JPH0566503B2 - - Google Patents

Info

Publication number
JPH0566503B2
JPH0566503B2 JP7337486A JP7337486A JPH0566503B2 JP H0566503 B2 JPH0566503 B2 JP H0566503B2 JP 7337486 A JP7337486 A JP 7337486A JP 7337486 A JP7337486 A JP 7337486A JP H0566503 B2 JPH0566503 B2 JP H0566503B2
Authority
JP
Japan
Prior art keywords
refrigerant
pressure
temperature
compressor
evaporator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP7337486A
Other languages
Japanese (ja)
Other versions
JPS62228839A (en
Inventor
Yoshiaki Tanimura
Makoto Endo
Naoki Tanaka
Masaki Ikeuchi
Hitoshi Iijima
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP7337486A priority Critical patent/JPS62228839A/en
Publication of JPS62228839A publication Critical patent/JPS62228839A/en
Publication of JPH0566503B2 publication Critical patent/JPH0566503B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)
  • Devices That Are Associated With Refrigeration Equipment (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、非共沸混合冷媒を用いた冷凍装置
に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a refrigeration system using a non-azeotropic mixed refrigerant.

〔従来の技術〕[Conventional technology]

従来、非共沸混合冷媒を用いた冷凍装置として
は、例えば特開昭58−210447号に示されている。
A conventional refrigeration system using a non-azeotropic mixed refrigerant is disclosed in, for example, Japanese Patent Laid-Open No. 58-210447.

第7図は、このような非共沸混合冷媒を冷凍冷
蔵庫に利用したときの冷凍サイクルの構成図であ
る。同図において、1は圧縮機、2は恐縮器、3
はキヤピラリ、4は冷凍室内蒸発器、5は冷蔵室
用蒸発器であり、これらは配管により直列に接続
することにより冷凍冷蔵庫の冷凍サイクルを構成
している。
FIG. 7 is a block diagram of a refrigeration cycle when such a non-azeotropic mixed refrigerant is used in a refrigerator-freezer. In the same figure, 1 is a compressor, 2 is a depressor, and 3 is a compressor.
4 is a capillary, 4 is an evaporator for the freezer compartment, and 5 is an evaporator for the refrigerator compartment. These are connected in series through piping to constitute a refrigeration cycle of the refrigerator-freezer.

上記のように構成された冷凍冷蔵庫において、
圧縮機1で圧縮された高温高圧の冷媒ガスは凝縮
器2により高圧状態で凝縮され、この高圧の液化
冷媒はキヤピラリ3を通過する間に減圧され、次
段の冷凍室用蒸発器4及び冷蔵室用蒸発器5へ順
に流れ込む。そして、上記2つの蒸発器4,5で
の吸熱作用により蒸発した冷媒ガスは圧縮機1に
戻り、再び圧縮されて凝縮器1へと送り出され
る。
In the refrigerator-freezer configured as above,
The high-temperature, high-pressure refrigerant gas compressed by the compressor 1 is condensed in a high-pressure state by the condenser 2, and this high-pressure liquefied refrigerant is depressurized while passing through the capillary 3, and is then transferred to the next-stage freezing compartment evaporator 4 and refrigerator. It sequentially flows into the room evaporator 5. The refrigerant gas evaporated by the endothermic action in the two evaporators 4 and 5 returns to the compressor 1, where it is compressed again and sent to the condenser 1.

このような冷凍サイクルにおいて、その冷媒
に、例えば低沸点成分がR22(沸点−40.75
℃)、高沸点成分がR114(沸点3.77℃)から
なる、沸点差が約44℃の非共沸混合冷媒を使用し
た場合、その蒸発過程は、第8図のモリエール線
図に示す符号10,11に示す如く、まずR22
を多く含んでいる液冷媒が液冷媒が蒸発するた
め、その蒸発温度は低く、次いでR114を多く
含んでいる液冷媒が徐々に蒸発していくことによ
り、その蒸発温度が上がつていく。
In such a refrigeration cycle, the refrigerant contains, for example, a low boiling point component of R22 (boiling point -40.75
℃), and the high boiling point component is R114 (boiling point 3.77℃). When a non-azeotropic mixed refrigerant with a boiling point difference of about 44℃ is used, the evaporation process is represented by the symbol 10, as shown in the Molière diagram in Figure 8. As shown in 11, first R22
Since the liquid refrigerant containing a large amount of R114 evaporates, its evaporation temperature is low, and then as the liquid refrigerant containing a large amount of R114 gradually evaporates, its evaporation temperature rises.

