JPS62228839A - Refrigerator - Google Patents

Refrigerator

Info

Publication number
JPS62228839A
JPS62228839A JP7337486A JP7337486A JPS62228839A JP S62228839 A JPS62228839 A JP S62228839A JP 7337486 A JP7337486 A JP 7337486A JP 7337486 A JP7337486 A JP 7337486A JP S62228839 A JPS62228839 A JP S62228839A
Authority
JP
Japan
Prior art keywords
refrigerant
pressure
temperature
evaporator
detector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7337486A
Other languages
Japanese (ja)
Other versions
JPH0566503B2 (en
Inventor
佳昭 谷村
誠 遠藤
直樹 田中
正毅 池内
等 飯島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP7337486A priority Critical patent/JPS62228839A/en
Publication of JPS62228839A publication Critical patent/JPS62228839A/en
Publication of JPH0566503B2 publication Critical patent/JPH0566503B2/ja
Granted legal-status Critical Current

Links

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、非共沸混合冷媒を用いた冷凍装置に関する
ものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a refrigeration system using a non-azeotropic mixed refrigerant.

〔従来の技術〕[Conventional technology]

従来、非共沸混合冷媒を用いた冷凍装置としては、例え
ば特開昭58−210447号に示されている。
A conventional refrigeration system using a non-azeotropic mixed refrigerant is disclosed in, for example, Japanese Patent Application Laid-Open No. 58-210447.

第7図は、このような非共沸混合冷媒を冷凍冷蔵庫に利
用したときの冷凍サイクルの構成図である。同図におい
て、1は圧縮機、2は凝縮器、3はキャピラリ、4は冷
凍室用蒸発器、5は冷蔵室用蒸発器であり、これらは配
管により直列に接続することにより冷凍冷蔵庫の冷凍サ
イクルを構成   ″している。
FIG. 7 is a block diagram of a refrigeration cycle when such a non-azeotropic mixed refrigerant is used in a refrigerator-freezer. In the figure, 1 is a compressor, 2 is a condenser, 3 is a capillary, 4 is an evaporator for the freezer compartment, and 5 is an evaporator for the refrigerator compartment. It constitutes a cycle.

上記のように構成された冷凍冷蔵庫において、圧縮機1
で圧縮された高温高圧の冷媒ガスは凝縮器2により高圧
状態で凝縮され、この高圧の液化冷媒はキャピラリ3を
通過する間に減圧され、次段の冷凍室用蒸発器4及び冷
蔵室用蒸発器5へ順に流れ込む。そして、上記2つの蒸
発器4.5での吸熱作用により蒸発した冷媒ガスは圧縮
機1に戻り、再び圧縮されて凝縮器1へと送り出される
In the refrigerator-freezer configured as described above, the compressor 1
The high-temperature, high-pressure refrigerant gas compressed by the condenser 2 is condensed in a high-pressure state by the condenser 2, and this high-pressure liquefied refrigerant is depressurized while passing through the capillary 3, and is then sent to the next stage, the evaporator 4 for the freezer compartment and the evaporator for the refrigerator compartment. Flows into vessel 5 in order. The refrigerant gas evaporated by the endothermic action in the two evaporators 4.5 returns to the compressor 1, is compressed again, and is sent to the condenser 1.

このような冷凍サイクルにおいて、その冷媒に、例えば
低沸点成分がR22(沸点−40,75℃)、高沸点成
分がR114(沸点3.77℃)からなる、沸点差が約
44℃の非共沸混合冷媒を使用した場合、その蒸発過程
は、第8図のモリエール線図に示す符号10.11に示
す如く、まずR22を多く含んでいる液冷媒が蒸発する
ため、その蒸発温度は低く、次いでR114を多く含ん
でいる液冷媒が徐々に蒸発していくことにより、その蒸
発温度が上がっていく。
In such a refrigeration cycle, the refrigerant includes, for example, a low boiling point component R22 (boiling point -40.75°C) and a high boiling point component R114 (boiling point 3.77°C), which have a boiling point difference of about 44°C. When a boiling mixture refrigerant is used, in the evaporation process, as shown by reference numeral 10.11 in the Molière diagram in Figure 8, the liquid refrigerant containing a large amount of R22 evaporates first, so its evaporation temperature is low; Next, as the liquid refrigerant containing a large amount of R114 gradually evaporates, its evaporation temperature increases.

