, and is sucked into the compressor 1. Repeat.

この時、各温度検出@7,8は、それぞれ蒸発温度Ty
、圧縮機吸入温度T8を検出しており、過熱度は次式に
より算出される。
At this time, each temperature detection @7, 8 is the evaporation temperature Ty
, the compressor suction temperature T8 is detected, and the degree of superheat is calculated by the following equation.

過熱度” T a −Tア 次に、この過熱度の制御動作を、第2図の制御シーケン
スフローチャートに基づいて説明する。
Next, the control operation for controlling the degree of superheat will be explained based on the control sequence flowchart shown in FIG. 2.

なお、この制御動作は、前記第1実施例における(制御
動作)1)冷房運転時の項において記述した第2図、第
5図の説明と全く同様であるので、重複説明は省略する
Note that this control operation is exactly the same as the explanation in FIGS. 2 and 5 described in the section (Control operation) 1) Cooling operation in the first embodiment, so a repeated explanation will be omitted.

〔発明の効果〕〔Effect of the invention〕

以上、説明したように、この発明によれば、冷房時には
蒸発器としての室内熱交換器出口ガスの乾き度を、また
、暖房時には凝縮器としての室内熱交換器出口ガスのサ
ブクールが適正値となるよう電子膨張弁の開度を制御す
るよう構成したので、余剰冷媒量を生ずるような場合の
運転においても、従来例のように絞り過ぎることなく、
14正な開度に電子膨張弁の開度を制御できる空気調和
機を提供することができた。
As explained above, according to the present invention, the dryness of the indoor heat exchanger outlet gas as an evaporator is set to an appropriate value during cooling, and the subcooling of the indoor heat exchanger outlet gas as a condenser is set to an appropriate value during heating. Since the opening degree of the electronic expansion valve is controlled so that the opening degree of the electronic expansion valve is controlled so that the opening degree of the electronic expansion valve is
14 It was possible to provide an air conditioner that can control the opening degree of the electronic expansion valve to a positive opening degree.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明の一実施例による空気調和機の冷媒回
路、第2図は、本実施例による制御シーケンスフローチ
ャート、第3図は、電子膨張弁の開度と制御装置出力開
度Sjとの関係を示す図、第4図は、従来例の過熱度−
J御シーケンスフローチャート及び本実施例のサブクー
ルシーケンス制御フローチャート(ステップ30を読替
える)、第5図は、従来例の過熱度制御のタイミングチ
ャート、第6図は、従来の冷媒回路の一例、第7図は、
本実施例のサブクール制御のタイミングチャートである
。 1は圧縮機、2は四方弁、3は室外熱交換器、4は電子
膨張弁、5は室内熱交換器、6はアキュムレータ、7,
8.9は温度検出器、10は温度差演算手段、11は弁
開度決定手段、12は弁開度−制御手段、13は電子膨
張弁制御装置、14は過熱度判定手段である。 なお、各図中、同一符号は同一または相当構成要素を示
す。
FIG. 1 is a refrigerant circuit of an air conditioner according to an embodiment of the present invention, FIG. 2 is a control sequence flowchart according to this embodiment, and FIG. 3 is a diagram showing the opening degree of the electronic expansion valve and the control device output opening degree Sj. FIG. 4 is a diagram showing the relationship between the superheat degree and the conventional example.
J control sequence flowchart and subcooling sequence control flowchart of this embodiment (replacing step 30), FIG. 5 is a timing chart of conventional superheat degree control, FIG. 6 is an example of a conventional refrigerant circuit, and FIG. teeth,
It is a timing chart of subcool control of a present Example. 1 is a compressor, 2 is a four-way valve, 3 is an outdoor heat exchanger, 4 is an electronic expansion valve, 5 is an indoor heat exchanger, 6 is an accumulator, 7,
8.9 is a temperature detector, 10 is a temperature difference calculation means, 11 is a valve opening determining means, 12 is a valve opening control means, 13 is an electronic expansion valve control device, and 14 is a superheat degree determining means. Note that in each figure, the same reference numerals indicate the same or equivalent components.

Claims (2)

