JPH08152208A - Refrigerant-circulating system, and refrigerating and air-conditioner apparatus - Google Patents

Refrigerant-circulating system, and refrigerating and air-conditioner apparatus

Info

Publication number
JPH08152208A
JPH08152208A JP6291331A JP29133194A JPH08152208A JP H08152208 A JPH08152208 A JP H08152208A JP 6291331 A JP6291331 A JP 6291331A JP 29133194 A JP29133194 A JP 29133194A JP H08152208 A JPH08152208 A JP H08152208A
Authority
JP
Japan
Prior art keywords
refrigerant
heat exchanger
temperature
composition
side heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6291331A
Other languages
Japanese (ja)
Other versions
JP3140923B2 (en
Inventor
Osamu Morimoto
修 森本
Shuichi Tani
秀一 谷
Tomohiko Kasai
智彦 河西
Yoshihiro Sumida
嘉裕 隅田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP06291331A priority Critical patent/JP3140923B2/en
Priority to DE69533120T priority patent/DE69533120D1/en
Priority to EP95101830A priority patent/EP0685692B1/en
Priority to CNB951026712A priority patent/CN1135341C/en
Publication of JPH08152208A publication Critical patent/JPH08152208A/en
Priority to US08/681,488 priority patent/US5987907A/en
Priority to US08/957,738 priority patent/US6032473A/en
Application granted granted Critical
Publication of JP3140923B2 publication Critical patent/JP3140923B2/en
Priority to CNB021275335A priority patent/CN1201124C/en
Priority to CNB021275343A priority patent/CN1201125C/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Abstract

PURPOSE: To obtain a circulating system wherein the composition of a nonazeotropic mixture refrigerant is maintained so as to be suitable for its operating condition at all times, reliability is high and its capacity can be displayed, by a method wherein the composition of the mixed refrigerant circulating in a refrigerant circuit is estimated at the time of operation, is varied according to its estimate, and is properly controlled corresponding to the operating condition. CONSTITUTION: A compressor 1, a four-way valve 2, a heat source-side heat-exchanger 3, a throttling device 4, a load-side heat-exchanger 5 and a low-pressure receiver 6 are respectively connected to each other, and a refrigerant circuit is composed. A controller 100 determines the degree of opening of the throttling device 4 on the basis of data from a first thermal sensor 101, a second temperature sensor 102 and a pressure sensor 103, and controls a refrigerant-circulating system. When the degree of opening of the throttling device 4 is determined, first of all, either cooling operation or heating operation is determined. In the case of the cooling operation, an evaporating temperature Te is found on the basis of a composition α1 of a nonazeotropic mixture circulating in the refrigerant circuit, a temperature T1 detected by the first temperature sensor 101, and a temperature T2 detected by the second temperature sensor 102, and the degree of opening of the throttling device 4 is determined in order that the degree of superheat, SH=T2-Te, is at a target value corresponding to the composition α1 .

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、冷媒に数種をブレンド
した非共沸混合冷媒を用いる冷媒循環システム及び冷凍
・空調装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a refrigerant circulation system and a refrigerating / air-conditioning apparatus using a non-azeotropic mixed refrigerant in which several kinds of refrigerant are blended.

【0002】[0002]

【従来の技術】図34は、例えば特公平6−12201
号に示された従来の非共沸混合冷媒を用いた冷凍・空調
装置であり、図中1は圧縮機、5は負荷側熱交換器、4
a,4bは主絞り装置、3は熱源側熱交換器で、これら
を冷媒配管にて接続されて、冷凍サイクルの主回路を形
成している。29は精留塔で、その塔頂部には冷媒配管
50と冷却源30が配設された冷媒配管51とにより塔
頂貯溜器31が接続され、また、上記精留塔底部には冷
媒配管52と加熱源32が配設された冷媒配管53とに
より塔頂貯溜器33が接続されている。
2. Description of the Related Art FIG. 34 shows, for example, Japanese Patent Publication No. 6-12201.
No. 1 is a compressor, 5 is a load side heat exchanger, 4 is a refrigerating / air-conditioning apparatus using a conventional non-azeotropic mixed refrigerant.
Reference numerals a and 4b are main expansion devices, and 3 is a heat source side heat exchanger, which are connected by a refrigerant pipe to form a main circuit of a refrigeration cycle. 29 is a rectification tower, the tower top reservoir 31 is connected to the tower top by a refrigerant pipe 50 and a refrigerant pipe 51 in which a cooling source 30 is arranged, and a refrigerant pipe 52 is provided at the bottom of the rectification tower. And the refrigerant pipe 53 in which the heating source 32 is arranged, the tower overhead reservoir 33 is connected.

【0003】負荷側熱交換器5と熱源側熱交換器3の間
には、開閉弁34が設置された冷媒配管54により塔頂
貯溜器31が接続され、また、開閉弁36が設置された
冷媒配管55により塔底貯溜器33が接続されている。
熱源側熱交換器3の上流側には、副絞り装置37と開閉
弁38は設置された冷媒配管56により塔頂貯溜器31
が接続され、また、副絞り装置37と開閉弁39が設置
された冷媒配管57により塔底貯溜器33が接続されて
いる。そして、塔頂貯溜器31から冷媒配管56への流
出口は塔頂貯溜器11の底部に、また、塔底貯溜器33
から冷媒配管57への流出口は塔底貯溜器33の底部に
それぞれ設置されている。
Between the load side heat exchanger 5 and the heat source side heat exchanger 3, a tower pipe reservoir 31 is connected by a refrigerant pipe 54 having an opening / closing valve 34, and an opening / closing valve 36 is installed. The tower bottom reservoir 33 is connected by a refrigerant pipe 55.
On the upstream side of the heat source side heat exchanger 3, a sub-throttle device 37 and an on-off valve 38 are installed by a refrigerant pipe 56 in which the overhead reservoir 31 is installed.
, And the bottom reservoir 33 is connected by a refrigerant pipe 57 in which an auxiliary expansion device 37 and an opening / closing valve 39 are installed. The outlet from the overhead reservoir 31 to the refrigerant pipe 56 is at the bottom of the overhead reservoir 11, and the bottom reservoir 33.
To the refrigerant pipe 57 are installed at the bottom of the tower bottom reservoir 33.

【0004】上記構成において、圧縮機1で圧縮された
高温高圧の非共沸混合冷媒(以下、冷媒と言う)の蒸気
は矢印Aの方向に流れ、負荷側熱交換器5で凝縮して主
絞り装置4aに入る。通常運転時には開閉弁34,36
は閉じられているのでそのまま主絞り装置4bに入り、
低温低圧になった冷媒は、熱源側熱交換器3で蒸発して
再び圧縮機1に戻る。
In the above structure, the vapor of the high-temperature and high-pressure non-azeotropic mixed refrigerant (hereinafter referred to as refrigerant) compressed by the compressor 1 flows in the direction of arrow A, is condensed in the load side heat exchanger 5, and is mainly condensed. Enter the diaphragm device 4a. Open / close valves 34, 36 during normal operation
Is closed, so enter the main diaphragm device 4b as it is,
The low-temperature low-pressure refrigerant evaporates in the heat source side heat exchanger 3 and returns to the compressor 1 again.

【0005】この主回路を流れる冷媒組成を変える場合
において、まず、主回路を流れる冷媒の組成を非常に高
沸点成分に富んだものにするには、開閉弁38,34を
閉じ、開閉弁39,36を開く。そうすると、主絞り装
置4aを出た主回路を流れる冷媒の一部は、開いている
開閉弁36へ分流し、残りは主絞り装置4bに流入して
通常の運転と同様の回路で流れる。開閉弁36へ流入し
た冷媒は、塔底貯溜器33に入る。塔底貯溜器33に入
った冷媒は、一部は開いている開閉弁39を通って副絞
り装置37に入り、熱源側熱交換器3の上流側で主回路
を流れる冷媒と合流し、残りは加熱源32が設置された
冷媒配管53に入り、加熱されて冷媒精留塔29内を蒸
気となって上昇する。このとき、塔頂貯溜器31に貯溜
されている冷媒液も冷媒配管50から冷媒精留塔29内
を下降し、上昇してくる冷媒蒸気と気液接触して、いわ
ゆる精留作用を行う。
In the case of changing the composition of the refrigerant flowing through the main circuit, first, in order to make the composition of the refrigerant flowing through the main circuit rich in extremely high boiling point components, the on-off valves 38 and 34 are closed and the on-off valve 39 is closed. , 36 open. Then, a part of the refrigerant flowing out of the main expansion device 4a flows to the open / close valve 36, and the rest flows into the main expansion device 4b to flow in the same circuit as in the normal operation. The refrigerant flowing into the opening / closing valve 36 enters the tower bottom reservoir 33. The refrigerant that has entered the tower bottom reservoir 33 partially enters the sub expansion device 37 through the open / close valve 39, merges with the refrigerant that flows in the main circuit on the upstream side of the heat source side heat exchanger 3, and remains. Enters the refrigerant pipe 53 in which the heating source 32 is installed and is heated to rise in the refrigerant rectification column 29 as vapor. At this time, the refrigerant liquid stored in the overhead reservoir 31 also descends from the refrigerant pipe 50 in the refrigerant rectification column 29 and comes into gas-liquid contact with the rising refrigerant vapor to perform a so-called rectification action.

【0006】こうして、冷媒蒸気は上昇するにつれて低
沸点成分に富んだものとなり、冷却源30が設置された
冷媒配管51に導入されて液化し、開閉弁38が閉じら
れていることにより塔頂貯溜器31に貯溜される。この
ような精留作用が繰り返され、ついには、塔頂貯溜器3
1には非常に低沸点成分に富んだ冷媒だけが貯溜される
ことになる。したがって、主回路を流れる冷媒の組成
は、非常に高沸点成分に富んだものにするようにしてい
た。
Thus, the refrigerant vapor becomes rich in low-boiling components as it rises, is introduced into the refrigerant pipe 51 in which the cooling source 30 is installed and is liquefied, and the on-off valve 38 is closed so that the overhead storage It is stored in the container 31. Such rectification action is repeated until finally the overhead reservoir 3
Only the refrigerant rich in a very low boiling point component is stored in 1. Therefore, the composition of the refrigerant flowing through the main circuit has been made rich in the components having a very high boiling point.

【0007】主回路を流れる冷媒の組成を、低沸点成分
に富んだものにするには、開閉弁38,34を開き、開
閉弁39,36を閉じる。そうすると、主絞り装置4a
を出た主回路を流れる冷媒の一部は分流して、開いてい
る開閉弁34を通り、塔頂貯溜器31に流入するが、開
閉弁38も開いているため、流入してきた冷媒の一部は
冷媒配管4aを通り、副絞り装置37を通って主回路に
合流する。そして、残りの冷媒は、冷媒配管50から冷
媒精留塔29内に入り下降する。このとき、塔底貯溜器
33内の冷媒の一部が加熱源32で加熱されて冷媒精留
塔内を上昇し、下降する液と気液接触して、いわゆる精
留作用を行う。このようにして、下降する冷媒液は徐々
に高沸点成分に富んだものになり、開閉弁39が閉じら
れているため塔底貯溜器33に貯溜される。そして、こ
のような精留作用が繰り返され、ついには、塔底貯溜器
33には、非常に高沸点成分に富んだ冷媒だけが貯溜さ
れることになる。したがって、主回路を流れる冷媒の組
成は、非常に低沸点成分に富んだものにするようにして
いた。非共沸混合冷媒を循環させる技術については上記
の他には、特公平5−40221号公報、特公平6−2
3625号公報が知られている。
To make the composition of the refrigerant flowing through the main circuit rich in low-boiling components, the on-off valves 38 and 34 are opened and the on-off valves 39 and 36 are closed. Then, the main diaphragm device 4a
A part of the refrigerant flowing through the main circuit that has flowed out flows into the overhead reservoir 31 through the open / close valve 34 that is open, but since the open / close valve 38 is also open, The portion passes through the refrigerant pipe 4a, passes through the sub expansion device 37, and joins with the main circuit. Then, the remaining refrigerant enters the refrigerant rectification column 29 through the refrigerant pipe 50 and descends. At this time, a part of the refrigerant in the bottom reservoir 33 is heated by the heating source 32 to rise in the refrigerant rectification column and come into gas-liquid contact with the descending liquid to perform a so-called rectification action. In this way, the descending refrigerant liquid gradually becomes rich in high-boiling components, and is stored in the column bottom reservoir 33 because the on-off valve 39 is closed. Then, such rectification action is repeated, and finally, only the refrigerant rich in the extremely high boiling point component is stored in the column bottom reservoir 33. Therefore, the composition of the refrigerant flowing through the main circuit has been made rich in extremely low boiling point components. Regarding the technique of circulating the non-azeotropic mixed refrigerant, in addition to the above, Japanese Patent Publication No. 5-40221 and Japanese Patent Publication No. 6-2
Japanese Patent No. 3625 is known.

【0008】[0008]

【発明が解決しようとする課題】このような従来の冷凍
・空調装置では、冷媒の組成を検出したり判断する手段
がなく、組成に応じた制御がなされず、必ずしも、効率
の良い運転を行うことができなかった。また、制御が非
常に複雑なものとなっていた。本発明の目的は、上記の
課題を解決するもので、冷媒回路内を循環する冷媒の組
成を運転中に推定し、冷媒の組成を変更するものであ
る。さらに本発明は運転中の冷媒の組成に応じた制御を
行うものである。さらに、本発明の目的は運転の状態に
応じて適正な制御を行うもので、組成の調整をより短時
間に行うものである。さらに、本発明の目的はより信頼
性の高い非共沸混合冷媒を用いたシステム及び装置を提
供しようというものである。
In such a conventional refrigeration / air-conditioning apparatus, there is no means for detecting or judging the composition of the refrigerant, control is not performed according to the composition, and efficient operation is not always performed. I couldn't. In addition, the control is very complicated. An object of the present invention is to solve the above problems and to estimate the composition of the refrigerant circulating in the refrigerant circuit during operation and change the composition of the refrigerant. Further, the present invention performs control according to the composition of the refrigerant during operation. Further, the object of the present invention is to perform appropriate control according to the operating state, and to adjust the composition in a shorter time. Further, it is an object of the present invention to provide a system and apparatus using a non-azeotropic mixed refrigerant having higher reliability.

【0009】[0009]

【課題を解決するための手段】請求項1に係る本発明の
冷媒循環システムは、圧縮機、熱源側熱交換器、絞り装
置、負荷側熱交換器及び低圧レシーバを順次接続し、冷
媒数種を混合した非共沸混合冷媒を循環させ、冷媒循環
システム内の冷媒の流れる方向、起動からの経過時間、
負荷量等の各運転の状態を判断する運転判断手段と、各
運転の状態毎にあらかじめ設定された冷媒の組成状態を
記憶する記憶手段と、運転判断手段が判断した運転状態
にもとづいて記憶手段から冷媒の組成状態を選択する冷
媒組成選択手段と、この冷媒組成選択手段の選択した冷
媒の組成状態に冷媒循環システムを循環する冷媒の組成
を変更する冷媒組成設定手段と、を備えたものである。
According to a first aspect of the present invention, there is provided a refrigerant circulation system in which a compressor, a heat source side heat exchanger, a throttle device, a load side heat exchanger and a low pressure receiver are sequentially connected, and several refrigerants are used. Circulates a non-azeotropic mixed refrigerant mixed with, the flow direction of the refrigerant in the refrigerant circulation system, the elapsed time from startup,
Operation determination means for determining each operation state such as load amount, storage means for storing the composition state of the refrigerant preset for each operation state, and storage means based on the operation state determined by the operation determination means From the refrigerant composition selection means for selecting the composition state of the refrigerant, and the refrigerant composition setting means for changing the composition of the refrigerant circulating through the refrigerant circulation system to the composition state of the refrigerant selected by the refrigerant composition selection means, is there.

【0010】請求項2に係る本発明の冷媒循環システム
は、冷媒の組成を変更する冷媒組成設定手段が絞り装置
の開度設定手段である。
In the refrigerant circulation system of the present invention according to claim 2, the refrigerant composition setting means for changing the composition of the refrigerant is the opening degree setting means of the expansion device.

【0011】請求項3に係る本発明の冷媒循環システム
は、冷媒循環組成選択手段の選択した冷媒の組成状態に
もとづいて冷媒循環システムの運転の制御の設定値を決
定する制御手段を備えたものである。
The refrigerant circulation system of the present invention according to claim 3 is provided with a control means for determining a set value for controlling the operation of the refrigerant circulation system based on the composition state of the refrigerant selected by the refrigerant circulation composition selection means. Is.

【0012】請求項4に係る本発明の冷媒循環システム
は、圧縮機、熱源側熱交換器、絞り装置、負荷側熱交換
器及び低圧レシーバを順次接続し、冷媒数種を混合した
非共沸混合冷媒を循環させ、冷媒循環システムの各運転
の状態を判断する運転判断手段と、この運転判断手段が
判断した運転状態にもとづいて、冷媒循環システムの運
転の制御の設定値を変更し、冷媒循環システムの制御を
行う制御手段と、を備えたものである。
According to a fourth aspect of the refrigerant circulation system of the present invention, a compressor, a heat source side heat exchanger, a throttling device, a load side heat exchanger and a low pressure receiver are sequentially connected, and a non-azeotropic mixture of several refrigerants is mixed. Circulating the mixed refrigerant, based on the operation determination means for determining the state of each operation of the refrigerant circulation system, and the operating state determined by this operation determination means, changing the set value of the operation control of the refrigerant circulation system, the refrigerant And a control means for controlling the circulation system.

【0013】請求項5に係る本発明の冷媒循環システム
は、冷媒循環システムの運転の制御の設定値として、蒸
発器出口過熱度または凝縮器出口過冷却度の少なくとも
いずれか一方の目標値を設定し、この目標値に応じて制
御するものである。
In the refrigerant circulation system of the present invention according to claim 5, the target value of at least one of the evaporator outlet superheat degree and the condenser outlet supercooling degree is set as a set value for the operation control of the refrigerant circulation system. However, the control is performed according to this target value.

【0014】請求項6に係る本発明の冷媒循環システム
は、圧縮機、熱源側熱交換器、絞り装置、負荷側熱交換
器及び低圧レシーバを順次接続し、冷媒数種を混合した
非共沸混合冷媒を循環させ、冷房時と暖房時とで冷媒循
環システムの制御の設定値を変更し、冷媒循環システム
の運転の制御を行う制御手段を備えたものである。
According to a sixth aspect of the present invention, there is provided a refrigerant circulation system in which a compressor, a heat source side heat exchanger, a throttle device, a load side heat exchanger and a low pressure receiver are sequentially connected, and a non-azeotropic mixture of several refrigerants is mixed. A control means is provided which circulates the mixed refrigerant, changes the set value of the control of the refrigerant circulation system during cooling and heating, and controls the operation of the refrigerant circulation system.

【0015】請求項7に係る本発明の冷媒循環システム
は、圧縮機、熱源側熱交換器、絞り装置、負荷側熱交換
器及び低圧レシーバを順次接続し、冷媒数種を混合した
非共沸混合冷媒を用い、冷房時、暖房時及び圧縮機の運
転容量とで冷媒循環システムの制御の設定値を変更し、
冷媒循環システムの運転の制御を行う制御手段を備えた
ものである。
According to a seventh aspect of the refrigerant circulation system of the present invention, a compressor, a heat source side heat exchanger, a throttle device, a load side heat exchanger, and a low pressure receiver are sequentially connected, and a non-azeotropic mixture of several refrigerants is mixed. Using a mixed refrigerant, changing the set value of the control of the refrigerant circulation system during cooling, heating and the operating capacity of the compressor,
It is provided with a control means for controlling the operation of the refrigerant circulation system.

【0016】請求項8に係る本発明の冷媒循環システム
は、圧縮機、熱源側熱交換器、絞り装置、負荷側熱交換
器及び低圧レシーバを順次接続し、冷媒数種を混合した
非共沸混合冷媒を用い、圧縮機起動からの時間に応じて
冷媒循環システムの制御の設定値を変更し、冷媒循環シ
ステムの運転の制御を行う制御手段を備えたものであ
る。
A refrigerant circulation system of the present invention according to claim 8 is a non-azeotropic mixture of several kinds of refrigerant, which is formed by sequentially connecting a compressor, a heat source side heat exchanger, a throttle device, a load side heat exchanger and a low pressure receiver. The present invention is provided with a control means that uses a mixed refrigerant and changes the set value of the control of the refrigerant circulation system according to the time from the start of the compressor to control the operation of the refrigerant circulation system.

【0017】請求項9に係る本発明の冷媒循環システム
は、制御の設定値の変更を、所定時間毎、または運転状
態の大きな変更毎に行う。
According to the ninth aspect of the refrigerant circulation system of the present invention, the set value of the control is changed every predetermined time or every major change of the operating condition.

【0018】請求項10に係る本発明の冷凍・空調装置
は、圧縮機、熱源側熱交換器、絞り装置、負荷側熱交換
器及び低圧レシーバを順次接続し、冷媒に数種を混合し
た非共沸混合冷媒を循環させ、冷媒回路内を循環する冷
媒の組成を推定する機構と、検知した冷媒の組成に応じ
て、冷凍サイクルの制御の設定値を変更し制御を行う制
御器を備えたものである。
In the refrigeration / air-conditioning system of the present invention according to claim 10, the compressor, the heat source side heat exchanger, the expansion device, the load side heat exchanger, and the low-pressure receiver are sequentially connected, and several types of refrigerant are mixed. A mechanism that circulates the azeotropic mixed refrigerant and estimates the composition of the refrigerant that circulates in the refrigerant circuit, and a controller that changes the set value of the refrigeration cycle control according to the detected composition of the refrigerant and performs control It is a thing.

【0019】請求項11に係る本発明の冷凍・空調装置
は、圧縮機、熱源側熱交換器、絞り装置、負荷側熱交換
器及び低圧レシーバを順次接続し、冷媒を混合した非共
沸混合冷媒を用いる冷凍サイクルにおいて、熱源側熱交
換器または負荷側出口近傍に冷媒が飽和状態となる箇所
の温度および圧力を検出する手段を設け、この検出値に
より、冷媒回路内を循環する冷媒の組成を演算し、組成
演算値に応じて冷凍サイクルの制御の設定値を変更し、
冷凍サイクルの制御を行う制御器とを備えたものであ
る。
The refrigeration / air-conditioning system of the present invention according to claim 11 is a non-azeotropic mixture in which a compressor, a heat source side heat exchanger, a throttle device, a load side heat exchanger and a low pressure receiver are sequentially connected to mix refrigerants. In a refrigeration cycle using a refrigerant, a means for detecting the temperature and pressure of a place where the refrigerant becomes saturated near the heat source side heat exchanger or the load side outlet is provided, and by this detected value, the composition of the refrigerant circulating in the refrigerant circuit. To change the set value of the refrigeration cycle control according to the calculated composition value,
And a controller for controlling the refrigeration cycle.

【0020】請求項12に係る本発明の冷凍・空調装置
は、熱源側熱交換器と負荷側熱交換器のうち、蒸発器と
なる熱交換器出口の冷媒温度を検出する温度検出手段
と、上記蒸発器出口の冷媒圧力を検出する圧力検出手段
とを備えたものである。又、請求項13に係る本発明の
冷凍・空調装置は、熱源側熱交換器と負荷側熱交換器の
うち、凝縮器となる熱交換器出口の冷媒圧力を検出する
圧力検出手段と、上記凝縮器出口の冷媒温度を検出する
温度検出手段と、を備えたものである。
In the refrigeration / air-conditioning apparatus of the present invention according to claim 12, of the heat source side heat exchanger and the load side heat exchanger, temperature detecting means for detecting the refrigerant temperature at the outlet of the heat exchanger serving as an evaporator, Pressure detecting means for detecting the refrigerant pressure at the outlet of the evaporator is provided. Further, the refrigeration / air-conditioning apparatus of the present invention according to claim 13 is pressure detecting means for detecting the refrigerant pressure at the heat exchanger outlet of the heat source side heat exchanger and the load side heat exchanger, which is a condenser, Temperature detecting means for detecting the temperature of the refrigerant at the outlet of the condenser.

【0021】請求項14に係る本発明の冷凍・空調装置
は、圧縮機、熱源側熱交換器、高圧レシーバ、絞り装
置、負荷側熱交換器を順次接続し、冷媒数種を混合した
非共沸混合冷媒を用いる冷凍サイクルにおいて、高圧レ
シーバ内部の冷媒温度を検出する温度検出手段と、高圧
レシーバ内部の冷媒圧力を検出する圧力検出手段と、温
度検出手段と上記圧力検出手段の検出値により、冷媒回
路内を循環する冷媒の組成を演算し、組成演算値に応じ
て冷凍サイクルの制御の設定値を変更し、冷凍サイクル
の制御を行う制御器とを備えたものである。
In the refrigeration / air-conditioning system of the present invention according to claim 14, a compressor, a heat source side heat exchanger, a high pressure receiver, a throttling device, and a load side heat exchanger are sequentially connected, and a non-coexistence system in which several refrigerants are mixed is used. In a refrigeration cycle using a boiling mixed refrigerant, a temperature detecting means for detecting the refrigerant temperature inside the high pressure receiver, a pressure detecting means for detecting the refrigerant pressure inside the high pressure receiver, and a detection value of the temperature detecting means and the pressure detecting means, A controller for calculating the composition of the refrigerant circulating in the refrigerant circuit, changing the setting value of the refrigeration cycle control according to the composition calculation value, and controlling the refrigeration cycle.

【0022】請求項15に係る本発明の冷凍・空調装置
は、推定されまたは演算された冷媒回路内を循環する冷
媒の組成に応じて、冷媒ガスの飽和温度を演算し、蒸発
器出口過熱度、または凝縮器出口過冷却度が所定値とな
るよう開度を変更する絞り装置を備えたものである。
According to the fifteenth aspect of the refrigeration / air-conditioning system of the present invention, the saturation temperature of the refrigerant gas is calculated according to the composition of the refrigerant circulating in the estimated or calculated refrigerant circuit, and the evaporator outlet superheat degree is calculated. Or a throttle device for changing the opening so that the degree of supercooling at the condenser outlet becomes a predetermined value.

【0023】請求項16に係る本発明の冷凍・空調装置
は、圧縮機、四方弁、熱源側熱交換器、過冷却熱交換
器、第一の絞り装置、負荷側熱交換器及び低圧レシーバ
を順次接続し、冷媒数種を混合した非共沸混合冷媒を用
いる冷凍サイクルにおいて、上記熱源側熱交換器と上記
第一の絞り装置の間の冷媒回路より分岐し、第二の絞り
装置および上記過冷却用熱交換器を介し、低圧のガス配
管と接続するバイパス配管と、上記第二の絞り装置入口
の冷媒温度を検出する第一の温度検出手段と、上記第二
の絞り装置出口の冷媒温度を検出する第二の温度検出手
段と、上記第二の絞り装置出口の冷媒圧力を検出する圧
力検出手段と、上記第一および第二の温度検出手段と上
記圧力検出手段の検出値により、冷媒回路内を循環する
冷媒の組成を演算し、上記組成演算値に応じて冷凍サイ
クルの制御の設定値を変更し、冷凍サイクルの制御を行
うメイン制御器とを備えたものである。
The refrigeration / air-conditioning apparatus of the present invention according to claim 16 comprises a compressor, a four-way valve, a heat source side heat exchanger, a supercooling heat exchanger, a first expansion device, a load side heat exchanger and a low pressure receiver. In a refrigeration cycle using a non-azeotropic mixed refrigerant in which several refrigerants are mixed in sequence, branched from the refrigerant circuit between the heat source side heat exchanger and the first expansion device, the second expansion device and the above Via a supercooling heat exchanger, a bypass pipe connected to a low-pressure gas pipe, a first temperature detecting means for detecting the refrigerant temperature at the inlet of the second expansion device, and a refrigerant at the outlet of the second expansion device. Second temperature detecting means for detecting the temperature, the pressure detecting means for detecting the refrigerant pressure of the second expansion device outlet, by the detection value of the first and second temperature detecting means and the pressure detecting means, Calculate the composition of the refrigerant circulating in the refrigerant circuit Change the set value of the control of the refrigerating cycle in accordance with the composition calculated value, in which a main controller for controlling the refrigeration cycle.

【0024】請求項17に係る本発明の冷凍・空調装置
は、熱源側熱交換器と過冷却熱交換器の間に、第三の絞
り装置を備えたものである。
The refrigeration / air-conditioning system according to the seventeenth aspect of the present invention is provided with a third expansion device between the heat source side heat exchanger and the supercooling heat exchanger.

【0025】請求項18に係る本発明の冷凍・空調装置
は、バイパスの配管入り口は、メイン配管の下部に設け
たものである。
According to the eighteenth aspect of the refrigeration / air-conditioning system of the present invention, the bypass pipe inlet is provided at the bottom of the main pipe.

【0026】請求項19に係る本発明の冷凍・空調装置
は、バイパスの分岐部付近のメイン配管上流に、冷媒攪
拌部を設けたものである。
In the refrigerating / air-conditioning apparatus of the present invention according to claim 19, a refrigerant agitating portion is provided upstream of the main pipe near the branch portion of the bypass.

【0027】請求項20に係る本発明の冷凍・空調装置
は、複数の負荷側熱交換器を備え、かつ、停止している
負荷側熱交換器の冷媒配管を組成調整手段とする。
In the refrigeration / air-conditioning system of the present invention according to claim 20, a plurality of load side heat exchangers are provided, and refrigerant pipes of the stopped load side heat exchangers are used as the composition adjusting means.

【0028】請求項21に係る本発明の冷凍・空調装置
は、圧縮機、四方弁、熱源側熱交換器、第二の絞り装
置、高圧レシーバ、第一の絞り装置、負荷側熱交換器及
び低圧レシーバ等により構成され、冷媒数種を混合した
非共沸混合冷媒を用いる冷凍サイクルにおいて、上記負
荷側熱交換器と第一の絞り装置の間で温度を検出する第
一の温度検出手段と、第一の絞り装置と高圧レシーバの
間で温度を検出する第二の温度検出手段と、上記熱源側
熱交換器と第二の絞り装置の間で温度を検出する第三の
温度検出手段と、第二の絞り装置と高圧レシーバの間で
温度を検出する第四の温度検出手段と、上記四方弁と上
記負荷側熱交換器の間で温度を検出する第五の温度検出
手段と、上記四方弁と上記熱源側熱交換器の間で温度を
検出する第六の温度検出手段と、上記負荷側熱交換器と
第一の絞り装置の間で圧力を検出する第一の圧力検出手
段と、上記熱源側熱交換器と第二の絞り装置の間で圧力
を検出する第二の圧力検出手段と、冷媒回路内を循環す
る冷媒の組成を演算する演算装置と、第一および第二の
絞り装置の開度を演算し、制御を行うメイン制御器を備
える。
A refrigeration / air-conditioning system of the present invention according to claim 21 is a compressor, a four-way valve, a heat source side heat exchanger, a second expansion device, a high pressure receiver, a first expansion device, a load side heat exchanger, and In a refrigeration cycle configured by a low-pressure receiver or the like and using a non-azeotropic mixed refrigerant in which several refrigerants are mixed, a first temperature detecting means for detecting a temperature between the load side heat exchanger and the first expansion device, A second temperature detecting means for detecting a temperature between the first expansion device and the high pressure receiver, and a third temperature detecting means for detecting a temperature between the heat source side heat exchanger and the second expansion device. , A fourth temperature detecting means for detecting a temperature between the second expansion device and the high-pressure receiver, a fifth temperature detecting means for detecting a temperature between the four-way valve and the load side heat exchanger, and Sixth temperature to detect the temperature between the four-way valve and the heat source side heat exchanger Output means, first pressure detecting means for detecting pressure between the load side heat exchanger and the first expansion device, and pressure detection between the heat source side heat exchanger and the second expansion device. It is provided with a second pressure detecting means, a computing device for computing the composition of the refrigerant circulating in the refrigerant circuit, and a main controller for computing and controlling the openings of the first and second expansion devices.