上記の蒸発過程において、低い温度領域IOは冷凍室用
蒸発器4に、高い温度領域11は冷蔵室用蒸発器5にそ
れぞれ用いることにより、冷凍室には、その温度に適し
た蒸発温度で冷凍室用蒸発器4を使用でき、かつ冷蔵室
には、その温度に適した蒸発温度で冷蔵室蒸発器4を使
用できるため、単一冷媒(例えばR12)を用いる方式
のものより冷凍効果を向上できる。
In the above evaporation process, the low temperature region IO is used for the evaporator 4 for the freezer compartment, and the high temperature region 11 is used for the evaporator 5 for the refrigerator compartment. Since the indoor evaporator 4 can be used, and the refrigerator compartment evaporator 4 can be used in the refrigerator compartment at an evaporation temperature suitable for that temperature, the refrigeration effect is improved compared to systems that use a single refrigerant (for example, R12). can.

なお、第8図のモリエール線図において、符号6は等混
線、7は圧縮領域、8は凝縮領域、9は減圧領域を示し
ている。
In the Molière diagram of FIG. 8, reference numeral 6 indicates an equimixture line, 7 indicates a compression region, 8 indicates a condensation region, and 9 indicates a depressurization region.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上記のような従来の冷凍装置では、最適な運転条件のも
とでは、上述する如き効果が得られるかもしれないが、
実際には、外気温度の変化、非共沸混合冷媒の成分比の
変化等の運転条件が変化するため、最適運転を維持でき
る冷凍サイクルとはならない。
With the conventional refrigeration equipment described above, the effects described above may be obtained under optimal operating conditions, but
In reality, the refrigeration cycle cannot maintain optimal operation because operating conditions such as changes in outside air temperature and changes in the component ratio of the non-azeotropic refrigerant mixture change.

例えば、上記のような冷凍サイクルにおいて、運転条件
が変化した場合、液冷媒が蒸発器内で全て蒸発しきれず
に圧縮機に戻ると、圧縮機が破損されるおそれがある。
For example, in the refrigeration cycle as described above, when operating conditions change, if the liquid refrigerant is not completely evaporated in the evaporator and returns to the compressor, the compressor may be damaged.

また、逆に液冷媒が蒸器で完全に蒸発し、大きな加熱蒸
気で圧縮機に戻ると、圧縮機による圧縮性能が低下する
可能性があり、最適な運転状態を保つことができなくな
る問題があった。
On the other hand, if the liquid refrigerant completely evaporates in the evaporator and returns to the compressor as a large amount of heated vapor, the compression performance of the compressor may deteriorate, causing the problem that optimal operating conditions cannot be maintained. Ta.

この発明は上記のような問題点を解決するためになされ
たもので、非共沸混合冷媒の成分比変化及び外気温度変
化等の運転条件が変化しても常に最適な冷凍サイクルの
運転を可能にした冷凍装置を得ることを目的とする。
This invention was made to solve the above-mentioned problems, and allows the refrigeration cycle to always operate optimally even when operating conditions such as changes in the component ratio of the non-azeotropic mixed refrigerant and changes in outside temperature change. The purpose is to obtain a refrigeration system with

〔問題点を解決するための手段〕[Means for solving problems]

この発明に係る冷凍装置は、凝縮器と減圧装置間に受液
器を設け、この受液器内の圧力及び温度を検知して非共
沸混合冷媒の成分比を算出すると共に、この成分比と蒸
発器出口の圧力及び温度に基いて圧縮器へ吸入される冷
媒の加熱度を算出し、その加熱度の大きさを減圧装置の
開閉度により制御する演算制御手段を備えて成るもので
ある。
The refrigeration system according to the present invention includes a liquid receiver provided between a condenser and a pressure reducing device, detects the pressure and temperature in the liquid receiver to calculate a component ratio of a non-azeotropic mixed refrigerant, and calculates the component ratio of a non-azeotropic mixed refrigerant. It is equipped with arithmetic control means that calculates the degree of heating of the refrigerant sucked into the compressor based on the pressure and temperature at the outlet of the evaporator, and controls the degree of heating by the degree of opening and closing of the pressure reducing device. .

