JPS6350629B2 - - Google Patents

Info

Publication number
JPS6350629B2
JPS6350629B2 JP18644881A JP18644881A JPS6350629B2 JP S6350629 B2 JPS6350629 B2 JP S6350629B2 JP 18644881 A JP18644881 A JP 18644881A JP 18644881 A JP18644881 A JP 18644881A JP S6350629 B2 JPS6350629 B2 JP S6350629B2
Authority
JP
Japan
Prior art keywords
refrigerant
valve
evaporator
temperature
bypass path
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP18644881A
Other languages
Japanese (ja)
Other versions
JPS5888563A (en
Inventor
Kisuke Yamazaki
Masahiko Shimizu
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP18644881A priority Critical patent/JPS5888563A/en
Publication of JPS5888563A publication Critical patent/JPS5888563A/en
Publication of JPS6350629B2 publication Critical patent/JPS6350629B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2511Evaporator distribution valves

Description

【発明の詳細な説明】 本発明は複数の温度の異なる保冷室をもつ冷蔵
庫などの冷却装置に関し、その目的とするところ
は圧縮機の成績係数を向上させ、冷却装置の運転
効率の向上を図る点にある。
[Detailed Description of the Invention] The present invention relates to a cooling device such as a refrigerator having a plurality of cold storage chambers with different temperatures, and its purpose is to improve the coefficient of performance of a compressor and improve the operating efficiency of the cooling device. At the point.

従来、温度の異なる複数の保冷室を1台の冷凍
ユニツトで冷却する形態の代表的なものに家庭用
冷凍冷蔵庫の冷却システムがあり、基本的には第
1図に示すような冷却システムを採用していた。
Conventionally, a typical cooling system for cooling multiple cold compartments with different temperatures using a single refrigeration unit is the cooling system for home refrigerators and refrigerators, which basically employs the cooling system shown in Figure 1. Was.

第1図において、1は圧縮機で、この圧縮機1
から吐出され、凝縮器2で液化された冷媒液は、
第1毛細管3で減圧され、冷蔵室4内に配設され
た冷蔵用蒸発器5で一部分が蒸発し、その際に上
記冷蔵室4内の冷却作用を行なう。上記冷蔵用蒸
発器5を出た気液2相冷媒は、第2毛細管6で再
び減圧され、冷凍室7内に配設された冷凍用蒸発
器8で残りが蒸発し、その際に冷凍室7を冷却す
る。上記冷凍用蒸発器8を出た冷媒ガスはアキユ
ムレータ9を介して上記圧縮機1に吸い込まれ
る。各庫内の温度管理は、冷蔵室4か冷凍室7の
どちらかに配設された温度調節器(図示せず)に
より、上記圧縮機1を発停させることにより行な
う。
In Fig. 1, 1 is a compressor, and this compressor 1
The refrigerant liquid discharged from the condenser 2 and liquefied in the condenser 2 is
The pressure is reduced in the first capillary tube 3, and a portion of the liquid is evaporated in a refrigerating evaporator 5 disposed within the refrigerating compartment 4, at which time the refrigerating compartment 4 is cooled. The gas-liquid two-phase refrigerant that has exited the refrigeration evaporator 5 is depressurized again in the second capillary 6, and the remainder is evaporated in the refrigeration evaporator 8 disposed in the freezing compartment 7. 7. Cool. The refrigerant gas exiting the refrigeration evaporator 8 is sucked into the compressor 1 via the accumulator 9. The temperature inside each refrigerator is controlled by starting and stopping the compressor 1 using a temperature controller (not shown) disposed in either the refrigerator compartment 4 or the freezer compartment 7.

以上のような構成の冷凍冷蔵庫においては、圧
縮機1の吸入圧力は非常に低圧な冷凍用蒸発器8
の蒸発圧力で決定してしまうため、冷蔵用蒸発器
5の蒸発圧力がいかに高くても、圧縮機1の成績
係数は非常に悪いものとなり、冷却システムとし
ても効率の悪い運転を余儀なくされていた。また
上述のように庫内温度調整がどちらか一方の庫内
温度によらざるを得ないため、他方の庫内温度は
成り行きとなつてしまう欠点があつた。
In the refrigerator-freezer configured as described above, the suction pressure of the compressor 1 is very low pressure in the refrigeration evaporator 8.
Therefore, no matter how high the evaporation pressure of the refrigeration evaporator 5 is, the coefficient of performance of the compressor 1 is extremely poor, and the cooling system is forced to operate inefficiently. . Moreover, as mentioned above, since the temperature inside the refrigerator must be adjusted depending on the temperature inside one of the refrigerators, there is a drawback that the temperature inside the other refrigerator remains unchanged.

