JPS6350628B2 - - Google Patents

Info

Publication number
JPS6350628B2
JPS6350628B2 JP18644781A JP18644781A JPS6350628B2 JP S6350628 B2 JPS6350628 B2 JP S6350628B2 JP 18644781 A JP18644781 A JP 18644781A JP 18644781 A JP18644781 A JP 18644781A JP S6350628 B2 JPS6350628 B2 JP S6350628B2
Authority
JP
Japan
Prior art keywords
refrigerant
temperature
evaporator
valve
cooling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP18644781A
Other languages
Japanese (ja)
Other versions
JPS5888562A (en
Inventor
Kisuke Yamazaki
Kazuhiro Maruyama
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP56186447A priority Critical patent/JPS5888562A/en
Publication of JPS5888562A publication Critical patent/JPS5888562A/en
Publication of JPS6350628B2 publication Critical patent/JPS6350628B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2511Evaporator distribution valves

Landscapes

  • Devices That Are Associated With Refrigeration Equipment (AREA)

Description

【発明の詳細な説明】 本発明は複数の温度の異なる保冷室をもつ冷蔵
庫などの冷却装置に関し、その目的とするところ
は圧縮機の成績係数を向上させ、冷却装置の運転
効率の向上を図る点にある。
[Detailed Description of the Invention] The present invention relates to a cooling device such as a refrigerator having a plurality of cold storage chambers with different temperatures, and its purpose is to improve the coefficient of performance of a compressor and improve the operating efficiency of the cooling device. At the point.

従来温度の異なる複数の保冷室を1台の冷凍ユ
ニツトで冷却する形態の代表的なものに家庭用冷
凍冷蔵庫の冷却システムがあり、基本的には第1
図に示すような冷却システムを採用している。
Conventionally, a typical example of a system in which a single refrigeration unit cools multiple cold storage compartments with different temperatures is the cooling system for a household refrigerator-freezer.
The cooling system shown in the figure is used.

第1図において、1は圧縮機で、この圧縮機1
から吐出され、凝縮器2で液化された冷媒液は、
第1毛細管3で減圧され、冷蔵室4内に配設され
た冷蔵用蒸発器5で一部分が蒸発し、その際に上
記冷蔵室4内の冷却作用を行なう。上記冷蔵用蒸
発器5を出た気液2相冷媒は、第2毛細管6で再
び減圧され、冷凍室7内に配設された冷凍用蒸発
器8で残りが蒸発し、その際に冷凍室7を冷却す
る。上記冷凍用蒸発器8を出た冷媒ガスはアキユ
ムレータ9を介して上記圧縮機1に吸い込まれ
る。各庫内の温度管理は、冷蔵室4か冷凍室7の
どちらかに配設された温度調節器(図示せず)に
より、上記圧縮機1を発停させることにより行な
う。
In Fig. 1, 1 is a compressor, and this compressor 1
The refrigerant liquid discharged from the condenser 2 and liquefied in the condenser 2 is
The pressure is reduced in the first capillary tube 3, and a portion of the liquid is evaporated in a refrigerating evaporator 5 disposed within the refrigerating compartment 4, at which time the refrigerating compartment 4 is cooled. The gas-liquid two-phase refrigerant that has exited the refrigeration evaporator 5 is depressurized again in the second capillary 6, and the remainder is evaporated in the refrigeration evaporator 8 disposed in the freezing compartment 7. 7. Cool. The refrigerant gas exiting the refrigeration evaporator 8 is sucked into the compressor 1 via the accumulator 9. The temperature inside each refrigerator is controlled by starting and stopping the compressor 1 using a temperature controller (not shown) disposed in either the refrigerator compartment 4 or the freezer compartment 7.

以上のような構成の冷凍冷蔵庫においては、圧
縮機1の吸入圧力は非常に低圧な冷凍用蒸発器8
の蒸発圧力で決定してしまうため、冷蔵用蒸発器
5の蒸発圧力がいかに高くても、圧縮機1の成績
係数は非常に悪いものとなり、冷却システムとし
ても効率の悪い運転を余儀なくされていた。また
上述のように庫内温度調整がどちらか一方の庫内
温度によらざるを得ないため、他方の庫内温度は
成り行きとなつてしまう欠点があつた。
In the refrigerator-freezer configured as described above, the suction pressure of the compressor 1 is very low pressure in the refrigeration evaporator 8.
Therefore, no matter how high the evaporation pressure of the refrigeration evaporator 5 is, the coefficient of performance of the compressor 1 is extremely poor, and the cooling system is forced to operate inefficiently. . Moreover, as mentioned above, since the temperature inside the refrigerator must be adjusted depending on the temperature inside one of the refrigerators, there is a drawback that the temperature inside the other refrigerator remains unchanged.