【0029】請求項22に係る本発明の冷凍・空調装置
は、圧縮機、四方弁、熱源側熱交換器、第二の絞り装
置、高圧レシーバ、第一の絞り装置、負荷側熱交換器及
び低圧レシーバ等により構成され、冷媒数種を混合した
非共沸混合冷媒を用いる冷凍サイクルにおいて、上記高
圧レシーバと上記低圧レシーバとを接続するバイパス配
管と、上記バイパス配管上に設置した第三の絞り装置
と、上記低圧レシーバと第三の絞り装置の間で温度を検
出する第一の温度検出手段と、第三の絞り装置と高圧レ
シーバの間で温度を検出する第二の温度検出手段と、上
記負荷側熱交換器と第一の絞り装置の間で温度を検出す
る第三の温度検出手段と、上記四方弁と負荷側熱交換器
の間で温度を検出する第四の温度検出手段と、第二の絞
り装置と上記熱源側熱交換器の間で温度を検出する第五
の温度検出手段と、上記四方弁と上記熱源側熱交換器の
間で温度を検出する第六の温度検出手段と、第三の絞り
装置と低圧レシーバの間で圧力を検出する第一の圧力検
出手段と、上記圧縮機の吐出側の圧力を検出する第二の
圧力検出手段と、冷媒回路内を循環する冷媒の組成を演
算する演算装置と、第三の絞り装置の開度を決定し、組
成調整を行う組成調整器と、第一および第二の絞り装置
の開度を演算し、制御を行うメイン制御器を備える。
A refrigeration / air-conditioning system of the invention according to claim 22 is a compressor, a four-way valve, a heat source side heat exchanger, a second expansion device, a high pressure receiver, a first expansion device, a load side heat exchanger, and In a refrigeration cycle configured by a low-pressure receiver or the like and using a non-azeotropic mixed refrigerant in which several refrigerants are mixed, a bypass pipe connecting the high-pressure receiver and the low-pressure receiver, and a third throttle installed on the bypass pipe Device, a first temperature detecting means for detecting the temperature between the low pressure receiver and the third expansion device, a second temperature detection means for detecting the temperature between the third expansion device and the high pressure receiver, Third temperature detecting means for detecting the temperature between the load side heat exchanger and the first expansion device, and fourth temperature detecting means for detecting the temperature between the four-way valve and the load side heat exchanger, , The second expansion device and the heat source side heat Fifth temperature detecting means for detecting the temperature between the exchangers, sixth temperature detecting means for detecting the temperature between the four-way valve and the heat source side heat exchanger, a third expansion device and a low pressure receiver. A first pressure detecting means for detecting the pressure between, a second pressure detecting means for detecting the pressure on the discharge side of the compressor, an arithmetic device for calculating the composition of the refrigerant circulating in the refrigerant circuit, A composition regulator that determines the opening of the third expansion device and adjusts the composition, and a main controller that calculates and controls the openings of the first and second expansion devices.

【0030】請求項23に係る本発明の冷凍・空調装置
は、高圧レシーバ前後のメイン配管と、第三の絞り装置
と低圧レシーバの間の配管を熱交換させる過冷却熱交換
器を備える。
A refrigeration / air-conditioning system according to a twenty-third aspect of the present invention comprises a main pipe before and after the high pressure receiver, and a supercooling heat exchanger for exchanging heat between the third throttle device and the pipe between the low pressure receiver.

【0031】請求項24に係る本発明の冷凍・空調装置
は、圧縮機吐出側配管と、低圧レシーバの吸入側配管と
を接続するバイパス配管と、上記バイパス配管上に開閉
機構を備える。
According to a twenty-fourth aspect of the present invention, there is provided a refrigeration / air-conditioning system of the present invention, which comprises a bypass pipe connecting the compressor discharge side pipe and a suction side pipe of the low pressure receiver, and an opening / closing mechanism on the bypass pipe.

【0032】請求項25に係る本発明の冷凍・空調装置
は、高圧レシーバと第一の絞り装置の間に設置する第一
の開閉機構と、高圧レシーバと第二の絞り装置の間に設
置する第二の開閉機構と、第一の開閉機構をバイパス
し、第三の開閉機構と第一の過冷却熱交換器を連通する
バイパス配管と、第二の開閉機構をバイパスし、第四の
開閉機構と第二の過冷却熱交換器を連通するバイパス配
管と備え、第一および第二の過冷却熱交換器を低圧レシ
ーバに内蔵する。
The refrigeration / air-conditioning system of the present invention according to claim 25 is installed between the high-pressure receiver and the second expansion device, and the first opening / closing mechanism installed between the high-pressure receiver and the first expansion device. Bypass piping that bypasses the second opening / closing mechanism and the first opening / closing mechanism and connects the third opening / closing mechanism to the first subcooling heat exchanger, and bypasses the second opening / closing mechanism and the fourth opening / closing mechanism. A low-pressure receiver includes the first and second supercooling heat exchangers, and a bypass pipe that connects the mechanism and the second supercooling heat exchanger.

【0033】請求項26に係る本発明の冷凍・空調装置
は、低圧レシーバを分割し、液冷媒を貯溜する部分と、
圧縮機への一時的な液戻りを防止するバッファ部分を備
える。
According to a twenty-sixth aspect of the refrigeration / air-conditioning system of the present invention, a low-pressure receiver is divided into a portion for storing liquid refrigerant,
A buffer portion is provided to prevent temporary liquid return to the compressor.

【0034】請求項27に係る本発明の冷凍・空調装置
は、圧縮機、凝縮器、絞り装置及び蒸発器を順次接続
し、冷媒数種を混合した非共沸混合冷媒を用いる冷凍サ
イクルにおいて、上記熱源側熱交換器と上記第一の絞り
装置の間の冷媒回路より分岐し、第二の絞り装置および
上記過冷却用熱交換器を介し、低圧のガス配管と接続す
るバイパス配管と、上記第二の絞り装置入口の冷媒温度
を検出する第一の温度検出手段と、上記第二の絞り装置
出口の冷媒温度を検出する第二の温度検出手段と、上記
第二の絞り装置出口の冷媒圧力を検出する圧力検出手段
と、メイン配管における上記バイパス配管との分岐部付
近に設置する乾き度検出手段と、上記第一および第二の
温度検出手段、上記圧力検出手段および上記乾き度検出
手段の検出値により、冷媒回路内を循環する冷媒の組成
を演算する組成演算装置と、上記組成演算値に応じて冷
凍サイクルの制御の設定値を変更し、冷凍サイクルの制
御を行うメイン制御器とを備えたものである。
A refrigeration / air-conditioning system of the present invention according to claim 27 is a refrigeration cycle in which a compressor, a condenser, a throttle device and an evaporator are sequentially connected, and a non-azeotropic mixed refrigerant in which several refrigerants are mixed is used, Branch from the refrigerant circuit between the heat source side heat exchanger and the first expansion device, through the second expansion device and the supercooling heat exchanger, a bypass pipe connected to the low-pressure gas pipe, and First temperature detecting means for detecting the refrigerant temperature at the second throttle device inlet, second temperature detecting means for detecting the refrigerant temperature at the second throttle device outlet, and refrigerant at the second throttle device outlet Pressure detecting means for detecting pressure, dryness detecting means installed near a branch portion of the main pipe with the bypass pipe, the first and second temperature detecting means, the pressure detecting means and the dryness detecting means Depending on the detected value of A composition calculation device that calculates the composition of the refrigerant circulating in the refrigerant circuit, and a main controller that changes the set value of the refrigeration cycle control according to the composition calculation value and controls the refrigeration cycle. is there.

【0035】[0035]

【作用】請求項1に係る本発明は、圧縮機、熱源側熱交
換器、絞り装置、負荷側熱交換器及び低圧レシーバを順
次接続した冷媒回路において、冷媒に数種を混合した非
共沸混合冷媒を用い、冷媒回路内を循環する目標とする
冷媒の組成(以後、循環組成と言う)を運転状態より判
断して、冷媒組成設定手段により、循環組成を目標とす
る循環組成に調整するので、運転状態に適した非共沸混
合冷媒の循環組成を常に維持する。請求項2に係る本発
明は、絞り装置の開度の設定により冷媒の組成を変更す
る。
In the refrigerant circuit in which the compressor, the heat source side heat exchanger, the expansion device, the load side heat exchanger and the low pressure receiver are sequentially connected, the present invention according to claim 1 is a non-azeotropic mixture of several kinds of refrigerant. Using the mixed refrigerant, the composition of the target refrigerant that circulates in the refrigerant circuit (hereinafter referred to as the circulation composition) is determined from the operating state, and the refrigerant composition setting means adjusts the circulation composition to the target circulation composition. Therefore, the circulation composition of the non-azeotropic mixed refrigerant suitable for the operating state is always maintained. The present invention according to claim 2 changes the composition of the refrigerant by setting the opening degree of the expansion device.

【0036】請求項3に係る本発明は、圧縮機、熱源側
熱交換器、絞り装置、負荷側熱交換器及び低圧レシーバ
を順次接続した冷媒回路において、冷媒に数種を混合し
た非共沸混合冷媒を用い、運転状態にもとづいて選択さ
れた循環組成に応じて冷媒循環システムの運転の制御の
設定値を演算し、制御を行う。請求項4に係る本発明
は、冷媒システムの運転状態を判断して制御の設定値を
変更する。請求項5に係る本発明は、蒸発器出口過熱度
または凝縮器出口過冷却度の少なくともいずれか一方を
目標値として制御する。
According to a third aspect of the present invention, in a refrigerant circuit in which a compressor, a heat source side heat exchanger, a throttle device, a load side heat exchanger, and a low pressure receiver are sequentially connected, a non-azeotropic mixture of several kinds of refrigerant is used. The mixed refrigerant is used to calculate and set the control value for the operation of the refrigerant circulation system according to the circulation composition selected based on the operating state. According to a fourth aspect of the present invention, the operating state of the refrigerant system is determined and the control set value is changed. According to the fifth aspect of the present invention, at least one of the evaporator outlet superheat degree and the condenser outlet supercooling degree is controlled as a target value.

【0037】請求項6に係る本発明は、圧縮機、熱源側
熱交換器、絞り装置、負荷側熱交換器及び低圧レシーバ
を順次接続した冷媒回路において、冷媒に数種を混合し
た非共沸混合冷媒を用い、冷房時と暖房時で冷媒の循環
システムの制御パラメータの変更を行い、運転を制御す
る。
According to a sixth aspect of the present invention, in a refrigerant circuit in which a compressor, a heat source side heat exchanger, a throttle device, a load side heat exchanger, and a low-pressure receiver are sequentially connected, a non-azeotropic mixture of several kinds of refrigerant is used. The mixed refrigerant is used to control the operation by changing the control parameters of the refrigerant circulation system during cooling and heating.

【0038】請求項7に係る本発明は、圧縮機、熱源側
熱交換器、絞り装置、負荷側熱交換器及び低圧レシーバ
を順次接続した冷媒回路において、冷媒に数種を混合し
た非共沸混合冷媒を用い、冷房時、暖房時及び圧縮機の
運転容量によって、冷媒循環システムの制御パラメータ
の変更を行い、運転を制御する。
According to a seventh aspect of the present invention, in a refrigerant circuit in which a compressor, a heat source side heat exchanger, a throttle device, a load side heat exchanger and a low pressure receiver are sequentially connected, a non-azeotropic mixture of several kinds of refrigerant is used. The mixed refrigerant is used to control the operation by changing the control parameters of the refrigerant circulation system according to the cooling capacity, the heating status, and the operating capacity of the compressor.

【0039】請求項8に係る本発明は、圧縮機、熱源側
熱交換器、絞り装置、負荷側熱交換器及び低圧レシーバ
を順次接続した冷媒回路において、冷媒に数種を混合し
た非共沸混合冷媒を用い、圧縮機起動からの時間によっ
て、制御パラメータの変更を行い、運転を制御し、立ち
上げ特性を良くする。
In the refrigerant circuit in which the compressor, the heat source side heat exchanger, the expansion device, the load side heat exchanger and the low pressure receiver are sequentially connected, the present invention according to claim 8 is a non-azeotropic mixture of several kinds of refrigerant. By using a mixed refrigerant, the control parameters are changed, the operation is controlled, and the startup characteristics are improved depending on the time from the start of the compressor.

【0040】請求項9に係る本発明は、冷媒循環システ
ムの制御の設定値の変更を所定時間毎、または運転状態
の大きな変動毎に行い、変化に追従した制御を行う。
According to the ninth aspect of the present invention, the set value of the control of the refrigerant circulation system is changed every predetermined time period or every large change of the operating state, and the control following the change is performed.

【0041】請求項10に係る本発明は、圧縮機、熱源
側熱交換器、絞り装置、負荷側熱交換器及び低圧レシー
バを順次接続した冷媒回路において、冷媒に数種を混合
した非共沸混合冷媒を用い、冷媒回路内を循環する冷媒
の組成(以後、循環組成と言う)を推定する。推定した
組成により、冷凍サイクルの制御の設定値を演算し、組
成調整手段により、循環組成を目標とする循環組成に調
整し、循環組成に応じた制御を行う。
According to a tenth aspect of the present invention, in a refrigerant circuit in which a compressor, a heat source side heat exchanger, an expansion device, a load side heat exchanger and a low pressure receiver are sequentially connected, a non-azeotropic mixture of several kinds of refrigerant is used. Using the mixed refrigerant, the composition of the refrigerant circulating in the refrigerant circuit (hereinafter referred to as the circulation composition) is estimated. A set value for control of the refrigeration cycle is calculated based on the estimated composition, the circulation composition is adjusted to a target circulation composition by the composition adjusting means, and control according to the circulation composition is performed.

【0042】請求項11に係る本発明は、冷媒が飽和状
態となる箇所の温度および圧力を検出し、この値により
冷媒の組成を求め、この組成に応じて冷凍サイクルの制
御の設定値を変更し制御する。
The present invention according to claim 11 detects the temperature and pressure at a place where the refrigerant becomes saturated, obtains the composition of the refrigerant from these values, and changes the set value for control of the refrigeration cycle according to this composition. Control.

【0043】請求項12に係る本発明は、熱源側熱交換
器と負荷側熱交換器のうち、蒸発器となる熱交換器出口
において冷媒の圧力と温度を検出し、検出された圧力と
温度より循環組成を演算し、冷凍サイクルの制御を行
う。
According to the twelfth aspect of the present invention, of the heat source side heat exchanger and the load side heat exchanger, the pressure and temperature of the refrigerant are detected at the heat exchanger outlet serving as an evaporator, and the detected pressure and temperature are detected. The circulation composition is calculated and the refrigeration cycle is controlled.

【0044】請求項13に係る本発明は、熱源側熱交換
器と負荷側熱交換器のうち、凝縮器となる熱交換器出口
において冷媒の圧力と温度を検出し、検出された圧力と
温度より循環組成を演算し、冷凍サイクルの制御を行
う。
In the thirteenth aspect of the present invention, of the heat source side heat exchanger and the load side heat exchanger, the pressure and temperature of the refrigerant are detected at the heat exchanger outlet serving as a condenser, and the detected pressure and temperature are detected. The circulation composition is calculated and the refrigeration cycle is controlled.

【0045】請求項14に係る本発明は、飽和液面の存
在する高圧レシーバ内部の冷媒の圧力と温度を検出し、
検出された圧力と温度より循環組成を演算し、冷凍サイ
クルの制御を行う。
According to the fourteenth aspect of the present invention, the pressure and temperature of the refrigerant inside the high-pressure receiver in which the saturated liquid surface exists is detected,
The circulation composition is calculated from the detected pressure and temperature to control the refrigeration cycle.

【0046】請求項15に係る本発明は、推定されまた
は演算された冷媒回路内を循環する冷媒の組成に応じ
て、冷媒ガスの飽和温度を演算し、蒸発器出口過熱度、
または凝縮器出口過冷却度が所定値となるよう絞り装置
の開度を変更するものである。
According to the fifteenth aspect of the present invention, the saturation temperature of the refrigerant gas is calculated in accordance with the estimated or calculated composition of the refrigerant circulating in the refrigerant circuit, and the evaporator outlet superheat degree,
Alternatively, the opening degree of the expansion device is changed so that the degree of supercooling at the condenser outlet becomes a predetermined value.

【0047】請求項16に係る本発明は、熱源側熱交換
器と第一の絞り装置の間の冷媒回路より分岐し、第二の
絞り装置および過冷却用熱交換器を介し、低圧のガス配
管と接続するバイパス管と、第二の絞り装置入口の冷媒
温度を検出する第一の温度検出手段と、第二の絞り装置
出口の冷媒温度を検出する第二の温度検出手段と、第二
の絞り装置出口の冷媒圧力を検出する圧力検出手段と、
温度検出手段と圧力検出手段の検出値により、冷媒回路
内を循環する冷媒の組成を演算し、組成演算値に応じて
冷凍サイクルの制御の設定値を変更し、冷凍サイクルの
制御を行う。
According to the sixteenth aspect of the present invention, a low-pressure gas is branched from the refrigerant circuit between the heat source side heat exchanger and the first expansion device, and passes through the second expansion device and the supercooling heat exchanger. A bypass pipe connected to the pipe, a first temperature detecting means for detecting the refrigerant temperature at the second throttle device inlet, a second temperature detecting means for detecting the refrigerant temperature at the second throttle device outlet, and a second Pressure detecting means for detecting the refrigerant pressure at the outlet of the expansion device,
The composition of the refrigerant circulating in the refrigerant circuit is calculated based on the detection values of the temperature detection means and the pressure detection means, and the set value of the refrigeration cycle control is changed in accordance with the calculated composition value to control the refrigeration cycle.

【0048】請求項17に係る本発明は、熱源側熱交換
器と過冷却熱交換器の間に、第三の絞り装置を備え、冷
房時と暖房時において、バイパス管入口付近を液状態と
する。
According to a seventeenth aspect of the present invention, a third expansion device is provided between the heat source side heat exchanger and the subcooling heat exchanger, and the vicinity of the bypass pipe inlet is in a liquid state during cooling and heating. To do.

【0049】請求項18に係る本発明は、メイン配管と
バイパス管の分岐部を、バイパス管をメイン配管に対し
て、下向きに取り付けることにより、バイパス管には常
に冷媒の液を導く。
According to the eighteenth aspect of the present invention, by installing the branch portion of the main pipe and the bypass pipe downward with respect to the main pipe, the liquid of the refrigerant is always guided to the bypass pipe.

【0050】請求項19に係る本発明は、バイパス管分
岐部付近のメイン配管上流に、冷媒攪拌部を設ける。
According to the nineteenth aspect of the present invention, the refrigerant stirring section is provided upstream of the main pipe in the vicinity of the bypass pipe branch.

【0051】請求項20に係る本発明は、循環組成の制
御手段を停止している負荷側熱交換器とし、組成調整す
る場合には、停止している負荷側熱交換器に冷媒を貯溜
あるいは放出する。
The present invention according to claim 20 provides a load side heat exchanger in which the circulating composition control means is stopped, and when the composition is adjusted, refrigerant is stored in the stopped load side heat exchanger. discharge.

【0052】請求項21に係る本発明は、冷房運転時
は、負荷側熱交換器と第一の絞り装置の間の温度の検出
値と、第一の絞り装置と高圧レシーバの間の温度の検出
値と、負荷側熱交換器と第一の絞り装置の間の圧力の検
出値より、演算装置にて循環組成を演算する。暖房運転
時は、熱源側熱交換器と第二の絞り装置の間の温度の検
出値と、第二の絞り装置と高圧レシーバの間の温度の検
出値と、熱源側熱交換器と第二の絞り装置の間の圧力の
検出値より、演算装置にて循環組成を演算する。更に、
メイン制御器において、第一および第二の絞り装置の開
度を演算し、組成に応じた制御を行う。
According to the twenty-first aspect of the present invention, during cooling operation, the detected value of the temperature between the load side heat exchanger and the first expansion device and the temperature between the first expansion device and the high pressure receiver are detected. The circulating composition is calculated by the calculation device from the detected value and the detected value of the pressure between the load side heat exchanger and the first expansion device. During heating operation, the detected value of the temperature between the heat source side heat exchanger and the second expansion device, the detected value of the temperature between the second expansion device and the high-pressure receiver, the heat source side heat exchanger and the second The circulation composition is calculated by the calculation device from the detected value of the pressure between the expansion devices. Furthermore,
In the main controller, the openings of the first and second expansion devices are calculated, and control is performed according to the composition.

【0053】請求項22に係る本発明は、高圧レシーバ
と上記低圧レシーバとを接続するバイパス配管上にて、
温度と圧力を検出し、その検出値から、演算装置にて循
環組成を演算する。組成調整器は、演算した循環組成が
目標の循環組成となるように、第三の絞り装置の開度を
決定する。メイン制御器では、演算した循環組成に応じ
て、圧縮機の回転数、熱源側熱交換器のファンの回転
数、絞り装置の開度を決定する。
According to a twenty-second aspect of the present invention, on a bypass pipe connecting the high-voltage receiver and the low-voltage receiver,
The temperature and pressure are detected, and the circulating composition is calculated by the calculation device from the detected values. The composition adjuster determines the opening degree of the third expansion device so that the calculated circulation composition becomes the target circulation composition. The main controller determines the rotation speed of the compressor, the rotation speed of the fan of the heat source side heat exchanger, and the opening degree of the expansion device according to the calculated circulation composition.

【0054】請求項23に係る本発明は、高圧レシーバ
前後のメイン配管と、第三の絞り装置と低圧レシーバの
間の配管を熱交換させる過冷却熱交換器を設け、熱交換
することにより、バイパス配管を流れる冷媒の持つエン
タルピをメイン回路を流れる冷媒へ伝達する。
The present invention according to claim 23 provides a subcooling heat exchanger for exchanging heat between the main pipe before and after the high pressure receiver and the pipe between the third expansion device and the low pressure receiver, and by exchanging heat, The enthalpy of the refrigerant flowing through the bypass pipe is transmitted to the refrigerant flowing through the main circuit.

【0055】請求項24に係る本発明は、圧縮機吐出側
配管と、低圧レシーバの吸入側配管とを接続するバイパ
ス配管を設け、低圧レシーバ内部の液冷媒を、圧縮機よ
り吐出する高温の冷媒ガスによって速やかに蒸発させ
る。
According to a twenty-fourth aspect of the present invention, a bypass pipe connecting the compressor discharge side pipe and the suction side pipe of the low pressure receiver is provided, and the liquid refrigerant inside the low pressure receiver is discharged from the compressor at a high temperature. Evaporate quickly with gas.

【0056】請求項25に係る本発明は、高圧レシーバ
と第一の絞り装置の間に設置する第一の開閉機構と、高
圧レシーバと第二の絞り装置の間に設置する第二の開閉
機構と、第一の開閉機構をバイパスし、第三の開閉機構
と第一の過冷却熱交換器を連通するバイパス配管と、第
二の開閉機構をバイパスし、第四の開閉機構と第二の過
冷却熱交換器を連通するバイパス配管とを設け、第一お
よび第二の過冷却熱交換器を低圧レシーバに内蔵するこ
とによって、低圧レシーバ内部の液冷媒を、高圧、高温
の液管によって速やかに蒸発させ、かつ、低圧レシーバ
内部にて冷媒液が蒸発するときの蒸発潜熱を、メイン回
路を流れる冷媒に伝達する。
The present invention according to claim 25 provides a first opening / closing mechanism installed between the high-voltage receiver and the first diaphragm device, and a second opening-closing mechanism installed between the high-voltage receiver and the second diaphragm device. And a bypass pipe that bypasses the first opening / closing mechanism and connects the third opening / closing mechanism to the first subcooling heat exchanger, bypasses the second opening / closing mechanism, and connects the fourth opening / closing mechanism and the second opening / closing mechanism. By providing a bypass pipe that communicates the subcooling heat exchanger and incorporating the first and second subcooling heat exchangers in the low-pressure receiver, the liquid refrigerant inside the low-pressure receiver can be quickly transferred by the high-pressure and high-temperature liquid pipes. And the latent heat of evaporation when the refrigerant liquid is evaporated inside the low-pressure receiver is transferred to the refrigerant flowing through the main circuit.

【0057】請求項26に係る本発明は、低圧レシーバ
を分割し、液冷媒を貯溜する部分と、圧縮機への一時的
な液戻りを防止するバッファ部分を設け、圧縮機に対す
る液戻りを防止する。
According to the twenty-sixth aspect of the present invention, the low-pressure receiver is divided, a portion for storing the liquid refrigerant and a buffer portion for preventing temporary liquid return to the compressor are provided, and liquid return to the compressor is prevented. To do.

【0058】請求項27に係る本発明は、冷房運転時
は、第二の絞り装置出入口の冷媒温度を検出する温度検
出手段と、第二の絞り装置出口の冷媒圧力を検出する圧
力検出手段とが検出する値から、冷媒回路内を循環する
冷媒の組成を演算し、目標とする組成になるように組成
調整手段にて、組成を調整する。暖房運転時は、第二の
絞り装置出口の冷媒温度を検出する温度検出手段と、第
二の絞り装置出口の冷媒圧力を検出する圧力検出手段
と、メイン配管においてバイパス配管との分岐部付近の
冷媒の乾き度を検出する乾き度検出手段とが検出する値
から、冷媒回路内を循環する冷媒の組成を演算し、目標
とする組成になるように組成調整手段にて、組成を調整
する。
According to a twenty-seventh aspect of the present invention, during cooling operation, temperature detecting means for detecting the refrigerant temperature at the inlet / outlet of the second expansion device and pressure detecting means for detecting the refrigerant pressure at the outlet of the second expansion device. Is calculated, the composition of the refrigerant circulating in the refrigerant circuit is calculated, and the composition is adjusted by the composition adjusting means so that the composition becomes a target composition. During the heating operation, the temperature detecting means for detecting the refrigerant temperature at the outlet of the second expansion device, the pressure detecting means for detecting the pressure of the refrigerant at the outlet of the second expansion device, and the vicinity of the branch part of the bypass pipe in the main pipe. The composition of the refrigerant circulating in the refrigerant circuit is calculated from the value detected by the dryness detecting means for detecting the dryness of the refrigerant, and the composition is adjusted by the composition adjusting means so as to obtain a target composition.

【0059】[0059]

【実施例】【Example】

実施例1.以下、本発明の一実施例を図について説明す
る。図1は、本発明の実施例1を示す冷媒回路図であ
る。図において、1は圧縮機、2は四方弁、3は熱源側
熱交換器、4は絞り装置、5は負荷側熱交換器、6は低
圧レシーバであり、これらを順次接続して、メインの冷
媒回路をなす。また、101は第一の温度センサ、10
2は第二の温度センサ、103は圧力センサ、100は
上記第一の温度センサ、第二の温度センサ、圧力センサ
の情報より、絞り装置の開度を決定し、制御を行う制御
器である。なお、冷房と暖房でセンシング位置が異なる
または共通化を特徴とする場合、冷媒の流れが冷房と暖
房で逆になるので、凝縮器と蒸発器が特定できなくな
る。そこで、冷房時に凝縮器、暖房時に蒸発器になる熱
交換器を熱源側熱交換器とする。また、負荷側熱交換器
はその逆を示す。
Example 1. An embodiment of the present invention will be described below with reference to the drawings. First Embodiment FIG. 1 is a refrigerant circuit diagram showing a first embodiment of the present invention. In the figure, 1 is a compressor, 2 is a four-way valve, 3 is a heat source side heat exchanger, 4 is a throttle device, 5 is a load side heat exchanger, and 6 is a low-pressure receiver. It forms a refrigerant circuit. Further, 101 is a first temperature sensor, 10
Reference numeral 2 is a second temperature sensor, 103 is a pressure sensor, and 100 is a controller that determines the opening degree of the expansion device from the information of the first temperature sensor, the second temperature sensor, and the pressure sensor, and performs control. . When the sensing positions are different or common in cooling and heating, the flow of the refrigerant is reversed between cooling and heating, so that the condenser and the evaporator cannot be specified. Therefore, a heat exchanger that serves as a condenser during cooling and an evaporator during heating is used as a heat source side heat exchanger. The load side heat exchanger shows the opposite.

【0060】作用について説明する。冷房時、図1の冷
媒の流れに示すごとく、冷媒は、圧縮機1より吐出さ
れ、熱源側熱交換器3にて凝縮し、絞り装置4にて絞ら
れ、低温・低圧の二相状態となる。この低温・低圧の二
相冷媒は、負荷側熱交換器5に流入し、周囲より熱を奪
い冷房すると共に、自身は蒸発気化し、四方弁2、低圧
レシーバ6を介して、圧縮機1に戻る。
The operation will be described. During cooling, as shown in the flow of the refrigerant in FIG. 1, the refrigerant is discharged from the compressor 1, condensed in the heat source side heat exchanger 3, condensed by the expansion device 4, and brought into a low-temperature / low-pressure two-phase state. Become. The low-temperature low-pressure two-phase refrigerant flows into the load-side heat exchanger 5 and takes heat from the surroundings to cool it, and at the same time evaporates and vaporizes itself to the compressor 1 via the four-way valve 2 and the low-pressure receiver 6. Return.

【0061】暖房時、冷媒は、圧縮機1より吐出され、
負荷側熱交換器5にて、周囲に熱を放出し暖房すると共
に、自身は凝縮し液化し、絞り装置4にて絞られ、低温
・低圧の二相状態となる。この低温・低圧の二相冷媒
は、熱源側熱交換器3に流入し、蒸発気化し、四方弁
2、低圧レシーバ6を介して、圧縮機1に戻る。さら
に、運転条件を検知して、運転の状態を判断するには、
例えば、モード切換えスイッチに連動していれば、冷房
や暖房等のモードが判断できる。また熱交換器の入口ま
たは出口の温度を検出し、冷媒の流れる方向等を判断し
ても良い。四方弁のON−OFFからも運転状態の判断
が可能である。
During heating, the refrigerant is discharged from the compressor 1,
In the load side heat exchanger 5, heat is released to the surroundings for heating, and at the same time, the heat condenses and liquefies itself, and is throttled by the expansion device 4 to become a low temperature / low pressure two-phase state. The low-temperature low-pressure two-phase refrigerant flows into the heat source side heat exchanger 3, evaporates and vaporizes, and returns to the compressor 1 via the four-way valve 2 and the low pressure receiver 6. Furthermore, to detect the driving condition and judge the driving condition,
For example, the mode such as cooling or heating can be determined if it is linked to the mode changeover switch. Alternatively, the temperature of the inlet or the outlet of the heat exchanger may be detected to determine the flowing direction of the refrigerant. It is possible to judge the operating state from the ON-OFF of the four-way valve.

【0062】余剰冷媒量と循環組成の変化について説明
する。まず、余剰冷媒の発生量であるが、余剰冷媒の量
は、冷媒回路が決定されると、概ね、冷房か暖房かによ
り決定される。よって、冷房及び暖房における余剰冷媒
の発生量は予め、推定することができる。また、図2は
低圧レシーバ6の液面レベルと循環組成の関係を示して
いる。図に示す通り、低圧レシーバ内部の冷媒量が増加
すると、循環組成は増加する。よって、これらの関係を
使うと、冷房及び暖房における循環組成が、どの程度に
なるかを、予め、予測することができる。すなわち、各
運転の状態に応じた冷媒の組成状態を予め設定し、記憶
しておいて、判断された運転状態によって、この中から
選択すれば良い。
The change in the excess refrigerant amount and the circulation composition will be described. First, regarding the amount of excess refrigerant generated, the amount of excess refrigerant is generally determined by cooling or heating once the refrigerant circuit is determined. Therefore, the amount of surplus refrigerant generated in cooling and heating can be estimated in advance. 2 shows the relationship between the liquid level of the low pressure receiver 6 and the circulating composition. As shown in the figure, as the amount of refrigerant inside the low-pressure receiver increases, the circulation composition increases. Therefore, by using these relationships, it is possible to predict in advance how much the circulation composition in cooling and heating will be. That is, the composition state of the refrigerant corresponding to the state of each operation may be set and stored in advance, and the composition state may be selected from these depending on the determined operation state.

【0063】図3は、冷房時及び暖房時の絞り装置4の
開度決定を行う過程のフローチャートである。絞り装置
4の開度決定は、上記のごとく予め推定した循環組成を
もとに以下のように行う。先ずこの冷房か暖房かを判断
する(ST01)。冷房時の場合は循環組成をα1 とし
(ST02)、このα1 と第一の温度センサ101が検
出する温度T1と第二の温度センサ102が検出する温
度T2とから蒸発温度te を求め(ST03)、次に、
蒸発器出口過熱度であるSH=T2−Teが組成α1
応じて定められた目標値に一定となるように絞り装置4
の開度を決定する(ST05,ST06)。
FIG. 3 is a flow chart of the process of determining the opening degree of the expansion device 4 during cooling and heating. The opening degree of the expansion device 4 is determined as follows based on the circulation composition estimated in advance as described above. First, it is determined whether this is cooling or heating (ST01). In the case of cooling, the circulation composition is set to α 1 (ST02), and the evaporation temperature t e is obtained from this α 1 and the temperature T1 detected by the first temperature sensor 101 and the temperature T2 detected by the second temperature sensor 102. (ST03), then
The throttle device 4 so that SH = T2-Te, which is the degree of superheat at the outlet of the evaporator, becomes constant at a target value determined according to the composition α 1.
The opening degree of is determined (ST05, ST06).