上記の蒸発過程において、低い温度領域10は
冷凍室用蒸発器4に、高い温度領域11は冷蔵室
用蒸発器5にそれぞれ用いることにより、冷凍室
には、その温度に適した蒸発温度で冷凍室用蒸発
器4を使用でき、かつ冷蔵室には、その温度に適
した蒸発温度で冷蔵室蒸発器4を使用できるた
め、単一冷媒(例えばR12)を用いる方式のもの
より冷凍効果を向上できる。
In the above evaporation process, the low temperature region 10 is used for the evaporator 4 for the freezer compartment, and the high temperature region 11 is used for the evaporator 5 for the refrigerator compartment. Since the indoor evaporator 4 can be used, and the refrigerator compartment evaporator 4 can be used in the refrigerator compartment at an evaporation temperature suitable for that temperature, the refrigeration effect is improved compared to systems that use a single refrigerant (for example, R12). can.

なお、第8図のモリエール線図において、符号
6は等温線、7は圧縮領域、8は凝縮領域、9は
減圧領域を示している。
In the Molière diagram shown in FIG. 8, reference numeral 6 indicates an isothermal line, 7 indicates a compression region, 8 indicates a condensation region, and 9 indicates a reduced pressure region.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上記のような従来の冷凍装置では、最適な運転
条件のもとでは、上述する如き効果が得られるか
もしれないが、実際には、外気温度の変化、非共
沸混合冷媒の成分比の変化等の運転条件が変化す
るため、最適運転を維持できる冷凍サイクルとは
ならない。
In the conventional refrigeration equipment described above, the above-mentioned effects may be obtained under optimal operating conditions, but in reality, changes in outside temperature and changes in the component ratio of the non-azeotropic refrigerant mixture Because the operating conditions such as these change, the refrigeration cycle cannot maintain optimal operation.

例えば、上記のような冷凍サイクルにおいて、
運転条件が変化した場合、液冷媒が蒸発器内で全
て蒸発しきれずに圧縮機に戻ると、圧縮機が破損
されるおそれがある。また、逆に液冷媒が蒸器で
完全に蒸発し、大きな加熱蒸気で圧縮機に戻る
と、圧縮機による圧縮性能が低下する可能性があ
り、最適な運転状態を保つことができなくなる問
題があつた。
For example, in the refrigeration cycle as mentioned above,
When operating conditions change, if the liquid refrigerant is not completely evaporated in the evaporator and returns to the compressor, the compressor may be damaged. On the other hand, if the liquid refrigerant completely evaporates in the evaporator and returns to the compressor as a large amount of heated steam, the compression performance of the compressor may deteriorate, causing the problem that it will not be possible to maintain optimal operating conditions. Ta.

この発明は上記のような問題点を解決するため
になされたもので、非共沸混合冷媒の成分比変化
及び外気温度変化等の運転条件が変化しても常に
最適な冷凍サイクルの運転を可能にした冷凍装置
を得ることを目的とする。
This invention was made to solve the above-mentioned problems, and allows the refrigeration cycle to always operate optimally even when operating conditions such as changes in the component ratio of the non-azeotropic mixed refrigerant and changes in outside temperature change. The purpose is to obtain a refrigeration system with

〔問題点を解決するための手段〕[Means for solving problems]

この発明に係る冷凍装置は、凝縮器と減圧装置
間に受液器を設け、この受液器内の圧力及び温度
を検知して非共沸混合冷媒の成分比を算出すると
共に、この成分比と蒸発器出口の圧力及び温度に
基いて圧縮器へ吸入される冷媒の加熱度を算出
し、その加熱度の大きさを減圧装置の開閉度によ
り制御する演算制御手段を備えて成るものであ
る。
The refrigeration system according to the present invention includes a liquid receiver provided between a condenser and a pressure reducing device, detects the pressure and temperature in the liquid receiver to calculate a component ratio of a non-azeotropic mixed refrigerant, and calculates the component ratio of a non-azeotropic mixed refrigerant. It is equipped with arithmetic control means that calculates the degree of heating of the refrigerant sucked into the compressor based on the pressure and temperature at the outlet of the evaporator, and controls the degree of heating by the degree of opening and closing of the pressure reducing device. .