〔作 用〕[For production]

この発明においては、演算制御手段が、非共沸混合冷媒
の成分比及び蒸発器出口の圧力、温度から算出した圧縮
機への冷媒の加熱度が最適値となるように減圧装置の開
閉度を制御することになり、これにより運転条件の変化
に左右されることなく冷凍サイクルの最適運転を可能に
する。
In this invention, the calculation control means controls the degree of opening and closing of the pressure reducing device so that the degree of heating of the refrigerant to the compressor, which is calculated from the component ratio of the non-azeotropic refrigerant mixture and the pressure and temperature at the outlet of the evaporator, becomes an optimum value. This enables optimal operation of the refrigeration cycle without being affected by changes in operating conditions.

〔実施例〕〔Example〕

以下、この発明の実施例を図面について説明する。 Embodiments of the present invention will be described below with reference to the drawings.

第1図はこの発明に係る冷凍装置の一実施例を示すもの
で、■は圧縮機、2は圧縮機1の吐出側に接続した凝縮
器、12は凝縮器2の出口側に接続した受液器、13は
受液器12の出口側に接続した開閉度調節が可能な減圧
装置、14は減圧装置13を圧縮機1の吸入側間に接続
した蒸発器であり、これらは配管により直列に接続する
ことで冷凍サイクルが構成され、そして該冷凍サイクル
例えば高沸点成分R114と沸点成分R22からなる非
共沸混合冷媒が封入されている。
FIG. 1 shows an embodiment of the refrigeration system according to the present invention, in which symbol (2) is a compressor, 2 is a condenser connected to the discharge side of the compressor 1, and 12 is a receiver connected to the outlet side of the condenser 2. 13 is a pressure reducing device connected to the outlet side of the liquid receiver 12 and is capable of adjusting the opening/closing degree; 14 is an evaporator in which the pressure reducing device 13 is connected between the suction side of the compressor 1, and these are connected in series by piping. A refrigeration cycle is constructed by connecting the refrigerant to the refrigeration cycle, and a non-azeotropic mixed refrigerant consisting of, for example, a high boiling point component R114 and a boiling point component R22 is sealed in the refrigeration cycle.

上記受液器12には、その内部冷媒の飽和圧力P1を検
知する圧力検知器15と、その飽和温度T1を検知する
温度検知器16がそれぞれ設けられており、これら検知
器15.16の検知信号は演算制御回路17に入力され
る。
The liquid receiver 12 is provided with a pressure detector 15 for detecting the saturation pressure P1 of the internal refrigerant, and a temperature detector 16 for detecting the saturation temperature T1. The signal is input to the arithmetic control circuit 17.

また、上記蒸発器14の出口には、圧縮機へ吸入される
冷媒の圧力P2を検知する圧力検知器18と、温度T2
を検知する温度検知器19が設けられており、これら検
知器18.19の検知信号は演算制御回路17に入力さ
れる。
Further, at the outlet of the evaporator 14, a pressure detector 18 for detecting the pressure P2 of the refrigerant sucked into the compressor and a temperature T2
A temperature detector 19 is provided to detect the temperature, and detection signals from these detectors 18 and 19 are input to the arithmetic control circuit 17.

上記演算制御回路17は検知器15.16からの飽和圧
力P1及び飽和温度T1に基いて非共沸混合冷媒の成分
比ηを算出する機能と、上記冷媒成分比ηと上記検知器
18.19からの圧力P2及び温度T2に基いて圧縮機
1への吸入冷媒加熱度S−Hを算出する機能と、この算
出された加熱度が最適値となるように減圧装置13の開
閉度を制御する機能とを有し、そして、演算制御回路1
7からの制御出力信号は減圧装置13の開閉度調節用ド
ライバ20に供給されるようになっている。
The arithmetic control circuit 17 has a function of calculating the component ratio η of the non-azeotropic mixed refrigerant based on the saturation pressure P1 and saturation temperature T1 from the detector 15.16, and the function of calculating the component ratio η of the non-azeotropic mixed refrigerant and the refrigerant component ratio η and the detector 18.19. A function to calculate the degree of heating S-H of the suction refrigerant to the compressor 1 based on the pressure P2 and temperature T2 from and an arithmetic control circuit 1
A control output signal from 7 is supplied to a driver 20 for adjusting the opening/closing degree of the pressure reducing device 13.