【0064】暖房時(ST01)には循環組成をα2
し(ST07)、このα2 と圧力センサ103が検出す
る圧力Pから凝縮温度TC を算出する(ST08)。T
C と第二の温度センサ102が検出する温度T2より、
凝縮器出口過冷却度をSC=TC −T2から算出する
(ST09)。この凝縮器出口過冷却度SCが目標値に
一定となるように(ST10)、絞り装置4の開度を決
定する(ST11)。これらの結果、簡単な制御におい
て、効率の良い運転を行うことができる。
During heating (ST01), the circulating composition is set to α 2 (ST07), and the condensation temperature TC is calculated from this α 2 and the pressure P detected by the pressure sensor 103 (ST08). T
From C and the temperature T2 detected by the second temperature sensor 102,
The condenser outlet supercooling degree is calculated from SC = TC-T2 (ST09). The opening degree of the expansion device 4 is determined (ST11) so that the condenser outlet supercooling degree SC becomes constant at the target value (ST10). As a result, efficient operation can be performed with simple control.

【0065】上記のごとく、例えば、特にSCの値を変
更することにより、余剰冷媒が低圧レシーバから凝縮器
へ移ったり逆に凝縮器から低圧レシーバへ移ったりす
る。従って、低圧レシーバの液面が変動して組成が変わ
る。次にこの手順を説明する。まず、絞りを絞る。これ
により、SCが増大する。このため低圧レシーバの液面
が低下する。循環組成において低沸点成分の割合が減少
することになる。このように絞りの開度変更は、SCの
増減及び低圧レシーバの液面レベルの増減を介して、組
成の変化につながる。この場合、制御器は、循環組成の
直接的あるいは間接的な検知手段から組成を検知し、絞
りの検知手段から開度を求め、循環組成を調整する手段
を操作させる。また、一般に循環組成とは低沸点成分の
割合であり、低圧レシーバ内の減が減少すると、循環回
路内では高沸点成分がふえるので低沸点成分の割合が減
少することになる。
As described above, for example, by changing the value of SC in particular, the surplus refrigerant moves from the low pressure receiver to the condenser or vice versa. Therefore, the liquid level of the low-pressure receiver fluctuates and the composition changes. Next, this procedure will be described. First, narrow down the aperture. This increases SC. Therefore, the liquid level of the low-pressure receiver is lowered. The proportion of low boiling components in the circulating composition will be reduced. In this way, changing the aperture of the throttle leads to a change in composition through an increase / decrease in SC and an increase / decrease in the liquid level of the low-pressure receiver. In this case, the controller detects the composition from the direct or indirect detection means of the circulation composition, obtains the opening degree from the detection means of the throttle, and operates the means for adjusting the circulation composition. In general, the circulation composition is the proportion of low-boiling components, and when the decrease in the low-pressure receiver decreases, the proportion of low-boiling components decreases as the high-boiling components increase in the circulation circuit.

【0066】制御の設定値を変更させる場合は、SH,
SCの目標値を変更させたり、マルチ機種の場合は、凝
縮温度を一定にするための圧縮機の吐出圧の制御上の目
標とする圧力である目標高圧を変更する等の考えが一般
的である。なお、SCとはTc (凝縮温度、厳密には飽
和液温度)−Tc out (凝縮器出口温度)である。ま
た、SHとはTe out (蒸発器出口温度)−Te (蒸発
温度、厳密には飽和ガス温度)である。非共沸混合冷媒
では、飽和温度でも沸騰開始温度(沸点)と凝縮開始温
度(露点)とは異なる。
To change the control set value, SH,
It is a common idea to change the target value of SC, and in the case of multiple models, change the target high pressure, which is the target pressure for controlling the discharge pressure of the compressor to keep the condensing temperature constant. is there. Note that SC is Tc (condensation temperature, strictly speaking, saturated liquid temperature) -Tc out (condenser outlet temperature). Further, SH is Te out (evaporator outlet temperature) -Te (evaporation temperature, strictly speaking, saturated gas temperature). In the non-azeotropic mixed refrigerant, the boiling start temperature (boiling point) and the condensation start temperature (dew point) are different even at the saturation temperature.

【0067】上記では、冷房時、蒸発器出口のSH過熱
度を一定にする制御、及び暖房時凝縮器出口のSC冷却
度を一定にする制御を行うひとつの実施例について述べ
たが冷房または暖房と、蒸発器出口の過熱度を一定にす
る制御または凝縮器出口の過冷却度を一定にする制御と
は任意に組み合わせることができる。
In the above, one embodiment has been described in which the control for keeping the SH superheat degree at the evaporator outlet constant during cooling and the control for keeping the SC degree of cooling SC at the condenser outlet during heating are described. And the control for keeping the superheat degree at the evaporator outlet constant or the control for keeping the supercool degree at the condenser outlet constant.

【0068】実施例2.以下、本発明の実施例2を図に
ついて説明する。図4は、本発明の実施例2を示す冷媒
回路図である。図において、1は圧縮機、2は四方弁、
3は熱源側熱交換器、4は絞り装置、5は負荷側熱交換
器、6は低圧レシーバであり、これらを順次接続して、
メインの冷媒回路をなす。また、106は第一の温度セ
ンサ、107は第二の温度センサ、103は圧力セン
サ、100は上記第一の温度センサ、第二の温度セン
サ、圧力センサの情報より、絞り装置の開度を決定し、
制御を行う制御器である。また、負荷側熱交換器はa,
b二系続のマルチ回路を有する。
Example 2. Embodiment 2 of the present invention will be described below with reference to the drawings. FIG. 4 is a refrigerant circuit diagram showing Embodiment 2 of the present invention. In the figure, 1 is a compressor, 2 is a four-way valve,
3 is a heat source side heat exchanger, 4 is a throttle device, 5 is a load side heat exchanger, and 6 is a low-pressure receiver.
It forms the main refrigerant circuit. Further, 106 is the first temperature sensor, 107 is the second temperature sensor, 103 is the pressure sensor, 100 is the opening of the expansion device from the information of the first temperature sensor, the second temperature sensor, and the pressure sensor. Decide,
It is a controller that controls. The load side heat exchanger is a,
b It has a multi-circuit of two series.

【0069】作用について説明する。冷房時、図4の冷
媒の流れに示すごとく、冷媒は、圧縮機1より吐出さ
れ、熱源側熱交換器3にて凝縮し、絞り装置4にて絞ら
れ、低温・低圧の二相状態となる。この低温・低圧の二
相冷媒は、負荷側熱交換器5に流入し、周囲より熱を奪
い冷房すると共に、自身は蒸発気化し、四方弁2、低圧
レシーバ6を介して、圧縮機1に戻る。負荷側熱交換器
は、5aまたは5bのみの運転も可能である。
The operation will be described. During cooling, as shown in the flow of the refrigerant in FIG. 4, the refrigerant is discharged from the compressor 1, condensed in the heat source side heat exchanger 3, condensed by the expansion device 4, and brought into a low temperature / low pressure two-phase state. Become. The low-temperature low-pressure two-phase refrigerant flows into the load-side heat exchanger 5 and takes heat from the surroundings to cool it, and at the same time evaporates and vaporizes itself to the compressor 1 via the four-way valve 2 and the low-pressure receiver 6. Return. The load side heat exchanger can be operated only at 5a or 5b.

【0070】暖房時、冷媒は、圧縮機1より吐出され、
負荷側熱交換器5にて、周囲に熱を放出し暖房すると共
に、自身は凝縮し液化し、絞り装置4にて絞られ、低温
・低圧の二相状態となる。この低温・低圧の二相冷媒
は、熱源側熱交換器3に流入し、蒸発気化し、四方弁
2、低圧レシーバ6を介して、圧縮機1に戻る。負荷側
熱交換器は、5aまたは5bのみの運転も可能である。
During heating, the refrigerant is discharged from the compressor 1,
In the load side heat exchanger 5, heat is released to the surroundings for heating, and at the same time, the heat condenses and liquefies itself, and is throttled by the expansion device 4 to become a low temperature / low pressure two-phase state. The low-temperature low-pressure two-phase refrigerant flows into the heat source side heat exchanger 3, evaporates and vaporizes, and returns to the compressor 1 via the four-way valve 2 and the low pressure receiver 6. The load side heat exchanger can be operated only at 5a or 5b.

【0071】余剰冷媒量と循環組成の変化について説明
する。まず、余剰冷媒の発生量であるが、余剰冷媒の量
は、冷媒回路が決定されると、概ね、冷房か暖房かによ
り決定される。また、余剰冷媒量は、負荷側熱交換器の
運転台数にも依存するため、圧縮機の運転周波数によっ
て、負荷側熱交換器の運転台数も概ね把握する。この結
果、冷房及び暖房における余剰冷媒の発生量は圧縮機の
運転周波数の情報を加えると、より正確に予め、推定す
ることができる。また、図5は低圧レシーバ6の液面レ
ベルと循環組成の関係を示している。図に示す通り、低
圧レシーバ内部の冷媒量が増加すると、循環組成は増加
する。よって、これらの関係を使うと、冷房及び暖房に
おける循環組成が、圧縮機の運転周波数によって推定す
ることができる。
The change in the excess refrigerant amount and the circulation composition will be described. First, regarding the amount of excess refrigerant generated, the amount of excess refrigerant is generally determined by cooling or heating once the refrigerant circuit is determined. In addition, since the amount of surplus refrigerant also depends on the operating number of load-side heat exchangers, the operating number of load-side heat exchangers is also roughly understood from the operating frequency of the compressor. As a result, the amount of surplus refrigerant generated in cooling and heating can be estimated more accurately in advance by adding information on the operating frequency of the compressor. FIG. 5 shows the relationship between the liquid level of the low pressure receiver 6 and the circulating composition. As shown in the figure, as the amount of refrigerant inside the low-pressure receiver increases, the circulation composition increases. Therefore, using these relationships, the circulating composition in cooling and heating can be estimated by the operating frequency of the compressor.

【0072】絞り装置4の開度決定は、上記のごとく圧
縮機の運転周波数によって推定した循環組成から以下の
ように行う。冷房時の循環組成α1 を圧縮機の運転周波
数から求め、第一の温度センサ107が検出する温度T
1と第二の温度センサ106が検出する温度T2との差
SH=T1−T2が一定となるように絞り装置4の開度
を決定する。
The degree of opening of the expansion device 4 is determined as follows from the circulation composition estimated from the operating frequency of the compressor as described above. The circulating composition α 1 during cooling is obtained from the operating frequency of the compressor, and the temperature T detected by the first temperature sensor 107 is used.
The opening degree of the expansion device 4 is determined so that the difference SH = T1-T2 between 1 and the temperature T2 detected by the second temperature sensor 106 becomes constant.

【0073】暖房時の循環組成α2 を圧縮機の運転周波
数から求め、圧力センサ105が検出する圧力Pから凝
縮温度TC を算出する。TC と第二の温度センサ106
が検出する温度T2より、凝縮器出口過冷却度をSC=
TC −T2から算出する。この凝縮器出口過冷却度SC
が一定となるように、絞り装置4の開度を決定する。こ
れらの結果、簡単な制御において、熱交換器を複数有す
るマルチ冷媒回路においても、効率の良い運転を行うこ
とができる。
The circulation composition α 2 during heating is obtained from the operating frequency of the compressor, and the condensation temperature TC is calculated from the pressure P detected by the pressure sensor 105. TC and the second temperature sensor 106
From the temperature T2 detected by the
Calculate from TC-T2. This condenser outlet supercooling degree SC
The opening degree of the expansion device 4 is determined so that is constant. As a result, with simple control, efficient operation can be performed even in a multi-refrigerant circuit having a plurality of heat exchangers.

【0074】図5において、冷媒の組成を推定する場合
の一例を図6、図7に示す。図7のデータは予め実験等
により決定できる。冷房時または暖房時(ST13)、
圧縮機の周波数レベルに応じて(ST14,ST2
0)、記憶された循環組成を求めれば良い(ST15,
ST21)。温度や圧力を計測し、蒸発温度や凝縮温度
を求め(ST16,ST22)、SH,SCを算出(S
T17,ST23)し、目標値に応じて(ST18,S
T24)、開度を変更することにより、これらのデータ
より圧縮機の運転周波数、運転モード、及び循環組成を
関連付けすることができる。また、弁開度以外の変更の
例を図8に示す。図8において、k1 ,k2 は定数、Δ
Sは絞り装置の開度変更量である。冷房時には蒸発温度
Teを検知する。この検知したTeと蒸発器出口との差
としてSHを求める。SHの値とSHの目標値との差Δ
SHを演算し、このΔSHの量に応じて絞り装置の開度
を変更する。また、Teの目標値とTeとの差ΔTeに
応じて圧縮機の回転周波数Δfcompを演算する。暖
房時には、凝縮温度Tcを検知する。この検知したTc
と凝縮器出口との差としてSCを求める。SCの値とS
Cの目標値との差ΔSCを演算し、このΔSCの量に応
じて絞り装置の開度を変更する。また、Tcの目標値と
Tcとの差ΔTcに応じて圧縮機の回転周波数Δfco
mpを演算する。これにより、冷房時は蒸発温度に目標
値を設定し、暖房時は凝縮温度に目標値を設定し、各
々、目標値となるように圧縮機の周波数を変更する。
An example of estimating the composition of the refrigerant in FIG. 5 is shown in FIGS. 6 and 7. The data in FIG. 7 can be determined in advance by experiments or the like. During cooling or heating (ST13),
Depending on the frequency level of the compressor (ST14, ST2
0), the stored circulation composition may be obtained (ST15,
ST21). Temperature and pressure are measured, evaporation temperature and condensation temperature are calculated (ST16, ST22), and SH and SC are calculated (S
T17, ST23), and according to the target value (ST18, S
T24), the operating frequency of the compressor, the operating mode, and the circulation composition can be associated from these data by changing the opening degree. Further, FIG. 8 shows an example of changes other than the valve opening degree. In FIG. 8, k 1 and k 2 are constants and Δ
S is the opening change amount of the expansion device. The evaporation temperature Te is detected during cooling. SH is obtained as the difference between the detected Te and the evaporator outlet. Difference Δ between SH value and SH target value
SH is calculated, and the opening degree of the expansion device is changed according to the amount of ΔSH. Further, the rotation frequency Δfcomp of the compressor is calculated according to the difference ΔTe between the target value Te and Te. During heating, the condensing temperature Tc is detected. This detected Tc
And SC as the difference between the condenser outlet and the condenser outlet. SC value and S
The difference ΔSC from the target value of C is calculated, and the opening of the diaphragm device is changed according to the amount of ΔSC. Further, according to the difference ΔTc between the target value of Tc and Tc, the rotation frequency Δfco of the compressor
Calculate mp. As a result, the target value is set for the evaporation temperature during cooling, the target value is set for the condensation temperature during heating, and the frequency of the compressor is changed so as to reach the target value.

【0075】上述のごとく、SCやSHの変更により、
低圧レシーバの液面レベルが変化するのに加え、圧縮機
の運転周波数より、マルチ機種の場合、どの容量の室内
機が運転しているかを推定する。ここで室内機への寝込
みを考えなければ、室内機の運転容量が小さい程、冷媒
は余る。言い替えると圧縮機の運転周波数が小さい程、
低圧レシーバには余剰冷媒が溜まり、循環組成は低沸点
成分に富むようになる。さらに、圧縮機の運転周波数が
大きいときには室内機の運転台数(容量)は多いと言え
る。台数と容量の違いは同じ容量でも大きな能力を発揮
する室内機1台の場合もあれば、小さな能力のものが多
数の場合もある。これによって、多少バラツキはでる
が、容量が大きくなれば、余剰冷媒が減少するという傾
向は同じである。
As described above, by changing SC and SH,
In addition to the change in the liquid level of the low-pressure receiver, it is estimated from the operating frequency of the compressor which capacity of the indoor unit is operating in the case of multiple models. Here, if the operation capacity of the indoor unit is small, the refrigerant remains as long as the stagnation in the indoor unit is not considered. In other words, the smaller the operating frequency of the compressor,
Excess refrigerant accumulates in the low-pressure receiver, and the circulating composition becomes rich in low-boiling components. Furthermore, it can be said that the number of operating indoor units (capacity) is large when the operating frequency of the compressor is high. The difference between the number of units and the capacity may be one indoor unit that exhibits a large capacity even with the same capacity, or may be a large number of units having a small capacity. As a result, although there is some variation, the tendency that the excess refrigerant decreases as the capacity increases becomes the same.

【0076】絞り装置4の開度の設定値は運転のモード
や周波数条件等によって変えられる。すなわち、設定値
によってこの設定値に対応する開度に変更する。これに
伴って循環組成が徐々に対応した組成に変更することに
なる。この際、開度の変更によってシステムの負荷状態
が変化する。しかも組成変更によっても同様な負荷変化
が起こり、結果として周波数が加わる。これに対して
は、一定間隔毎(例えば1分毎)に絞りの開度及び圧縮
機の運転周波数を検知して設定値の変更を行うと良い。
ただし、この周期は圧縮機の運転周波数変更または絞り
の開度変更の周期と必ずしも一致しない。あるいは、ま
た、モードの切換え及び圧縮機の運転周波数の変動が大
きい時のみ設定値を変更することでも良い。これらの制
御により、運転状態の変化に追従した精度の良い制御が
可能となる。
The set value of the opening degree of the expansion device 4 can be changed depending on the operation mode, frequency conditions and the like. That is, depending on the set value, the opening is changed to correspond to this set value. Along with this, the circulating composition gradually changes to a corresponding composition. At this time, the load state of the system is changed by changing the opening degree. Moreover, a similar load change occurs even if the composition is changed, and as a result, the frequency is added. For this, it is advisable to detect the opening of the throttle and the operating frequency of the compressor at regular intervals (for example, every one minute) to change the set value.
However, this cycle does not always match the cycle of changing the operating frequency of the compressor or changing the opening of the throttle. Alternatively, the set value may be changed only when the mode switching and the fluctuation of the operating frequency of the compressor are large. With these controls, it is possible to perform highly accurate control that follows changes in operating conditions.

【0077】実施例3.以下、本発明の実施例3を図に
ついて説明する。図9は、本発明の実施例3を示す冷媒
回路図である。図において、1は圧縮機、3は熱源側熱
交換器、4は絞り装置、5は負荷側熱交換器、6は低圧
レシーバであり、これらを順次接続して、メインの冷媒
回路をなす。また、101は第一の温度センサ、102
は第二の温度センサ、100は上記第一の温度センサ及
び第二の温度センサの情報より、絞り装置の開度を決定
し、制御を行う制御器である。
Example 3. Embodiment 3 of the present invention will be described below with reference to the drawings. FIG. 9 is a refrigerant circuit diagram showing Embodiment 3 of the present invention. In the figure, 1 is a compressor, 3 is a heat source side heat exchanger, 4 is a throttle device, 5 is a load side heat exchanger, and 6 is a low pressure receiver, and these are sequentially connected to form a main refrigerant circuit. Further, 101 is a first temperature sensor, and 102
Is a second temperature sensor, and 100 is a controller that determines the opening degree of the expansion device based on the information of the first temperature sensor and the second temperature sensor, and performs control.

【0078】作用について説明する。冷媒は、圧縮機1
より吐出され、熱源側熱交換器3にて凝縮し、絞り装置
4にて絞られ、低温・低圧の二相状態となる。この低温
・低圧の二相冷媒は、負荷側熱交換器5に流入し、周囲
より熱を奪い冷房すると共に、自身は蒸発気化し、低圧
レシーバ6を介して、圧縮機1に戻る。
The operation will be described. The refrigerant is the compressor 1
Is discharged from the heat source side, condensed in the heat source side heat exchanger 3, and throttled by the expansion device 4 to be in a low temperature / low pressure two-phase state. The low-temperature low-pressure two-phase refrigerant flows into the load-side heat exchanger 5 to remove heat from the surroundings and cool, and at the same time evaporates itself and returns to the compressor 1 via the low-pressure receiver 6.

【0079】圧縮機起動時、低圧レシーバ6には、寝込
み冷媒及び圧縮機起動時の液バック等により、冷媒液が
溜まる。この後、冷媒回路内における冷媒の分布が適性
に向かうとともに、低圧レシーバ内部の冷媒液の量は減
少する。低圧レシーバ内部の冷媒液の量が減少すると、
循環組成も減少するため、循環組成もまた、圧縮機起動
からの時間によって、例えば図10のように減少する。
従って、循環組成αを圧縮機起動からの時間より推定
し、第一の温度センサ101が検出する温度T1と第二
の温度センサ102が検出する温度T2との差SH=T
1−T2が一定となるように絞り装置4の開度を決定す
る。この時、負荷側熱交換器出口過熱度SHの目標値
は、時間と共に変化する循環組成によって変更する。こ
の結果、圧縮機起動から定常状態に至るまでの時間を短
縮する。
When the compressor is started up, the low pressure receiver 6 is filled with the refrigerant liquid due to the sleeping refrigerant and the liquid bag when the compressor is started up. After that, the distribution of the refrigerant in the refrigerant circuit becomes appropriate, and the amount of the refrigerant liquid inside the low-pressure receiver decreases. When the amount of refrigerant liquid inside the low pressure receiver decreases,
Since the circulating composition also decreases, the circulating composition also decreases depending on the time from the start of the compressor, as shown in FIG. 10, for example.
Therefore, the circulation composition α is estimated from the time from the start of the compressor, and the difference SH = T between the temperature T1 detected by the first temperature sensor 101 and the temperature T2 detected by the second temperature sensor 102.
The opening degree of the expansion device 4 is determined so that 1-T2 is constant. At this time, the target value of the load side heat exchanger outlet superheat degree SH is changed according to the circulation composition which changes with time. As a result, the time from the start of the compressor to the steady state is shortened.

【0080】なお、起動時、液戻りや寝込みにより低圧
レシーバには液冷媒が溜まっていることが多く、循環組
成は低沸点成分に富んでいる。従って、SH=T1−T
2の目標値を組成に合わせて設定することにより、絞り
が絞り過ぎになったり、開け過ぎになることを防ぐ。こ
の結果、起動時低圧レシーバ内の液冷媒をスムーズに凝
縮器へと移動させることができる。この結果、圧縮機起
動から、冷媒回路が定常状態に至るまでの時間が短縮で
きる。
At the time of start-up, liquid refrigerant is often accumulated in the low-pressure receiver due to liquid return or stagnation, and the circulating composition is rich in low-boiling components. Therefore, SH = T1-T
By setting the target value of 2 in accordance with the composition, it is possible to prevent the aperture from being too narrow or being opened too much. As a result, the liquid refrigerant in the low-pressure receiver can be smoothly moved to the condenser at startup. As a result, the time from the start of the compressor to the steady state of the refrigerant circuit can be shortened.

【0081】なお、上記のような制御を行う起動状態
と、定常と考えられる状態とを、例えば、起動からの時
間や、あるいは、高圧圧力を1分毎に検知し、3分間の
変動幅が所定値以下になった場合(時間間隔は1分毎に
限らない)のようなデータから区分けすれば良い。
The starting state in which the above-mentioned control is performed and the state considered to be steady are detected, for example, from the time from the start or the high pressure is detected every minute, and the fluctuation range of 3 minutes is detected. It may be divided from the data such as when it becomes equal to or less than the predetermined value (the time interval is not limited to 1 minute).

【0082】実施例1〜3は運転モード、圧縮機の運転
周波数及び起動時等により、低圧レシーバ内に存在する
余剰冷媒量がある程度予測できるというもので、一般に
非共沸混合冷媒を用いた冷凍サイクルのアキュムレータ
のような低圧レシーバ内の冷媒は、高沸点成分に富んだ
液相と、低沸点成分に富んだ気相に分離され、高沸点成
分に富んだ液相はアキュムレータ内に貯溜される。この
ためアキュムレータ内に液冷媒が存在すると、冷凍サイ
クル内を循環する冷媒組成は低沸点成分が多くなる(循
環組成が増加する)傾向を示す。このアキュムレータ内
の冷媒液面高さhと循環組成αの関係は、アキュムレー
タ内の冷媒液面高さが増加する。すなわちアキュムレー
タ内の液冷媒量が増加する程、循環組成は増加する。従
って、この関係を予め実験などによって調べておけば、
液面検出器等で検出されたアキュムレータ内の冷媒液面
高さhから循環組成αを推定することができる。以上の
ように運転状態によって循環組成を調整し、運転状態に
適応した非共沸混合冷媒の組成状態を常に保つため、安
定した運転か可能で、運転の信頼性が高く、能力を常に
充分に発揮できる冷媒循環システムを得ることができ
る。
In Examples 1 to 3, the amount of surplus refrigerant present in the low-pressure receiver can be predicted to some extent depending on the operating mode, the operating frequency of the compressor, the start-up time, etc. In general, refrigeration using a non-azeotropic mixed refrigerant is used. Refrigerant in a low-pressure receiver such as a cycle accumulator is separated into a liquid phase rich in high-boiling components and a gas phase rich in low-boiling components, and the liquid phase rich in high-boiling components is stored in the accumulator. . Therefore, when the liquid refrigerant is present in the accumulator, the refrigerant composition circulating in the refrigeration cycle tends to have a large amount of low-boiling components (the circulation composition increases). The relationship between the refrigerant liquid level height h in the accumulator and the circulation composition α is such that the refrigerant liquid level height in the accumulator increases. That is, as the amount of liquid refrigerant in the accumulator increases, the circulation composition increases. Therefore, if you investigate this relationship beforehand by experiments,
The circulation composition α can be estimated from the refrigerant liquid level height h in the accumulator detected by the liquid level detector or the like. As described above, the circulation composition is adjusted according to the operating state, and the composition state of the non-azeotropic mixed refrigerant adapted to the operating state is always maintained, so stable operation is possible, the operation reliability is high, and the capacity is always sufficient. It is possible to obtain a refrigerant circulation system that can be demonstrated.

【0083】実施例4.以下、本発明の実施例4を図に
ついて説明する。図11は、本発明の実施例4を示す冷
媒回路図である。図において、1は圧縮機、3は熱源側
熱交換器、4は絞り装置、5は負荷側熱交換器、6は低
圧レシーバであり、これらを順次接続して、メインの冷
媒回路をなす。また、101は第一の温度センサ、10
3は第一の圧力センサ、106は第二の温度センサ、1
05は第二の圧力センサ、100は上記第一の温度セン
サ及び第一の圧力センサの情報より、循環組成を演算
し、且つ、絞り装置の開度を決定し、制御を行う制御器
である。
Embodiment 4 FIG. Embodiment 4 of the present invention will be described below with reference to the drawings. FIG. 11 is a refrigerant circuit diagram showing Embodiment 4 of the present invention. In the figure, 1 is a compressor, 3 is a heat source side heat exchanger, 4 is a throttle device, 5 is a load side heat exchanger, and 6 is a low pressure receiver, and these are sequentially connected to form a main refrigerant circuit. Further, 101 is a first temperature sensor, 10
3 is a first pressure sensor, 106 is a second temperature sensor, 1
Reference numeral 05 is a second pressure sensor, and 100 is a controller that calculates the circulation composition from the information of the first temperature sensor and the first pressure sensor, determines the opening degree of the expansion device, and controls. .

【0084】作用について説明する。冷媒は、圧縮機1
より吐出され、熱源側熱交換器3にて凝縮し、絞り装置
4にて絞られ、低温・低圧の二相状態となる。この低温
・低圧の二相冷媒は、負荷側熱交換器5に流入し、周囲
より熱を奪い冷房すると共に、自身は蒸発気化し、低圧
レシーバ6を介して、圧縮機1に戻る。
The operation will be described. The refrigerant is the compressor 1
Is discharged from the heat source side, condensed in the heat source side heat exchanger 3, and throttled by the expansion device 4 to be in a low temperature / low pressure two-phase state. The low-temperature low-pressure two-phase refrigerant flows into the load-side heat exchanger 5 to remove heat from the surroundings and cool, and at the same time evaporates itself and returns to the compressor 1 via the low-pressure receiver 6.

【0085】制御器は、循環組成αを演算する機能と、
絞り装置4を駆動する機能を有する。循環組成αの演算
は、第一の温度センサが検出する温度T1と第一の圧力
センサが検出する圧力Pとにより求める。図12は圧力
一定の下で、横軸に冷媒の組成、縦軸に温度をとった図
である。図中、飽和蒸気温度は破線、飽和液温度は一点
鎖線、冷媒の乾き度X=0.9の線を実線で示してい
る。図より、二相部において、圧力、温度および冷媒の
乾き度が決定されると、組成は一意的に決まることが分
かる。従って、一般に、蒸発器出口冷媒の乾き度を0.
9程度と考えると、上記温度Tと圧力Pによって、循環
組成を求めることができる。制御器では、算出した循環
組成と第二の圧力センサ105が検出する値P2によ
り、凝縮温度Tcを算出する。第二の温度センサが検出
する値T2と上記凝縮温度Tcとの差により、凝縮器出
口過冷却度SCをSC=Tc−T2から算出する。この
結果、凝縮器出口における冷媒の過冷却度を適正にし、
効率のよい運転を行うことができる。
The controller has a function of calculating the circulation composition α,
It has a function of driving the diaphragm device 4. The circulation composition α is calculated from the temperature T1 detected by the first temperature sensor and the pressure P detected by the first pressure sensor. FIG. 12 is a diagram in which the composition of the refrigerant is plotted on the horizontal axis and the temperature is plotted on the vertical axis under a constant pressure. In the figure, the saturated vapor temperature is shown by a broken line, the saturated liquid temperature is shown by a one-dot chain line, and the line of the dryness X = 0.9 of the refrigerant is shown by a solid line. From the figure, it can be seen that the composition is uniquely determined when the pressure, the temperature, and the dryness of the refrigerant are determined in the two-phase portion. Therefore, the dryness of the evaporator outlet refrigerant is generally set to 0.
Considering about 9, the circulation composition can be obtained from the temperature T and the pressure P. The controller calculates the condensation temperature Tc from the calculated circulation composition and the value P2 detected by the second pressure sensor 105. The condenser outlet supercooling degree SC is calculated from SC = Tc-T2 based on the difference between the value T2 detected by the second temperature sensor and the condensation temperature Tc. As a result, the degree of supercooling of the refrigerant at the condenser outlet is optimized,
Efficient operation can be performed.

【0086】図12において、横軸は高沸点成分の割合
(%)を示す。又、冷媒の過冷却度を適正にするとは目
標値に近づけることであり、先ず、組成αを演算し、次
にTcを算出し、SCを求め、求めたSCと目標SCと
の差が大きければ差の開度を求めて、再びαを演算して
計算を繰り返し、SCを適正にする。SCが大き過ぎる
と、熱交換器において、ガス部、二相部、液部のうち液
部の割合が多くなり、熱交換器の効率が低下する。一
方、SCが小さすぎると、熱交換器出口が二相状態とな
り冷媒音がしたり、マルチ機種では冷媒の分配がうまく
行かなくなる。よってSCを適正にすることにより、効
率のよい、且つ、異常の発生しないシステムを得ること
ができる。
In FIG. 12, the horizontal axis represents the proportion (%) of the high boiling point component. Further, to make the degree of supercooling of the refrigerant appropriate means to bring it close to the target value. First, the composition α is calculated, then Tc is calculated, SC is calculated, and the difference between the calculated SC and the target SC is large. For example, the opening degree of the difference is obtained, α is calculated again, and the calculation is repeated to make SC appropriate. If SC is too large, in the heat exchanger, the proportion of the liquid portion in the gas portion, the two-phase portion, and the liquid portion increases, and the efficiency of the heat exchanger decreases. On the other hand, if SC is too small, the heat exchanger outlet will be in a two-phase state, and a refrigerant noise will be produced, or the refrigerant will not be distributed well in multiple models. Therefore, by making SC appropriate, it is possible to obtain an efficient system in which no abnormality occurs.