〔作用〕[Effect]

この発明においては、演算制御手段が、非共沸
混合冷媒の成分比及び蒸発器出口の圧力、温度か
ら算出した圧縮機への冷媒の加熱度が最適値とな
るように減圧装置の開閉度を制御することにな
り、これにより運転条件の変化に左右されること
なく冷凍サイクルの最適運転を可能にする。
In this invention, the calculation control means controls the degree of opening and closing of the pressure reducing device so that the degree of heating of the refrigerant to the compressor, which is calculated from the component ratio of the non-azeotropic refrigerant mixture and the pressure and temperature at the outlet of the evaporator, becomes an optimum value. This enables optimal operation of the refrigeration cycle without being affected by changes in operating conditions.

〔実施例〕〔Example〕

以下、この発明の実施例を図面について説明す
る。
Embodiments of the present invention will be described below with reference to the drawings.

第1図はこの発明に係る冷凍装置の一実施例を
示すもので、1は圧縮機、2は圧縮機1の吐出側
に接続した凝縮器、12は凝縮器2の出口側に接
続した受液器、13は受液器12の出口側に接続
した開閉度調節が可能な減圧装置、14は減圧装
置13を圧縮機1の吸入側間に接続した蒸発器で
あり、これらは配管により直列に接続することで
冷凍サイクルが構成され、そして該冷凍サイクル
例えば高沸点成分R114と沸点成分R22からなる
非共沸混合冷媒が封入されている。
FIG. 1 shows an embodiment of a refrigeration system according to the present invention, in which 1 is a compressor, 2 is a condenser connected to the discharge side of the compressor 1, and 12 is a receiver connected to the outlet side of the condenser 2. 13 is a pressure reducing device connected to the outlet side of the liquid receiver 12 and is capable of adjusting the opening/closing degree; 14 is an evaporator in which the pressure reducing device 13 is connected between the suction side of the compressor 1, and these are connected in series by piping. A refrigeration cycle is constructed by connecting the refrigerant to the refrigeration cycle, and a non-azeotropic mixed refrigerant consisting of a high boiling point component R114 and a boiling point component R22, for example, is sealed in the refrigeration cycle.

上記受液器12には、その内部冷媒の飽和圧力
P1を検知する圧力検知器15と、その飽和温度
T1を検知する温度検知器16がそれぞれ設けら
れており、これら検知器15,16の検知信号は
演算制御回路17に入力される。
The liquid receiver 12 has a saturation pressure of its internal refrigerant.
Pressure detector 15 that detects P 1 and its saturation temperature
Temperature detectors 16 for detecting T 1 are each provided, and detection signals from these detectors 15 and 16 are input to an arithmetic control circuit 17 .

また、上記蒸発器14の出口には、圧縮機へ吸
入される冷媒の圧力P2を検知する圧力検知器1
8と、温度T2を検知する温度検知器19が設け
られており、これら検知器18,19の検知信号
は演算制御回路17に入力される。
Further, at the outlet of the evaporator 14, there is a pressure sensor 1 for detecting the pressure P2 of the refrigerant sucked into the compressor.
8 and a temperature detector 19 for detecting temperature T 2 are provided, and detection signals from these detectors 18 and 19 are input to an arithmetic control circuit 17 .