次に、上記のように構成された本実施例の動作について
説明する。
Next, the operation of this embodiment configured as described above will be explained.

圧縮機lで圧縮された高温高圧の冷媒ガスは凝縮器2に
より高圧状態で凝縮され、この高圧の液化冷媒は受液器
12に流入する。受液器12に流入した冷媒は、さらに
減圧装置13で減圧された後、蒸発器14に入り、その
吸熱作用により蒸発した冷媒ガスは圧縮機lに戻り、サ
イクルを完結する。
The high-temperature, high-pressure refrigerant gas compressed by the compressor 1 is condensed in a high-pressure state by the condenser 2, and this high-pressure liquefied refrigerant flows into the receiver 12. The refrigerant that has flowed into the liquid receiver 12 is further reduced in pressure by a pressure reducing device 13, and then enters the evaporator 14, and the refrigerant gas evaporated by its endothermic action returns to the compressor 1, completing the cycle.

次に、演算制御回路17の動作を第2図に示すフローチ
ャートに基いて説明する。
Next, the operation of the arithmetic control circuit 17 will be explained based on the flowchart shown in FIG.

上記サイクルにおいて、受液器12の作用により受液器
12内の冷媒は飽和液となるため、受液器12内の圧力
P l +温度T1はそれぞれ飽和圧力及び飽和温度と
なる。
In the above cycle, the refrigerant in the liquid receiver 12 becomes a saturated liquid due to the action of the liquid receiver 12, so that the pressure P l +temperature T1 in the liquid receiver 12 becomes the saturated pressure and the saturated temperature, respectively.

演算制御回路17の動作が開始されると、まず、ステッ
プSIでは、それぞれの検知器15.16で検知された
受液器12内の冷媒の飽和圧力P。
When the operation of the arithmetic control circuit 17 is started, first, in step SI, the saturation pressure P of the refrigerant in the liquid receiver 12 detected by each of the detectors 15 and 16 is determined.

及び飽和温度T、を演算制御回路17に取り込み、この
検知圧力P1および検知温度T、に基いて非共沸混合冷
媒の成分比η(低沸点成分又は高沸点成分の重量分率)
を(1)式から算出する(ステップ32)。
and saturation temperature T into the arithmetic control circuit 17, and based on the detected pressure P1 and the detected temperature T, the component ratio η (weight fraction of low boiling point component or high boiling point component) of the non-azeotropic mixed refrigerant is determined.
is calculated from equation (1) (step 32).

η=F (PI  ・TI) ・・・・・・・・・ (
1)但し、F:定数 次のステップS3では、検知器18.19で検知された
蒸発器出口の冷媒の圧力P2及び温度T2を演算制御回
路17に取り込み、次のステップS4に移行してηとP
gとにより飽和温度T。
η=F (PI ・TI) ・・・・・・・・・ (
1) However, F: constant In the next step S3, the pressure P2 and temperature T2 of the refrigerant at the evaporator outlet detected by the detectors 18 and 19 are taken into the calculation control circuit 17, and the process moves to the next step S4 to calculate η and P
g and the saturation temperature T.

の算出を実行する。即ち、演算制御回路17では、上記
(1)式で算出した成分比ηと圧力PRに基いて(2)
式を実行することにより、圧力22時の非共沸混合冷媒
の飽和温度T、を算出する。
Execute the calculation. That is, the arithmetic control circuit 17 calculates (2) based on the component ratio η and pressure PR calculated by the above equation (1).
By executing the equation, the saturation temperature T of the non-azeotropic mixed refrigerant at a pressure of 22 is calculated.