一方各庫内温度の独立コントロールを可能とす
るために、冷凍室7内に1台の蒸発器8を配設
し、それによつて冷蔵室4はダンパー制御によつ
て室内温度をコントロールし、冷凍室7の温度は
圧縮機1の発停によつて行なうという冷却システ
ムも近年一般的となつている。この方式は両室内
温度の独立コントロールは可能であるが、蒸発器
8の蒸発温度はやはり冷凍室7の温度に依存して
しまうため、圧縮機1の吸入圧力が低く冷却シス
テムの効率が非常に悪いことは変らない。またこ
の方式を用いた場合、冷蔵室4はダンパーを介し
て冷凍室7と連通しているため、冷蔵室4内の乾
燥過多の問題が生じ、さらに蒸発器8上への着露
量が大きくなり頻繁な除霜が必要になるなどの欠
点があつた。
On the other hand, in order to enable independent control of the temperature inside each refrigerator, one evaporator 8 is installed in the freezer compartment 7, and the refrigerator compartment 4 controls the indoor temperature by damper control. A cooling system in which the temperature of the chamber 7 is controlled by turning on and off the compressor 1 has become common in recent years. Although this method allows independent control of the temperature in both chambers, the evaporation temperature of the evaporator 8 still depends on the temperature of the freezer compartment 7, so the suction pressure of the compressor 1 is low and the efficiency of the cooling system is extremely low. Bad things don't change. Furthermore, when this method is used, the refrigerator compartment 4 is communicated with the freezer compartment 7 via a damper, which causes the problem of excessive dryness inside the refrigerator compartment 4, and furthermore, the amount of dew condensation on the evaporator 8 is large. However, there were disadvantages such as the need for frequent defrosting.

本発明は上記従来装置の諸欠点を改良するため
なされたもので保冷温度の異なる複数の冷却室
に、それぞれこの冷却室を冷却する蒸発器を配設
し、この各蒸発器を並列接続するとともに各蒸発
器に冷媒を流す時刻を別々にして同時に流すこと
ない構成にして圧縮機の成績係数を向上させ、か
つ低温側蒸発器で蒸発しきれない冷媒液を高温側
蒸発器で完全に蒸発させたり、低温側蒸発器から
の冷媒ガスの過熱を高温側蒸発器で行い低温蒸発
器を通過した冷媒の熱回収を行い冷却装置全体の
運転効率を高めるものである。
The present invention has been made in order to improve the various drawbacks of the above-mentioned conventional devices.Evaporators for cooling each cooling chamber are provided in a plurality of cooling chambers having different cold storage temperatures, and the evaporators are connected in parallel. The coefficient of performance of the compressor is improved by setting different times for the refrigerant to flow into each evaporator so that they do not flow at the same time, and at the same time, the refrigerant liquid that cannot be evaporated in the low-temperature side evaporator is completely evaporated in the high-temperature side evaporator. In addition, the refrigerant gas from the low-temperature side evaporator is superheated by the high-temperature side evaporator, and the heat of the refrigerant that has passed through the low-temperature evaporator is recovered, thereby increasing the operating efficiency of the entire cooling system.

以下家庭用冷凍冷蔵庫を例に本発明の詳細につ
いて説明する。
The details of the present invention will be explained below using a household refrigerator-freezer as an example.