上記演算制御回路17は検知器15,16から
の飽和圧力P1及び飽和温度T1に基いて非共沸混
合冷媒の成分比ηを算出する機能と、上記冷媒成
分比ηと上記検知器18,19からの圧力P2
び温度T2に基いて圧縮機1への吸入冷媒加熱度
S・Hを算出する機能と、この算出された加熱度
が最適値となるように減圧装置13の開閉度を制
御する機能とを有し、そして、演算制御回路17
からの制御出力信号は減圧装置13の開閉度調節
用ドライバ20に供給されるようになつている。
The arithmetic control circuit 17 has a function of calculating the component ratio η of the non-azeotropic mixed refrigerant based on the saturation pressure P 1 and saturation temperature T 1 from the detectors 15 and 16, and the function of calculating the component ratio η of the non-azeotropic mixed refrigerant and the refrigerant component ratio η and the detector 18. , 19 and the function of calculating the heating degree S/H of the refrigerant sucked into the compressor 1 based on the pressure P 2 and temperature T 2 from the compressor 1, and opening and closing of the pressure reducing device 13 so that the calculated heating degree becomes the optimum value. and an arithmetic control circuit 17
A control output signal from the pressure reducing device 13 is supplied to a driver 20 for adjusting the opening/closing degree of the pressure reducing device 13.

次に、上記のように構成された本実施例の動作
について説明する。
Next, the operation of this embodiment configured as described above will be explained.

圧縮機1で圧縮された高温高圧の冷媒ガスは凝
縮器2により高圧状態で凝縮され、この高圧の液
化冷媒は受液器12に流入する。受液器12に流
入した冷媒は、さらに減圧装置13で減圧された
後、蒸発器14に入り、その吸熱作用により蒸発
した冷媒ガスは圧縮機1に戻り、サイクルを完結
する。
The high-temperature, high-pressure refrigerant gas compressed by the compressor 1 is condensed in a high-pressure state by the condenser 2, and this high-pressure liquefied refrigerant flows into the receiver 12. The refrigerant flowing into the liquid receiver 12 is further reduced in pressure by a pressure reducing device 13, and then enters the evaporator 14, and the refrigerant gas evaporated due to its endothermic action returns to the compressor 1, completing the cycle.

次に、演算制御回路17の動作を第2図に示す
フローチヤートに基いて説明する。
Next, the operation of the arithmetic control circuit 17 will be explained based on the flowchart shown in FIG.

上記サイクルにおいて、受液器12の作用によ
り受液器12内の冷媒は飽和液となるため、受液
器12内の圧力P1、温度T1はそれぞれ飽和圧力
及び飽和温度となる。
In the above cycle, the refrigerant in the liquid receiver 12 becomes a saturated liquid due to the action of the liquid receiver 12, so that the pressure P 1 and the temperature T 1 in the liquid receiver 12 become the saturated pressure and the saturated temperature, respectively.

演算制御回路17の動作が開始されると、ま
ず、ステツプS1では、それぞれの検知器15,1
6で検知された受液器12内の冷媒の飽和圧力
P1及び飽和温度T1を演算制御回路17に取り込
み、この検知圧力P1および検知温度T1に基いて
非共沸混合冷媒の成分比η(低沸点成分又は高沸
点成分の重量分率)を(1)式から算出する(ステツ
プS2)。
When the operation of the arithmetic control circuit 17 is started, first, in step S1 , the respective detectors 15, 1
The saturation pressure of the refrigerant in the liquid receiver 12 detected at 6
P 1 and saturation temperature T 1 are input into the arithmetic control circuit 17, and based on the detected pressure P 1 and detected temperature T 1 , the component ratio η (weight fraction of low boiling point component or high boiling point component) of the non-azeotropic mixed refrigerant is determined. is calculated from equation (1) (step S2).

η=F(P1・T1) ……(1) 但し、F:定数 次のステツプS3では、検知器18,19で検
知された蒸発器出口の冷媒の圧力P2及び温度T2
を演算制御回路17に取り込み、次のステツプ
S4に移行してηとP2とにより飽和温度TEの算出
を実行する。即ち、演算制御回路17では、上記
(1)式で算出した成分比ηと圧力P2に基いて(2)式
を実行することにより、圧力P2時の非共沸混合
冷媒の飽和温度TEを算出する。
η=F(P 1 · T 1 ) ...(1) However, F: Constant In the next step S3, the pressure P 2 and temperature T 2 of the refrigerant at the evaporator outlet detected by the detectors 18 and 19 are determined.
is taken into the arithmetic control circuit 17 and the next step
Proceeding to S4, the saturation temperature T E is calculated using η and P 2 . That is, in the arithmetic control circuit 17, the above
By executing equation (2) based on the component ratio η calculated using equation (1) and pressure P 2 , the saturation temperature T E of the non-azeotropic mixed refrigerant at pressure P 2 is calculated.