Tえ=G (pg  ・η) ・・・・・・・・・ (
2)但し、G:定数 そして、次のステップS5において、上記(2)式から
求めたT、と、検知器19で検知した蒸発器出口の温度
T2を用いて圧縮機1に吸入される非共沸混合冷媒の加
熱度5−H(T2とTEとの差)を算出する。
T = G (pg ・η) ・・・・・・・・・ (
2) However, G: a constant. Then, in the next step S5, the temperature T2 obtained from the above equation (2) and the temperature T2 at the outlet of the evaporator detected by the detector 19 are used to calculate the The heating degree 5-H (difference between T2 and TE) of the azeotropic refrigerant mixture is calculated.

一般に冷凍サイクルの冷凍能力及びCOP (成績係数
)と圧縮機lの吸入冷媒加熱度S−Hとの間には、第3
図に示す関係があり、ある加熱度で、冷凍能力及びco
pが最大になる。
Generally, there is a third difference between the refrigeration capacity and COP (coefficient of performance) of the refrigeration cycle and the suction refrigerant heating degree S-H of the compressor l.
There is a relationship shown in the figure, and at a certain heating degree, the refrigeration capacity and co
p becomes maximum.

従って、上記(2)式で求めた加熱度が、冷凍サイクル
の冷凍能力及びcopが最大になる最適値が否かをステ
ップS6で判定する。ここで最適値と判断されたときは
、終了ステップに移行し、また、最適値でないと判断さ
れた場合は、ステップS7に移行して減圧装置13の開
閉度変更処理を実行する。
Therefore, it is determined in step S6 whether the heating degree determined by the above equation (2) is the optimum value that maximizes the refrigerating capacity and cop of the refrigerating cycle. When it is determined that the value is the optimum value, the process proceeds to the end step, and when it is determined that the value is not the optimum value, the process proceeds to step S7 and the opening/closing degree changing process of the pressure reducing device 13 is executed.

即ち、演算制御回路17から制御指令をドライバ20に
送出し、ドライバ20を動作させて減圧装置13の開閉
度を、加熱度S−Hが最適値になるように調節する。
That is, a control command is sent from the arithmetic control circuit 17 to the driver 20, and the driver 20 is operated to adjust the opening/closing degree of the pressure reducing device 13 so that the heating degree S-H becomes an optimum value.

上記の動作を繰返すことにより、運転条件が変化しても
、これに左右されることなく冷凍サイクルの最適運転が
可能になる。
By repeating the above operations, the refrigeration cycle can be operated optimally even if the operating conditions change.

なお、第4図は冷媒飽和温度と低沸点成分重量分率ηと
の関係を示す特性図であり、また、第5図は冷媒飽和温
度と蒸気中のR22重量分率との関係を示す特性図であ
る。
In addition, FIG. 4 is a characteristic diagram showing the relationship between the refrigerant saturation temperature and the low boiling point component weight fraction η, and FIG. 5 is a characteristic diagram showing the relationship between the refrigerant saturation temperature and the R22 weight fraction in steam. It is a diagram.

第6図はこの発明の冷凍装置の他の実施例を示す。FIG. 6 shows another embodiment of the refrigeration system of the present invention.

同図において、第1図と同一符号は同一部分を表わし、
第1図と異なる点は凝縮器2と受液器12との間にキャ
ピラリ21を設けたところにある。
In the figure, the same symbols as in Figure 1 represent the same parts,
The difference from FIG. 1 is that a capillary 21 is provided between the condenser 2 and the receiver 12.

キャピラリ21を設ける理由は、凝縮器2の出口冷媒が
過冷却により完全な液になった場合、受液器12内の圧
力PI+温度T1はそれぞれ飽和圧力、飽和温度となら
ないのを防止するためであり、凝縮器2からの液冷媒を
キャピラリ21で減圧することにより受液器12内には
飽和液が流れ込むことになる。従って、冷媒が凝縮器2
で過冷却されて完全な液であっても受液器12内の圧力
P、及び温度T1はそれぞれ飽和圧力、飽和温度となり
、第1図と同様に冷凍サイクルの最適運転が可能になる
The reason for providing the capillary 21 is to prevent the pressure PI + temperature T1 in the receiver 12 from reaching the saturated pressure and saturated temperature, respectively, when the refrigerant at the outlet of the condenser 2 becomes a complete liquid due to supercooling. By reducing the pressure of the liquid refrigerant from the condenser 2 in the capillary 21, saturated liquid flows into the receiver 12. Therefore, the refrigerant is in the condenser 2
Even if the liquid is completely supercooled, the pressure P and temperature T1 in the liquid receiver 12 become the saturated pressure and the saturated temperature, respectively, and the refrigeration cycle can be operated optimally as in FIG. 1.