一方各庫内温度の独立コントロールを可能とす
るために、冷凍室7内に1台の蒸発器8を配設
し、それによつて冷蔵室4はダンパー制御によつ
て室内温度をコントロールし、冷凍室7の温度は
圧縮機1の発停によつて行なうという冷却システ
ムも近年一般的となつている。この方式は両室内
温度の独立コントロールは可能であるが、蒸発器
8の蒸発温度はやはり冷凍室7の温度に依存して
しまうため、圧縮機1の吸入圧力が低く冷却シス
テムの効率が非常に悪いことは変らない。またこ
の方式を用いた場合、冷蔵室4はダンパーを介し
て冷凍室7と連通しているため、冷蔵室4内の乾
燥過多の問題が生じ、さらに蒸発器8上への着霜
量が大きくなり頻繁な除霜が必要になるなどの欠
点があつた。
On the other hand, in order to enable independent control of the temperature inside each refrigerator, one evaporator 8 is installed in the freezer compartment 7, and the refrigerator compartment 4 controls the indoor temperature by damper control. A cooling system in which the temperature of the chamber 7 is controlled by turning on and off the compressor 1 has become common in recent years. Although this method allows independent control of the temperature in both chambers, the evaporation temperature of the evaporator 8 still depends on the temperature of the freezer compartment 7, so the suction pressure of the compressor 1 is low and the efficiency of the cooling system is extremely low. Bad things don't change. Furthermore, when this method is used, the refrigerator compartment 4 is communicated with the freezer compartment 7 via a damper, which causes the problem of excessive dryness inside the refrigerator compartment 4, and furthermore, the amount of frost on the evaporator 8 increases. However, there were disadvantages such as the need for frequent defrosting.

本発明は上記従来装置の諸欠点を改良するため
なされたもので、保冷温度の異なる複数の冷却室
に、それぞれこの冷却室を冷却する蒸発器を配設
し、この各蒸発器を並列接続するとともに各蒸発
器に冷媒を流す時刻を別々にして同時に流すこと
ない構成にして圧縮機の成績係数を向上させ、か
つ低温側蒸発器で蒸発しきれない冷媒液を高温側
蒸発器で完全に蒸発させたり、低温側蒸発器から
の冷媒ガスの過熱を高温側蒸発器で行い低温蒸発
器を通過した冷媒の熱回収を行い、さらには低温
側蒸発器の除霜を圧縮機から吐出される高温冷媒
ガスによつて行いこれを高温側蒸発器で冷却動作
させることによつて冷却装置全体の運転効率を高
めるものである。
The present invention has been made in order to improve the various drawbacks of the above-mentioned conventional devices, and includes evaporators for cooling each cooling chamber provided in a plurality of cooling chambers having different cold storage temperatures, and these evaporators are connected in parallel. At the same time, the time for flowing refrigerant to each evaporator is set separately so that the refrigerant does not flow at the same time, thereby improving the coefficient of performance of the compressor. At the same time, the refrigerant liquid that cannot be evaporated in the low-temperature side evaporator is completely evaporated in the high-temperature side evaporator. The refrigerant gas from the low-temperature side evaporator is superheated by the high-temperature side evaporator, the heat of the refrigerant passing through the low-temperature evaporator is recovered, and the low-temperature side evaporator is defrosted using the high-temperature gas discharged from the compressor. By using refrigerant gas and performing a cooling operation using the high-temperature side evaporator, the operating efficiency of the entire cooling system is improved.

以下家庭用冷凍冷蔵庫を例に本発明の詳細につ
いて説明する。
The details of the present invention will be explained below using a household refrigerator-freezer as an example.