TE=G(P2・η) ……(2) 但し、G:定数 そして、次のステツプS5において、上記(2)式
から求めたTEと、検知器19で検知した蒸発器
出口の温度T2を用いて圧縮機1に吸入される非
共沸混合冷媒の加熱度S・H(T2とTEとの差)を
算出する。
T E = G (P 2 · η) ...(2) However, G: Constant Then, in the next step S5, T E obtained from the above equation (2) and the evaporator outlet detected by the detector 19 are The heating degree S·H (difference between T 2 and T E ) of the non-azeotropic mixed refrigerant sucked into the compressor 1 is calculated using the temperature T 2 .

一般に冷凍サイクルの冷凍能力及びCOP(成績
係数)と圧縮機1の吸入冷媒加熱度S・Hとの間
には、第3図に示す関係があり、ある加熱度で、
冷凍能力及びCOPが最大になる。
Generally, there is a relationship shown in Figure 3 between the refrigeration capacity and COP (coefficient of performance) of the refrigeration cycle and the suction refrigerant heating degree S/H of the compressor 1, and at a certain heating degree,
Refrigeration capacity and COP are maximized.

従つて、上記(2)式で求めた加熱度が、冷凍サイ
クルの冷凍能力及びCOPが最大になる最適値が
否かをステツプS6で判定する。ここで最適値と
判断されたときは、終了ステツプに移行し、また
最適値でないと判断された場合は、ステツプS7
に移行して減圧装置13の開閉度変更処理を実行
する。
Therefore, it is determined in step S6 whether the heating degree determined by the above equation (2) is the optimum value that maximizes the refrigeration capacity and COP of the refrigeration cycle. If it is determined that the value is the optimum value, the process moves to the end step, and if it is determined that the value is not the optimum value, the process proceeds to step S7.
Then, processing for changing the opening/closing degree of the pressure reducing device 13 is executed.

即ち、演算制御回路17から制御指令をドライ
バ20に送出し、ドライバ20を動作させて減圧
装置13の開閉度を、加熱度S・Hが最適値にな
るように調節する。
That is, a control command is sent from the arithmetic control circuit 17 to the driver 20, and the driver 20 is operated to adjust the opening/closing degree of the pressure reducing device 13 so that the heating degrees S and H become optimum values.

上記の動作を繰返すことにより、運転条件が変
化しても、これに左右されることなく冷凍サイク
ルの最適運転が可能になる。
By repeating the above operations, the refrigeration cycle can be operated optimally even if the operating conditions change.

なお、第4図は冷媒飽和温度と低沸点成分重量
分率ηとの関係を示す特性図であり、また、第5
図は冷媒飽和温度と蒸気中のR22重量分率との関
係を示す特性図である。
Note that FIG. 4 is a characteristic diagram showing the relationship between the refrigerant saturation temperature and the low boiling point component weight fraction η, and
The figure is a characteristic diagram showing the relationship between refrigerant saturation temperature and R22 weight fraction in steam.

第6図はこの発明の冷凍装置の他の実施例を示
す。
FIG. 6 shows another embodiment of the refrigeration system of the present invention.

同図において、第1図と同一符号は同一部分を
表わし、第1図と異なる点は凝縮器2と受液器1
2との間にキヤピラリ21を設けたところにあ
る。
In the figure, the same symbols as in Fig. 1 represent the same parts, and the points that differ from Fig. 1 are the condenser 2 and the liquid receiver 1.
2, where a capillary 21 is provided.