〔発明の効果〕〔Effect of the invention〕

以上のように、この発明によれば、圧縮機の吸入加熱度
が最適な値になるように減圧装置の開閉度を制御するよ
うにしたものであるから、非共沸混合冷媒の成分比の変
化及び外気温度の変化等に伴う運転条件が変化しても常
に最適な冷凍サイクルの運転が可能になると云う効果が
ある。
As described above, according to the present invention, the opening/closing degree of the pressure reducing device is controlled so that the degree of suction heating of the compressor becomes an optimum value. There is an effect that the refrigeration cycle can always be operated optimally even if operating conditions change due to changes in outside air temperature, etc.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明にかかる冷凍装置の一例を示す回路図
、第2図はこの発明における動作説明用のフローチャー
ト、第3図は加熱度と冷凍能力及びCOPとの関係を示
す図、第4図及び第5図は冷媒飽和温度と成分重量率と
の関係を示す図、第6図はこの発明の冷凍装置の他の実
施例を示す回路図、第7図は従来における冷凍装置の回
路図、第8図は非共沸混合冷媒のモリエール線図である
。 l・・・圧縮機、2・・・凝縮器、12・・・受液器、
13・・・減圧装置、14・・・蒸発器、15.18・
・・圧力検知器、16.19・・・温度検知器、17・
・・演算制御回路、21・・・キャピラリ。 なお、図中同一符号は同−又は相当部分を示す。
FIG. 1 is a circuit diagram showing an example of a refrigeration system according to the present invention, FIG. 2 is a flowchart for explaining the operation of the present invention, FIG. 3 is a diagram showing the relationship between heating degree, refrigerating capacity, and COP, and FIG. 5 and 5 are diagrams showing the relationship between refrigerant saturation temperature and component weight ratio, FIG. 6 is a circuit diagram showing another embodiment of the refrigeration system of the present invention, and FIG. 7 is a circuit diagram of a conventional refrigeration system. , FIG. 8 is a Moliere diagram of a non-azeotropic mixed refrigerant. l...Compressor, 2...Condenser, 12...Liquid receiver,
13... pressure reducing device, 14... evaporator, 15.18.
...Pressure detector, 16.19...Temperature sensor, 17.
... Arithmetic control circuit, 21... Capillary. Note that the same reference numerals in the figures indicate the same or equivalent parts.

Claims (2)

【特許請求の範囲】[Claims] (1)圧縮機、凝縮器、減圧装置及び蒸発器を順次接続
し、冷媒に低沸点成分と高沸点成分からなる非共沸混合
冷媒を用いた冷凍サイクルにおいて、上記凝縮器と上記
減圧装置間に受液器を設け、かつ上記受液器内の飽和圧
力及び飽和温度をそれぞれ検知する検知器を設けると共
に、上記蒸発器出口の冷媒圧力及び温度をそれぞれ検知
する検知器を設け、さらに上記検知器で検知した上記受
液器内の飽和圧力及び飽和温度に基いて非共沸混合冷媒
の成分比を算出すると共にこの成分比と上記検知器で検
知した上記蒸発器出口の圧力及び温度に基いて圧縮機吸
入冷媒の加熱度を算出し、その過熱度の大きさを上記減
圧装置の開閉度で制御する演算制御手段を備えてなる冷
凍装置。
(1) In a refrigeration cycle in which a compressor, a condenser, a pressure reducing device, and an evaporator are connected in sequence and a non-azeotropic mixed refrigerant consisting of a low boiling point component and a high boiling point component is used as the refrigerant, the space between the condenser and the pressure reducing device is is provided with a liquid receiver, and is provided with a detector that detects the saturation pressure and saturation temperature in the liquid receiver, and is provided with a detector that respectively detects the refrigerant pressure and temperature at the outlet of the evaporator, and further includes a detector that detects the refrigerant pressure and temperature at the outlet of the evaporator. Calculate the component ratio of the non-azeotropic mixed refrigerant based on the saturation pressure and saturation temperature in the liquid receiver detected by the detector, and based on this component ratio and the pressure and temperature at the outlet of the evaporator detected by the detector. A refrigeration system comprising arithmetic control means for calculating the degree of heating of the refrigerant sucked into the compressor, and controlling the magnitude of the degree of superheating by the opening/closing degree of the pressure reducing device.
(2)受液器の冷媒入口がキャピラリを備えていること
を特徴とする特許請求の範囲第1項記載の冷凍装置。
(2) The refrigeration system according to claim 1, wherein the refrigerant inlet of the liquid receiver is equipped with a capillary.
JP7337486A 1986-03-31 1986-03-31 Refrigerator Granted JPS62228839A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7337486A JPS62228839A (en) 1986-03-31 1986-03-31 Refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7337486A JPS62228839A (en) 1986-03-31 1986-03-31 Refrigerator