第2図は本発明の一実施例を示す冷却システム
図であり、1は圧縮機、2は凝縮器、4は冷蔵
室、5はこの冷蔵室4内に配設された冷蔵用蒸発
器、7は冷凍室、8はこの冷凍室7内に配設され
た冷凍用蒸発器、9はアキユムレータである。3
は上記冷蔵用蒸発器5の冷媒通路上流側に配設さ
れた第1の減圧器としての第1毛細管、6は上記
冷凍用蒸発器8の冷媒通路上流側に配設された第
2の減圧器としての第2毛細管、10は第1毛細
管3の冷媒通路上流側に配設された第1の開閉
弁、11は冷凍用蒸発器8の下流側に設けられた
冷媒制御弁としての三方弁であり、この三方弁1
1の一方は上記圧縮機1の冷媒吸込流路と連通し
(第2図a→bで示す)、他方は逆止弁12を介し
て冷蔵用蒸発器5の上流側と連通(第2図中a→
cで示す)されている。
FIG. 2 is a cooling system diagram showing an embodiment of the present invention, in which 1 is a compressor, 2 is a condenser, 4 is a refrigerating compartment, 5 is a refrigerating evaporator disposed in the refrigerating compartment 4, 7 is a freezing chamber, 8 is a freezing evaporator disposed within the freezing chamber 7, and 9 is an accumulator. 3
6 is a first capillary tube as a first pressure reducer disposed upstream of the refrigerant passage of the refrigeration evaporator 5, and 6 is a second pressure reducer disposed upstream of the refrigerant passage of the refrigeration evaporator 8. 10 is a first on-off valve disposed upstream of the refrigerant passage of the first capillary 3; 11 is a three-way valve as a refrigerant control valve disposed downstream of the freezing evaporator 8; and this three-way valve 1
1 is in communication with the refrigerant suction flow path of the compressor 1 (shown as a→b in FIG. 2), and the other is in communication with the upstream side of the refrigerating evaporator 5 via the check valve 12 (see FIG. 2). Middle a →
(indicated by c).

そして第1の開閉弁10、第1毛細管3、冷蔵
用蒸発器5の直列冷媒回路と第2毛細管6、冷凍
用蒸発器8、三方弁11の直列冷媒回路とは並列
接続されて上記凝縮器2と上記アキユムレータ9
との間に接続されている。
The series refrigerant circuit of the first on-off valve 10, the first capillary tube 3, and the refrigeration evaporator 5 and the series refrigerant circuit of the second capillary tube 6, the refrigeration evaporator 8, and the three-way valve 11 are connected in parallel to the condenser. 2 and the above accumulator 9
is connected between.

第2図に示す実施例は、通常の蒸発器を並列接
続した冷却システムに似ているが基本的には全く
異つたものである。
The embodiment shown in FIG. 2 is similar to a conventional parallel evaporator cooling system, but is fundamentally different.

まず異る温度レベルにある蒸発器の蒸発圧力を
同一の吸入圧力に整合させるため従来装置では高
温側蒸発器の後にあつた圧力調整部が本発明では
不要となる。つまり本発明の特徴的動作は両蒸発
器5,8には同時に冷媒を流さない点にある。さ
らに詳しくは第2毛細管6、冷凍用蒸発器8、三
方弁11とで構成される低温側、即ち冷凍用冷媒
回路と、第1の開閉弁10、第1毛細管3、冷蔵
用蒸発器5とで構成される高温側、即ち冷蔵用冷
媒回路とに凝縮器2を出た冷媒液を両室内温度変
化状況に応じて時系列的に分配し、冷蔵室4を冷
却する際の冷蔵用蒸発器5の蒸発圧力を高く維持
することによつて圧縮機1の成績係数を向上さ
せ、また冷凍用蒸発器8内で蒸発しきれない冷媒
液を冷蔵用蒸発器5内で完全に蒸発させたり、冷
凍用蒸発器8から出てくる冷媒ガスの過熱を冷蔵
用蒸発器5で行うことによつて冷凍用蒸発器8を
通過した冷媒の熱回収を冷蔵用蒸発器5で行い、
前者と併せて冷却装置全体の運転効率を高めるも
のである。
First, in order to match the evaporation pressures of evaporators at different temperature levels to the same suction pressure, the present invention eliminates the need for a pressure adjustment section that was provided after the high temperature side evaporator in the conventional device. In other words, the characteristic operation of the present invention is that refrigerant is not allowed to flow into both evaporators 5 and 8 at the same time. More specifically, the low temperature side, that is, the freezing refrigerant circuit, is composed of the second capillary 6, the refrigeration evaporator 8, and the three-way valve 11, and the first on-off valve 10, the first capillary 3, and the refrigeration evaporator 5. A refrigerating evaporator for cooling the refrigerating compartment 4 by distributing the refrigerant liquid exiting the condenser 2 to the high temperature side, that is, the refrigerating refrigerant circuit, in time series according to the temperature change situation in both rooms. By maintaining the evaporation pressure of 5 high, the coefficient of performance of the compressor 1 is improved, and the refrigerant liquid that cannot be completely evaporated in the refrigeration evaporator 8 is completely evaporated in the refrigeration evaporator 5, By superheating the refrigerant gas coming out of the refrigeration evaporator 8 in the refrigeration evaporator 5, heat recovery of the refrigerant that has passed through the refrigeration evaporator 8 is performed in the refrigeration evaporator 5,
Together with the former, this increases the operating efficiency of the entire cooling system.