【0087】実施例5.以下、本発明の実施例5を図に
ついて説明する。図13は、本発明の実施例5を示す冷
媒回路図である。図において、1は圧縮機、3は熱源側
熱交換器、4は絞り装置、5は負荷側熱交換器、6は低
圧レシーバであり、これらを順次接続して、メインの冷
媒回路をなす。また、101は温度センサ、103は圧
力センサ、100は上記温度センサ及び圧力センサの情
報より、循環組成を演算し、且つ、絞り装置の開度を決
定し、制御を行う制御器である。
Example 5. Embodiment 5 of the present invention will be described below with reference to the drawings. FIG. 13 is a refrigerant circuit diagram showing a fifth embodiment of the present invention. In the figure, 1 is a compressor, 3 is a heat source side heat exchanger, 4 is a throttle device, 5 is a load side heat exchanger, and 6 is a low pressure receiver, and these are sequentially connected to form a main refrigerant circuit. Further, 101 is a temperature sensor, 103 is a pressure sensor, and 100 is a controller that calculates the circulating composition from the information of the temperature sensor and the pressure sensor, determines the opening of the expansion device, and performs control.

【0088】作用について説明する。冷媒は、圧縮機1
より吐出され、熱源側熱交換器3にて凝縮し、絞り装置
4にて絞られ、低温・低圧の二相状態となる。この低温
・低圧の二相冷媒は、負荷側熱交換器5に流入し、周囲
より熱を奪い冷房すると共に、自身は蒸発気化し、低圧
レシーバ6を介して、圧縮機1に戻る。
The operation will be described. The refrigerant is the compressor 1
Is discharged from the heat source side, condensed in the heat source side heat exchanger 3, and throttled by the expansion device 4 to be in a low temperature / low pressure two-phase state. The low-temperature low-pressure two-phase refrigerant flows into the load-side heat exchanger 5 to remove heat from the surroundings and cool, and at the same time evaporates itself and returns to the compressor 1 via the low-pressure receiver 6.

【0089】制御器100は、循環組成αを演算する機
能と、絞り装置4を駆動する機能を有する。循環組成α
の演算は、温度センサが検出する温度Tと圧力センサが
検出する圧力Pとにより求める。図14は圧力一定の下
で、横軸に冷媒の組成、縦軸に温度をとった図である。
図中、飽和蒸気温度は破線、飽和液温度は一点鎖線で示
している。図より、二相部(飽和状態を含む)におい
て、圧力、温度および冷媒の乾き度が決定されると、組
成は一意的に決まることが分かる。従って、一般に、凝
縮器出口冷媒の乾き度を0程度と考えると、上記温度T
と圧力Pによって、循環組成を求めることができる。な
お乾き度0とは飽和液の状態を示している。制御器で
は、算出した循環組成と圧力センサ103が検出する値
Pにより、凝縮温度Tcを算出する。温度センサが検出
する値Tと上記凝縮温度Tcとの差により、凝縮器出口
過冷却度SCをSC=Tc−Tから算出する。この結
果、実施例1と同様な計算の繰り返しにより凝縮器出口
における冷媒の過冷却度を適正にし、効率のよい運転を
行うことができる。なお、絞りの開度をSCを目標値に
して決めるが、これを決定するときのSCと、組成推定
において、乾き度が0(SC=0)とは別ものと仮定し
ている。実施例4,5では、冷凍サイクルにおいて飽和
状態となる箇所の温度と圧力から組成を推定しているの
で演算が非常に簡易化でき、よって制御器100のプロ
グラムやあらかじめ設定する値が簡素化し、安価となる
ばかりでなく、推定した組成に基づいて制御するので冷
凍サイクルの信頼性が高くなり費用効果の秀れた装置を
得ることができる。
The controller 100 has a function of calculating the circulation composition α and a function of driving the expansion device 4. Circulation composition α
Is calculated from the temperature T detected by the temperature sensor and the pressure P detected by the pressure sensor. FIG. 14 is a diagram in which the composition of the refrigerant is plotted on the horizontal axis and the temperature is plotted on the vertical axis under a constant pressure.
In the figure, the saturated vapor temperature is indicated by a broken line, and the saturated liquid temperature is indicated by a one-dot chain line. From the figure, it can be seen that the composition is uniquely determined when the pressure, the temperature, and the dryness of the refrigerant are determined in the two-phase portion (including the saturated state). Therefore, in general, when the dryness of the condenser outlet refrigerant is considered to be about 0, the temperature T
The circulation composition can be obtained from the pressure P and the pressure P. The dryness of 0 indicates a saturated liquid state. The controller calculates the condensation temperature Tc from the calculated circulation composition and the value P detected by the pressure sensor 103. From the difference between the value T detected by the temperature sensor and the condensation temperature Tc, the condenser outlet supercooling degree SC is calculated from SC = Tc-T. As a result, it is possible to optimize the degree of supercooling of the refrigerant at the outlet of the condenser by repeating the same calculation as in the first embodiment, and to perform efficient operation. The aperture of the throttle is determined with SC as a target value, but it is assumed that SC when determining this and the dryness of 0 (SC = 0) in the composition estimation are different. In Examples 4 and 5, since the composition is estimated from the temperature and pressure of the portion in the refrigeration cycle that is in a saturated state, the calculation can be greatly simplified, thus simplifying the program of the controller 100 and the preset values, Not only is the cost low, but since the control is performed based on the estimated composition, the refrigeration cycle has high reliability, and a cost-effective device can be obtained.

【0090】実施例6.以下、本発明の実施例6を図に
ついて説明する。図15は、本発明の実施例6を示す冷
媒回路図である。図において、1は圧縮機、3は熱源側
熱交換器、11は高圧レシーバ、4は絞り装置、5は負
荷側熱交換器、6は低圧レシーバであり、これらを順次
接続して、メインの冷媒回路をなす。また、101は温
度センサ、103は圧力センサであり、高圧レシーバ内
部の圧力と温度を測定している。100は上記温度セン
サ及び圧力センサの情報より、循環組成を演算し、且
つ、絞り装置の開度を決定し、制御を行う制御器であ
る。
Example 6. Embodiment 6 of the present invention will be described below with reference to the drawings. FIG. 15 is a refrigerant circuit diagram showing Embodiment 6 of the present invention. In the figure, 1 is a compressor, 3 is a heat source side heat exchanger, 11 is a high pressure receiver, 4 is a throttle device, 5 is a load side heat exchanger, and 6 is a low pressure receiver. It forms a refrigerant circuit. Further, 101 is a temperature sensor and 103 is a pressure sensor, which measures the pressure and temperature inside the high-voltage receiver. Reference numeral 100 denotes a controller that calculates the circulating composition based on the information from the temperature sensor and the pressure sensor, determines the opening of the expansion device, and controls.

【0091】作用について説明する。冷媒は、圧縮機1
より吐出され、熱源側熱交換器3にて凝縮し、一旦、高
圧レシーバに入る。高圧レシーバより流出する液冷媒
は、絞り装置4にて絞られ、低温・低圧の二相状態とな
る。この低温・低圧の二相冷媒は、負荷側熱交換器5に
流入し、周囲より熱を奪い冷房すると共に、自身は蒸発
気化し、低圧レシーバ6を介して、圧縮機1に戻る。
The operation will be described. The refrigerant is the compressor 1
Is further discharged, condensed in the heat source side heat exchanger 3, and once enters the high pressure receiver. The liquid refrigerant flowing out from the high-pressure receiver is throttled by the throttling device 4 and becomes a low-temperature / low-pressure two-phase state. The low-temperature low-pressure two-phase refrigerant flows into the load-side heat exchanger 5 to remove heat from the surroundings and cool, and at the same time evaporates itself and returns to the compressor 1 via the low-pressure receiver 6.

【0092】制御器は、循環組成αを演算する機能と、
絞り装置4を駆動する機能を有する。循環組成αの演算
は、温度センサが検出する温度T101と圧力センサ1
03が検出する圧力Pとにより求める。一般に、凝縮器
出口冷媒の乾き度を0程度と考えると、高圧レシーバ内
部も、乾き度が0となるので、上記温度Tと圧力Pによ
って、循環組成を求めることができる。制御器では、算
出した循環組成と圧力センサ103が検出する値Pによ
り、凝縮温度Tcを算出する。温度センサが検出する値
Tと上記凝縮温度Tcとの差により、凝縮器出口過冷却
度SCをSC=Tc−Tから算出する。この結果、凝縮
器出口における冷媒の過冷却度を適正にし、効率のよい
運転を行うことができる。
The controller has a function of calculating the circulation composition α,
It has a function of driving the diaphragm device 4. The circulation composition α is calculated by the temperature T101 detected by the temperature sensor and the pressure sensor 1.
And the pressure P detected by 03. Generally, when the dryness of the refrigerant at the outlet of the condenser is considered to be about 0, the dryness also becomes 0 inside the high-pressure receiver, so that the circulating composition can be obtained from the temperature T and the pressure P. The controller calculates the condensation temperature Tc from the calculated circulation composition and the value P detected by the pressure sensor 103. From the difference between the value T detected by the temperature sensor and the condensation temperature Tc, the condenser outlet supercooling degree SC is calculated from SC = Tc-T. As a result, the degree of supercooling of the refrigerant at the outlet of the condenser can be made appropriate, and efficient operation can be performed.

【0093】高圧レシーバでは必ず飽和液面ができるの
で、圧力検出がより確実となり、循環組成の算出の高い
精度が得られより一層信頼性の高い冷凍プラントを得る
ことができる。また、この高圧レシーバは凝縮器と絞り
装置の間のどこに設けても良いが、但し飽和液面を確保
する必要がある。実施例1〜6にて、蒸発器出口のS
H、または凝縮器出口のSCと一定にすることにより、
冷媒回路内に分布する冷媒の状態を適正としている。
Since the saturated liquid surface is always formed in the high-pressure receiver, the pressure can be detected more reliably, and the refrigeration plant with higher reliability can be obtained with high accuracy in calculating the circulation composition. Further, this high-pressure receiver may be provided anywhere between the condenser and the expansion device, but it is necessary to secure a saturated liquid level. In Examples 1 to 6, S at the outlet of the evaporator
H, or by making SC at the condenser outlet constant,
The state of the refrigerant distributed in the refrigerant circuit is proper.

【0094】すなわち、圧縮機、凝縮器、絞り装置、蒸
発器よりなる冷媒回路にて、モード、起動、負荷の大小
等の運転状態や飽和状態となる場所での圧力や温度を検
出する検出器と、検出器より検出された値によって組成
を決定し、上記組成に応じて飽和温度を演算し、蒸発器
出口SHまたは凝縮器出口SCが目標値となるように絞
りの開度を制御器とを備えるものである。これにより、
効率の良い運転をすることができる。またさらに、圧縮
機、凝縮器、絞り装置、蒸発器よりなる冷媒回路と組成
演算手段、絞りの制御手段を設け、冷凍回路中の特定の
位置の冷媒の乾き度をある値一定と仮定し、あらかじめ
乾き度に応じて設定されていたαを呼び出し、凝縮器ま
たは蒸発器出口でのSHまたはSCがαをもとに一定と
なるように制御するものである。これにより、簡単な制
御手段で信頼性の高い、効率の良い冷凍・空調装置を得
ることができる。
That is, in the refrigerant circuit consisting of the compressor, the condenser, the expansion device, and the evaporator, a detector for detecting the pressure and temperature at the place where the operating state such as mode, start-up, load magnitude, etc. or the saturated state is detected. Then, the composition is determined by the value detected by the detector, the saturation temperature is calculated according to the composition, and the throttle opening is controlled by the controller so that the evaporator outlet SH or the condenser outlet SC reaches the target value. It is equipped with. This allows
You can drive efficiently. Furthermore, a refrigerant circuit consisting of a compressor, a condenser, a throttle device, and an evaporator, a composition calculation means, and a throttle control means are provided, and the dryness of the refrigerant at a specific position in the refrigeration circuit is assumed to be a constant value. The value α which has been set in advance according to the dryness is called, and the SH or SC at the outlet of the condenser or the evaporator is controlled to be constant based on α. This makes it possible to obtain a highly reliable and efficient refrigeration / air-conditioning device with simple control means.

【0095】実施例7.以下、本発明の実施例7を図に
ついて説明する。図16は、本発明の実施例7を示す冷
媒回路図である。図において、1は圧縮機、2は四方
弁、3は熱源側熱交換器、8は過冷却熱交換器、4は第
一の絞り装置、5は負荷側熱交換器、6は低圧レシーバ
であり、これらを順次接続して、メインの冷媒回路をな
す。また、負荷側熱交換器はa,b二系統の冷媒回路を
持つ、上記メイン回路上の第一の絞り装置4と熱源側熱
交換器の間には、冷媒回路を分岐し第二の絞り装置7お
よび過冷却熱交換器8を介して、メイン回路上の低圧の
ガス配管部に至るバイパス管を接続する。101は第一
の温度センサ、102は第二の温度センサ、103は第
一の圧力センサ、105は第二の圧力センサ、107は
第三の温度センサ、106は第四の温度センサ、109
は第五の温度センサである。100は上記第一および第
二の温度センサ101,102並びに第一の圧力センサ
103の情報より、循環組成を演算し、且つ、上記循環
組成と第三および第四の温度センサ並びに第二の圧力セ
ンサの検出値から、絞り装置の開度を決定し、制御を行
う制御器である。
Example 7. Embodiment 7 of the present invention will be described below with reference to the drawings. FIG. 16 is a refrigerant circuit diagram showing Embodiment 7 of the present invention. In the figure, 1 is a compressor, 2 is a four-way valve, 3 is a heat source side heat exchanger, 8 is a supercooling heat exchanger, 4 is a first expansion device, 5 is a load side heat exchanger, and 6 is a low pressure receiver. Yes, these are connected in sequence to form the main refrigerant circuit. Further, the load side heat exchanger has a refrigerant circuit of two systems a and b, and the refrigerant circuit is branched between the first expansion device 4 and the heat source side heat exchanger on the main circuit. A bypass pipe leading to the low-pressure gas pipe section on the main circuit is connected via the device 7 and the supercooling heat exchanger 8. 101 is a first temperature sensor, 102 is a second temperature sensor, 103 is a first pressure sensor, 105 is a second pressure sensor, 107 is a third temperature sensor, 106 is a fourth temperature sensor, 109
Is a fifth temperature sensor. 100 calculates a circulation composition from the information of the first and second temperature sensors 101 and 102 and the first pressure sensor 103, and calculates the circulation composition and the third and fourth temperature sensors and the second pressure. It is a controller that determines the opening degree of the diaphragm device from the detection value of the sensor and performs control.

【0096】作用について説明する。冷房運転時、冷媒
は、圧縮機1より吐出され、熱源側熱交換器3にて凝縮
し、絞り装置4にて絞られ、低温・低圧の二相状態とな
る。この低温・低圧の二相冷媒は、負荷側熱交換器5に
流入し、周囲より熱を奪い冷房すると共に、自身は蒸発
気化し、四方弁2および低圧レシーバ6を介して、圧縮
機1に戻る。冷媒の一部は、バイパス管200へ流れ込
み、第二の絞り装置にて、低圧まで絞られ、過冷却熱交
換器8に導かれる。過冷却熱交換器8は、メイン回路を
流れる高圧の液冷媒と、上記バイパス管200を流れる
低温・低圧の二相冷媒との熱交換を行う。よって、バイ
パス管200を流れる冷媒のエンタルピは、メイン回路
を流れる冷媒に伝えられ、エネルギ的なロスは無くな
る。
The operation will be described. During the cooling operation, the refrigerant is discharged from the compressor 1, condensed in the heat source side heat exchanger 3, and throttled by the expansion device 4 to be in a low temperature / low pressure two-phase state. This low-temperature, low-pressure two-phase refrigerant flows into the load-side heat exchanger 5 to remove heat from the surroundings and cool, and at the same time evaporate itself and pass through the four-way valve 2 and the low-pressure receiver 6 to the compressor 1. Return. Part of the refrigerant flows into the bypass pipe 200, is throttled to a low pressure by the second expansion device, and is introduced to the supercooling heat exchanger 8. The supercooling heat exchanger 8 exchanges heat between the high-pressure liquid refrigerant flowing in the main circuit and the low-temperature low-pressure two-phase refrigerant flowing in the bypass pipe 200. Therefore, the enthalpy of the refrigerant flowing through the bypass pipe 200 is transmitted to the refrigerant flowing through the main circuit, and energy loss is eliminated.

【0097】制御器は、循環組成αを演算する機能と、
絞り装置4の開度、圧縮機1の運転周波数、および送風
機12の回転数を調節する機能を有する。循環組成αの
演算は、次の手順にて行う。データとしては、バイパス
回路200上のものを用いる。まず、第一の温度セン
サ、第二の温度センサおよび第一の圧力センサが各々検
知する値T1,T2およびP1を取り込む。初期値は冷
媒の充填組成とするなどして、循環組成α1 を仮定する
と、液冷媒のエンタルピは、冷媒の温度のみに依存する
として、T1からエンタルピH1を求める。第二の絞り
装置7出口の冷媒のエンタルピは第二の絞り装置7入口
のエンタルピに等しいとすると、T2,P1およびH1
から第二の絞り装置7出口の乾き度Xが求まる。この計
算結果XとT2およびP1より、冷媒の循環組成α2
逆算する。α1 とα2 が等しくなるまで、例えばα1
(α1 +α2 )/2とα1 の仮定を繰り返し演算し、得
られた結果を循環組成αとする。
The controller has a function of calculating the circulation composition α,
It has a function of adjusting the opening degree of the expansion device 4, the operating frequency of the compressor 1, and the rotation speed of the blower 12. The calculation of the circulation composition α is performed in the following procedure. The data on the bypass circuit 200 is used as the data. First, the values T1, T2 and P1 detected by the first temperature sensor, the second temperature sensor and the first pressure sensor are fetched. Assuming a circulating composition α 1 such that the initial value is the refrigerant filling composition, the enthalpy H1 is calculated from T1, assuming that the enthalpy of the liquid refrigerant depends only on the temperature of the refrigerant. If the enthalpy of the refrigerant at the outlet of the second expansion device 7 is equal to the enthalpy at the entrance of the second expansion device 7, T2, P1 and H1
From this, the dryness X at the outlet of the second expansion device 7 can be obtained. The circulation composition α 2 of the refrigerant is back-calculated from the calculation result X, T2 and P1. Until α 1 and α 2 are equal, for example α 1 =
The assumption of (α 1 + α 2 ) / 2 and α 1 is repeatedly calculated, and the obtained result is defined as the circulation composition α.

【0098】循環組成αが求まると、P1とαより凝縮
温度Tc,T1より蒸発温度Teを求めることができ
る。制御器では、凝縮温度および蒸発温度の目標値は予
め設定しておき、各々、目標値とのずれに応じて、圧縮
機1の運転周波数および送風機12の回転数の補正を行
う。また、絞り装置4の開度は、第三および第四の温度
センサ107,106が検知した値の差が一定となるよ
うに制御する。以上のように冷媒温度は圧縮機や送風機
の制御により、循環組成は弁開度によるが、これは例え
ばマルチ機種の場合、絞りは冷媒の流量制御の役目をす
る。絞りの操作により低圧レシーバ内部の液面に変動が
あれば結果として組成が変動する。109が第五の温度
センサであり、第一と第五の温度センサの差を一定にす
ることにより、過冷却熱交換器を流れるバイパスの冷媒
流量を制御し、熱交換効率を良くする。αへの影響はバ
イパスより液冷媒が低圧レシーバにバイパスされると、
低圧レシーバ内部の液冷媒が増えて、組成が大きくな
る。
When the circulating composition α is obtained, the condensation temperature Tc can be obtained from P1 and α, and the evaporation temperature Te can be obtained from T1. In the controller, the target values of the condensation temperature and the evaporation temperature are set in advance, and the operating frequency of the compressor 1 and the rotation speed of the blower 12 are respectively corrected according to the deviations from the target values. Further, the opening degree of the expansion device 4 is controlled so that the difference between the values detected by the third and fourth temperature sensors 107 and 106 becomes constant. As described above, the refrigerant temperature depends on the control of the compressor or the blower, and the circulation composition depends on the valve opening. For example, in the case of multiple models, the throttle plays a role of controlling the flow rate of the refrigerant. If the liquid level inside the low-pressure receiver fluctuates due to the operation of the diaphragm, the composition fluctuates as a result. Reference numeral 109 is a fifth temperature sensor, and by making the difference between the first and fifth temperature sensors constant, the flow rate of the refrigerant in the bypass flowing through the supercooling heat exchanger is controlled and heat exchange efficiency is improved. The effect on α is that when the liquid refrigerant is bypassed from the bypass to the low pressure receiver,
The liquid refrigerant inside the low-pressure receiver increases and the composition increases.

【0099】暖房運転時の冷媒の流れは、図16中の破
線で示される。バイパス管200へは冷媒は二相状態で
流れ込む。従って、循環組成αの演算は、次の手順にて
行う。第一の温度センサ、および第一の圧力センサが各
々検知する値T1およびP1を取り込む。ここで、バイ
パス管200に流入する冷媒の乾き度を0.1〜0.4
程度の値として設定し、この乾き度XとT2およびP1
より、冷媒の循環組成αを算出する。ここでは、絞り直
後の状態つまり、高圧液部から低圧二相部への等エンタ
ルピ変化を仮定して乾き度を決定している。なお、上記
は絞り後の冷媒の温度、圧力を検出しているが、これは
センサを冷房と暖房で共用できることを考えており、も
し共用を考えなければ、冷房時はバイパス管にて組成を
推定し、暖房時は蒸発器の入口(または出口)にて組成
を推定するようにしても良いことは当然である。
The flow of the refrigerant during the heating operation is shown by the broken line in FIG. The refrigerant flows into the bypass pipe 200 in a two-phase state. Therefore, the circulation composition α is calculated in the following procedure. The values T1 and P1 detected by the first temperature sensor and the first pressure sensor are captured. Here, the dryness of the refrigerant flowing into the bypass pipe 200 is set to 0.1 to 0.4.
Set as a value of this degree, and this dryness X and T2 and P1
From this, the circulation composition α of the refrigerant is calculated. Here, the dryness is determined by assuming the state immediately after the throttling, that is, the isenthalpic change from the high-pressure liquid portion to the low-pressure two-phase portion. In the above, the temperature and pressure of the refrigerant after throttling are detected, but this considers that the sensor can be shared between cooling and heating, and if sharing is not considered, the composition in the bypass pipe during cooling is considered. As a matter of course, the composition may be estimated at the inlet (or outlet) of the evaporator during heating.

【0100】循環組成αが求まると、P1とαより凝縮
温度Tc,T1より蒸発温度Teを求めることができ
る。制御器では、凝縮温度および蒸発温度の目標値は予
め設定しておき、各々、目標値とのずれに応じて、圧縮
機1の運転周波数および送風機12の回転数の補正を行
う。また、絞り装置4の開度は、上記凝縮温度と第四の
温度センサが検知した値の差が一定となるように制御す
る。凝縮温度は圧縮機吐出圧力と組成の関数として求め
る。蒸発温度は絞り後の二相冷媒温度で求める。また、
目標値としては例えば凝縮温度50℃、蒸発温度0℃と
している。従って、循環組成の推定精度が良く、効率の
良い運転を確実に行うことができる。図17は温度と冷
媒回路中の循環する組成における高沸点成分の重量の割
合を示すものであり、例えば、低圧が一定圧力Pにおい
て第2の絞り装置7の出口付近における温度をtとする
と、その乾き度が0.25と仮定した場合の割合を示し
ている。このような特性をあらかじめ記憶させておくと
組成が得られる。
When the circulation composition α is obtained, the condensation temperature Tc can be obtained from P1 and α, and the evaporation temperature Te can be obtained from T1. In the controller, the target values of the condensation temperature and the evaporation temperature are set in advance, and the operating frequency of the compressor 1 and the rotation speed of the blower 12 are respectively corrected according to the deviations from the target values. Further, the opening degree of the expansion device 4 is controlled so that the difference between the condensation temperature and the value detected by the fourth temperature sensor becomes constant. Condensation temperature is determined as a function of compressor discharge pressure and composition. The evaporation temperature is determined by the temperature of the two-phase refrigerant after squeezing. Also,
The target values are, for example, a condensation temperature of 50 ° C. and an evaporation temperature of 0 ° C. Therefore, the estimation accuracy of the circulation composition is good, and efficient operation can be reliably performed. FIG. 17 shows the ratio between the temperature and the weight of the high boiling point component in the circulating composition in the refrigerant circuit. For example, when the low pressure is a constant pressure P and the temperature near the outlet of the second expansion device 7 is t, The ratio is shown assuming that the dryness is 0.25. The composition is obtained by storing such characteristics in advance.

【0101】実施例8.以下、本発明の実施例8を図に
ついて説明する。図18は、本発明の実施例8を示す冷
媒回路図である。なお、図中実施例7と同一部分につい
ては、同一符号を付し、説明を省略する。図16におけ
る実施例7の構成に熱源側熱交換器3および過冷却熱交
換器の間に第三の絞り装置9を付け加える。
Example 8. Embodiment 8 of the present invention will be described below with reference to the drawings. FIG. 18 is a refrigerant circuit diagram showing Embodiment 8 of the present invention. In the figure, the same parts as those of the seventh embodiment are designated by the same reference numerals and the description thereof will be omitted. A third expansion device 9 is added between the heat source side heat exchanger 3 and the supercooling heat exchanger in the configuration of the seventh embodiment in FIG.

【0102】作用について説明する。冷房運転について
は、第三の絞り装置の開度を全開とする以外は、実施例
7と同様であるため省略する。暖房運転について説明す
る。暖房運転時、冷媒は、圧縮機1より吐出され、負荷
側熱交換器5にて凝縮し、絞り装置4にて若干絞られ
る。この若干絞られた高圧の液冷媒は、第三の絞り装置
9にて、低圧まで絞られ、低温・低圧の二相冷媒とな
る。この低温・低圧の二相冷媒は、熱源側熱交換器3に
て流入し、蒸発気化し、四方弁2および低圧レシーバ6
を介して、圧縮機1に戻る。冷媒の一部は、バイパス管
200へ流れ込み、第二の絞り装置にて、低圧まで絞ら
れ、過冷却熱交換器8に導かれる。過冷却熱交換器8
は、メイン回路を流れる高圧の液冷媒と、上記バイパス
管200を流れる低温・低圧の二相冷媒との熱交換を行
う。これにより冷房時と暖房時はセンサを共用できるこ
とになる。
The operation will be described. The cooling operation is the same as that of the seventh embodiment except that the opening degree of the third expansion device is fully opened, and thus the description thereof is omitted. The heating operation will be described. During the heating operation, the refrigerant is discharged from the compressor 1, condensed in the load side heat exchanger 5, and slightly throttled by the expansion device 4. The slightly throttled high pressure liquid refrigerant is throttled to a low pressure by the third expansion device 9 to become a low temperature / low pressure two-phase refrigerant. This low-temperature low-pressure two-phase refrigerant flows into the heat source side heat exchanger 3, evaporates and vaporizes, and then the four-way valve 2 and the low pressure receiver 6
Return to the compressor 1 via. Part of the refrigerant flows into the bypass pipe 200, is throttled to a low pressure by the second expansion device, and is introduced to the supercooling heat exchanger 8. Supercooling heat exchanger 8
Performs heat exchange between the high-pressure liquid refrigerant flowing in the main circuit and the low-temperature low-pressure two-phase refrigerant flowing in the bypass pipe 200. As a result, the sensor can be shared during cooling and heating.

【0103】循環組成の算出方法は、実施例7の冷房時
と同様に行う。循環組成αが求まると、P1とαより凝
縮温度Tc,T1より蒸発温度Teを求めることができ
る。制御器では、凝縮温度および蒸発温度の目標値は予
め設定しておき、各々、目標値とのずれに応じて、圧縮
機1の運転周波数および送風機12の回転数の補正を行
う。また、絞り装置4の開度は、上記凝縮温度Tcと第
四の温度センサが検知した値T4との差が、一定となる
ように制御する。第二の絞り装置7の開度は、第一およ
び第五の温度センサ101,109が検知した値の差が
一定となるように制御する。従って、本実施例におい
て、絞りを追加することにより、冷房と暖房で循環組成
の推定方法を同様にすることができ、また精度の良い、
効率の良い運転を行うことができる。
The circulating composition is calculated in the same manner as in the cooling operation of the seventh embodiment. When the circulation composition α is obtained, the condensation temperature Tc can be obtained from P1 and α, and the evaporation temperature Te can be obtained from T1. In the controller, the target values of the condensation temperature and the evaporation temperature are set in advance, and the operating frequency of the compressor 1 and the rotation speed of the blower 12 are respectively corrected according to the deviations from the target values. Further, the opening degree of the expansion device 4 is controlled so that the difference between the condensation temperature Tc and the value T4 detected by the fourth temperature sensor is constant. The opening degree of the second expansion device 7 is controlled so that the difference between the values detected by the first and fifth temperature sensors 101 and 109 becomes constant. Therefore, in the present embodiment, by adding the throttle, it is possible to make the estimation method of the circulation composition the same in cooling and heating, and also with high accuracy,
Efficient operation can be performed.

【0104】実施例9.以下、本発明の実施例9を図に
ついて説明する。図19は、本発明の実施例9を示す冷
媒回路図である。なお図中、実施例7と同一部分につい
ては、同一符号を付し、説明を省略する。図20は、本
実施例におけるメイン配管210とバイパス配管200
との分岐部を示している。図に示すように、バイパス配
管200は、メイン配管210に対して、下向きに接続
する。すなわちメイン配管の下部に入口を設ける。
Example 9. Embodiment 9 of the present invention will be described below with reference to the drawings. FIG. 19 is a refrigerant circuit diagram showing Embodiment 9 of the present invention. In the figure, the same parts as those of the seventh embodiment are designated by the same reference numerals, and the description thereof will be omitted. FIG. 20 shows the main pipe 210 and the bypass pipe 200 in this embodiment.
It shows the branch part of. As shown in the figure, the bypass pipe 200 is connected downward to the main pipe 210. That is, the inlet is provided at the bottom of the main pipe.

【0105】作用について説明する。冷房運転について
は、実施例7と同様であるため省略する。暖房運転時の
冷媒の流れは、図19中の破線で示される。暖房時、第
一の絞り装置4と熱源側熱交換器3を接続するメイン配
管中において、冷媒は、低温・低圧の気液二相状態とな
る。この時の冷媒の流動様式は、図20中の破線で示す
ような、上下に気液が分離した流れか、もしくは、図2
1中の破線で示すような、管壁に液膜を形成する環状流
の形態をとる。従って、どちらの形態においても、バイ
パス管には気液二相状態冷媒の液冷媒が流入する。つま
り、バイパス配管に流入する冷媒の乾き度は0であると
することができる。
The operation will be described. The cooling operation is the same as that of the seventh embodiment, and therefore will be omitted. The flow of the refrigerant during the heating operation is shown by the broken line in FIG. During heating, the refrigerant is in a low-temperature, low-pressure gas-liquid two-phase state in the main pipe connecting the first expansion device 4 and the heat source side heat exchanger 3. At this time, the flow mode of the refrigerant may be a flow in which gas and liquid are vertically separated as shown by a broken line in FIG.
1 has a form of an annular flow that forms a liquid film on the wall of the tube as indicated by the broken line. Therefore, in either form, the liquid refrigerant of the gas-liquid two-phase state refrigerant flows into the bypass pipe. That is, the dryness of the refrigerant flowing into the bypass pipe can be zero.

【0106】循環組成αの演算は、次の手順にて行う。
第一の温度センサ、および第一の圧力センサが各々検知
する値T1およびP1を取り込む。ここで、バイパス配
管200に流入する冷媒の乾き度を0として設定し、こ
の乾き度XとT2およびP1より、バイパス配管200
中を流れる冷媒の組成αL を算出する。このαL より、
メイン配管210を流れる冷媒の組成α(循環組成)を
推定する。
The circulation composition α is calculated by the following procedure.
The values T1 and P1 detected by the first temperature sensor and the first pressure sensor are captured. Here, the dryness of the refrigerant flowing into the bypass pipe 200 is set to 0, and from the dryness X and T2 and P1, the bypass pipe 200 is set.
The composition α L of the refrigerant flowing inside is calculated. From this α L ,
The composition α (circulation composition) of the refrigerant flowing through the main pipe 210 is estimated.