第2図は本発明の一実施例を示す冷却システム
図であり、1は圧縮機、2は凝縮器、4は冷蔵
室、5はこの冷蔵室4内に配設された冷蔵用蒸発
器、7は冷凍室、8はこの冷凍室7内に配設され
た冷凍用蒸発器、9はアキユムレータである。3
は上記冷蔵用蒸発器5の冷媒通路上流側に配設さ
れた第1の減圧器としての第1毛細管、6は上記
冷凍用蒸発器8の冷媒通路上流側に配設された第
2の減圧器としての第2毛細管、10は第1毛細
管3の冷媒通路上流側に配設された第1の開閉
弁、11は冷凍用蒸発器8の下流側に設けられた
三方弁であり、この三方弁11の一方は上記圧縮
機1の冷媒吸込流路と連通し(第2図a→bで示
す)、他方は逆止弁12を介して第1のバイバス
路23により第1毛細管3の上流側に連通してい
る。13は上記逆止弁12の出口から冷蔵用蒸発
器5入口へ通じるように設けられた冷媒通路中に
設けられた第2の開閉弁である。そして上記三方
弁11と第3の開閉弁13とで冷媒制御を構成し
ている。
FIG. 2 is a cooling system diagram showing an embodiment of the present invention, in which 1 is a compressor, 2 is a condenser, 4 is a refrigerating compartment, 5 is a refrigerating evaporator disposed in the refrigerating compartment 4, 7 is a freezing chamber, 8 is a freezing evaporator disposed within the freezing chamber 7, and 9 is an accumulator. 3
6 is a first capillary tube as a first pressure reducer disposed upstream of the refrigerant passage of the refrigeration evaporator 5, and 6 is a second pressure reducer disposed upstream of the refrigerant passage of the refrigeration evaporator 8. 10 is a first on-off valve disposed upstream of the refrigerant passage of the first capillary 3; 11 is a three-way valve disposed downstream of the freezing evaporator 8; One side of the valve 11 communicates with the refrigerant suction passage of the compressor 1 (shown as a→b in FIG. 2), and the other side communicates with the refrigerant suction passage of the compressor 1 (shown as a → b in FIG. 2), and the other side communicates with the refrigerant suction passage of the compressor 1 through the check valve 12 and the first bypass passage 23 upstream of the first capillary tube 3. It communicates with the side. Reference numeral 13 designates a second on-off valve provided in a refrigerant passage that is provided to communicate from the outlet of the check valve 12 to the inlet of the refrigerating evaporator 5. The three-way valve 11 and the third on-off valve 13 constitute refrigerant control.

また第1の開閉弁10、第1毛細管3、冷蔵用
蒸発器5の直列冷媒回路と第2毛細管6、冷凍用
蒸発器8、三方弁11の直列冷媒回路とは並列接
続されて上記凝縮器2と上記アキユムレータ9と
の間に接続されている。14は上記圧縮機1の吐
出側と上記冷凍用蒸発器8の流入側に第3の開閉
弁15を介して接続された第2のバイパス路であ
る。
Further, the series refrigerant circuit of the first on-off valve 10, the first capillary tube 3, and the refrigeration evaporator 5 is connected in parallel with the series refrigerant circuit of the second capillary tube 6, the refrigeration evaporator 8, and the three-way valve 11. 2 and the above-mentioned accumulator 9. 14 is a second bypass path connected to the discharge side of the compressor 1 and the inflow side of the refrigeration evaporator 8 via a third on-off valve 15.

第2図に示す実施例は、通常の蒸発器を並列接
続した冷却システムに似ているが基本的には全く
異つたものである。
The embodiment shown in FIG. 2 is similar to a conventional parallel evaporator cooling system, but is fundamentally different.

まず異なる温度レベルにある蒸発器の蒸発圧力
を同一の吸入圧力に整合させるため従来装置では
高温側蒸発器の後に圧力調整部が必要であつたが
本発明では不要となる。つまり本発明の特徴的動
作は両蒸発器5,8には同時に冷媒を流さない点
にあるさらに詳しくは第2毛細管6、冷凍用蒸発
器8、三方弁11とで構成される低温側、即ち冷
凍用冷媒回路と、第1の開閉弁10、第1毛細管
3、冷蔵用蒸発器5とで構成される高温側、即ち
冷蔵用冷媒回路とに凝縮器2を出た冷媒液を両室
内温度変化状況に応じて時系列的に分配し、冷蔵
室4を冷却する際の冷蔵用蒸発器5の蒸発圧力を
高く維持することによつて圧縮機1の成績係数を
向上させ、また冷凍用蒸発器8内で蒸発しきれな
い冷媒液を冷蔵用蒸発器5内で完全に蒸発させた
り、冷凍用蒸発器8から出てくる冷媒ガスの過熱
を冷蔵用蒸発器5で行うことによつて冷凍用蒸発
器8を通過した冷媒の熱回収を冷蔵用蒸発器5で
行い、さらには冷凍用蒸発器8の除霜時における
冷媒液を冷蔵用蒸発器5で蒸発させて冷却動作を
行わせ、これらを併せて冷却装置全体の運転効率
を高めるものである。
First, in order to match the evaporation pressures of evaporators at different temperature levels to the same suction pressure, the conventional apparatus required a pressure adjustment section after the high temperature side evaporator, but this is not necessary in the present invention. In other words, the characteristic operation of the present invention is that refrigerant is not allowed to flow into both evaporators 5 and 8 at the same time. The refrigerant liquid exiting the condenser 2 is transferred to the high-temperature side, that is, the refrigeration refrigerant circuit, which is composed of a refrigeration refrigerant circuit, a first on-off valve 10, a first capillary tube 3, and a refrigeration evaporator 5, so that the refrigerant liquid exits the condenser 2 is kept at both indoor temperatures. The coefficient of performance of the compressor 1 is improved by maintaining the evaporation pressure of the refrigeration evaporator 5 high when cooling the refrigerator compartment 4 by distributing it in chronological order according to changing conditions, and Freezing is achieved by completely evaporating the refrigerant liquid that cannot be completely evaporated in the refrigerating device 8 in the refrigerating evaporator 5, or by superheating the refrigerant gas coming out of the refrigerating evaporator 8 in the refrigerating evaporator 5. The refrigerant evaporator 8 recovers heat from the refrigerant that has passed through the refrigerant evaporator 8, and the refrigerant liquid during defrosting of the refrigerating evaporator 8 is evaporated by the refrigerating evaporator 5 to perform a cooling operation. Together, these improve the operating efficiency of the entire cooling system.