第3図は第2図に示す家庭用冷凍冷蔵庫の運転
制御ブロツク図で13は冷蔵室4内に配設された
温度検出センサー、14は冷蔵室7内に配設され
た温度検出センサー、15は冷蔵室用温度制御器
で温度検出センサー13からの検出値が冷蔵室4
の所定上限値以上の時はON信号を、所定下限値
以下の時は第1のOFF信号を、またこの所定下
限値より少し高い温度値、即ち第2の所定下限値
で第2のOFF信号を出力する。なおこの温度制
御器15の出力信号線aはON信号、第1のOFF
信号、第2のOFF信号を出力し、出力信号線b
は第1のOFF信号を出力する。16は冷凍室用
温度制御器で温度検出センサー14からの検出値
が冷凍室7の所定上限値以上の時はON信号を、
所定下限値以下の時はOFF信号を出力する。1
7はこの温度制御器16のON信号と、上記温度
検出器15の第1のOFF信号とによりON信号を
出力する。ANDゲートなどの論理積回路、18
はこのANDゲート17のON信号と上記温度制
御器15のON信号の何れかによりON信号を出
力するORゲート、1はこのORゲート18のON
信号で駆動される圧縮機、10は上記温度制御器
15のON信号で開、第2のOFF信号で閉する第
1の開閉弁、11は上記ANDゲート17のON
信号で流路をa→bにそれ以外の時はa→cに切
替る三方弁である。
FIG. 3 is an operation control block diagram of the domestic refrigerator-freezer shown in FIG. is the temperature controller for the refrigerator compartment, and the detected value from the temperature detection sensor 13 is the temperature controller for the refrigerator compartment 4.
When the temperature is higher than a predetermined upper limit value, the ON signal is output, when the temperature is lower than the predetermined lower limit value, the first OFF signal is output, and when the temperature value is slightly higher than the predetermined lower limit value, that is, the second predetermined lower limit value, the second OFF signal is output. Output. Note that the output signal line a of this temperature controller 15 is an ON signal, and the first OFF signal
signal, outputs the second OFF signal, and connects the output signal line b
outputs the first OFF signal. Reference numeral 16 is a temperature controller for the freezer compartment, which outputs an ON signal when the detected value from the temperature detection sensor 14 is equal to or higher than a predetermined upper limit value for the freezer compartment 7.
When it is below the predetermined lower limit value, an OFF signal is output. 1
7 outputs an ON signal based on the ON signal of this temperature controller 16 and the first OFF signal of the temperature detector 15. AND circuits such as AND gates, 18
1 is an OR gate that outputs an ON signal based on either the ON signal of this AND gate 17 and the ON signal of the temperature controller 15, and 1 is the ON signal of this OR gate 18.
A compressor driven by a signal, 10 is a first opening/closing valve that opens when the temperature controller 15 turns ON and closes when the second OFF signal is turned on, and 11 turns ON the AND gate 17.
It is a three-way valve that switches the flow path from a to b with a signal, and from a to c at other times.