【0107】循環組成αが求まると、P1とαより凝縮
温度Tc,T1より蒸発温度Teを求めることができ
る。制御器では、凝縮温度および蒸発温度の目標値は予
め設定しておき、各々、目標値とのずれに応じて、圧縮
機1の運転周波数および送風機12の回転数の補正を行
う。また、絞り装置4の開度は、上記凝縮温度と第四の
温度センサが検知した値の差が、一定となるように制御
する。これは高圧(凝縮温度)や低圧(蒸発温度)から
圧縮機の回転数や室外ファン風量のゲイン(変更量)を
決定するVPM制御を行うことである。従って、暖房時
の循環組成の推定精度が安価に改善できる。冷房と暖房
で制御が異なるが、冷媒回路構成を変更することなく組
成推定が可能である。実施例7〜9は、熱源側熱交換器
(凝縮器)と絞りの間に液冷媒を流すバイパス管を設
け、主配管とバイパス等が同じ組成であることを利用し
て、バイパス管での絞り前後の等エンタルピ変化を利用
してαを繰り返し演算し、αをもとに凝縮温度や、蒸発
温度を演算し、目標値に合わせるよう圧縮機、送風機等
を制御している。すなわち、圧縮機、凝縮器、絞り装
置、蒸発器、低圧レシーバを備えた冷媒回路において、
凝縮器と絞り装置の間より第二の装置を介して低圧レシ
ーバに至るバイパス管と組成演算手段と、絞り装置の開
度を決定し、制御する制御器を備えている。
When the circulation composition α is obtained, the condensation temperature Tc can be obtained from P1 and α, and the evaporation temperature Te can be obtained from T1. In the controller, the target values of the condensation temperature and the evaporation temperature are set in advance, and the operating frequency of the compressor 1 and the rotation speed of the blower 12 are respectively corrected according to the deviations from the target values. Further, the opening degree of the expansion device 4 is controlled so that the difference between the condensation temperature and the value detected by the fourth temperature sensor becomes constant. This is to perform VPM control that determines the rotational speed of the compressor and the gain (change amount) of the outdoor fan air volume from the high pressure (condensing temperature) and the low pressure (evaporating temperature). Therefore, the estimation accuracy of the circulation composition during heating can be improved at low cost. Although the control differs between cooling and heating, composition estimation is possible without changing the refrigerant circuit configuration. In Examples 7 to 9, a bypass pipe for flowing a liquid refrigerant is provided between the heat source side heat exchanger (condenser) and the throttle, and by utilizing the fact that the main pipe and the bypass have the same composition, the bypass pipe Α is repeatedly calculated by using the isenthalpic change before and after throttling, the condensation temperature and the evaporation temperature are calculated based on α, and the compressor, blower, etc. are controlled so as to match the target values. That is, in the refrigerant circuit including the compressor, the condenser, the expansion device, the evaporator, and the low-pressure receiver,
It is provided with a bypass pipe from between the condenser and the expansion device to the low-pressure receiver via the second device, a composition calculation means, and a controller for determining and controlling the opening of the expansion device.

【0108】実施例10.以下、本発明の実施例10を
図について説明する。図22は、本発明の実施例10を
示す冷媒回路図である。なお図中、実施例7と同一部分
については、同一符号を付し、説明を省略する。図23
は、本実施例におけるメイン配管210とバイパス配管
200との分岐部を示している。図に示すように、バイ
パス配管200とメイン配管210の分岐部付近におい
て、メイン配管の分岐部上流にメッシュ211を設置す
る。
Example 10. Embodiment 10 of the present invention will be described below with reference to the drawings. 22 is a refrigerant circuit diagram showing Embodiment 10 of the present invention. In the figure, the same parts as those of the seventh embodiment are designated by the same reference numerals, and the description thereof will be omitted. FIG. 23
Shows a branch portion between the main pipe 210 and the bypass pipe 200 in the present embodiment. As shown in the figure, in the vicinity of the branch portion between the bypass pipe 200 and the main pipe 210, a mesh 211 is installed upstream of the branch portion of the main pipe.

【0109】作用について説明する。冷房運転について
は、実施例7と同様であるため省略する。暖房時の冷媒
の流れは、図22中、破線で示される。バイパス配管2
00とメイン配管210の分岐部付近に設置されたメッ
シュ211の効果により、メッシュ211上流にて、気
液が分離した流動様式をとっていた冷媒は、メッシュ通
過後、噴霧状態となる。この結果、バイパス配管200
には、メイン配管210を流れる冷媒の乾き度と等しい
乾き度の冷媒が、流入することになる。
The operation will be described. The cooling operation is the same as that of the seventh embodiment, and therefore will be omitted. The flow of the refrigerant during heating is shown by the broken line in FIG. Bypass piping 2
00 and the effect of the mesh 211 installed in the vicinity of the branch portion of the main pipe 210, the refrigerant having a flow mode in which gas and liquid are separated upstream of the mesh 211 becomes a spray state after passing through the mesh. As a result, the bypass piping 200
A refrigerant having a dryness equal to the dryness of the refrigerant flowing through the main pipe 210 flows into this.

【0110】従って、循環組成αの演算は、次の手順に
て行う。第一の温度センサ101、および第一の圧力セ
ンサ103が各々検知する値T1およびP1を取り込
む。ここで、バイパス管200に流入する冷媒の乾き度
を0.1〜0.4程度の値として設定し、この乾き度X
とT2およびP1より、冷媒の循環組成αを算出する。
Therefore, the calculation of the circulation composition α is performed in the following procedure. The values T1 and P1 detected by the first temperature sensor 101 and the first pressure sensor 103, respectively, are loaded. Here, the dryness of the refrigerant flowing into the bypass pipe 200 is set to a value of about 0.1 to 0.4, and the dryness X
And the circulating composition α of the refrigerant is calculated from T2 and P1.

【0111】循環組成αが求まると、P1とαより凝縮
温度Tc,T1より蒸発温度Teを求めることができ
る。制御器では、凝縮温度および蒸発温度の目標値は予
め設定しておき、各々、目標値とのずれに応じて、圧縮
機1の運転周波数および送風機12の回転数の補正を行
う。また、絞り装置4の開度は、上記凝縮温度と第四の
温度センサ106が検知した値の差が一定となるように
制御する。従って、メッシュを追加することにより、暖
房時、バイパス配管200との分岐部付近におけるメイ
ン配管と、バイパス配管200中を流れる冷媒の乾き度
とを等しくし、暖房時の循環組成の推定精度を改善し、
効率の良い運転を確実に行うことができる。以上はメッ
シュを設ける例を説明したが、気液分離された冷媒を噴
霧状態にする構造であれば、例えば周壁に堰を設けた
り、動いて攪拌するものでも良いことは当然である。
When the circulation composition α is obtained, the condensation temperature Tc can be obtained from P1 and α, and the evaporation temperature Te can be obtained from T1. In the controller, the target values of the condensation temperature and the evaporation temperature are set in advance, and the operating frequency of the compressor 1 and the rotation speed of the blower 12 are respectively corrected according to the deviations from the target values. Further, the opening degree of the expansion device 4 is controlled so that the difference between the condensation temperature and the value detected by the fourth temperature sensor 106 becomes constant. Therefore, by adding the mesh, the main pipe in the vicinity of the branch portion with the bypass pipe 200 and the dryness of the refrigerant flowing in the bypass pipe 200 are equalized during heating, and the estimation accuracy of the circulation composition during heating is improved. Then
It is possible to reliably perform efficient operation. Although the example in which the mesh is provided has been described above, it goes without saying that, for example, a weir may be provided on the peripheral wall or a moving stirring may be performed as long as it has a structure in which the gas-liquid separated refrigerant is in a spray state.

【0112】実施例11.以下、本発明の実施例11を
図について説明する。図24は、本発明の実施例11を
示す冷媒回路図である。なお図中、実施例7と同一部分
については、同一符号を付し、説明を省略する。本実施
例では、第二の温度センサ106の情報を、演算装置に
取り込んでいる。
Example 11. Embodiment 11 of the present invention will be described below with reference to the drawings. 24 is a refrigerant circuit diagram showing Embodiment 11 of the present invention. In the figure, the same parts as those of the seventh embodiment are designated by the same reference numerals, and the description thereof will be omitted. In this embodiment, the information of the second temperature sensor 106 is taken into the arithmetic unit.

【0113】作用について説明する。冷房運転について
は、実施例7と同様であるため説明を省略する。暖房運
転時は、演算装置の作用のみが異なるので、メイン制御
器の作用についても説明を省略する。暖房運転時の循環
組成αの演算は、次の手順にて行う。第四の温度センサ
106、第二の温度センサ102および第一の圧力セン
サ103が各々検知する値T1,T2およびP1を取り
込む。循環組成α1 を仮定すると、液冷媒のエンタルピ
は、冷媒の温度のみに依存するとして、T1からエンタ
ルピH1を求める。第二の絞り装置7出口の冷媒のエン
タルピは第二の絞り装置7入口のエンタルピに等しいと
すると、T2,P1およびH1から第二の絞り装置7出
口の乾き度Xが求まる。この計算結果XとT2およびP
1より、冷媒の循環組成α2 を逆算する。α1 とα2
等しくなるまで、α1 の仮定を繰り返し演算し、得られ
た結果を循環組成αとする。
The operation will be described. The cooling operation is the same as that of the seventh embodiment, and thus the description thereof is omitted. Since only the operation of the arithmetic unit is different during the heating operation, the description of the operation of the main controller will be omitted. The calculation of the circulation composition α during the heating operation is performed according to the following procedure. The values T1, T2, and P1 detected by the fourth temperature sensor 106, the second temperature sensor 102, and the first pressure sensor 103, respectively, are loaded. Assuming the circulation composition α 1 , the enthalpy H1 is calculated from T1, assuming that the enthalpy of the liquid refrigerant depends only on the temperature of the refrigerant. Assuming that the enthalpy of the refrigerant at the outlet of the second expansion device 7 is equal to the enthalpy at the entrance of the second expansion device 7, the dryness X at the exit of the second expansion device 7 can be obtained from T2, P1 and H1. This calculation result X and T2 and P
The circulation composition α 2 of the refrigerant is calculated back from 1. The assumption of α 1 is repeatedly calculated until α 1 and α 2 are equal, and the obtained result is set as the circulation composition α.

【0114】従って、暖房運転時においても、精度良く
組成を推定し、効率の良い運転を行うことができる。
Therefore, even during the heating operation, the composition can be accurately estimated and the operation can be performed efficiently.

【0115】実施例12.以下、本発明の実施例12を
図について説明する。図25は、本発明の実施例12を
示す冷媒回路図である。図において、1は圧縮機、2は
四方弁、3は熱源側熱交換器、8は過冷却熱交換器、4
は第一の絞り装置、5は負荷側熱交換器、6は低圧レシ
ーバであり、これらを順次接続して、メインの冷媒回路
をなす。また、負荷側熱交換器はa,b二系統の冷媒回
路を持つ。上記メイン回路上の第一の絞り装置4と熱源
側熱交換器の間には、冷媒回路を分岐し第二の絞り装置
7および過冷却熱交換器8を介して、メイン回路上の低
圧のガス配管部に至るバイパス配管200を接続する。
101は第一の温度センサ、102は第二の温度セン
サ、103は第一の圧力センサ、105は第二の圧力セ
ンサ、107は第三の温度センサ、106は第四の温度
センサである。110は上記第一および第二の温度セン
サ101,102並びに第一の圧力センサ103の情報
より、循環組成を演算する演算装置である。111は組
成調整を行うための組成調整器である。112は、第三
および第四の温度センサ107,106並びに第二の圧
力センサ105の検出値から、絞り装置の開度、圧縮機
の運転周波数、室外機のファン回転数を決定し、制御を
行うメイン制御器である。
Example 12. Embodiment 12 of the present invention will be described below with reference to the drawings. FIG. 25 is a refrigerant circuit diagram showing Embodiment 12 of the present invention. In the figure, 1 is a compressor, 2 is a four-way valve, 3 is a heat source side heat exchanger, 8 is a supercooling heat exchanger, 4
Is a first expansion device, 5 is a load side heat exchanger, and 6 is a low-pressure receiver, which are sequentially connected to form a main refrigerant circuit. The load side heat exchanger has a refrigerant circuit of two systems, a and b. A refrigerant circuit is branched between the first expansion device 4 and the heat source side heat exchanger on the main circuit, and the low pressure on the main circuit is divided via the second expansion device 7 and the supercooling heat exchanger 8. The bypass pipe 200 leading to the gas pipe section is connected.
101 is a first temperature sensor, 102 is a second temperature sensor, 103 is a first pressure sensor, 105 is a second pressure sensor, 107 is a third temperature sensor, and 106 is a fourth temperature sensor. Reference numeral 110 denotes an arithmetic unit that calculates the circulation composition based on the information from the first and second temperature sensors 101 and 102 and the first pressure sensor 103. Reference numeral 111 is a composition adjuster for adjusting the composition. Reference numeral 112 determines the opening degree of the expansion device, the operating frequency of the compressor, and the fan rotation speed of the outdoor unit from the detected values of the third and fourth temperature sensors 107 and 106 and the second pressure sensor 105, and controls them. It is the main controller that performs.

【0116】作用について説明する。冷房運転時、冷媒
は、圧縮機1より吐出され、熱源側熱交換器3にて凝縮
し、絞り装置4にて絞られ、低温・低圧の二相状態とな
る。この低温・低圧の二相冷媒は、負荷側熱交換器5に
流入し、周囲より熱を奪い冷房すると共に、自身は蒸発
気化し、四方弁2および低圧レシーバ6を介して、圧縮
機1に戻る。冷媒の一部は、バイパス管200へ流れ込
み、第二の絞り装置にて、低圧まで絞られ、過冷却熱交
換器8に導かれる。過冷却熱交換器8は、メイン回路を
流れる高圧の液冷媒と、上記バイパス管200を流れる
低温・低圧の二相冷媒との熱交換を行う。よって、バイ
パス管200を流れる冷媒のエンタルピは、メイン回路
を流れる冷媒に伝えられ、エネルギ的なロスは無くな
る。
The operation will be described. During the cooling operation, the refrigerant is discharged from the compressor 1, condensed in the heat source side heat exchanger 3, and throttled by the expansion device 4 to be in a low temperature / low pressure two-phase state. This low-temperature, low-pressure two-phase refrigerant flows into the load-side heat exchanger 5 to remove heat from the surroundings and cool, and at the same time evaporate itself and pass through the four-way valve 2 and the low-pressure receiver 6 to the compressor 1. Return. Part of the refrigerant flows into the bypass pipe 200, is throttled to a low pressure by the second expansion device, and is introduced to the supercooling heat exchanger 8. The supercooling heat exchanger 8 exchanges heat between the high-pressure liquid refrigerant flowing in the main circuit and the low-temperature low-pressure two-phase refrigerant flowing in the bypass pipe 200. Therefore, the enthalpy of the refrigerant flowing through the bypass pipe 200 is transmitted to the refrigerant flowing through the main circuit, and energy loss is eliminated.

【0117】演算装置は、循環組成αを演算する機能を
有する。循環組成αの演算は、次の手順にて行う。デー
タとしては、バイパス回路200上のものを用いる。ま
ず、第一の温度センサ、第二の温度センサおよび第一の
圧力センサが各々検知する値T1,T2およびP1を取
り込む。循環組成α1 を仮定すると、液冷媒のエンタル
ピは、冷媒の温度のみに依存するとして、T1からエン
タルピH1を求める。第二の絞り装置7出口の冷媒のエ
ンタルピは第二の絞り装置7入口のエンタルピに等しい
とすると、T2,P1およびH1から第二の絞り装置7
出口の乾き度Xが求まる。この計算結果XとT2および
P1より、冷媒の循環組成α2 を逆算する。α1 とα2
が等しくなるまで、α1 の仮定を繰り返し演算し、得ら
れた結果を循環組成αとする。
The arithmetic unit has a function of calculating the circulation composition α. The calculation of the circulation composition α is performed in the following procedure. The data on the bypass circuit 200 is used as the data. First, the values T1, T2 and P1 detected by the first temperature sensor, the second temperature sensor and the first pressure sensor are fetched. Assuming the circulation composition α 1 , the enthalpy H1 is calculated from T1, assuming that the enthalpy of the liquid refrigerant depends only on the temperature of the refrigerant. Assuming that the enthalpy of the refrigerant at the outlet of the second expansion device 7 is equal to the enthalpy at the inlet of the second expansion device 7, from T2, P1 and H1 to the second expansion device 7
The dryness X at the exit is obtained. The circulation composition α 2 of the refrigerant is back-calculated from the calculation result X, T2 and P1. α 1 and α 2
The hypothesis of α 1 is iteratively calculated until the values are equal to each other, and the obtained result is set as the circulation composition α.

【0118】冷房運転時の組成調整器の作用について説
明する。組成調整器が作動するのは、複数の負荷側熱交
換器のうち停止しているものが存在するときである。
今、停止している負荷側熱交換器を5aとする。組成制
御器では、演算装置110にて演算した循環組成αと目
標の循環組成α* の差に応じて組成の調整を行う。組成
調整の方法は、まず、低圧レシーバに液冷媒を溜める。
この時、低圧レシーバの液面が上昇することにより、循
環組成は低沸点成分に富む冷媒が、冷媒回路内を循環す
るようになる。ここで、第一の絞り装置4aを閉じ、高
温・高圧の液冷媒を配管202aへ導く。この時点で、
圧縮機より吐出される冷媒は、低沸点成分に富むので、
配管202a内部に貯溜される冷媒は低沸点成分に富
む。この結果、冷媒回路を循環する冷媒の組成は、低沸
点成分に富むものから高沸点成分に富むものへと変化し
て行く。ここで、演算装置110にて演算した循環組成
αと目標の循環組成α* との比較において、α<α*
場合には、第一の絞り装置4aを開き、α>α* の場合
には、第一の絞り装置4aを閉じる制御を行い、循環組
成が目標値付近でバランスするようにする。
The operation of the composition regulator during the cooling operation will be described. The composition regulator operates when some of the load side heat exchangers are stopped.
The load side heat exchanger that is currently stopped is designated as 5a. The composition controller adjusts the composition according to the difference between the circulation composition α calculated by the calculation device 110 and the target circulation composition α * . In the composition adjusting method, first, the liquid refrigerant is stored in the low pressure receiver.
At this time, the liquid level of the low-pressure receiver rises, so that the refrigerant having a low boiling point in the circulation composition circulates in the refrigerant circuit. Here, the first expansion device 4a is closed, and the high temperature and high pressure liquid refrigerant is guided to the pipe 202a. at this point,
Since the refrigerant discharged from the compressor is rich in low boiling point components,
The refrigerant stored inside the pipe 202a is rich in low-boiling components. As a result, the composition of the refrigerant circulating in the refrigerant circuit changes from one rich in low-boiling components to one rich in high-boiling components. Here, in the comparison between the circulation composition α calculated by the calculation device 110 and the target circulation composition α * , when α <α * , the first expansion device 4a is opened, and when α> α * Controls to close the first expansion device 4a so that the circulation composition is balanced near the target value.

【0119】メイン制御器では、演算装置で求めた循環
組成αとP1より凝縮温度Tc,T1より蒸発温度Te
を求める。さらに、凝縮温度および蒸発温度の目標値は
予め設定しておき、各々、目標値とのずれに応じて、圧
縮機1の運転周波数および送風機12の回転数の補正を
行う。また、絞り装置4の開度は、第三および第四の絞
り装置が検知した値の差が一定となるように制御する。
第二の絞り装置の開度は、第一および第五の温度センサ
が検知した値の差が一定となるように制御する。
In the main controller, the condensation temperature Tc is calculated from the circulation composition α and P1 obtained by the arithmetic unit, and the evaporation temperature Te is calculated from T1.
Ask for. Further, the target values of the condensation temperature and the evaporation temperature are set in advance, and the operating frequency of the compressor 1 and the rotation speed of the blower 12 are corrected in accordance with the deviations from the target values. Further, the opening degree of the expansion device 4 is controlled so that the difference between the values detected by the third and fourth expansion devices becomes constant.
The opening degree of the second expansion device is controlled so that the difference between the values detected by the first and fifth temperature sensors is constant.

【0120】暖房運転時の冷媒の流れは、図25中の破
線で示される。バイパス管200へは冷媒は二相状態で
流れ込む。従って、循環組成αの演算は、次の手順にて
行う。第一の温度センサ、および第一の圧力センサが各
々検知する値T1およびP1を演算装置に取り込む。こ
こで、バイパス管200に流入する冷媒の乾き度を0.
1〜0.4程度の値として設定し、この乾き度XとT2
およびP1より、冷媒の循環組成αを算出する。
The flow of the refrigerant during the heating operation is shown by the broken line in FIG. The refrigerant flows into the bypass pipe 200 in a two-phase state. Therefore, the circulation composition α is calculated in the following procedure. The values T1 and P1 respectively detected by the first temperature sensor and the first pressure sensor are loaded into the arithmetic unit. Here, the dryness of the refrigerant flowing into the bypass pipe 200 is set to 0.
Set as a value of 1 to 0.4, and the dryness X and T2
And the circulating composition α of the refrigerant is calculated from P1.

【0121】暖房時の組成調整器の作用について説明す
る。組成調整器が作動するのは、複数の負荷側熱交換器
のうち停止しているものが存在するときである。今、停
止している負荷側熱交換器を5aとする。組成制御器で
は、演算装置110にて演算した循環組成αと目標の循
環組成α* の差に応じて組成の調整を行う。組成調整の
方法は、まず、低圧レシーバに液冷媒を溜める。低圧レ
シーバに液を溜めるには、絞り装置4を全開にして圧縮
機を起動する。この時、低圧レシーバの液面が上昇する
ことにより、循環組成は低沸点成分に富む冷媒が、冷媒
回路内を循環するようになる。ここで、第一の絞り装置
4aを閉じ、高温・高圧の液冷媒を配管202bへ導
く。この時点で、圧縮機より吐出される冷媒は、低沸点
成分に富むので、配管202b内部に貯溜される冷媒は
低沸点成分に富む。この結果、冷媒回路を循環する冷媒
の組成は、低沸点成分に富むものから高沸点成分に富む
ものへと変化して行く。ここで、演算装置110にて演
算した循環組成αと目標の循環組成α* との比較におい
て、α<α* の場合には、第一の絞り装置を開き、α>
α* の場合には、第一の絞り装置を閉じる制御を行い、
循環組成が目標値付近でバランスするようにする。
The operation of the composition regulator during heating will be described. The composition regulator operates when some of the load side heat exchangers are stopped. The load side heat exchanger that is currently stopped is designated as 5a. The composition controller adjusts the composition according to the difference between the circulation composition α calculated by the calculation device 110 and the target circulation composition α * . In the composition adjusting method, first, the liquid refrigerant is stored in the low pressure receiver. To store the liquid in the low-pressure receiver, the expansion device 4 is fully opened and the compressor is activated. At this time, the liquid level of the low-pressure receiver rises, so that the refrigerant having a low boiling point in the circulation composition circulates in the refrigerant circuit. Here, the first expansion device 4a is closed and the high-temperature, high-pressure liquid refrigerant is guided to the pipe 202b. At this point, the refrigerant discharged from the compressor is rich in low-boiling components, so the refrigerant stored inside the pipe 202b is rich in low-boiling components. As a result, the composition of the refrigerant circulating in the refrigerant circuit changes from one rich in low-boiling components to one rich in high-boiling components. Here, in the comparison between the circulation composition α calculated by the calculation device 110 and the target circulation composition α * , when α <α * , the first throttle device is opened, and α>
In the case of α * , control is performed to close the first diaphragm device,
Try to balance the circulation composition near the target value.

【0122】メイン制御器では、循環組成αが求まる
と、P1とαより凝縮温度Tc,T1より蒸発温度Te
を求めることができる。制御器では、凝縮温度および蒸
発温度の目標値は予め設定しておき、各々、目標値との
ずれに応じて、圧縮機1の運転周波数および送風機12
の回転数の補正を行う。また、絞り装置4の開度は、上
記凝縮温度と第四の温度センサが検知した値の差が一定
となるように制御する。従って、循環組成の推定精度が
良く、効率の良い運転を確実に行うことができる。組成
を調整する場合には、その瞬間流れている組成で、冷媒
が寝込ませる必要がある。つまり低沸点成分に富んだ冷
媒を停止室内機に溜めると、不足した分の冷媒が低圧レ
シーバより蒸発する。この蒸発した冷媒が高沸点成分に
富むため、組成が変化する。もし停止室内機の絞りを開
ければ停止室内機にも循環組成と同じ冷媒が流れてしま
うので、この効果が薄くなる。
In the main controller, when the circulation composition α is obtained, the condensation temperature Tc is obtained from P1 and α, and the evaporation temperature Te is obtained from T1.
Can be requested. In the controller, the target values of the condensation temperature and the evaporation temperature are set in advance, and the operating frequency of the compressor 1 and the blower 12 are set in accordance with the deviations from the target values.
Correct the rotation speed of. Further, the opening degree of the expansion device 4 is controlled so that the difference between the condensation temperature and the value detected by the fourth temperature sensor becomes constant. Therefore, the estimation accuracy of the circulation composition is good, and efficient operation can be reliably performed. When adjusting the composition, it is necessary to let the refrigerant fall asleep with the composition that is flowing at that moment. That is, when the refrigerant rich in low boiling point components is stored in the stopped indoor unit, the insufficient refrigerant evaporates from the low pressure receiver. Since the evaporated refrigerant is rich in high-boiling components, the composition changes. If the throttle of the stopped indoor unit is opened, the refrigerant having the same circulation composition will flow into the stopped indoor unit, and this effect is diminished.

【0123】実施例13.以下、本発明の実施例13を
図について説明する。図26は、本発明の実施例13を
示す冷媒回路図である。なお図中、実施例12と同一部
分については、同一符号を付し、説明を省略する。図2
5における実施例12において、メイン配管とバイパス
配管200との分岐部付近に冷媒の乾き度センサ150
を追加する。
Example 13 Embodiment 13 of the present invention will be described below with reference to the drawings. FIG. 26 is a refrigerant circuit diagram showing Embodiment 13 of the present invention. In the figure, the same parts as those in the twelfth embodiment are designated by the same reference numerals, and the description thereof will be omitted. Figure 2
In the twelfth embodiment of the fifth aspect, the refrigerant dryness sensor 150 is provided near the branch portion between the main pipe and the bypass pipe 200.
To add.

【0124】作用について説明する。冷房時の作用につ
いては、実施例12と同様であるため、説明を省略す
る。また、暖房運転において、冷媒の流れ、組成制御
器、メイン制御器の作用は実施例12と同様であるた
め、説明を省略する。従って、暖房運転時の演算装置の
作用のみについて説明する。循環組成αの演算は、次の
手順にて行う。第一の温度センサおよび第一の圧力セン
サが各々検知する値T1およびP1を演算装置に取り込
む。ここで、バイパス配管200の分岐部は、下向きに
設置する等により流入する冷媒の液のみにする。従っ
て、バイパス配管200に流入する冷媒の乾き度Xを0
として設定し、この乾き度XとT2およびP1より、バ
イパス配管200を流れる冷媒の組成α- を算出する。
このα- と乾き度センサ150が検知する乾き度X-
り、メイン配管を流れる冷媒の循環組成αを算出する。
The operation will be described. Since the operation during cooling is the same as that of the twelfth embodiment, the description thereof will be omitted. Further, in the heating operation, the refrigerant flow, the composition controller, and the main controller have the same functions as in the twelfth embodiment, and thus the description thereof will be omitted. Therefore, only the operation of the arithmetic unit during the heating operation will be described. The calculation of the circulation composition α is performed in the following procedure. The values T1 and P1 detected by the first temperature sensor and the first pressure sensor are fetched into the arithmetic unit. Here, the branch portion of the bypass pipe 200 is made only of the liquid of the inflowing refrigerant by being installed downward. Therefore, the dryness X of the refrigerant flowing into the bypass pipe 200 is set to 0.
And the composition α of the refrigerant flowing through the bypass pipe 200 is calculated from the dryness X and T2 and P1.
The circulation composition α of the refrigerant flowing through the main pipe is calculated from this α and the dryness X detected by the dryness sensor 150.

【0125】従って、本実施例において、暖房時でも組
成の推定精度が良く、効率の良い運転を行うことができ
る。実施例7〜13において、第二の絞り装置7の開度
は、バイパス配管200に設けられた熱交換部8の出入
口部の温度差が所定の値(例えば10℃)となるように
制御される。すなわち、バイパス配管200に設けられ
た温度センサ、例えば101と109が検出した温度の
差を演算し、この温度差と所定値(例えば10℃)との
差に応じて、PID制御等のフィードバック制御により
絞り装置7の開度の修正値が演算され、このようにする
ことにより、バイパス配管200から低圧レシーバ6に
いく冷媒が常に蒸気の状態となり、エネルギが有効に使
われ、かつ圧縮機1への液戻りも防げる効果がある。な
お、本実施例としては、混合冷媒として二成分系を対象
として説明したが、三成分系など多成分系の場合におい
ても同様の効果を得ることができる。
Therefore, in the present embodiment, the composition estimation accuracy is high even during heating, and efficient operation can be performed. In Examples 7 to 13, the opening degree of the second expansion device 7 is controlled so that the temperature difference between the inlet and outlet of the heat exchange section 8 provided in the bypass pipe 200 becomes a predetermined value (for example, 10 ° C). It That is, a temperature sensor provided in the bypass pipe 200, for example, a difference between temperatures detected by 101 and 109 is calculated, and feedback control such as PID control is performed according to the difference between the temperature difference and a predetermined value (for example, 10 ° C.). The correction value of the opening degree of the expansion device 7 is calculated by this, and by doing so, the refrigerant going from the bypass pipe 200 to the low-pressure receiver 6 is always in a vapor state, energy is effectively used, and the compressor 1 It also has the effect of preventing the liquid from returning. In this embodiment, a two-component system is described as the mixed refrigerant, but the same effect can be obtained in the case of a multi-component system such as a three-component system.

【0126】実施例14.以下、本発明の実施例14を
図について説明する。図27は、本発明の実施例14を
示す冷媒回路図である。図において、1は圧縮機、2は
四方弁、3は熱源側熱交換器、9は第二の絞り装置、1
1は高圧レシーバ、4は第一の絞り装置、5は負荷側熱
交換器、6は低圧レシーバであり、これらを順次接続し
て、メインの冷媒回路をなす。101は第一の温度セン
サ、102は第二の温度センサ、103は第一の圧力セ
ンサ、107は第三の温度センサ、122は第四の温度
センサ、123は第二の圧力センサである。108,1
09は各々、第五、第六の温度センサである。110は
上記第一、第二、第三および第四の温度センサ並びに第
一および第二の圧力センサの情報より、循環組成を演算
する演算装置である。112は、第一および第二の絞り
装置の開度を決定し、制御を行うメイン制御器である。
Example 14 Embodiment 14 of the present invention will be described below with reference to the drawings. FIG. 27 is a refrigerant circuit diagram showing Embodiment 14 of the present invention. In the figure, 1 is a compressor, 2 is a four-way valve, 3 is a heat source side heat exchanger, 9 is a second expansion device, 1
Reference numeral 1 is a high pressure receiver, 4 is a first expansion device, 5 is a load side heat exchanger, and 6 is a low pressure receiver, and these are sequentially connected to form a main refrigerant circuit. 101 is a first temperature sensor, 102 is a second temperature sensor, 103 is a first pressure sensor, 107 is a third temperature sensor, 122 is a fourth temperature sensor, and 123 is a second pressure sensor. 108, 1
Reference numerals 09 are fifth and sixth temperature sensors, respectively. Reference numeral 110 denotes an arithmetic unit that calculates the circulation composition based on the information from the first, second, third and fourth temperature sensors and the first and second pressure sensors. Reference numeral 112 denotes a main controller that determines the opening degrees of the first and second throttle devices and controls the opening degrees.