キヤピラリ21を設ける理由は、凝縮器2の出
口冷媒が過冷却により完全な液になつた場合、受
液器12内の圧力P1、温度T1はそれぞれ飽和圧
力、飽和温度とならないのを防止するためであ
り、凝縮器2からの液冷媒をキヤピラリ21で減
圧することにより受液器12内には飽和液が流れ
込むことになる。従つて、冷媒が凝縮器2で過冷
却された完全な液であつても受液器12内の圧力
P1及び温度T1はそれぞれ飽和圧力、飽和温度と
なり、第1図と同様に冷凍サイクルの最適運転が
可能になる。
The reason for providing the capillary 21 is to prevent the pressure P 1 and temperature T 1 in the liquid receiver 12 from reaching the saturated pressure and saturated temperature, respectively, when the refrigerant at the outlet of the condenser 2 becomes a complete liquid due to supercooling. By reducing the pressure of the liquid refrigerant from the condenser 2 in the capillary 21, saturated liquid flows into the liquid receiver 12. Therefore, even if the refrigerant is a complete liquid that has been supercooled in the condenser 2, the pressure inside the liquid receiver 12
P 1 and temperature T 1 become the saturation pressure and saturation temperature, respectively, and the optimal operation of the refrigeration cycle becomes possible as in FIG. 1.

〔発明の効果〕〔Effect of the invention〕

以上のように、この発明によれば、圧縮機の吸
入加熱度が最適な値となるように減圧装置の開閉
度を制御するようにしたものであるから、非共沸
混合冷媒の成分比の変化及び外気温度の変化等に
伴う運転条件が変化しても常に最適な冷凍サイク
ルの運転が可能になると云う効果がある。
As described above, according to the present invention, the opening/closing degree of the pressure reducing device is controlled so that the degree of suction heating of the compressor becomes an optimal value. There is an effect that the refrigeration cycle can always be operated optimally even if operating conditions change due to changes in outside air temperature, etc.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明にかかる冷凍装置の一例を示
す回路図、第2図はこの発明における動作説明用
のフローチヤート、第3図は加熱度と冷凍能力及
びCOPとの関係を示す図、第4図及び第5図は
冷媒飽和温度と成分重量率との関係を示す図、第
6図はこの発明の冷凍装置の他の実施例を示す回
路図、第7図は従来における冷凍装置の回路図、
第8図は非共沸混合冷媒のモリエール線図であ
る。 1……圧縮機、2……凝縮器、12……受液
器、13……減圧装置、14……蒸発器、15,
18……圧力検知器、16,19……温度検知
器、17……演算制御回路、21……キヤピラ
リ。なお、図中同一符号は同一又は相当部分を示
す。
Fig. 1 is a circuit diagram showing an example of a refrigeration system according to the present invention, Fig. 2 is a flowchart for explaining the operation of the invention, Fig. 3 is a diagram showing the relationship between heating degree, refrigerating capacity, and COP. Figures 4 and 5 are diagrams showing the relationship between refrigerant saturation temperature and component weight percentage, Figure 6 is a circuit diagram showing another embodiment of the refrigeration system of the present invention, and Figure 7 is a circuit diagram of a conventional refrigeration system. figure,
FIG. 8 is a Moliere diagram of a non-azeotropic refrigerant mixture. 1... Compressor, 2... Condenser, 12... Liquid receiver, 13... Pressure reducing device, 14... Evaporator, 15,
18...pressure detector, 16, 19...temperature detector, 17...arithmetic control circuit, 21...capillary. Note that the same reference numerals in the figures indicate the same or equivalent parts.

Claims (1)