Publications (2)

Publication Number Publication Date
JPS62228839A true JPS62228839A (en) 1987-10-07
JPH0566503B2 JPH0566503B2 (en) 1993-09-21

Family

ID=13516339

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7337486A Granted JPS62228839A (en) 1986-03-31 1986-03-31 Refrigerator

Country Status (1)

Country Link
JP (1) JPS62228839A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08152208A (en) * 1994-11-25 1996-06-11 Mitsubishi Electric Corp Refrigerant-circulating system, and refrigerating and air-conditioner apparatus
JP2017062082A (en) * 2015-09-25 2017-03-30 東芝キヤリア株式会社 Multi-air conditioner
WO2019058748A1 (en) * 2017-09-19 2019-03-28 ダイキン工業株式会社 Gas leak amount detection method and operating method of refrigerating apparatus

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08152208A (en) * 1994-11-25 1996-06-11 Mitsubishi Electric Corp Refrigerant-circulating system, and refrigerating and air-conditioner apparatus
JP2017062082A (en) * 2015-09-25 2017-03-30 東芝キヤリア株式会社 Multi-air conditioner
WO2019058748A1 (en) * 2017-09-19 2019-03-28 ダイキン工業株式会社 Gas leak amount detection method and operating method of refrigerating apparatus
JP2019052819A (en) * 2017-09-19 2019-04-04 ダイキン工業株式会社 Gas leakage rate detection method and operation method for refrigerating device
CN111065869A (en) * 2017-09-19 2020-04-24 大金工业株式会社 Gas leakage amount detection method and operation method of refrigeration device
CN111065869B (en) * 2017-09-19 2021-03-16 大金工业株式会社 Gas leakage amount detection method and operation method of refrigeration device

Also Published As

Publication number Publication date
JPH0566503B2 (en) 1993-09-21

Similar Documents

Publication Publication Date Title
EP0853221B1 (en) Refrigeration air-conditioner using a non-azeotrope refrigerant and having a control-information detecting apparatus
WO1999010686A1 (en) Cooling cycle
JP2943613B2 (en) Refrigeration air conditioner using non-azeotropic mixed refrigerant
JP2948105B2 (en) Refrigeration air conditioner using non-azeotropic mixed refrigerant
JPS62228839A (en) Refrigerator
JP3351076B2 (en) Refrigeration cycle saturated steam temperature detector
JPH07198235A (en) Air conditioner
JP2502197B2 (en) Refrigeration cycle equipment
JP2003207220A (en) Cooling device
JPH0828975A (en) Turbo refrigerator
JP2883535B2 (en) Refrigeration equipment
JPH03129253A (en) Freezer
JPH03251661A (en) Heat pump system
JP2904354B2 (en) Air conditioner
JPH05272822A (en) Freezer
JPH046355A (en) Multiple-room type air-conditioner
JPH0363471A (en) Air conditioner
JPH05223358A (en) Freezing cycle control device
JPH1019407A (en) Refrigerant circuit
JPH047491Y2 (en)
JPS6277551A (en) Refrigerator
JPH0271057A (en) Controlling method for expansion valve in multistage compression refrigerator
JPH0642829A (en) Freezer for low temperature freezing
KR0146329B1 (en) A refrigeration apparatus
JP2526988B2 (en) Refrigeration equipment

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term