【0127】作用について説明する。冷房運転時、冷媒
は、圧縮機1より吐出され、熱源側熱交換器3にて凝縮
する。ここで、第二の圧力センサ123の値がある設定
値以上のときには、メイン制御器112の判断により、
第二の絞り装置9を全開とする。高圧レシーバ11に
は、液冷媒が流れ込み、液冷媒が貯溜されることにな
る。高圧レシーバ11より流出した液冷媒は、第一の絞
り装置4にて絞られ、低温・低圧の二相状態となる。こ
の低温・低圧の二相冷媒は、負荷側熱交換器5に流入
し、周囲より熱を奪い冷房すると共に、自身は蒸発気化
し、四方弁2および低圧レシーバ6を介して、圧縮機1
に戻る。この結果、低圧レシーバには液冷媒が存在しな
くなるため、循環組成において、高沸点成分が多くな
り、高圧圧力は低くなる。この時、メイン制御器112
では、第一の温度センサ101と第五の温度センサ10
8の検出値の差が、一定となるように第一の絞り装置4
の開度を制御する。
The operation will be described. During the cooling operation, the refrigerant is discharged from the compressor 1 and condensed in the heat source side heat exchanger 3. Here, when the value of the second pressure sensor 123 is equal to or greater than a certain set value, the main controller 112 judges that
The second expansion device 9 is fully opened. The liquid refrigerant flows into the high-pressure receiver 11, and the liquid refrigerant is stored. The liquid refrigerant flowing out of the high-pressure receiver 11 is throttled by the first expansion device 4 and becomes a low-temperature / low-pressure two-phase state. This low-temperature, low-pressure two-phase refrigerant flows into the load side heat exchanger 5 to remove heat from the surroundings and cool, and at the same time evaporate itself and pass through the four-way valve 2 and the low pressure receiver 6 to the compressor 1
Return to As a result, since the liquid refrigerant does not exist in the low pressure receiver, the high boiling point component increases in the circulation composition, and the high pressure decreases. At this time, the main controller 112
Then, the first temperature sensor 101 and the fifth temperature sensor 10
8 so that the difference between the detection values of 8 is constant.
Control the opening of.

【0128】冷房運転時、第二の圧力センサ123の値
がある設定値以下のときには、メイン制御器の判断によ
り、第一の絞り装置4を全開とする。熱源側熱交換器3
にて凝縮した液冷媒は、第二の絞り装置9にて低温・低
圧の二相状態となる。高圧レシーバ11には、二相冷媒
が流れ込み、液冷媒が流出することになるので、液冷媒
が貯溜されなくなる。高圧レシーバ11より流出した低
温・低圧の二相冷媒は、負荷側熱交換器5に流入し、周
囲より熱を奪い冷房すると共に、自身は蒸発気化し、四
方弁2および低圧レシーバ6を介して、圧縮機1に戻
る。この結果、低圧レシーバには液冷媒が貯溜され、循
環組成において、低沸点成分が多くなり、高圧圧力は高
くなる。
During the cooling operation, when the value of the second pressure sensor 123 is less than a certain set value, the first throttle device 4 is fully opened according to the judgment of the main controller. Heat source side heat exchanger 3
The liquid refrigerant condensed in 2 becomes a low-temperature, low-pressure two-phase state in the second expansion device 9. Since the two-phase refrigerant flows into the high-pressure receiver 11 and the liquid refrigerant flows out, the liquid refrigerant is not stored. The low-temperature, low-pressure two-phase refrigerant flowing out from the high-pressure receiver 11 flows into the load-side heat exchanger 5 to take heat from the surroundings and cool, and at the same time evaporate itself, and pass through the four-way valve 2 and the low-pressure receiver 6. , Return to compressor 1. As a result, the liquid refrigerant is stored in the low-pressure receiver, the low boiling point component is increased in the circulating composition, and the high pressure is increased.

【0129】演算装置は、循環組成αを演算する機能を
有する。循環組成αの演算は、次の手順にて行う。第三
の温度センサ107、第四の温度センサ122および第
二の圧力センサ123が各々検知する値T1,T2およ
びP1を取り込む。循環組成α1 を仮定すると、液冷媒
のエンタルピは、冷媒の温度のみに依存するとして、T
1からエンタルピH1を求める。第二の絞り装置9出口
の冷媒のエンタルピは第二の絞り装置9入口のエンタル
ピに等しいとすると、T2,P1およびH1から第一の
絞り装置4出口の乾き度Xが求まる。この計算結果Xと
T2およびP1より、冷媒の循環組成α2 を逆算する。
α1 とα2 が等しくなるまで、α1 の仮定を繰り返し演
算し、得られた結果を循環組成αとする。
The arithmetic unit has a function of calculating the circulation composition α. The calculation of the circulation composition α is performed in the following procedure. The values T1, T2, and P1 detected by the third temperature sensor 107, the fourth temperature sensor 122, and the second pressure sensor 123 are taken in. Assuming a circulation composition α 1 , the enthalpy of the liquid refrigerant is T
The enthalpy H1 is calculated from 1. Assuming that the enthalpy of the refrigerant at the outlet of the second expansion device 9 is equal to the enthalpy at the entrance of the second expansion device 9, the dryness X at the exit of the first expansion device 4 can be obtained from T2, P1 and H1. The circulation composition α 2 of the refrigerant is back-calculated from the calculation result X, T2 and P1.
The assumption of α 1 is repeatedly calculated until α 1 and α 2 are equal, and the obtained result is set as the circulation composition α.

【0130】メイン制御器では、循環組成αが求まる
と、P1とαより凝縮温度Tcを求める。第二の絞り装
置9の開度は、上記凝縮温度と第三の温度センサ121
が検知した値の差が一定となるように制御する。
When the circulating composition α is obtained, the main controller determines the condensing temperature Tc from P1 and α. The opening degree of the second expansion device 9 is the condensation temperature and the third temperature sensor 121.
The difference between the values detected by is controlled to be constant.

【0131】暖房運転時、冷媒は、圧縮機1より吐出さ
れ、負荷側熱交換器5にて凝縮する。ここで、第一の圧
力センサ103の値がある設定値以上のときには、メイ
ン制御器の判断により、第一の絞り装置4を全開とす
る。高圧レシーバ11には、液冷媒が流れ込み、液冷媒
が貯溜されることになる。高圧レシーバ11より流出し
た液冷媒は、第二の絞り装置9にて絞られ、低温・低圧
の二相状態となる。この低温・低圧の二相冷媒は、熱源
側熱交換器3に流入し、蒸発気化し、四方弁2および低
圧レシーバ6を介して、圧縮機1に戻る。この結果、低
圧レシーバには液冷媒が存在しなくなるため、循環組成
において、高沸点成分が多くなり、高圧圧力は低くな
る。この時、メイン制御器では、第三の温度センサ10
7と第六の温度センサ109の検出値の差が、一定とな
るように第二の絞り装置9の開度を制御する。
During the heating operation, the refrigerant is discharged from the compressor 1 and condensed in the load side heat exchanger 5. Here, when the value of the first pressure sensor 103 is equal to or greater than a certain set value, the first throttle device 4 is fully opened according to the judgment of the main controller. The liquid refrigerant flows into the high-pressure receiver 11, and the liquid refrigerant is stored. The liquid refrigerant flowing out from the high-pressure receiver 11 is throttled by the second expansion device 9 to be in a low temperature / low pressure two-phase state. The low-temperature low-pressure two-phase refrigerant flows into the heat source side heat exchanger 3, evaporates and vaporizes, and returns to the compressor 1 via the four-way valve 2 and the low pressure receiver 6. As a result, since the liquid refrigerant does not exist in the low pressure receiver, the high boiling point component increases in the circulation composition, and the high pressure decreases. At this time, in the main controller, the third temperature sensor 10
The opening degree of the second expansion device 9 is controlled so that the difference between the detection values of the seventh and sixth temperature sensors 109 becomes constant.

【0132】暖房運転時、第一の圧力センサ103の値
がある設定値以下のときには、メイン制御器の判断によ
り、第二の絞り装置9を全開とする。負荷側熱交換器5
にて凝縮した液冷媒は、第一の絞り装置4にて低温・低
圧の二相冷媒となる。高圧レシーバ11には、二相冷媒
が流れ込み、液冷媒が流出することになるので、液冷媒
が貯溜されなくなる。高圧レシーバ11より流出した低
温・低圧の二相冷媒は、熱源側熱交換器3に流入し、周
囲より熱を奪い冷房すると共に、自身は蒸発気化し、四
方弁2および低圧レシーバ6を介して、圧縮機1に戻
る。この結果、低圧レシーバには液冷媒が貯溜され、循
環組成において、低沸点成分が多くなり、高圧圧力は高
くなる。
During the heating operation, when the value of the first pressure sensor 103 is less than a certain set value, the second throttle device 9 is fully opened according to the judgment of the main controller. Load side heat exchanger 5
The liquid refrigerant condensed in 1. becomes a low-temperature, low-pressure two-phase refrigerant in the first expansion device 4. Since the two-phase refrigerant flows into the high-pressure receiver 11 and the liquid refrigerant flows out, the liquid refrigerant is not stored. The low-temperature low-pressure two-phase refrigerant flowing out from the high-pressure receiver 11 flows into the heat source side heat exchanger 3 to remove heat from the surroundings and cool, and at the same time evaporate itself, and pass through the four-way valve 2 and the low-pressure receiver 6. , Return to compressor 1. As a result, the liquid refrigerant is stored in the low-pressure receiver, the low boiling point component is increased in the circulating composition, and the high pressure is increased.

【0133】演算装置は、循環組成αを演算する機能を
有する。循環組成αの演算は、次の手順にて行う。第一
の温度センサ101、第二の温度センサ102および第
一の圧力センサ103が各々検知する値T1,T2およ
びP1を取り込む。循環組成α1 を仮定すると、液冷媒
のエンタルピは、冷媒の温度のみに依存するとして、T
1からエンタルピH1を求める。第一の絞り装置4出口
の冷媒のエンタルピは第一の絞り装置4入口のエンタル
ピに等しいとすると、T2,P1およびH1から第一の
絞り装置4出口の乾き度Xが求まる。この計算結果Xと
T2およびP1より、冷媒の循環組成α2 を逆算する。
α1 とα2 が等しくなるまで、α1 の仮定を繰り返し演
算し、得られた結果を循環組成αとする。
The arithmetic unit has a function of calculating the circulation composition α. The calculation of the circulation composition α is performed in the following procedure. The values T1, T2, and P1 detected by the first temperature sensor 101, the second temperature sensor 102, and the first pressure sensor 103, respectively, are loaded. Assuming a circulation composition α 1 , the enthalpy of the liquid refrigerant is T
The enthalpy H1 is calculated from 1. Assuming that the enthalpy of the refrigerant at the outlet of the first expansion device 4 is equal to the enthalpy at the inlet of the first expansion device 4, the dryness X at the exit of the first expansion device 4 can be obtained from T2, P1 and H1. The circulation composition α 2 of the refrigerant is back-calculated from the calculation result X, T2 and P1.
The assumption of α 1 is repeatedly calculated until α 1 and α 2 are equal, and the obtained result is set as the circulation composition α.

【0134】メイン制御器では、循環組成αが求まる
と、P1とαより凝縮温度Tcを求める。第一の絞り装
置4の開度は、上記凝縮温度と第一の温度センサ101
が検知した値の差が一定となるように制御する。従っ
て、循環組成の推定精度が良く、かつ、高圧圧力を適正
に制御し、効率の良い運転を確実に行うことができる。
When the circulation composition α is obtained, the main controller obtains the condensing temperature Tc from P1 and α. The opening degree of the first expansion device 4 is the condensation temperature and the first temperature sensor 101.
The difference between the values detected by is controlled to be constant. Therefore, the estimation accuracy of the circulation composition is good, the high pressure is properly controlled, and the efficient operation can be surely performed.

【0135】実施例15.以下、本発明の実施例15を
図について説明する。図28は、本発明の実施例15を
示す冷媒回路図である。図において、1は圧縮機、2は
四方弁、3は熱源側熱交換器、9は第二の絞り装置、1
1は高圧レシーバ、4は第一の絞り装置、5は負荷側熱
交換器、6は低圧レシーバであり、これらを順次接続し
て、メインの冷媒回路をなす。また、負荷側熱交換器は
a,b二系統の冷媒回路を持つ。204は、高圧レシー
バ11より第三の絞り装置16を介して、低圧レシーバ
に至るバイパス配管である。101は第一の温度セン
サ、102は第二の温度センサ、103は第一の圧力セ
ンサ、105は第二の圧力センサ、107は第四の温度
センサ、106は第三の温度センサ、108は第六の温
度センサ、109は第五の温度センサである。110は
上記第一および第二の温度センサ並びに第一の圧力セン
サの情報より、循環組成を演算する演算装置である。1
11は、上記循環組成と目標の循環組成の差に応じて、
第三の絞り装置を開閉する組成制御器である。112
は、第三、第四、第五および第六の温度センサ並びに第
二の圧力センサの検出値から、絞り装置の開度、圧縮機
の運転周波数、室外機のファン回転数を決定し、制御を
行うメイン制御器である。
Example 15. Embodiment 15 of the present invention will be described below with reference to the drawings. FIG. 28 is a refrigerant circuit diagram showing Embodiment 15 of the present invention. In the figure, 1 is a compressor, 2 is a four-way valve, 3 is a heat source side heat exchanger, 9 is a second expansion device, 1
Reference numeral 1 is a high pressure receiver, 4 is a first expansion device, 5 is a load side heat exchanger, and 6 is a low pressure receiver, and these are sequentially connected to form a main refrigerant circuit. The load side heat exchanger has a refrigerant circuit of two systems, a and b. Reference numeral 204 is a bypass pipe from the high-voltage receiver 11 to the low-voltage receiver via the third expansion device 16. 101 is a first temperature sensor, 102 is a second temperature sensor, 103 is a first pressure sensor, 105 is a second pressure sensor, 107 is a fourth temperature sensor, 106 is a third temperature sensor, and 108 is A sixth temperature sensor 109 is a fifth temperature sensor. Reference numeral 110 denotes a computing device that computes the circulation composition based on the information from the first and second temperature sensors and the first pressure sensor. 1
11 is, depending on the difference between the circulation composition and the target circulation composition,
It is a composition controller that opens and closes the third expansion device. 112
Determines the opening of the expansion device, the operating frequency of the compressor, and the fan speed of the outdoor unit from the detected values of the third, fourth, fifth and sixth temperature sensors and the second pressure sensor, and controls them. It is the main controller that does.

【0136】作用について説明する。冷房運転時、冷媒
は、圧縮機1より吐出され、熱源側熱交換器3にて凝縮
する。ここで、装置9を全開とすると、高圧レシーバ1
1には、液冷媒が流れ込み、液冷媒が貯溜されることに
なる。高圧レシーバ11より流出した液冷媒は、第一の
絞り装置4にて絞られ、低温・低圧の二相状態となる。
この低温・低圧の二相冷媒は、負荷側熱交換器5に流入
し、周囲より熱を奪い冷房すると共に、自身は蒸発気化
し、四方弁2および低圧レシーバ6を介して、圧縮機1
に戻る。
The operation will be described. During the cooling operation, the refrigerant is discharged from the compressor 1 and condensed in the heat source side heat exchanger 3. Here, when the device 9 is fully opened, the high-voltage receiver 1
The liquid refrigerant flows into 1 and the liquid refrigerant is stored. The liquid refrigerant flowing out of the high-pressure receiver 11 is throttled by the first expansion device 4 and becomes a low-temperature / low-pressure two-phase state.
This low-temperature, low-pressure two-phase refrigerant flows into the load side heat exchanger 5 to remove heat from the surroundings and cool, and at the same time evaporate itself and pass through the four-way valve 2 and the low pressure receiver 6 to the compressor 1
Return to

【0137】演算装置は、循環組成αを演算を行う。デ
ータとしては、バイパス回路204上のものを用いる。
まず、第一の温度センサ101、第二の温度センサ10
2および第一の圧力センサ103が各々検知する値T
1,T2およびP1を取り込む。循環組成α1 を仮定す
ると、液冷媒のエンタルピは、冷媒の温度のみに依存す
るとして、T1からエンタルピH1を求める。第二の絞
り装置7出口の冷媒のエンタルピは第三の絞り装置16
入口のエンタルピに等しいとすると、T2,P1および
H1から第二の絞り装置9出口の乾き度Xが求まる。こ
の計算結果XとT2およびP1より、冷媒の循環組成α
2 を逆算する。α1 とα2 が等しくなるまで、α1 の仮
定を繰り返し演算し、得られた結果を循環組成αとす
る。
The arithmetic unit calculates the circulation composition α. The data on the bypass circuit 204 is used as the data.
First, the first temperature sensor 101 and the second temperature sensor 10
2 and the value T detected by the first pressure sensor 103, respectively.
Take in 1, T2 and P1. Assuming the circulation composition α 1 , the enthalpy H1 is calculated from T1, assuming that the enthalpy of the liquid refrigerant depends only on the temperature of the refrigerant. The enthalpy of the refrigerant at the outlet of the second expansion device 7 is the third expansion device 16
If it is equal to the enthalpy of the inlet, the dryness X at the outlet of the second expansion device 9 can be obtained from T2, P1 and H1. From the calculation result X, T2 and P1, the refrigerant circulation composition α
Calculate 2 backwards. The assumption of α 1 is repeatedly calculated until α 1 and α 2 are equal, and the obtained result is set as the circulation composition α.

【0138】組成制御器111では、演算装置110に
て演算した循環組成αと目標の循環組成α* の差に応じ
て組成の調整を行う。αとα* との関係が、α<α*
時には、第三の絞り装置16を各々の差α−α* に応じ
て開く。高圧レシーバ11内の液冷媒は低圧レシーバ6
に移る。この結果、循環組成において、低沸点成分の割
合は増加し、循環組成αは増大する。また、α>α*
時には、第三の絞り装置16を各々の差α−α* に応じ
て閉じる。低圧レシーバ6内の液冷媒は高圧レシーバ1
1に移る。この結果、循環組成において、高沸点成分の
割合は増加し、循環組成αは減少する。
The composition controller 111 adjusts the composition according to the difference between the circulation composition α calculated by the calculation device 110 and the target circulation composition α * . When the relationship between α and α * is α <α * , the third diaphragm device 16 is opened according to each difference α−α * . The liquid refrigerant in the high-pressure receiver 11 is the low-pressure receiver 6
Move on to. As a result, in the circulating composition, the proportion of low boiling point components increases and the circulating composition α increases. When α> α * , the third diaphragm device 16 is closed according to each difference α−α * . The liquid refrigerant in the low-pressure receiver 6 is the high-pressure receiver 1
Move to 1. As a result, in the circulating composition, the proportion of high-boiling components increases and the circulating composition α decreases.

【0139】循環組成αが求まると、P1とαより凝縮
温度Tc,T1より蒸発温度Teを求めることができ
る。制御器では、凝縮温度および蒸発温度の目標値は予
め設定しておき、各々、目標値とのずれに応じて、圧縮
機1の運転周波数および送風機12の回転数の補正を行
う。また、絞り装置4の開度は、第三および第四の温度
センサが検知した値の差が一定となるように開度を決定
する。
When the circulation composition α is obtained, the condensation temperature Tc can be obtained from P1 and α, and the evaporation temperature Te can be obtained from T1. In the controller, the target values of the condensation temperature and the evaporation temperature are set in advance, and the operating frequency of the compressor 1 and the rotation speed of the blower 12 are respectively corrected according to the deviations from the target values. The opening of the expansion device 4 is determined so that the difference between the values detected by the third and fourth temperature sensors is constant.

【0140】暖房運転時、冷媒は、圧縮機1より吐出さ
れ、負荷側熱交換器5にて凝縮する。液冷媒は第一の装
置4にて若干絞られた後、高圧レシーバ11に流れ込
み、貯溜される。高圧レシーバ11より流出した液冷媒
は、第二の絞り装置9にて絞られ、低温・低圧の二相状
態となる。この低温・低圧の二相冷媒は、負荷側熱交換
器5に流入し、周囲より熱を奪い冷房すると共に、自身
は蒸発気化し、四方弁2および低圧レシーバ6を介し
て、圧縮機1に戻る。
In the heating operation, the refrigerant is discharged from the compressor 1 and condensed in the load side heat exchanger 5. The liquid refrigerant is slightly squeezed by the first device 4, then flows into the high-pressure receiver 11 and is stored therein. The liquid refrigerant flowing out from the high-pressure receiver 11 is throttled by the second expansion device 9 to be in a low temperature / low pressure two-phase state. This low-temperature, low-pressure two-phase refrigerant flows into the load-side heat exchanger 5 to remove heat from the surroundings and cool, and at the same time evaporate itself and pass through the four-way valve 2 and the low-pressure receiver 6 to the compressor 1. Return.

【0141】演算装置および組成調整器の機能は、冷房
時と同様であるため省略する。循環組成αが求まると、
第二の圧力検出器が検出する値P2とαより凝縮温度T
c、第一の温度検出器101が検知する値T1より蒸発
温度Teを求めることができる。制御器では、凝縮温度
および蒸発温度の目標値は予め設定しておき、各々、目
標値とのずれに応じて、圧縮機1の運転周波数および送
風機12の回転数の補正を行う。また、絞り装置4の開
度は、上記凝縮温度Tcおよび第二の温度センサが検知
した値の差が一定となるように開度を決定する。絞り装
置9の開度は、第五および第六の温度センサが検知した
値の差が一定となるように開度を決定する。従って、本
実施例において、精度良く循環組成を検知し、組成調整
を行うことにより、効率の良い運転を実現できる。
The functions of the arithmetic unit and the composition adjuster are the same as those in the case of cooling, so the description thereof will be omitted. When the circulation composition α is obtained,
From the value P2 and α detected by the second pressure detector, the condensation temperature T
c, the evaporation temperature Te can be obtained from the value T1 detected by the first temperature detector 101. In the controller, the target values of the condensation temperature and the evaporation temperature are set in advance, and the operating frequency of the compressor 1 and the rotation speed of the blower 12 are respectively corrected according to the deviations from the target values. The opening of the expansion device 4 is determined so that the difference between the condensation temperature Tc and the value detected by the second temperature sensor is constant. The opening of the expansion device 9 is determined so that the difference between the values detected by the fifth and sixth temperature sensors is constant. Therefore, in the present embodiment, efficient operation can be realized by accurately detecting the circulation composition and adjusting the composition.

【0142】実施例16.以下、本発明の実施例16を
図について説明する。図29は、本発明の実施例16を
示す冷媒回路図である。なお、図中実施例15と同一部
分については、同一符号を付し、説明を省略する。図2
8における実施例15における、第二の絞り装置9と高
圧レシーバ11の間の配管および高圧レシーバ11と第
一の絞り装置4の間の配管と、第三の絞り装置16と低
圧レシーバ6の間の配管とを熱交換するための過冷却熱
交換器17を備える構成とする。
Example 16. Embodiment 16 of the present invention will be described below with reference to the drawings. FIG. 29 is a refrigerant circuit diagram showing Embodiment 16 of the present invention. In the figure, the same parts as those of the fifteenth embodiment are designated by the same reference numerals and the description thereof will be omitted. Figure 2
8, the pipe between the second expansion device 9 and the high-pressure receiver 11 and the pipe between the high-pressure receiver 11 and the first expansion device 4, and between the third expansion device 16 and the low-pressure receiver 6. The subcooling heat exchanger 17 for exchanging heat with the pipe is used.

【0143】作用について説明する。冷媒の流れ、演算
装置、組成調整器、制御器の作用は実施例15と同様で
あるので省略する。過冷却熱交換器17は、メイン回路
を流れる高圧の液冷媒と、上記バイパス管204を流れ
る低温・低圧の二相冷媒との熱交換を行う。よって、バ
イパス管204を流れる冷媒のエンタルピは、メイン回
路を流れる冷媒に伝えられ、エネルギ的なロスは無く
し、効率の良い運転を行う。
The operation will be described. The flow of the refrigerant, the operation of the arithmetic unit, the composition adjuster, and the controller are the same as those in the fifteenth embodiment, and therefore the description thereof will be omitted. The supercooling heat exchanger 17 exchanges heat between the high-pressure liquid refrigerant flowing in the main circuit and the low-temperature low-pressure two-phase refrigerant flowing in the bypass pipe 204. Therefore, the enthalpy of the refrigerant flowing through the bypass pipe 204 is transmitted to the refrigerant flowing through the main circuit, energy loss is eliminated, and efficient operation is performed.

【0144】実施例17.以下、本発明の実施例17を
図について説明する。図30は、本発明の実施例17を
示す冷媒回路図である。なお、図中実施例15と同一部
分については、同一符号を付し、説明を省略する。図2
8における実施例15における、圧縮機1吐出配管と低
圧レシーバ6の吸入配管をバイパスするバイパス配管2
05、および、バイパス配管205上に、開閉装置18
を付加する。
Example 17: Embodiment 17 of the present invention will be described below with reference to the drawings. FIG. 30 is a refrigerant circuit diagram showing Embodiment 17 of the present invention. In the figure, the same parts as those of the fifteenth embodiment are designated by the same reference numerals and the description thereof will be omitted. Figure 2
8 in Example 15, bypass pipe 2 bypassing compressor 1 discharge pipe and low-pressure receiver 6 suction pipe
05 and the bypass pipe 205 on the switchgear 18
Is added.

【0145】作用について説明する。冷媒の流れ、演算
装置、組成調整器、制御器の作用は実施例15と同様で
あるので省略する。低圧レシーバ6内の液冷媒を、速や
かに蒸発させ、高圧レシーバ11に溜めるときには、開
閉機構18を開き、圧縮機より吐出される高温の冷媒ガ
スを低圧レシーバ6に導き、蒸発させる。従って、高圧
が異常に上昇する場合にも、速やかに、高圧を押さえる
効果がある。
The operation will be described. The flow of the refrigerant, the operation of the arithmetic unit, the composition adjuster, and the controller are the same as those in the fifteenth embodiment, and therefore the description thereof will be omitted. When the liquid refrigerant in the low-pressure receiver 6 is quickly evaporated and stored in the high-pressure receiver 11, the opening / closing mechanism 18 is opened, and the high-temperature refrigerant gas discharged from the compressor is guided to the low-pressure receiver 6 and evaporated. Therefore, even if the high pressure rises abnormally, the high pressure can be quickly suppressed.

【0146】実施例18.以下、本発明の実施例18を
図について説明する。図31は、本発明の実施例18を
示す冷媒回路図である。なお、図中実施例15と同一部
分については、同一符号を付し、説明を省略する。図2
8における実施例15における、圧縮機1吐出配管と低
圧レシーバ6の内部とをバイパスするバイパス配管20
5、および、バイパス配管205上に、開閉装置18を
付加する。
Example 18. Embodiment 18 of the present invention will be described below with reference to the drawings. FIG. 31 is a refrigerant circuit diagram showing Embodiment 18 of the present invention. In the figure, the same parts as those of the fifteenth embodiment are designated by the same reference numerals and the description thereof will be omitted. Figure 2
Bypass pipe 20 for bypassing the discharge pipe of the compressor 1 and the inside of the low-pressure receiver 6 in the embodiment 15 of No. 8
The switchgear 18 is added on the bypass pipe 205 and the bypass pipe 205.

【0147】作用について説明する。冷媒の流れ、演算
装置、組成調整器、制御器の作用は実施例15と同様で
あるので省略する。低圧レシーバ6内の液冷媒を、速や
かに蒸発させ、高圧レシーバ11に溜めるときには、開
閉機構18を開き、圧縮機より吐出される高温の冷媒ガ
スを低圧レシーバ6内部へ導き、低圧レシーバ内部の液
冷媒を効果的に蒸発させる。従って、高圧が異常に上昇
する場合にも、速やかに、高圧を押さえる効果がある。
The operation will be described. The flow of the refrigerant, the operation of the arithmetic unit, the composition adjuster, and the controller are the same as those in the fifteenth embodiment, and therefore the description thereof will be omitted. When the liquid refrigerant in the low-pressure receiver 6 is quickly evaporated and stored in the high-pressure receiver 11, the opening / closing mechanism 18 is opened to guide the high-temperature refrigerant gas discharged from the compressor into the low-pressure receiver 6 so that the liquid inside the low-pressure receiver 6 is discharged. Evaporate the refrigerant effectively. Therefore, even if the high pressure rises abnormally, the high pressure can be quickly suppressed.

【0148】実施例19.以下、本発明の実施例19を
図について説明する。図32は、本発明の実施例19を
示す冷媒回路図である。なお、図中実施例15と同一部
分については、同一符号を付し、説明を省略する。図2
8における実施例15における、高圧レシーバ11と第
一の絞り装置4の間に開閉機構22と、高圧レシーバ1
1と第二の絞り装置9の間に開閉機構24と、開閉機構
22をバイパスし、開閉機構21と第一の過冷却熱交換
器25を連通するバイパス配管206と、開閉機構24
をバイパスし、開閉機構23と第二の過冷却熱交換器2
6を連通するバイパス配管207とを有し、第一および
第二の過冷却熱交換器を低圧レシーバに内蔵する構成と
する。
Example 19 Embodiment 19 of the present invention will be described below with reference to the drawings. 32 is a refrigerant circuit diagram showing Embodiment 19 of the present invention. In the figure, the same parts as those of the fifteenth embodiment are designated by the same reference numerals and the description thereof will be omitted. Figure 2
In the fifteenth embodiment, the open / close mechanism 22 is provided between the high-voltage receiver 11 and the first expansion device 4, and the high-voltage receiver 1
A bypass pipe 206 that bypasses the opening / closing mechanism 24 and the opening / closing mechanism 22 and connects the opening / closing mechanism 21 and the first subcooling heat exchanger 25 between the first and second expansion devices 9 and the opening / closing mechanism 24.
Bypassing the open / close mechanism 23 and the second subcooling heat exchanger 2
6 and a bypass pipe 207 communicating with each other, and the first and second subcooling heat exchangers are built in the low-pressure receiver.

【0149】作用について説明する。冷媒の流れ、演算
装置、組成調整器、制御器の作用は実施例15と同様で
あるので省略する。冷房運転時、低圧レシーバ6内の液
冷媒を、速やかに蒸発させ、液冷媒を高圧レシーバ11
に溜めるときには、開閉機構21,24を開き、開閉機
構22,23を閉じ、高圧の液冷媒を、バイパス配管2
06へ循環させる。この結果、低圧レシーバ内部の液冷
媒を効果的に蒸発させると共に、低圧レシーバ内部にて
液冷媒が蒸発するときの蒸発潜熱を、メイン回路の液冷
媒のエンタルピとして吸収し、効率を改善する。暖房運
転時、低圧レシーバ6内の液冷媒を、速やかに蒸発さ
せ、液冷媒を高圧レシーバ11に溜めるときには、開閉
機構22,23を開き、開閉機構21,24を閉じ、高
圧の液冷媒を、バイパス配管207へ循環させる。この
結果、低圧レシーバ内部の液冷媒を効果的に蒸発させ
る。従って、本実施例において、実施例16,17と同
様の効果を得られると共に、冷房運転時の効率を改善す
る。
The operation will be described. The flow of the refrigerant, the operation of the arithmetic unit, the composition adjuster, and the controller are the same as those in the fifteenth embodiment, and therefore the description thereof will be omitted. During the cooling operation, the liquid refrigerant in the low-pressure receiver 6 is quickly evaporated, and the liquid refrigerant is supplied to the high-pressure receiver 11
When storing in the bypass pipes 2, the opening / closing mechanisms 21, 24 are opened, the opening / closing mechanisms 22, 23 are closed, and the high-pressure liquid refrigerant is
Cycle to 06. As a result, the liquid refrigerant inside the low-pressure receiver is effectively evaporated, and the latent heat of evaporation when the liquid refrigerant evaporates inside the low-pressure receiver is absorbed as the enthalpy of the liquid refrigerant in the main circuit to improve efficiency. During the heating operation, when the liquid refrigerant in the low-pressure receiver 6 is quickly evaporated and the liquid refrigerant is stored in the high-pressure receiver 11, the opening / closing mechanisms 22 and 23 are opened, the opening / closing mechanisms 21 and 24 are closed, and the high-pressure liquid refrigerant is It is circulated to the bypass pipe 207. As a result, the liquid refrigerant inside the low-pressure receiver is effectively evaporated. Therefore, in this embodiment, the same effects as those of the sixteenth and seventeenth embodiments can be obtained, and the efficiency during the cooling operation is improved.