【特許請求の範囲】 1 圧縮機、凝縮器、減圧装置及び蒸発器を順次
接続し、冷媒に低沸点成分と高沸点成分からなる
非共沸混合冷媒を用いた冷凍サイクルにおいて、
上記凝縮器と上記減圧装置間に受液器を設け、か
つ上記受液器内の飽和圧力及び飽和温度をそれぞ
れ検知する検知器を設けると共に、上記蒸発器出
口の冷媒圧力及び温度をそれぞれ検知する検知器
を設け、さらに上記検知器で検知した上記受液器
内の飽和圧力及び飽和温度に基いて非共沸混合冷
媒の成分比を算出すると共にこの成分比と上記検
知器で検知した上記蒸発器出口の圧力及び温度に
基いて圧縮機吸入冷媒の加熱度を算出し、その過
熱度の大きさを上記減圧装置の開閉度で制御する
演算制御手段を備えてなる冷凍装置。 2 受液器の冷媒入口がキヤピラリを備えている
ことを特徴とする特許請求の範囲第1項記載の冷
凍装置。
[Claims] 1. In a refrigeration cycle in which a compressor, a condenser, a pressure reducing device, and an evaporator are connected in sequence, and a non-azeotropic mixed refrigerant consisting of a low-boiling point component and a high-boiling point component is used as a refrigerant,
A liquid receiver is provided between the condenser and the pressure reducing device, and a detector is provided to detect the saturation pressure and the saturation temperature in the liquid receiver, respectively, and the refrigerant pressure and temperature at the outlet of the evaporator are respectively detected. A detector is provided, and the component ratio of the non-azeotropic mixed refrigerant is calculated based on the saturation pressure and saturation temperature in the receiver detected by the detector, and the component ratio and the evaporation detected by the detector are calculated. A refrigeration system comprising arithmetic control means for calculating the degree of heating of the refrigerant sucked into the compressor based on the pressure and temperature at the outlet of the compressor, and controlling the magnitude of the degree of superheating by the opening/closing degree of the pressure reducing device. 2. The refrigeration system according to claim 1, wherein the refrigerant inlet of the liquid receiver is equipped with a capillary.
JP7337486A 1986-03-31 1986-03-31 Refrigerator Granted JPS62228839A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7337486A JPS62228839A (en) 1986-03-31 1986-03-31 Refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7337486A JPS62228839A (en) 1986-03-31 1986-03-31 Refrigerator

Publications (2)

Publication Number Publication Date
JPS62228839A JPS62228839A (en) 1987-10-07
JPH0566503B2 true JPH0566503B2 (en) 1993-09-21

Family

ID=13516339

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7337486A Granted JPS62228839A (en) 1986-03-31 1986-03-31 Refrigerator

Country Status (1)

Country Link
JP (1) JPS62228839A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3140923B2 (en) * 1994-11-25 2001-03-05 三菱電機株式会社 Refrigerant circulation system and refrigeration / air conditioner
JP2017062082A (en) * 2015-09-25 2017-03-30 東芝キヤリア株式会社 Multi-air conditioner
JP6555311B2 (en) * 2017-09-19 2019-08-07 ダイキン工業株式会社 Gas leak amount estimation method and refrigeration system operation method

Also Published As

Publication number Publication date
JPS62228839A (en) 1987-10-07

Similar Documents

Publication Publication Date Title
EP0509619B1 (en) Air conditioning system
EP0853221B1 (en) Refrigeration air-conditioner using a non-azeotrope refrigerant and having a control-information detecting apparatus
US20110174005A1 (en) Refrigerating apparatus
WO1999010686A1 (en) Cooling cycle
JP2943613B2 (en) Refrigeration air conditioner using non-azeotropic mixed refrigerant
EP0445368B1 (en) Cooling and heating concurrent operation type of multiple refrigeration cycle
JP2948105B2 (en) Refrigeration air conditioner using non-azeotropic mixed refrigerant
JPH0566503B2 (en)
JP3351076B2 (en) Refrigeration cycle saturated steam temperature detector
JPH07198235A (en) Air conditioner
JP2502197B2 (en) Refrigeration cycle equipment
JPS6350628B2 (en)
JPH0763430A (en) Saturated vapor temperature detection circuit of refrigeration cycle
JPH09324955A (en) Refrigerating device
JPH06294551A (en) Airconditioning apparatus
JPH05288413A (en) Air conditioner
JPH05272822A (en) Freezer
JPH0828975A (en) Turbo refrigerator
JP2883535B2 (en) Refrigeration equipment
JPH046355A (en) Multiple-room type air-conditioner
JPH03251661A (en) Heat pump system
JPH05223358A (en) Freezing cycle control device
JP2526988B2 (en) Refrigeration equipment
JPH0363471A (en) Air conditioner
JPH07117312B2 (en) Multi-room air conditioner

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term