第3図は第2図に示す家庭用冷凍冷蔵庫の除霜
運転系を除く運転制御ブロツク図で、16は冷蔵
室4内に配設された温度検出センサー、17は冷
凍室7内に配設された温度検出センサー、18は
冷蔵室用温度制御器で温度検出センサー16から
の検出値が、上昇して冷蔵室4の所定値以上とな
つた時はON信号を、その検出値が下降して所定
下限値以下となつた時は第1のOFF信号を、ま
たその検出値が下降してきてこの所定下限値より
少し高い温度値、即ち第2の所定不限値となつた
ときに第2のOFF信号を出力する。なおこの温
度制御器18の出力信号線aはON信号、第1の
OFF信号、第2のOFF信号を出力し、出力信号
線bは第1のOFF信号を出力する。19は冷凍
室用温度制御器で温度検出センサー17からの検
出値が、上昇して冷凍室7の所定上限値以上とな
つた時はON信号を、その検出器が下降してきて
所定下限値以下となつた時はOFF信号を出力す
る。20はこの温度制御器19のON信号と、上
記温度検出器18の第1のOFF信号とによりON
信号を出力するANDゲートなどの論理積回路、
21はこのANDゲート20のON信号と上記温
度制御器18のON信号の何れかによりON信号
を出力するORゲート、1はこのORゲート21
のON信号で駆動される圧縮機、10は上記温度
制御器18のON信号で開、第2のOFF信号で閉
する第1の開閉弁、11は上記ANDゲート20
のON信号で流路をa→bに、OFF信号の時はa
→cに切替る三方弁である。13は上記温度制御
器18からの第2のOFF信号で開し、第1の
OFF信号で閉する第2の開閉弁で通常は閉して
いるものである。
FIG. 3 is an operation control block diagram of the domestic refrigerator-freezer shown in FIG. 2, excluding the defrosting operation system, in which 16 is a temperature detection sensor disposed in the refrigerator compartment 4, and 17 is a temperature detection sensor disposed in the freezing compartment 7. The temperature detection sensor 18 is a temperature controller for the refrigerator compartment, and when the detected value from the temperature detection sensor 16 rises and exceeds a predetermined value for the refrigerator compartment 4, it outputs an ON signal, and when the detected value decreases, it outputs an ON signal. When the detected value falls below the predetermined lower limit value, the first OFF signal is activated, and when the detected value decreases and reaches a temperature value slightly higher than the predetermined lower limit value, that is, the second predetermined limit value, the second OFF signal is activated. Outputs the OFF signal. Note that the output signal line a of this temperature controller 18 is an ON signal, and the first
An OFF signal and a second OFF signal are output, and the output signal line b outputs a first OFF signal. Reference numeral 19 is a temperature controller for the freezer compartment, which outputs an ON signal when the detected value from the temperature detection sensor 17 rises and exceeds a predetermined upper limit value for the freezer compartment 7, and outputs an ON signal when the value detected by the temperature sensor 17 rises and falls below a predetermined lower limit value. When this happens, an OFF signal is output. 20 is turned on by the ON signal of this temperature controller 19 and the first OFF signal of the temperature detector 18.
AND circuits such as AND gates that output signals,
21 is an OR gate that outputs an ON signal based on either the ON signal of this AND gate 20 or the ON signal of the temperature controller 18; 1 is this OR gate 21;
The compressor is driven by the ON signal of the temperature controller 18, 10 is a first opening/closing valve that opens with the ON signal of the temperature controller 18 and closes with the second OFF signal, and 11 is the AND gate 20.
The ON signal changes the flow path from a to b, and the OFF signal changes the flow path from a to b.
→ It is a three-way valve that switches to c. 13 is opened by the second OFF signal from the temperature controller 18, and the first
This is a second on-off valve that closes with an OFF signal and is normally closed.