以上のように構成されたものにおいて、冷蔵室
4の温度が所定上限温度より高いと温度検出セン
サー13からの信号により温度制御器15からは
ON信号が出るので第1の開閉弁10を開および
三方弁をa→cにし、かつORゲート18を介し
て圧縮機1を駆動する。従つて冷媒は第1毛細管
3を通り、冷蔵用蒸発器5のみ通過し冷蔵室4内
を冷却する。冷蔵室4が冷却され所定上限温度よ
り低くなり、下限温度より少し高いとき、即ち第
2の所定下限値以下にあり、冷凍室7が所定上限
温度より高いときは温度検出センサー13からの
検出値により温度制御器15からの信号で三方弁
11はそのまゝ流路をa→cにし、第1の開閉弁
10を閉にする。すると冷媒が第2毛細管6、冷
蔵用蒸発器8を通り、冷凍室7内を冷却する。さ
らに三方弁11のa→c及び逆止弁12を通過し
て冷蔵用蒸発器5に入り、低温冷媒の熱回収が行
われると同時に低温で蒸発した冷媒がスーパーヒ
ートされ冷蔵室4が多少冷却される。このとき冷
蔵室4内が所定下限温度以下に冷却され、まだ冷
凍室7が所定下限温度以上のときは温度検出セン
サー13からの信号により温度制御器15からの
信号でANDゲート17を介して三方弁11をa
→bに切替え冷蔵用蒸発器5内に冷媒が流れない
ようにする。
In the configuration as described above, when the temperature of the refrigerator compartment 4 is higher than the predetermined upper limit temperature, the temperature controller 15 outputs a signal from the temperature detection sensor 13.
Since the ON signal is output, the first on-off valve 10 is opened, the three-way valve is changed from a to c, and the compressor 1 is driven via the OR gate 18. Therefore, the refrigerant passes through the first capillary tube 3 and only through the refrigerating evaporator 5 to cool the inside of the refrigerating compartment 4. When the refrigerator compartment 4 is cooled and becomes lower than the predetermined upper limit temperature and slightly higher than the lower limit temperature, that is, when it is below the second predetermined lower limit value and the freezing compartment 7 is higher than the predetermined upper limit temperature, the detected value from the temperature detection sensor 13 Accordingly, the three-way valve 11 changes the flow path from a to c according to the signal from the temperature controller 15, and closes the first on-off valve 10. Then, the refrigerant passes through the second capillary tube 6 and the refrigeration evaporator 8, and cools the inside of the freezer compartment 7. Furthermore, it passes through the three-way valve 11 from a to c and the check valve 12 and enters the refrigerating evaporator 5, where the heat of the low-temperature refrigerant is recovered.At the same time, the refrigerant evaporated at low temperature is superheated and the refrigerating compartment 4 is slightly cooled. be done. At this time, when the inside of the refrigerator compartment 4 is cooled to a predetermined lower limit temperature or less, and the freezer compartment 7 is still at a predetermined lower limit temperature or higher, a signal from the temperature detection sensor 13 is sent to the temperature controller 15, and a three-way valve 11 a
→ Switch to b to prevent refrigerant from flowing into the refrigeration evaporator 5.

両冷却室である冷蔵室4および冷凍室7が所定
下限温度以下のときは温度検出センター13,1
4からの信号で温度制御器15,16よりの信号
によりANDゲート17、ORゲート18を介して
圧縮機1の運転を停止する。
When the refrigerator compartment 4 and the freezer compartment 7, which are both cooling compartments, are below the predetermined lower limit temperature, the temperature detection centers 13 and 1
4, the operation of the compressor 1 is stopped via the AND gate 17 and the OR gate 18 in response to the signals from the temperature controllers 15 and 16.

第4図は本発明による他の実施例を示す冷却シ
ステム図であり、20は第2図における三方弁1
1の代りに逆止弁12への冷媒分岐路の下流に設
置された第2の開閉弁である。この第2の開閉弁
20は第2図における三方弁11の流通路がa→
bになつているときは開、a→cになつていると
きは閉となるが第1の開閉弁10が閉のときは
閉、第1の開閉弁10が閉のときは冷蔵室4内の
温度状況によつて開閉する。このように構成して
も同様の機能を有し同等の効果を有する。
FIG. 4 is a cooling system diagram showing another embodiment of the present invention, and 20 is a three-way valve 1 in FIG.
This is a second on-off valve installed downstream of the refrigerant branch path to the check valve 12 instead of the check valve 12. In this second on-off valve 20, the flow path of the three-way valve 11 in FIG.
Open when the change is from a to c, closed when the first on-off valve 10 is closed, and closed when the first on-off valve 10 is closed. It opens and closes depending on the temperature situation. Even if configured in this way, it has the same function and the same effect.

また上記実施例では減圧器として毛細管を使用
した場合について述べたが膨張弁などを用いても
よいことは勿論であり、負荷側が2系統以上の多
系統の場合についてもそれぞれ温度レベルに適合
した減圧器を各系統に設定し、冷媒制御弁を多系
統に設定することによつて本発明を多系統に適合
させることができる。
In the above embodiment, a capillary tube is used as a pressure reducer, but it goes without saying that an expansion valve or the like may also be used, and even in the case of multiple systems with two or more load sides, the pressure reduction device is adapted to each temperature level. The present invention can be applied to multiple systems by setting a refrigerant control valve for each system and setting refrigerant control valves for multiple systems.