【特許請求の範囲】[Claims] (1)それぞれ圧縮機、四方弁、室外熱交換器、電子膨
張弁、室内熱交換器、アキュムレータから成る冷媒回路
、該室内熱交換器の中央、出口及び入口の配管上にそれ
ぞれ配設された各温度検出器、該各温度検出器からの信
号から、冷房時には前記室内熱交換器出口ガスの過熱度
を、また暖房時には該出口ガスのサブクールを算出する
ための温度差演算手段、該手段により算出された過熱度
またはサブクールから前記電子膨張弁の弁開度を決定す
るための弁開度決定手段、該決定された弁開度に前記電
子膨張弁を制御するための弁開度制御手段を備え、該各
手段による制御を所定時間毎に行うことにより、冷房時
には前記圧縮機吸入ガスの乾き度を、また暖房時には該
吸入ガスのサブクールをそれぞれ所定値に制御するよう
構成したことを特徴とする空気調和機。
(1) A refrigerant circuit consisting of a compressor, a four-way valve, an outdoor heat exchanger, an electronic expansion valve, an indoor heat exchanger, and an accumulator, each arranged on the center, outlet, and inlet pipes of the indoor heat exchanger. Each temperature detector, a temperature difference calculating means for calculating the degree of superheat of the indoor heat exchanger outlet gas during cooling and the subcooling of the outlet gas during heating from the signals from each temperature detector; Valve opening degree determining means for determining the valve opening degree of the electronic expansion valve from the calculated degree of superheat or subcooling, and valve opening degree control means for controlling the electronic expansion valve to the determined valve opening degree. The dryness of the compressor suction gas is controlled to predetermined values during cooling, and the subcooling of the suction gas is controlled to predetermined values during heating by controlling each of the means at predetermined time intervals. air conditioner.
(2)それぞれ圧縮機、室外熱交換器、電子膨張弁、室
内熱交換器、アキュムレータから成る冷媒回路、該室内
熱交換器の中央及び出口の配管上にそれぞれ配設された
各温度検出器、該各温度検出器からの信号から、前記室
内熱交換器出口ガスの過熱度を算出するための温度差演
算手段、該手段により算出された過熱度から前記電子膨
張弁の弁開度を決定するための弁開度決定手段、該決定
された弁開度に前記電子膨張弁を制御するための弁開度
制御手段を備え、該各手段による制御を所定時間毎に行
うことにより、前記圧縮機吸入ガスの乾き度を所定値に
制御するよう構成したことを特徴とする空気調和機。
(2) A refrigerant circuit consisting of a compressor, an outdoor heat exchanger, an electronic expansion valve, an indoor heat exchanger, and an accumulator, each temperature detector disposed on the center and outlet pipes of the indoor heat exchanger, respectively; Temperature difference calculating means for calculating the degree of superheating of the indoor heat exchanger outlet gas from the signals from the respective temperature detectors, and determining the valve opening degree of the electronic expansion valve from the degree of superheating calculated by the means. and valve opening degree control means for controlling the electronic expansion valve to the determined valve opening degree, and by performing control by each means at predetermined time intervals, the compressor An air conditioner characterized by being configured to control the dryness of intake gas to a predetermined value.
JP16836189A 1989-06-30 1989-06-30 Air conditioner Pending JPH0336471A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16836189A JPH0336471A (en) 1989-06-30 1989-06-30 Air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16836189A JPH0336471A (en) 1989-06-30 1989-06-30 Air conditioner

Publications (1)

Publication Number Publication Date
JPH0336471A true JPH0336471A (en) 1991-02-18

Family

ID=15866659

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16836189A Pending JPH0336471A (en) 1989-06-30 1989-06-30 Air conditioner

Country Status (1)

Country Link
JP (1) JPH0336471A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004211944A (en) * 2002-12-27 2004-07-29 Sanyo Electric Co Ltd Oil recovery method for air conditioner, and air conditioner
JP2012122677A (en) * 2010-12-09 2012-06-28 Mitsubishi Electric Corp Air conditioner

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004211944A (en) * 2002-12-27 2004-07-29 Sanyo Electric Co Ltd Oil recovery method for air conditioner, and air conditioner
JP2012122677A (en) * 2010-12-09 2012-06-28 Mitsubishi Electric Corp Air conditioner

Similar Documents

Publication Publication Date Title
EP2730859B1 (en) Refrigeration cycle device
JP2943613B2 (en) Refrigeration air conditioner using non-azeotropic mixed refrigerant
JP2006242506A (en) Thermal storage type air conditioner
JP3596506B2 (en) Refrigeration equipment
JP3334222B2 (en) Air conditioner
JP7154388B2 (en) Outdoor unit and refrigeration cycle device provided with the same
WO2020065999A1 (en) Outdoor unit for refrigeration cycle device, refrigeration cycle device, and air conditioning device
JPH0336471A (en) Air conditioner
JPH04340046A (en) Operation control device of air conditioner
JP2904354B2 (en) Air conditioner
JPH1163687A (en) Air conditioner cycle
JPH06137691A (en) Controlling equipment for refrigerant circuit
JP3021987B2 (en) Refrigeration equipment
JP7196186B2 (en) Outdoor unit of refrigerating cycle device, refrigerating cycle device, and air conditioner
JPH05272822A (en) Freezer
JP3511708B2 (en) Operation control unit for air conditioner
JPH046355A (en) Multiple-room type air-conditioner
US20240318837A1 (en) Air conditioner, method for controlling air conditioner, and recording medium
JP2712835B2 (en) Control method of multi-room air conditioner
JPH11201561A (en) Heat pump type air conditioner
JP2845774B2 (en) Heat pump type air conditioner
JPH0670515B2 (en) Multi-room air conditioner
JPS62288441A (en) Multichamber air conditioner
JP2692895B2 (en) Air conditioner
JPS62228839A (en) Refrigerator