【0150】実施例20.以下、本発明の実施例20を
図について説明する。図33は、本発明の実施例20を
示す冷媒回路図である。なお、図中実施例15と同一部
分については、同一符号を付し、説明を省略する。図2
8における実施例15における、低圧レシーバ内部を分
割し、液冷媒を貯溜する部分と、通常は液を溜めず、圧
縮機への一時的な液戻りを防ぐバッファの部分とを設け
る。なお、低圧レシーバ内部を分割する仕切の高さより
も配管開口の高さを高くする。
Example 20. Embodiment 20 of the present invention will be described below with reference to the drawings. FIG. 33 is a refrigerant circuit diagram showing Embodiment 20 of the present invention. In the figure, the same parts as those of the fifteenth embodiment are designated by the same reference numerals and the description thereof will be omitted. Figure 2
In Example 15 in Example 8, the inside of the low-pressure receiver is divided, and a portion for storing the liquid refrigerant and a portion for the buffer that does not normally store the liquid and prevents a temporary liquid return to the compressor are provided. The height of the pipe opening is made higher than the height of the partition that divides the inside of the low-voltage receiver.

【0151】作用について説明する。冷媒の流れ、演算
装置、組成調整器、制御器の作用は実施例15と同様で
あるので省略する。通常、余剰冷媒を溜める部分と、圧
縮機への一時的な液戻りを防ぐバッファの部分とを設け
ているため、組成調整時等の非定常運転時の圧縮機への
液戻りを防ぎ、信頼性を高める。
The operation will be described. The flow of the refrigerant, the operation of the arithmetic unit, the composition adjuster, and the controller are the same as those in the fifteenth embodiment, and therefore the description thereof will be omitted. Normally, since a part that stores excess refrigerant and a buffer part that prevents temporary liquid return to the compressor are provided, liquid return to the compressor is prevented during unsteady operation during composition adjustment, etc. Improve sex.

【0152】[0152]

【発明の効果】以上のように構成されるので、本発明は
次のような効果を奏する。
Since the present invention is constructed as described above, the present invention has the following effects.

【0153】請求項1に係る本発明は、運転状態に適し
た非共沸混合冷媒の組成を常に維持し、信頼性が高く、
能力を常に発揮できる循環システムを得ることができ
る。
The present invention according to claim 1 always maintains the composition of the non-azeotropic mixed refrigerant suitable for the operating state, has high reliability,
It is possible to obtain a circulation system that can constantly exert its ability.

【0154】請求項2に係る本発明は、絞り装置の開度
設定により運転状態に適した循環組成を維持でき、簡単
な制御で効率の良い運転を行うことができる。
According to the second aspect of the present invention, the circulation composition suitable for the operating condition can be maintained by setting the opening degree of the expansion device, and the efficient operation can be performed by the simple control.

【0155】請求項3に係る本発明は、選択された循環
組成にもとづいて冷媒循環システムの運転の制御を行う
ことができ、常に効率の良い運転を行うことができる。
According to the third aspect of the present invention, the operation of the refrigerant circulation system can be controlled based on the selected circulation composition, and the efficient operation can always be performed.

【0156】請求項4に係る本発明は、運転状態を判断
して冷媒循環システムの制御を行うことができ、常に安
定した運転を行うことができる。
According to the present invention of claim 4, the refrigerant circulation system can be controlled by judging the operating state, and stable operation can always be performed.

【0157】請求項5に係る本発明は、蒸発器出口過熱
度または凝縮器出口過冷却度の目標値に応じて冷媒循環
システムを運転させるので、常に充分な能力を発揮する
ことができる。
According to the fifth aspect of the present invention, the refrigerant circulation system is operated according to the target value of the evaporator outlet superheat degree or the condenser outlet supercooling degree.

【0158】請求項6に係る本発明は、冷房時と暖房時
で冷媒循環システムの制御パラメータの変更を行い、制
御を行うことにより、制御を簡略化し、かつ、冷房と暖
房の効率を高めることができる。
The present invention according to claim 6 simplifies the control and improves the cooling and heating efficiency by changing the control parameters of the refrigerant circulation system at the time of cooling and at the time of heating. You can

【0159】請求項7に係る本発明は、冷房時、暖房時
及び圧縮機の運転容量によって、冷媒循環システムの制
御パラメータの変更し、制御を行うことにより、制御を
簡略化し、かつ、効率の良い運転を確実に行うことがで
きる。
The present invention according to claim 7 simplifies the control and changes the efficiency by changing the control parameters of the refrigerant circulation system according to the operating capacity of the compressor during cooling, during heating. Good driving can be surely performed.

【0160】請求項8に係る本発明は、圧縮機起動から
の時間によって、冷媒循環システムの制御パラメータの
変更を行い、制御を行うことにより、立ち上げ特性を良
くすることができる。
According to the eighth aspect of the present invention, the start-up characteristics can be improved by changing the control parameters of the refrigerant circulation system and performing the control depending on the time from the start of the compressor.

【0161】請求項9に係る本発明は、運転状態の変化
に効率よく追従できる制御を得ることができる。
According to the present invention of claim 9, it is possible to obtain the control capable of efficiently following the change in the operating state.

【0162】請求項10に係る本発明は、冷媒回路内を
循環する冷媒の組成(以後、循環組成と言う)を推定し
た組成より、冷凍サイクルの目標値を演算し、組成調整
手段により、循環組成を目標とする循環組成に調整し、
循環組成に応じた制御を行い、効率の良い運転を行うこ
とができる。
According to the tenth aspect of the present invention, the target value of the refrigerating cycle is calculated from the composition of the estimated composition of the refrigerant circulating in the refrigerant circuit (hereinafter referred to as the circulation composition), and the composition adjusting means circulates the target value. Adjust the composition to the target circulation composition,
It is possible to perform efficient operation by performing control according to the circulation composition.

【0163】請求項11に係る本発明は、冷媒が飽和状
態となる箇所の温度および圧力を検出し、この値により
冷媒の組成を求め、この組成に応じて冷凍サイクルの制
御の設定値を変更し制御するので、演算が簡単となり、
安価な装置で信頼性の高い装置を得ることができる。
The present invention according to claim 11 detects the temperature and pressure at a place where the refrigerant is saturated, obtains the composition of the refrigerant from these values, and changes the set value of the refrigeration cycle control according to this composition. Since it is controlled, the calculation becomes easy,
It is possible to obtain a highly reliable device with an inexpensive device.

【0164】請求項12に係る本発明は、熱源側熱交換
器と負荷側熱交換器のうち、蒸発器となる熱交換器出口
において冷媒の圧力と温度を検出し、検出された圧力と
温度より循環組成を演算し、冷凍サイクルの制御を行う
ことにより、安価な装置で冷凍サイクルの制御性を良く
する。
According to the twelfth aspect of the present invention, of the heat source side heat exchanger and the load side heat exchanger, the pressure and temperature of the refrigerant are detected at the heat exchanger outlet serving as an evaporator, and the detected pressure and temperature are detected. The controllability of the refrigeration cycle is improved by an inexpensive device by calculating the circulation composition and controlling the refrigeration cycle.

【0165】請求項13に係る本発明は、熱源側熱交換
器と負荷側熱交換器のうち、凝縮器となる熱交換器出口
において冷媒の圧力と温度を検出し、検出された圧力と
温度より循環組成を演算し、冷凍サイクルの制御を行う
ことにより、安価な装置で冷凍サイクルの制御性を良く
する。
According to the thirteenth aspect of the present invention, of the heat source side heat exchanger and the load side heat exchanger, the refrigerant pressure and temperature are detected at the heat exchanger outlet serving as a condenser, and the detected pressure and temperature are detected. The controllability of the refrigeration cycle is improved by an inexpensive device by calculating the circulation composition and controlling the refrigeration cycle.

【0166】請求項14に係る本発明は、飽和液面の存
在する高圧レシーバ内部の冷媒の圧力と温度を検出し、
検出された圧力と温度により精度の高い循環組成を演算
し、冷凍サイクルの制御を行うので、信頼性の高い冷凍
サイクルを得ることができる。
According to the fourteenth aspect of the present invention, the pressure and temperature of the refrigerant inside the high-pressure receiver in which the saturated liquid surface exists is detected,
Since a highly accurate circulation composition is calculated by the detected pressure and temperature and the refrigeration cycle is controlled, a highly reliable refrigeration cycle can be obtained.

【0167】請求項15に係る本発明は、推定されまた
は演算された冷媒回路内を循環する冷媒の組成に応じ
て、冷媒ガスの飽和温度を演算し、蒸発器出口過熱度、
または凝縮器出口過冷却度が所定値となるよう絞り装置
の開度を変更するので、効率の良い運転が可能となる。
According to the fifteenth aspect of the present invention, the saturation temperature of the refrigerant gas is calculated according to the estimated or calculated composition of the refrigerant circulating in the refrigerant circuit, and the evaporator outlet superheat degree,
Alternatively, since the opening degree of the expansion device is changed so that the degree of supercooling at the outlet of the condenser becomes a predetermined value, efficient operation becomes possible.

【0168】請求項16に係る本発明は、凝縮器と第一
の絞り装置の間の冷媒回路より分岐し、第二の絞り装置
および過冷却用熱交換器を介し、低圧のガス配管と接続
するバイパス管と、第二の絞り装置出口の冷媒温度を検
出する温度検出手段と、第二の絞り装置出口の冷媒温度
を検出する圧力検出手段と、温度検出手段と圧力検出手
段の検出値により、冷媒回路内を循環する冷媒の組成を
演算し、組成演算値に応じて冷凍サイクルの制御の設定
値を変更し、冷凍サイクルの制御を行うことにより、循
環組成の推定精度を向上させ、冷凍サイクルの制御を適
正に行うことができる。
The present invention according to claim 16 branches from the refrigerant circuit between the condenser and the first expansion device, and connects to the low-pressure gas pipe via the second expansion device and the supercooling heat exchanger. By-pass pipe, temperature detection means for detecting the refrigerant temperature at the outlet of the second expansion device, pressure detection means for detecting the refrigerant temperature at the outlet of the second expansion device, by the detection value of the temperature detection means and the pressure detection means By calculating the composition of the refrigerant circulating in the refrigerant circuit, changing the setting value of the refrigeration cycle control according to the composition calculation value, and controlling the refrigeration cycle, the estimation accuracy of the circulation composition is improved, The cycle can be properly controlled.

【0169】請求項17に係る本発明は、凝縮器と過冷
却熱交換器の間に、第三の絞り装置を備え、冷房時と暖
房時において、バイパス管入口付近を液状態とすること
により、冷房と暖房における循環組成の推定精度を向上
することができる。
According to the seventeenth aspect of the present invention, a third expansion device is provided between the condenser and the subcooling heat exchanger, and the vicinity of the bypass pipe inlet is in a liquid state during cooling and heating. It is possible to improve the estimation accuracy of the circulation composition in cooling and heating.

【0170】請求項18に係る本発明は、バイパス管を
メイン配管の下部に入口を設け、バイパス管には常に液
を導き、暖房時の循環組成の推定精度を安価に改善でき
る。
In the eighteenth aspect of the present invention, the bypass pipe is provided at the lower part of the main pipe, the liquid is always introduced into the bypass pipe, and the estimation accuracy of the circulation composition during heating can be improved at low cost.

【0171】請求項19に係る本発明は、バイパス管分
岐部付近のメイン配管上流に、冷媒攪拌部を設け、暖房
時の循環組成の推定精度を改善できる。
According to the nineteenth aspect of the present invention, a refrigerant agitator is provided upstream of the main pipe near the bypass pipe branch to improve the accuracy of estimating the circulation composition during heating.

【0172】請求項20に係る本発明は、循環組成の制
御手段を停止している負荷側熱交換器とし、組成調整す
る場合には、停止している負荷側熱交換器に冷媒を貯溜
あるいは放出することによって、組成をを調整し、高精
度のサイクル制御を実現することができる。
The present invention according to claim 20 provides a load side heat exchanger in which the circulating composition control means is stopped, and when the composition is adjusted, refrigerant is stored in the stopped load side heat exchanger or By releasing, composition can be adjusted and highly accurate cycle control can be realized.

【0173】請求項21に係る本発明は、冷房運転時
は、負荷側熱交換器と第一の絞り装置の間の温度の検出
値と、第一の絞り装置と高圧レシーバの間の温度の検出
値と、負荷側熱交換器と第一の絞り装置の間の圧力の検
出値より、演算装置にて循環組成を演算する。暖房運転
時は、熱源側熱交換器と第二の絞り装置の間の温度の検
出値と、第二の絞り装置と高圧レシーバの間の温度の検
出値と、熱源側熱交換器と第二の絞り装置の間の圧力の
検出値より、演算装置にて循環組成を演算する。更に、
メイン制御器において、第一および第二の絞り装置の開
度を演算し、組成に応じた制御を行うため、冷凍サイク
ルを適正に制御するので、効率の良い運転を行うことが
できる。
According to the twenty-first aspect of the present invention, during the cooling operation, the detected value of the temperature between the load side heat exchanger and the first expansion device and the temperature between the first expansion device and the high pressure receiver are detected. The circulating composition is calculated by the calculation device from the detected value and the detected value of the pressure between the load side heat exchanger and the first expansion device. During heating operation, the detected value of the temperature between the heat source side heat exchanger and the second expansion device, the detected value of the temperature between the second expansion device and the high-pressure receiver, the heat source side heat exchanger and the second The circulation composition is calculated by the calculation device from the detected value of the pressure between the expansion devices. Furthermore,
In the main controller, the opening degrees of the first and second expansion devices are calculated, and control is performed according to the composition, so that the refrigeration cycle is properly controlled, and therefore efficient operation can be performed.

【0174】請求項22に係る本発明は、高圧レシーバ
と低圧レシーバとを接続するバイパス配管上にて、温度
と圧力を検出し、その検出値から、演算装置にて循環組
成を演算する。組成調整器は、演算した循環組成が目標
の循環組成となるように、第三の絞り装置の開度を決定
する。メイン制御器では、演算した循環組成に応じて、
圧縮機の回転数、熱源側熱交換器のファンの回転数、絞
り装置の開度を決定する。従って、冷房、暖房によら
ず、同じセンサにて組成を演算でき、かつ、循環組成を
目標値に制御し、循環組成が変化しても、循環組成に応
じた制御が可能である。
According to the twenty-second aspect of the present invention, the temperature and pressure are detected on the bypass pipe connecting the high pressure receiver and the low pressure receiver, and the circulation composition is calculated by the calculation device from the detected values. The composition adjuster determines the opening degree of the third expansion device so that the calculated circulation composition becomes the target circulation composition. In the main controller, depending on the calculated circulation composition,
The rotation speed of the compressor, the rotation speed of the fan of the heat source side heat exchanger, and the opening degree of the expansion device are determined. Therefore, the composition can be calculated by the same sensor regardless of cooling and heating, and the circulation composition can be controlled to a target value, and even if the circulation composition changes, control according to the circulation composition is possible.

【0175】請求項23に係る本発明は、高圧レシーバ
前後のメイン配管と、第三の絞り装置と低圧レシーバの
間の配管を熱交換させる過冷却熱交換器を設け、熱交換
することにより、バイパス配管を流れる冷媒の持つエン
タルピをメイン回路を流れる冷媒へ伝達し、エネルギの
ロスを防ぎ、効率の良い運転を行うことができる。
The present invention according to claim 23 provides a subcooling heat exchanger for exchanging heat between the main pipe before and after the high-pressure receiver and the pipe between the third expansion device and the low-pressure receiver, and by exchanging heat, The enthalpy of the refrigerant flowing through the bypass pipe can be transmitted to the refrigerant flowing through the main circuit, energy loss can be prevented, and efficient operation can be performed.

【0176】請求項24に係る本発明は、圧縮機吐出側
配管と、低圧レシーバの吸入側配管とを接続するバイパ
ス配管を設け、低圧レシーバ内部の液冷媒を、圧縮機よ
り吐出する高温の冷媒ガスによって速やかに蒸発させ、
冷媒液が高圧レシーバへ移る時間を短縮することができ
る。
According to the twenty-fourth aspect of the present invention, a bypass pipe connecting the compressor discharge side pipe and the suction side pipe of the low pressure receiver is provided, and the liquid refrigerant inside the low pressure receiver is discharged from the compressor at a high temperature. Evaporate quickly with gas,
The time taken for the refrigerant liquid to move to the high pressure receiver can be shortened.

【0177】請求項25に係る本発明は、高圧レシーバ
と第一の絞り装置の間に設置する第一の開閉機構と、高
圧レシーバと第二の絞り装置の間に設置する第二の開閉
機構と、第一の開閉機構をバイパスし、第三の開閉機構
と第一の過冷却熱交換器を連通するバイパス配管と、第
二の開閉機構をバイパスし、第四の開閉機構と第二の過
冷却熱交換器を連通するバイパス配管とを設け、第一お
よび第二の過冷却熱交換器を低圧レシーバに内蔵するこ
とによって、低圧レシーバ内部の液冷媒を、高圧、高温
の液管によって速やかに蒸発させ、冷媒液が高圧レシー
バへ移る時間を短縮し、かつ、低圧レシーバ内部にて冷
媒液が蒸発するときの蒸発潜熱を、メイン回路を流れる
冷媒に伝達し、エネルギ効率を良くすることができる。
The present invention according to claim 25 provides a first opening / closing mechanism installed between the high voltage receiver and the first diaphragm device, and a second opening / closing mechanism installed between the high voltage receiver and the second diaphragm device. And a bypass pipe that bypasses the first opening / closing mechanism and connects the third opening / closing mechanism to the first subcooling heat exchanger, bypasses the second opening / closing mechanism, and connects the fourth opening / closing mechanism and the second opening / closing mechanism. By providing a bypass pipe that communicates the subcooling heat exchanger and incorporating the first and second subcooling heat exchangers in the low-pressure receiver, the liquid refrigerant inside the low-pressure receiver can be quickly transferred by the high-pressure and high-temperature liquid pipes. To reduce the time it takes for the refrigerant liquid to transfer to the high-pressure receiver, and to transfer the latent heat of vaporization when the refrigerant liquid evaporates inside the low-pressure receiver to the refrigerant flowing through the main circuit to improve energy efficiency. it can.

【0178】請求項26に係る本発明は、低圧レシーバ
を分割し、液冷媒を貯溜する部分と、圧縮機への一時的
な液戻りを防止するバッファ部分を設け、圧縮機に対す
る液戻りを防止し、信頼性を高めることができる。
According to the twenty-sixth aspect of the present invention, the low-pressure receiver is divided, a portion for storing the liquid refrigerant and a buffer portion for preventing temporary liquid return to the compressor are provided, and liquid return to the compressor is prevented. And reliability can be improved.

【0179】請求項27に係る本発明は、圧縮機、四方
弁、凝縮器、過冷却熱交換器、第一の絞り装置、蒸発器
および低圧レシーバを順次接続し、凝縮器と第一の絞り
装置の間の冷媒回路より分岐し、第二の絞り装置および
過冷却用熱交換器を介し、低圧のガス配管と接続するバ
イパス管を有する冷凍サイクルにおいて、蒸発器入口の
冷媒温度を検出する温度検出手段と、蒸発器入口の冷媒
圧力を検出する圧力検出手段と、蒸発器入口の冷媒の乾
き度を検出する乾き度検出手段と、温度検出手段、圧力
検出手段および乾き度検出手段の検出値により、冷媒回
路内を循環する冷媒の組成を演算し、目標とする組成に
なるように組成調整手段にて、組成を調整し、さらに高
精度のサイクル制御を実現することができる。
According to a twenty-seventh aspect of the present invention, a compressor, a four-way valve, a condenser, a subcooling heat exchanger, a first expansion device, an evaporator and a low pressure receiver are sequentially connected, and the condenser and the first expansion device are connected. Temperature that detects the refrigerant temperature at the evaporator inlet in a refrigeration cycle that branches from the refrigerant circuit between the devices and has a bypass pipe connected to the low-pressure gas pipe via the second expansion device and the supercooling heat exchanger Detection means, pressure detection means for detecting the refrigerant pressure at the evaporator inlet, dryness detection means for detecting the dryness of the refrigerant at the evaporator inlet, temperature detection means, pressure detection means and detection values of the dryness detection means Thus, the composition of the refrigerant circulating in the refrigerant circuit can be calculated, the composition can be adjusted by the composition adjusting means so as to obtain the target composition, and more accurate cycle control can be realized.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の実施例1の冷凍・空調装置の冷媒回
路を示す構成図である。
FIG. 1 is a configuration diagram showing a refrigerant circuit of a refrigerating / air-conditioning apparatus according to a first embodiment of the present invention.

【図2】 本発明の実施例1に係わる非共沸混合冷媒の
温度と循環組成との関係を示す説明図である。
FIG. 2 is an explanatory diagram showing a relationship between temperature and circulation composition of a non-azeotropic mixed refrigerant according to Example 1 of the present invention.

【図3】 本発明の実施例1の制御器の動作を示すフロ
ーチャートである。
FIG. 3 is a flowchart showing an operation of the controller according to the first embodiment of the present invention.

【図4】 本発明の実施例2の冷凍・空調装置の冷媒回
路を示す構成図である。
FIG. 4 is a configuration diagram showing a refrigerant circuit of a refrigerating / air-conditioning apparatus according to a second embodiment of the present invention.

【図5】 本発明の実施例2に係わる低圧レシーバの液
面レベルと循環組成との関係を示す説明図である。
FIG. 5 is an explanatory diagram showing a relationship between a liquid level and a circulating composition of a low pressure receiver according to a second embodiment of the present invention.

【図6】 本発明の実施例2の制御器の動作を示すフロ
ーチャートである。
FIG. 6 is a flowchart showing the operation of the controller according to the second embodiment of the present invention.

【図7】 本発明の実施例2の運転周波数と循環組成の
関係を示す説明図である。
FIG. 7 is an explanatory diagram showing the relationship between the operating frequency and the circulation composition according to the second embodiment of the present invention.

【図8】 本発明の実施例2の他の動作を示すフローチ
ャートである。
FIG. 8 is a flowchart showing another operation according to the second embodiment of the present invention.

【図9】 本発明の実施例3の冷凍・空調装置の冷媒回
路を示す構成図である。
FIG. 9 is a configuration diagram showing a refrigerant circuit of a refrigerating / air-conditioning apparatus according to a third embodiment of the present invention.

【図10】 本発明の実施例3に係わる圧縮機起動から
の時間と、低圧レシーバに液面レベルの関係を示す説明
図である。
FIG. 10 is an explanatory diagram showing the relationship between the time from the start of the compressor and the liquid level of the low pressure receiver according to the third embodiment of the present invention.

【図11】 本発明の実施例4の冷凍・空調装置の冷媒
回路を示す構成図である。
FIG. 11 is a configuration diagram showing a refrigerant circuit of a refrigerating / air-conditioning apparatus according to Embodiment 4 of the present invention.

【図12】 本発明の実施例4に係わる非共沸混合冷媒
の温度と循環組成との関係を示す説明図である。
FIG. 12 is an explanatory diagram showing the relationship between the temperature and the circulation composition of the non-azeotropic mixed refrigerant according to Example 4 of the present invention.

【図13】 本発明の実施例5の冷凍・空調装置の冷媒
回路を示す構成図である。
FIG. 13 is a configuration diagram showing a refrigerant circuit of a refrigerating / air-conditioning apparatus according to a fifth embodiment of the present invention.

【図14】 本発明の実施例5に係わる非共沸混合冷媒
の温度と循環する組成との関係を示す説明図である。
FIG. 14 is an explanatory diagram showing the relationship between the temperature of the non-azeotropic mixed refrigerant and the circulating composition according to Example 5 of the present invention.

【図15】 本発明の実施例6の冷凍・空調装置の冷媒
回路を示す構成図である。
FIG. 15 is a configuration diagram showing a refrigerant circuit of a refrigeration / air-conditioning apparatus according to Embodiment 6 of the present invention.

【図16】 本発明の実施例7の冷凍・空調装置の冷媒
回路を示す構成図である。
FIG. 16 is a configuration diagram showing a refrigerant circuit of a refrigeration / air-conditioning apparatus according to Embodiment 7 of the present invention.

【図17】 本発明の実施例7に係わる非共沸混合冷媒
の温度と循環する組成との関係を示す説明図である。
FIG. 17 is an explanatory diagram showing the relationship between the temperature of the non-azeotropic mixed refrigerant and the circulating composition according to Example 7 of the present invention.

【図18】 本発明の実施例8の冷凍・空調装置の冷媒
回路を示す構成図である。
FIG. 18 is a configuration diagram showing a refrigerant circuit of a refrigerating / air-conditioning apparatus according to Embodiment 8 of the present invention.

【図19】 本発明の実施例9の冷凍・空調装置の冷媒
回路を示す構成図である。
FIG. 19 is a configuration diagram showing a refrigerant circuit of a refrigerating / air-conditioning apparatus according to Embodiment 9 of the present invention.

【図20】 本発明の実施例9のバイパス配管分岐部の
詳細図である。
FIG. 20 is a detailed view of a bypass pipe branching unit according to a ninth embodiment of the present invention.

【図21】 本発明の実施例9のバイパス配管分岐部の
詳細図である。
FIG. 21 is a detailed view of a bypass pipe branching portion according to the ninth embodiment of the present invention.

【図22】 本発明の実施例10の冷凍・空調装置の冷
媒回路を示す構成図である。
FIG. 22 is a configuration diagram showing a refrigerant circuit of a refrigeration / air-conditioning apparatus according to Embodiment 10 of the present invention.

【図23】 本発明の実施例10のバイパス配管分岐部
の詳細図である。
FIG. 23 is a detailed view of the bypass pipe branching unit according to the tenth embodiment of the present invention.

【図24】 本発明の実施例11の冷凍・空調装置の冷
媒回路を示す構成図である。
FIG. 24 is a configuration diagram showing a refrigerant circuit of a refrigeration / air-conditioning apparatus according to Embodiment 11 of the present invention.

【図25】 本発明の実施例12の冷凍・空調装置の冷
媒回路を示す構成図である。
FIG. 25 is a configuration diagram showing a refrigerant circuit of a refrigerating / air-conditioning apparatus according to Embodiment 12 of the present invention.

【図26】 本発明の実施例13の冷凍・空調装置の冷
媒回路を示す構成図である。
FIG. 26 is a configuration diagram showing a refrigerant circuit of a refrigerating / air-conditioning apparatus according to Embodiment 13 of the present invention.

【図27】 本発明の実施例14の冷凍・空調装置の冷
媒回路を示す構成図である。
FIG. 27 is a configuration diagram showing a refrigerant circuit of a refrigeration / air-conditioning apparatus according to Embodiment 14 of the present invention.

【図28】 本発明の実施例15の冷凍・空調装置の冷
媒回路を示す構成図である。
FIG. 28 is a configuration diagram showing a refrigerant circuit of a refrigeration / air-conditioning apparatus according to Embodiment 15 of the present invention.

【図29】 本発明の実施例16の冷凍・空調装置の冷
媒回路を示す構成図である。
FIG. 29 is a configuration diagram showing a refrigerant circuit of a refrigerating / air-conditioning apparatus according to Embodiment 16 of the present invention.

【図30】 本発明の実施例17の冷凍・空調装置の冷
媒回路を示す構成図である。
FIG. 30 is a configuration diagram showing a refrigerant circuit of a refrigerating / air-conditioning apparatus according to Embodiment 17 of the present invention.

【図31】 本発明の実施例18の冷凍・空調装置の冷
媒回路を示す構成図である。
FIG. 31 is a configuration diagram showing a refrigerant circuit of a refrigerating / air-conditioning apparatus according to Embodiment 18 of the present invention.

【図32】 本発明の実施例19の冷凍・空調装置の冷
媒回路を示す構成図である。
FIG. 32 is a configuration diagram showing a refrigerant circuit of a refrigerating / air-conditioning apparatus of Embodiment 19 of the present invention.

【図33】 本発明の実施例20の冷凍・空調装置の冷
媒回路を示す構成図である。
FIG. 33 is a configuration diagram showing a refrigerant circuit of a refrigerating / air-conditioning apparatus according to Embodiment 20 of the present invention.

【図34】 従来の非共沸混合冷媒を用いた冷凍・空調
装置を示す構成図である。
FIG. 34 is a configuration diagram showing a conventional refrigeration / air-conditioning apparatus using a non-azeotropic mixed refrigerant.