本発明は以上述べてきたように、冷媒を蒸発圧
力の異なる蒸発器に時系列的に分配することによ
り圧縮機および冷却装置全体の運転効率を向上さ
せることができ、加えて各冷却室内温度の独立制
御が可能なこと、また高温側保冷室の冷却が適正
な高い蒸発温度で行なわれるため、高温側保冷室
の乾燥などの問題も生じないものである。
As described above, the present invention can improve the operating efficiency of the compressor and the cooling system as a whole by distributing refrigerant to evaporators with different evaporation pressures in time series. Since independent control is possible and the cooling of the high-temperature side cold storage chamber is performed at an appropriately high evaporation temperature, problems such as drying of the high-temperature side cold storage chamber do not occur.

さらに従来の蒸発器を並列接続した冷凍システ
ムは冷媒を同時に両蒸発器に流しているので両蒸
発器の蒸発後圧力を同一の吸入圧力に整合させる
ための圧力調整部が高温側蒸発器8の後に必要で
あつたが本発明ではこれが不要となり、しかも低
温側冷却運転時、圧縮機に吸い込まれる冷媒のス
ーパーヒートが充分行なわれこの面からも効率向
上が図れるものである。
Furthermore, in a conventional refrigeration system in which evaporators are connected in parallel, refrigerant flows through both evaporators at the same time. Although this was necessary later, this is no longer necessary in the present invention, and moreover, the refrigerant sucked into the compressor is sufficiently superheated during the low-temperature side cooling operation, and efficiency can be improved from this aspect as well.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の家庭用冷凍冷蔵庫の冷却システ
ム図、第2図は本発明の一実施例を示す家庭用冷
凍冷蔵庫の冷却システム図、第3図はその運転制
御ブロツク図、第4図は本発明の他の実施例を示
す冷却システム図である。 図中同一符号は同一または相当部分を示し、1
は圧縮機、2は凝縮器、3は第1毛細管、4は冷
蔵室、5は冷蔵用蒸発器、6は第2毛細管、7は
冷凍室、8は冷凍用蒸発器、10は第1の開閉
弁、11は三方弁、12は逆止弁、13,14は
温度検出センサー、15,16は温度制御器、1
7はANDゲート、18はORゲートである。
Fig. 1 is a diagram of the cooling system of a conventional refrigerator-freezer for domestic use, Fig. 2 is a diagram of the cooling system of a refrigerator-freezer for domestic use showing an embodiment of the present invention, Fig. 3 is a block diagram of its operation control, and Fig. 4 is a diagram of the cooling system of a conventional refrigerator-freezer for domestic use. It is a cooling system diagram showing another example of the present invention. The same symbols in the figures indicate the same or corresponding parts, 1
is a compressor, 2 is a condenser, 3 is a first capillary, 4 is a refrigerator compartment, 5 is a refrigeration evaporator, 6 is a second capillary, 7 is a freezing compartment, 8 is a freezing evaporator, 10 is a first On-off valve, 11 is a three-way valve, 12 is a check valve, 13 and 14 are temperature detection sensors, 15 and 16 are temperature controllers, 1
7 is an AND gate, and 18 is an OR gate.

Claims (1)

【特許請求の範囲】 1 保冷温度の異る複数の冷却室、この各冷却室
を個別に冷却する冷媒流方向に順次直列接続され
た開閉弁と減圧器と上記冷却室を冷却する蒸発器
の冷媒回路、この各冷媒回路が並列に接続されて
1台の圧縮機と凝縮器に直列接続されてなり、上
記各冷却室の温度を検出し、上記各冷媒回路の開
閉弁を制御して上記各冷媒回路の何れか一つに選
択的に冷媒を流す温度制御器と、上記冷媒回路の
低温側蒸発器の下流側に設けた冷媒制御弁とを備
えると共に、上記低温側蒸発器の下流側と高温側
蒸発器の上流側とを逆止弁を介して接続し、高温
側冷却室が所定温度範囲内のときは上記低温側蒸
発器を出た冷媒を上記冷媒制御弁により逆止弁を
介して高温側蒸発器へ流すようにしたことを特徴
とする冷却装置。 2 冷却室が2室からなるとき減圧器を毛細管で
構成し、かつ高温側冷媒回路の減圧器の上流側に
のみ開閉弁を備えたことを特徴とする特許請求の
範囲第1項記載の冷却装置。 3 冷媒制御弁を三方弁としたことを特徴とする
特許請求の範囲第1項または第2項記載の冷却装
置。
[Claims] 1. A plurality of cooling chambers with different cold storage temperatures, an on-off valve and a pressure reducer connected in series in the direction of refrigerant flow to individually cool each cooling chamber, and an evaporator to cool the cooling chambers. Refrigerant circuit, each refrigerant circuit is connected in parallel and connected in series to one compressor and condenser, detects the temperature of each cooling chamber, controls the on-off valve of each refrigerant circuit, and controls the above. A temperature controller for selectively flowing a refrigerant into one of the refrigerant circuits, and a refrigerant control valve provided downstream of the low-temperature side evaporator of the refrigerant circuit, and downstream of the low-temperature side evaporator. and the upstream side of the high-temperature side evaporator are connected via a check valve, and when the high-temperature side cooling chamber is within a predetermined temperature range, the refrigerant exiting the low-temperature side evaporator is passed through the check valve by the refrigerant control valve. A cooling device characterized in that the air flows to a high-temperature side evaporator through the cooling device. 2. Cooling according to claim 1, characterized in that when the cooling chamber consists of two chambers, the pressure reducer is constituted by a capillary tube, and an on-off valve is provided only on the upstream side of the pressure reducer in the high temperature side refrigerant circuit. Device. 3. The cooling device according to claim 1 or 2, characterized in that the refrigerant control valve is a three-way valve.
JP56186447A 1981-11-20 1981-11-20 Cooling device Granted JPS5888562A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56186447A JPS5888562A (en) 1981-11-20 1981-11-20 Cooling device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56186447A JPS5888562A (en) 1981-11-20 1981-11-20 Cooling device

Publications (2)

Publication Number Publication Date
JPS5888562A JPS5888562A (en) 1983-05-26
JPS6350628B2 true JPS6350628B2 (en) 1988-10-11

Family

ID=16188608

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56186447A Granted JPS5888562A (en) 1981-11-20 1981-11-20 Cooling device

Country Status (1)

Country Link
JP (1) JPS5888562A (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61197974A (en) * 1985-02-26 1986-09-02 株式会社デンソー Cold accumulation type refrigerator for car
JPH071128B2 (en) * 1987-02-27 1995-01-11 株式会社東芝 Refrigeration cycle for refrigerator
JP2001349659A (en) * 2000-06-09 2001-12-21 Matsushita Refrig Co Ltd Refrigerator
KR100404193B1 (en) * 2001-04-04 2003-11-03 엘지전자 주식회사 Refrigerating cycle of refrigerator
KR100785118B1 (en) 2006-08-07 2007-12-11 엘지전자 주식회사 Refrigerator
KR100808180B1 (en) 2006-11-09 2008-02-29 엘지전자 주식회사 Apparatus for refrigeration cycle and refrigerator
KR100826180B1 (en) * 2006-12-26 2008-04-30 엘지전자 주식회사 Refrigerator and control method for the same
CN111059786A (en) * 2019-04-19 2020-04-24 青岛海尔电冰箱有限公司 Parallel refrigeration system for refrigerator and refrigerator

Also Published As

Publication number Publication date
JPS5888562A (en) 1983-05-26

Similar Documents

Publication Publication Date Title
KR102049426B1 (en) Cooler using hot gas injection effect and defrost system including thereof
KR20000014024A (en) Freezing cycle device for refrigerator
EP1418392A2 (en) Cooling apparatus
JPS6350628B2 (en)
KR100393593B1 (en) A refrigerating cycle of the refrigerator
JPS6350629B2 (en)
JPS6350630B2 (en)
JPS6222396B2 (en)
KR19980083062A (en) Integrated refrigeration unit of air conditioner and refrigerator
JPH0222615Y2 (en)
KR0161949B1 (en) Refrigeration cycle apparatus of refrigerator having two evaporators
JP2001183037A (en) Refrigerating device
JPS5952175A (en) Cooling device
JPS58108364A (en) Cooling device
JPS58217177A (en) Cooling device
JPS6229704B2 (en)
JPH0593548A (en) Refrigerator
JPS5952171A (en) Cooling device
JP2001153477A (en) Refrigerating plant
JPS58198668A (en) Cooling device
JPS5896971A (en) Freezing refrigerator
JPS6326829B2 (en)
JPS5895161A (en) Cooling device
JPS6260628B2 (en)
JPS6260627B2 (en)