【符号の説明】[Explanation of symbols]

1 圧縮機、2 四方弁、3 熱源側熱交換器、4 絞
り装置、5 負荷側熱交換器、6 低圧レシーバ、7
絞り装置、8 過冷却熱交換器、9 絞り装置、11
高圧レシーバ、16 絞り装置、17 過冷却熱交換
器、18 開閉機構、20 送風機、21,22,2
3,24 開閉機構、25,26 過冷却熱交換器、1
00 制御器、101 温度センサ、102 温度セン
サ、103圧力センサ、105 圧力センサ、106
温度センサ、107 温度センサ、108 温度セン
サ、109 温度センサ、110 演算装置、111
組成調整器、112 メイン制御器、122 温度セン
サ、123 圧力センサ。
1 compressor, 2 4-way valve, 3 heat source side heat exchanger, 4 throttling device, 5 load side heat exchanger, 6 low pressure receiver, 7
Expansion device, 8 supercooling heat exchanger, 9 expansion device, 11
High-pressure receiver, 16 expansion device, 17 supercooling heat exchanger, 18 opening / closing mechanism, 20 blower 21, 22, 2
3,24 Opening / closing mechanism, 25,26 Supercooling heat exchanger, 1
00 controller, 101 temperature sensor, 102 temperature sensor, 103 pressure sensor, 105 pressure sensor, 106
Temperature sensor, 107 temperature sensor, 108 temperature sensor, 109 temperature sensor, 110 arithmetic unit, 111
Composition regulator, 112 main controller, 122 temperature sensor, 123 pressure sensor.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 隅田 嘉裕 尼崎市塚口本町八丁目1番1号 三菱電機 株式会社中央研究所内 ─────────────────────────────────────────────────── ─── Continuation of front page (72) Inventor Yoshihiro Sumida 8-1-1 Tsukaguchihonmachi, Amagasaki City Mitsubishi Electric Corporation Central Research Laboratory

Claims (27)

【特許請求の範囲】[Claims] 【請求項1】 圧縮機、熱源側熱交換器、絞り装置、負
荷側熱交換器及び低圧レシーバを順次接続し、冷媒数種
を混合した非共沸混合冷媒を循環させる冷媒循環システ
ムにおいて、 冷媒循環システム内の冷媒の流れる方向、起動からの経
過時間、負荷量等の各運転の状態を判断する運転判断手
段と、 各運転の状態毎にあらかじめ設定された冷媒の組成状態
を記憶する記憶手段と、 前記運転判断手段が判断した運転状態にもとづいて前記
記憶手段から冷媒の組成状態を選択する冷媒組成選択手
段と、 この冷媒組成選択手段の選択した冷媒の組成状態に冷媒
循環システムを循環する冷媒の組成を変更する冷媒組成
設定手段と、を備えた冷媒循環システム。
1. A refrigerant circulation system in which a compressor, a heat source side heat exchanger, a throttle device, a load side heat exchanger and a low pressure receiver are sequentially connected to circulate a non-azeotropic mixed refrigerant in which several refrigerants are mixed, Operation determination means for determining the operating state of each operation such as the flow direction of the refrigerant in the circulation system, the elapsed time from startup, the load amount, etc., and a storage means for storing the composition state of the refrigerant preset for each operating state. And a refrigerant composition selection means for selecting a composition state of the refrigerant from the storage means based on the operation state determined by the operation determination means, and a refrigerant circulation system for circulating the refrigerant circulation system to the composition state of the refrigerant selected by the refrigerant composition selection means. A refrigerant circulation system comprising: a refrigerant composition setting means for changing the composition of the refrigerant.
【請求項2】 冷媒の組成を変更する冷媒組成設定手段
が絞り装置の開度設定手段であることを特徴とする請求
項1記載の冷媒循環システム。
2. The refrigerant circulation system according to claim 1, wherein the refrigerant composition setting means for changing the composition of the refrigerant is an opening degree setting means of the expansion device.
【請求項3】 冷媒循環組成選択手段の選択した冷媒の
組成状態にもとづいて冷媒循環システムの運転の制御の
設定値を決定する制御手段と、を備えたことを特徴とす
る請求項1記載の冷媒循環システム。
3. The control means for determining a set value for controlling the operation of the refrigerant circulation system on the basis of the composition state of the refrigerant selected by the refrigerant circulation composition selection means. Refrigerant circulation system.
【請求項4】 圧縮機、熱源側熱交換器、絞り装置、負
荷側熱交換器及び低圧レシーバを順次接続し、冷媒数種
を混合した非共沸混合冷媒を循環させる冷媒循環システ
ムにおいて、冷媒循環システムの各運転の状態を判断す
る運転判断手段と、この運転判断手段が判断した運転状
態にもとづいて、冷媒循環システムの運転の制御の設定
値を変更し、冷媒循環システムの制御を行う制御手段
と、を備えたことを特徴とする冷媒循環システム。
4. A refrigerant circulation system in which a compressor, a heat source side heat exchanger, a throttle device, a load side heat exchanger and a low pressure receiver are sequentially connected to circulate a non-azeotropic mixed refrigerant in which several refrigerants are mixed, Based on the operation judging means for judging the state of each operation of the circulation system and the operation state judged by this operation judging means, the control for changing the set value of the operation control of the refrigerant circulation system to control the refrigerant circulation system A refrigerant circulation system comprising:
【請求項5】 冷媒循環システムの運転の制御の設定値
として、蒸発器出口過熱度または凝縮器出口過冷却度の
少なくともいずれか一方の目標値を設定し、この目標値
に応じて制御することを特徴とする請求項3または4記
載の冷媒循環システム。
5. A target value of at least one of an evaporator superheat degree and a condenser outlet supercool degree is set as a set value for controlling the operation of the refrigerant circulation system, and control is performed according to this target value. The refrigerant circulation system according to claim 3 or 4, characterized in that.
【請求項6】 圧縮機、熱源側熱交換器、絞り装置、負
荷側熱交換器及び低圧レシーバを順次接続し、冷媒数種
を混合した非共沸混合冷媒を循環させる冷媒循環システ
ムにおいて、冷房時と暖房時とで冷媒循環システムの制
御の設定値を変更し、冷媒循環システムの運転の制御を
行う制御手段を備えたことを特徴とする冷媒循環システ
ム。
6. A refrigerant circulation system in which a compressor, a heat source side heat exchanger, a throttle device, a load side heat exchanger and a low pressure receiver are sequentially connected to circulate a non-azeotropic mixed refrigerant in which several refrigerants are mixed, A refrigerant circulation system comprising: a control unit that changes a set value of control of the refrigerant circulation system between heating and heating to control operation of the refrigerant circulation system.
【請求項7】 圧縮機、熱源側熱交換器、絞り装置、負
荷側熱交換器及び低圧レシーバを順次接続し、冷媒数種
を混合した非共沸混合冷媒を循環させる冷媒循環システ
ムにおいて、冷房時、暖房時及び圧縮機の運転容量とで
冷媒循環システムの制御の設定値を変更し、冷媒循環シ
ステムの運転の制御を行う制御手段を備えたことを特徴
とする冷媒循環システム。
7. A refrigerant circulation system in which a compressor, a heat source side heat exchanger, a throttle device, a load side heat exchanger and a low pressure receiver are sequentially connected to circulate a non-azeotropic mixed refrigerant in which several refrigerants are mixed, A refrigerant circulation system characterized by comprising control means for changing a set value of control of the refrigerant circulation system depending on time, heating, and operating capacity of the compressor, and controlling operation of the refrigerant circulation system.
【請求項8】 圧縮機、熱源側熱交換器、絞り装置、負
荷側熱交換器及び低圧レシーバを順次接続し、冷媒数種
を混合した非共沸混合冷媒を循環させる冷媒循環システ
ムにおいて、圧縮機起動からの時間に応じて冷媒循環シ
ステムの制御の設定値を変更し、冷媒循環システムの運
転の制御を行う制御手段を備えたことを特徴とする冷媒
循環システム。
8. A refrigerant circulation system in which a compressor, a heat source side heat exchanger, an expansion device, a load side heat exchanger and a low pressure receiver are sequentially connected to circulate a non-azeotropic mixed refrigerant in which several refrigerants are mixed, A refrigerant circulation system comprising: a control unit that changes a control set value of the refrigerant circulation system according to the time from the start of the machine and controls the operation of the refrigerant circulation system.
【請求項9】 冷媒循環システムの制御の設定値の変更
を、所定時間毎、または運転状態の大きな変動毎に行う
制御手段と、を備えたことを特徴とする請求項3または
4または6または7または8記載の冷媒循環システム。
9. The control means for changing the set value of the control of the refrigerant circulation system every predetermined time period or each time a large change in the operating state is provided. 7. The refrigerant circulation system according to 7 or 8.
【請求項10】 圧縮機、熱源側熱交換器、絞り装置、
負荷側熱交換器及び低圧レシーバを順次接続し、冷媒に
数種を混合した非共沸混合冷媒を用いる冷凍サイクルに
おいて、冷媒回路内を循環する冷媒の組成を推定する機
構と、推定した冷媒の組成に応じて、冷凍サイクルの制
御の設定値及び、冷媒回路内を循環する冷媒の組成を変
更し、制御を行う制御器を備えたことを特徴とする冷凍
・空調装置。
10. A compressor, a heat source side heat exchanger, a throttle device,
A load side heat exchanger and a low-pressure receiver are sequentially connected, and in a refrigeration cycle using a non-azeotropic mixed refrigerant in which several kinds of refrigerant are mixed, a mechanism for estimating the composition of the refrigerant circulating in the refrigerant circuit, and the estimated refrigerant A refrigerating / air-conditioning apparatus comprising: a controller for changing and controlling a set value for control of a refrigeration cycle and a composition of a refrigerant circulating in a refrigerant circuit according to a composition.
【請求項11】 圧縮機、熱源側熱交換器、絞り装置、
負荷側熱交換器及び低圧レシーバを順次接続し、冷媒に
数種を混合した非共沸混合冷媒を用いる冷凍サイクルに
おいて、熱源側熱交換器または負荷側熱交換器の出口の
近傍に設けられ、冷媒が飽和状態となる箇所の温度及び
圧力を検出する温度検出手段および圧力検出手段と、上
記温度検出手段と上記圧力検出手段の検出値により、冷
媒回路内を循環する冷媒の組成を演算し、上記組成演算
値に応じて冷凍サイクルの制御の設定値を変更し、冷凍
サイクルの制御を行う制御器とを備えたことを特徴とす
る冷凍・空調装置。
11. A compressor, a heat source side heat exchanger, a throttle device,
The load side heat exchanger and the low-pressure receiver are sequentially connected, and in a refrigeration cycle using a non-azeotropic mixed refrigerant in which several types of refrigerant are mixed, the heat source side heat exchanger or the load side heat exchanger is provided near the outlet, Temperature detection means and pressure detection means for detecting the temperature and pressure of the place where the refrigerant is saturated, the detection value of the temperature detection means and the pressure detection means, the composition of the refrigerant circulating in the refrigerant circuit is calculated, A refrigerating / air-conditioning apparatus comprising: a controller that changes a set value for controlling a refrigerating cycle according to the calculated composition value and controls the refrigerating cycle.
【請求項12】 熱源側熱交換器と負荷側熱交換器のう
ち、蒸発器となる熱交換器出口の冷媒温度を検出する温
度検出手段と、上記蒸発器出口の冷媒圧力を検出する圧
力検出手段と、を備えたことを特徴とする請求項11記
載の冷凍・空調装置。
12. A temperature detecting means for detecting a refrigerant temperature at a heat exchanger outlet serving as an evaporator of the heat source side heat exchanger and the load side heat exchanger, and a pressure detecting means for detecting a refrigerant pressure at the evaporator outlet. The refrigeration / air-conditioning apparatus according to claim 11, further comprising:
【請求項13】 熱源側熱交換器と負荷側熱交換器のう
ち、凝縮器となる熱交換器出口の冷媒圧力を検出する圧
力検出手段と、上記凝縮器出口の冷媒温度を検出する温
度検出手段と、を備えたことを特徴とする請求項11記
載の冷凍・空調装置。
13. A pressure detecting means for detecting a refrigerant pressure at a heat exchanger outlet of a heat source side heat exchanger and a load side heat exchanger, the temperature detecting means for detecting a refrigerant temperature at the condenser outlet. The refrigeration / air-conditioning apparatus according to claim 11, further comprising:
【請求項14】 圧縮機、熱源側熱交換器、高圧レシー
バ、絞り装置、負荷側熱交換器を順次接続し、冷媒数種
を混合した非共沸混合冷媒を用いる冷凍サイクルにおい
て、高圧レシーバ内部の冷媒温度を検出する温度検出手
段と、上記高圧レシーバ内部の冷媒圧力を検出する圧力
検出手段と、上記温度検出手段と上記圧力検出手段の検
出値により、冷媒回路内を循環する冷媒の組成を演算
し、上記組成演算値に応じて冷凍サイクルの制御の設定
値を変更し、冷凍サイクルの制御を行う制御器とを備え
たことを特徴とする冷凍・空調装置。
14. A refrigeration cycle in which a compressor, a heat source side heat exchanger, a high pressure receiver, a throttle device, and a load side heat exchanger are sequentially connected, and a non-azeotropic mixed refrigerant in which several refrigerants are mixed is used, The temperature detection means for detecting the refrigerant temperature, the pressure detection means for detecting the refrigerant pressure inside the high-pressure receiver, the detection value of the temperature detection means and the pressure detection means, the composition of the refrigerant circulating in the refrigerant circuit. A refrigerating / air-conditioning apparatus comprising: a controller for performing a calculation and changing a set value of the refrigerating cycle control according to the calculated composition value to control the refrigerating cycle.
【請求項15】 推定されまたは演算された冷媒回路内
を循環する冷媒の組成に応じて、冷媒ガスの飽和温度を
演算し、蒸発器出口過熱度、または凝縮器出口過冷却度
が所定値となるよう開度を変更する絞り装置と、を備え
たことを特徴とする請求項10、または、11、また
は、14記載の冷凍・空調装置。
15. The saturation temperature of the refrigerant gas is calculated according to the estimated or calculated composition of the refrigerant circulating in the refrigerant circuit, and the evaporator outlet superheat degree or the condenser outlet supercooling degree becomes a predetermined value. 15. A refrigeration / air-conditioning system according to claim 10, 11 or 14, further comprising: a diaphragm device for changing the opening degree.
【請求項16】 圧縮機、四方弁、熱源側熱交換器、過
冷却熱交換器、第一の絞り装置、負荷側熱交換器及び低
圧レシーバを順次接続し、冷媒数種を混合した非共沸混
合冷媒を用いる冷凍サイクルにおいて、上記熱源側熱交
換器と上記第一の絞り装置の間の冷媒回路より分岐し、
第二の絞り装置および上記過冷却用熱交換器を介し、低
圧のガス配管と接続するバイパス管と、上記第二の絞り
装置入口の冷媒温度を検出する第一の温度検出手段と、
上記第二の絞り装置出口の冷媒温度を検出する第二の温
度検出手段と、上記第二の絞り装置出口の冷媒圧力を検
出する圧力検出手段と、上記第一および第二の温度検出
手段と上記圧力検出手段の検出値により、冷媒回路内を
循環する冷媒の組成を演算する組成演算装置と、上記組
成演算値に応じて冷凍サイクルの制御の設定値を変更
し、冷凍サイクルの制御を行うメイン制御器とを備えた
ことを特徴とする冷凍・空調装置。
16. A non-coexistence system in which a compressor, a four-way valve, a heat source side heat exchanger, a supercooling heat exchanger, a first expansion device, a load side heat exchanger and a low pressure receiver are sequentially connected to mix several refrigerants. In the refrigeration cycle using a boiling mixed refrigerant, branched from the refrigerant circuit between the heat source side heat exchanger and the first expansion device,
Through the second expansion device and the supercooling heat exchanger, a bypass pipe connected to the low-pressure gas pipe, a first temperature detection means for detecting the refrigerant temperature of the second expansion device inlet,
Second temperature detecting means for detecting the refrigerant temperature at the outlet of the second expansion device, pressure detecting means for detecting the refrigerant pressure at the outlet of the second expansion device, and the first and second temperature detecting means. A composition calculation device for calculating the composition of the refrigerant circulating in the refrigerant circuit by the detection value of the pressure detection means, and changing the set value of the refrigeration cycle control according to the composition calculation value to control the refrigeration cycle. A refrigeration / air-conditioning system, which is provided with a main controller.
【請求項17】 熱源側熱交換器と過冷却熱交換器の間
に、第三の絞り装置を備えたことを特徴とする請求項1
6記載の冷凍・空調装置。
17. A third expansion device is provided between the heat source side heat exchanger and the subcooling heat exchanger.
Refrigeration / air-conditioning system according to 6.
【請求項18】 バイパスの配管入り口は、メイン配管
の下部に設けたことを特徴とする請求項16記載の冷凍
・空調装置。
18. The refrigerating / air-conditioning apparatus according to claim 16, wherein the bypass piping inlet is provided at a lower portion of the main piping.
【請求項19】 バイパスの分岐部付近のメイン配管上
流に、冷媒攪拌部を設けたことを特徴とする請求項16
記載の冷凍・空調装置。
19. A refrigerant agitator is provided upstream of the main pipe near the branch of the bypass.
Refrigeration / air conditioning system as described.
【請求項20】 複数の負荷側熱交換器を備え、かつ、
停止している負荷側熱交換器の冷媒配管を組成調整手段
とすることを特徴とする請求項16記載の冷凍・空調装
置。
20. A plurality of load side heat exchangers are provided, and
The refrigerating / air-conditioning apparatus according to claim 16, wherein the refrigerant pipe of the stopped heat exchanger on the load side is used as the composition adjusting means.
【請求項21】 圧縮機、四方弁、熱源側熱交換器、第
二の絞り装置、高圧レシーバ、第一の絞り装置、負荷側
熱交換器及び低圧レシーバ等により構成され、冷媒数種
を混合した非共沸混合冷媒を用いる冷凍サイクルにおい
て、上記負荷側熱交換器と第一の絞り装置の間で温度を
検出する第一の温度検出手段と、第一の絞り装置と高圧
レシーバの間で温度を検出する第二の温度検出手段と、
上記熱源側熱交換器と第二の絞り装置の間で温度を検出
する第三の温度検出手段と、第二の絞り装置と高圧レシ
ーバの間で温度を検出する第四の温度検出手段と、上記
四方弁と上記負荷側熱交換器の間で温度を検出する第五
の温度検出手段と、上記四方弁と上記熱源側熱交換器の
間で温度を検出する第六の温度検出手段と、上記負荷側
熱交換器と第一の絞り装置の間で圧力を検出する第一の
圧力検出手段と、上記熱源側熱交換器と第二の絞り装置
の間で圧力を検出する第二の圧力検出手段と、冷媒回路
内を循環する冷媒の組成を演算する演算装置と、第一お
よび第二の絞り装置の開度を演算し、制御を行うメイン
制御器を備えたことを特徴とする冷凍・空調装置。
21. A compressor, a four-way valve, a heat source side heat exchanger, a second expansion device, a high pressure receiver, a first expansion device, a load side heat exchanger, a low pressure receiver, etc., and mixes several refrigerants. In the refrigeration cycle using the non-azeotropic mixed refrigerant, the first temperature detecting means for detecting the temperature between the load side heat exchanger and the first expansion device, and between the first expansion device and the high pressure receiver. Second temperature detecting means for detecting the temperature,
Third temperature detection means for detecting the temperature between the heat source side heat exchanger and the second expansion device, and a fourth temperature detection means for detecting the temperature between the second expansion device and the high-pressure receiver, Fifth temperature detecting means for detecting temperature between the four-way valve and the load side heat exchanger, and sixth temperature detecting means for detecting temperature between the four-way valve and the heat source side heat exchanger, A first pressure detecting means for detecting pressure between the load side heat exchanger and the first expansion device, and a second pressure for detecting pressure between the heat source side heat exchanger and the second expansion device. Refrigeration characterized by comprising a detection means, a computing device for computing the composition of the refrigerant circulating in the refrigerant circuit, and a main controller for computing and controlling the openings of the first and second expansion devices. -Air conditioner.
【請求項22】 圧縮機、四方弁、熱源側熱交換器、第
二の絞り装置、高圧レシーバ、第一の絞り装置、負荷側
熱交換器及び低圧レシーバ等により構成され、冷媒数種
を混合した非共沸混合冷媒を用いる冷凍サイクルにおい
て、上記高圧レシーバと上記低圧レシーバとを接続する
バイパス配管と、上記バイパス配管上に設置した第三の
絞り装置と、上記低圧レシーバと第三の絞り装置の間で
温度を検出する第一の温度検出手段と、第三の絞り装置
と高圧レシーバの間で温度を検出する第二の温度検出手
段と、上記負荷側熱交換器と第一の絞り装置の間で温度
を検出する第四の温度検出手段と、上記四方弁と負荷側
熱交換器の間で温度を検出する第三の温度検出手段と、
第二の絞り装置と上記熱源側熱交換器の間で温度を検出
する第五の温度検出手段と、上記四方弁と上記熱源側熱
交換器の間で温度を検出する第六の温度検出手段と、第
三の絞り装置と低圧レシーバの間で圧力を検出する第一
の圧力検出手段と、上記圧縮機の吐出側の圧力を検出す
る第二の圧力検出手段と、冷媒回路内を循環する冷媒の
組成を演算する演算装置と、第三の絞り装置の開度を決
定し、組成調整を行う組成調整器と、第一および第二の
絞り装置の開度を演算し、制御を行うメイン制御器を備
えたことを特徴とする冷凍・空調装置。
22. A compressor, a four-way valve, a heat source side heat exchanger, a second expansion device, a high pressure receiver, a first expansion device, a load side heat exchanger, a low pressure receiver, etc., and mixes several refrigerants. In a refrigeration cycle using the non-azeotropic mixed refrigerant, a bypass pipe connecting the high pressure receiver and the low pressure receiver, a third expansion device installed on the bypass pipe, the low pressure receiver and the third expansion device. First temperature detecting means for detecting a temperature between the two, a second temperature detecting means for detecting a temperature between the third expansion device and the high-voltage receiver, the load side heat exchanger and the first expansion device Fourth temperature detecting means for detecting the temperature between, and third temperature detecting means for detecting the temperature between the four-way valve and the load side heat exchanger,
Fifth temperature detecting means for detecting a temperature between the second expansion device and the heat source side heat exchanger, and sixth temperature detecting means for detecting a temperature between the four-way valve and the heat source side heat exchanger. A first pressure detecting means for detecting the pressure between the third expansion device and the low pressure receiver, a second pressure detecting means for detecting the pressure on the discharge side of the compressor, and a circulation in the refrigerant circuit. A computer for calculating the composition of the refrigerant, a composition adjuster for determining the opening of the third expansion device and adjusting the composition, and a main for calculating and opening the openings of the first and second expansion devices. A refrigeration / air-conditioning system characterized by having a controller.
【請求項23】 高圧レシーバ前後のメイン配管と、第
三の絞り装置と低圧レシーバの間の配管を熱交換させる
過冷却熱交換器を備えたことを特徴とする請求項22記
載の冷凍・空調装置。
23. The refrigeration / air conditioning system according to claim 22, further comprising a supercooling heat exchanger for exchanging heat between the main pipes before and after the high-pressure receiver and the pipe between the third expansion device and the low-pressure receiver. apparatus.
【請求項24】 圧縮機吐出側配管と、低圧レシーバの
吸入側配管または低圧レシーバ内部とを接続するバイパ
ス配管と、上記バイパス配管上に開閉機構を備えたこと
を特徴とする請求項22記載の冷凍・空調装置。
24. The bypass pipe for connecting the compressor discharge side pipe to the suction side pipe of the low pressure receiver or the inside of the low pressure receiver, and the opening / closing mechanism on the bypass pipe. Refrigeration and air conditioning equipment.
【請求項25】 高圧レシーバと第一の絞り装置の間に
設置する第一の開閉機構と、高圧レシーバと第二の絞り
装置の間に設置する第二の開閉機構と、第一の開閉機構
をバイパスし、第三の開閉機構と第一の過冷却熱交換器
を連通するバイパス配管と、第二の開閉機構をバイパス
し、第四の開閉機構と第二の過冷却熱交換器を連通する
バイパス配管と備え、第一および第二の過冷却熱交換器
を低圧レシーバに内蔵したことを特徴とする請求項22
記載の冷凍・空調装置。
25. A first opening / closing mechanism installed between the high voltage receiver and the first expansion device, a second opening / closing mechanism installed between the high voltage receiver and the second expansion device, and a first opening / closing mechanism. Bypass pipe connecting the third opening / closing mechanism and the first subcooling heat exchanger, and the second opening / closing mechanism by bypassing the fourth opening / closing mechanism and the second subcooling heat exchanger. 23. A low-pressure receiver, wherein the first and second subcooling heat exchangers are built into the low-pressure receiver.
Refrigeration / air conditioning system as described.
【請求項26】 低圧レシーバを分割し、液冷媒を貯溜
する部分と、圧縮機への一時的な液戻りを防止するバッ
ファ部分を備えたことを特徴とする請求項22記載の冷
凍・空調装置。
26. The refrigeration / air-conditioning system according to claim 22, wherein the low-pressure receiver is divided into a portion for storing a liquid refrigerant and a buffer portion for preventing a temporary liquid return to the compressor. .
【請求項27】 圧縮機、熱源側熱交換器、第一の絞り
装置、負荷側熱交換器及び低圧レシーバを順次接続し、
冷媒数種を混合した非共沸混合冷媒を用いる冷凍サイク
ルにおいて、上記熱源側熱交換器と上記第一の絞り装置
の間の冷媒回路より分岐し、第二の絞り装置および過冷
却用熱交換器を介し、低圧のガス配管と接続するバイパ
ス配管と、上記第二の絞り装置入口の冷媒温度を検出す
る第一の温度検出手段と、上記第二の絞り装置出口の冷
媒温度を検出する第二の温度検出手段と、上記第二の絞
り装置出口の冷媒圧力を検出する圧力検出手段と、メイ
ン配管における上記バイパス配管との分岐部付近に設置
する乾き度検出手段と、上記第一および第二の温度検出
手段、上記圧力検出手段および上記乾き度検出手段の検
出値により、冷媒回路内を循環する冷媒の組成を演算す
る組成演算装置と、上記組成演算値に応じて冷凍サイク
ルの制御の設定値を変更し、冷凍サイクルの制御を行う
メイン制御器とを備えたことを特徴とする冷凍・空調装
置。
27. A compressor, a heat source side heat exchanger, a first expansion device, a load side heat exchanger, and a low pressure receiver are sequentially connected,
In a refrigeration cycle using a non-azeotropic mixed refrigerant in which several refrigerants are mixed, the refrigerant is branched from the refrigerant circuit between the heat source side heat exchanger and the first expansion device, and the second expansion device and supercooling heat exchange are performed. Through a bypass pipe connected to a low-pressure gas pipe, a first temperature detecting means for detecting the refrigerant temperature at the second throttle device inlet, and a first temperature detecting means for detecting the refrigerant temperature at the second throttle device outlet. Two temperature detecting means, a pressure detecting means for detecting the refrigerant pressure at the outlet of the second expansion device, a dryness detecting means installed near a branch portion of the main pipe with the bypass pipe, and the first and the second. Two temperature detection means, the pressure detection means and the detection value of the dryness detection means, the composition calculation device for calculating the composition of the refrigerant circulating in the refrigerant circuit, and the control of the refrigeration cycle according to the composition calculation value. Set value Refrigeration and air-conditioning apparatus characterized by change, and a main controller for controlling the refrigeration cycle.
JP06291331A 1994-05-30 1994-11-25 Refrigerant circulation system and refrigeration / air conditioner Expired - Lifetime JP3140923B2 (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP06291331A JP3140923B2 (en) 1994-11-25 1994-11-25 Refrigerant circulation system and refrigeration / air conditioner
DE69533120T DE69533120D1 (en) 1994-05-30 1995-02-10 Coolant circulation system
EP95101830A EP0685692B1 (en) 1994-05-30 1995-02-10 Refrigerant circulating system
CNB951026712A CN1135341C (en) 1994-05-30 1995-02-10 Refrigerating circulating system and refrigerating air conditioning device
US08/681,488 US5987907A (en) 1994-05-30 1996-07-23 Refrigerant circulating system
US08/957,738 US6032473A (en) 1994-05-30 1997-10-24 Refrigerant circulating system
CNB021275335A CN1201124C (en) 1994-05-30 2002-07-27 Refrigeration circulation system and freezing and air conditioner
CNB021275343A CN1201125C (en) 1994-05-30 2002-07-27 Refrigeration circulation system and freezing and air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP06291331A JP3140923B2 (en) 1994-11-25 1994-11-25 Refrigerant circulation system and refrigeration / air conditioner

Publications (2)

Publication Number Publication Date
JPH08152208A true JPH08152208A (en) 1996-06-11
JP3140923B2 JP3140923B2 (en) 2001-03-05

Family

ID=17767537

Family Applications (1)

Application Number Title Priority Date Filing Date
JP06291331A Expired - Lifetime JP3140923B2 (en) 1994-05-30 1994-11-25 Refrigerant circulation system and refrigeration / air conditioner

Country Status (1)

Country Link
JP (1) JP3140923B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006258381A (en) * 2005-03-17 2006-09-28 Sharp Corp Air conditioner
JP2008157621A (en) * 2008-03-24 2008-07-10 Mitsubishi Electric Corp Refrigerating device
WO2009154149A1 (en) * 2008-06-16 2009-12-23 三菱電機株式会社 Non‑azeotropic refrigerant mixture and refrigeration cycle device
CN108679872A (en) * 2018-07-03 2018-10-19 珠海格力电器股份有限公司 Heat exchange system, air conditioner and control method of heat exchange system
JP2018185116A (en) * 2017-04-27 2018-11-22 日立ジョンソンコントロールズ空調株式会社 Refrigeration cycle device
JPWO2017163339A1 (en) * 2016-03-23 2018-12-13 三菱電機株式会社 Air conditioner
WO2019234914A1 (en) * 2018-06-08 2019-12-12 三菱電機株式会社 Outdoor unit and refrigeration cycle device
WO2021040427A1 (en) * 2019-08-30 2021-03-04 Samsung Electronics Co., Ltd. Air conditioner and control method thereof
CN115366616A (en) * 2022-09-09 2022-11-22 智己汽车科技有限公司 Vehicle direct and indirect heating heat management system and control method thereof
EP4328529A4 (en) * 2021-04-22 2024-05-22 Mitsubishi Electric Corporation Refrigeration cycle device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102008710B1 (en) * 2013-01-22 2019-08-09 엘지전자 주식회사 An air conditioner and a control method the same

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6155562A (en) * 1984-08-24 1986-03-20 ダイキン工業株式会社 Refrigerator using mixed refrigerant
JPS62153853A (en) * 1985-12-27 1987-07-08 Toshiba Corp Photosensitive composition
JPS62228839A (en) * 1986-03-31 1987-10-07 三菱電機株式会社 Refrigerator
JPH0239179Y2 (en) * 1985-02-28 1990-10-22
JPH06101912A (en) * 1992-08-31 1994-04-12 Hitachi Ltd Refrigerating cycle
JPH06117737A (en) * 1992-10-01 1994-04-28 Hitachi Ltd Refrigerant composition detector
JPH07269972A (en) * 1994-03-31 1995-10-20 Toshiba Corp Air conditioner and controlling method therefor

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6155562A (en) * 1984-08-24 1986-03-20 ダイキン工業株式会社 Refrigerator using mixed refrigerant
JPH0239179Y2 (en) * 1985-02-28 1990-10-22
JPS62153853A (en) * 1985-12-27 1987-07-08 Toshiba Corp Photosensitive composition
JPS62228839A (en) * 1986-03-31 1987-10-07 三菱電機株式会社 Refrigerator
JPH06101912A (en) * 1992-08-31 1994-04-12 Hitachi Ltd Refrigerating cycle
JPH06117737A (en) * 1992-10-01 1994-04-28 Hitachi Ltd Refrigerant composition detector
JPH07269972A (en) * 1994-03-31 1995-10-20 Toshiba Corp Air conditioner and controlling method therefor

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4550635B2 (en) * 2005-03-17 2010-09-22 シャープ株式会社 Air conditioner
JP2006258381A (en) * 2005-03-17 2006-09-28 Sharp Corp Air conditioner
JP2008157621A (en) * 2008-03-24 2008-07-10 Mitsubishi Electric Corp Refrigerating device
JP4548502B2 (en) * 2008-03-24 2010-09-22 三菱電機株式会社 Refrigeration equipment
EP3081879A3 (en) * 2008-06-16 2016-10-26 Mitsubishi Electric Corporation Non-azeotropic refrigerant mixture and refrigeration cycle apparatus
JPWO2009154149A1 (en) * 2008-06-16 2011-12-01 三菱電機株式会社 Non-azeotropic refrigerant mixture and refrigeration cycle equipment
JP5132772B2 (en) * 2008-06-16 2013-01-30 三菱電機株式会社 Non-azeotropic refrigerant mixture and refrigeration cycle equipment
US8443624B2 (en) 2008-06-16 2013-05-21 Mitsubishi Electric Corporation Non-Azeotropic refrigerant mixture and refrigeration cycle apparatus
EP2306121A4 (en) * 2008-06-16 2016-06-29 Mitsubishi Electric Corp Non azeotropic refrigerant mixture and refrigeration cycle device
WO2009154149A1 (en) * 2008-06-16 2009-12-23 三菱電機株式会社 Non‑azeotropic refrigerant mixture and refrigeration cycle device
CN102066852A (en) * 2008-06-16 2011-05-18 三菱电机株式会社 Non-azeotropic refrigerant mixture and refrigeration cycle device
JPWO2017163339A1 (en) * 2016-03-23 2018-12-13 三菱電機株式会社 Air conditioner
JP2018185116A (en) * 2017-04-27 2018-11-22 日立ジョンソンコントロールズ空調株式会社 Refrigeration cycle device
WO2019234914A1 (en) * 2018-06-08 2019-12-12 三菱電機株式会社 Outdoor unit and refrigeration cycle device
JPWO2019234914A1 (en) * 2018-06-08 2021-02-25 三菱電機株式会社 Outdoor unit and refrigeration cycle equipment
CN108679872A (en) * 2018-07-03 2018-10-19 珠海格力电器股份有限公司 Heat exchange system, air conditioner and control method of heat exchange system
WO2021040427A1 (en) * 2019-08-30 2021-03-04 Samsung Electronics Co., Ltd. Air conditioner and control method thereof
EP4328529A4 (en) * 2021-04-22 2024-05-22 Mitsubishi Electric Corporation Refrigeration cycle device
CN115366616A (en) * 2022-09-09 2022-11-22 智己汽车科技有限公司 Vehicle direct and indirect heating heat management system and control method thereof
CN115366616B (en) * 2022-09-09 2024-05-14 智己汽车科技有限公司 Thermal management system for direct and indirect heating of vehicle and control method thereof

Also Published As

Publication number Publication date
JP3140923B2 (en) 2001-03-05

Similar Documents

Publication Publication Date Title
US5987907A (en) Refrigerant circulating system
US5737931A (en) Refrigerant circulating system
US5768902A (en) Refrigeration cycle and method of controlling the same
US4771610A (en) Multiroom air conditioner
US9303908B2 (en) Air conditioner
US7946121B2 (en) Air conditioner
JP4200532B2 (en) Refrigeration equipment
US8069682B2 (en) Air conditioner that corrects refrigerant quantity determination based on refrigerant temperature
US7997093B2 (en) Air conditioner
US20090031739A1 (en) Air conditioner
JP2006284035A (en) Air conditioner and its control method
JP2001248920A (en) Controller for refrigeration circuit
US8839640B2 (en) Air-conditioning apparatus
JP5164527B2 (en) Air conditioner
JP3140923B2 (en) Refrigerant circulation system and refrigeration / air conditioner
EP3101368B1 (en) Refrigeration device
JP3267187B2 (en) Heat pump water heater
JP2002257427A (en) Refrigerating air conditioner and its operating method
US7878010B2 (en) Air conditioner
JP2006242506A (en) Thermal storage type air conditioner
JPH11173698A (en) Refrigeration cycle
JP3140908B2 (en) Refrigerant circulation system
JPH1068555A (en) Circulating refrigerant composition detection method of refrigeration cycle and refrigerating apparatus using the detection method
JP2000356420A (en) System for circulating refrigerant
JP2002357353A (en) Air conditioner

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071215

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081215

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091215

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091215

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101215

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111215

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111215

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121215

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121215

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131215

Year of fee payment: 13

EXPY Cancellation because of completion of term