以上のように構成されたものにおいて、冷蔵室
4の温度が所定上限温度より高いと温度検出セン
サー16からの信号により温度制御器18からは
ON信号が出るので第1の開閉弁10を開および
三方弁をa→c、ならびに第2の開閉弁13を閉
にし、かつORゲート21を介して圧縮機1を駆
動する。すると冷媒は抵抗の大きい第2毛細管6
へは流れず、第1毛細管3を通り、冷蔵用蒸発器
5のみ通過し冷蔵室4内を冷却する。冷蔵室4が
冷却され所定上限温度より低くなつて、下限温度
より少し高い第2の所定下限値になり、かつ冷凍
室7が所定上限温度より高いときは、温度制御器
18からの第2のOFF信号により、第1の開閉
弁10を閉し第2の開閉弁13を開する。なお三
方弁11の流路はa→cのままである。すると凝
縮器2を出た冷媒が第2毛細管6、冷凍用蒸発器
8を通り、冷凍庫7内を冷却する。さらに三方弁
11のa→c及び逆止弁12ならびに第2の開閉
弁13を通過して冷蔵用蒸発器5に入り、低温冷
媒の熱回収が行われると同時に低温で蒸発した冷
媒がスーパーヒートされ冷蔵室4が多少冷却され
る。このとき冷蔵室4内が冷却されその所定下限
値以下になり、まだ冷凍室7内が冷凍室の所定下
限温度までに下降していないときは、温度制御器
18からの第1のOFF信号と温度制御器19か
らのON信号でANDゲート20がON信号を出力
し、この出力で三方弁11の流路をa→bに切替
え、冷蔵用蒸発器5内に冷媒が流れないようにす
るので、これ以上冷蔵室4が冷却されなくなる。
またこのとき第2の開閉弁13は閉する。
In the configuration as described above, when the temperature of the refrigerator compartment 4 is higher than the predetermined upper limit temperature, the temperature controller 18 outputs a signal from the temperature detection sensor 16.
Since the ON signal is output, the first on-off valve 10 is opened, the three-way valve is moved from a to c, the second on-off valve 13 is closed, and the compressor 1 is driven via the OR gate 21. Then, the refrigerant flows through the second capillary tube 6 with high resistance.
It does not flow into the refrigerator, but instead passes through the first capillary tube 3 and only through the refrigerating evaporator 5 to cool the inside of the refrigerating compartment 4. When the refrigerator compartment 4 is cooled and becomes lower than the predetermined upper limit temperature to a second predetermined lower limit value that is slightly higher than the lower limit temperature, and the freezing compartment 7 is higher than the predetermined upper limit temperature, the second predetermined temperature from the temperature controller 18 is The OFF signal closes the first on-off valve 10 and opens the second on-off valve 13. Note that the flow path of the three-way valve 11 remains from a to c. Then, the refrigerant leaving the condenser 2 passes through the second capillary tube 6 and the freezing evaporator 8 to cool the inside of the freezer 7. Furthermore, it passes through a→c of the three-way valve 11, the check valve 12, and the second on-off valve 13, and enters the refrigeration evaporator 5, where the heat of the low-temperature refrigerant is recovered, and at the same time, the refrigerant evaporated at low temperature is superheated. The refrigerator compartment 4 is cooled down to some extent. At this time, if the inside of the refrigerator compartment 4 has been cooled down to below the predetermined lower limit temperature and the temperature inside the freezer compartment 7 has not yet fallen to the predetermined lower limit temperature of the freezer compartment, the first OFF signal from the temperature controller 18 is activated. The AND gate 20 outputs an ON signal in response to the ON signal from the temperature controller 19, and this output switches the flow path of the three-way valve 11 from a to b to prevent refrigerant from flowing into the refrigeration evaporator 5. , the refrigerator compartment 4 will no longer be cooled.
Also, at this time, the second on-off valve 13 is closed.

両冷却室4,7が所定下限温度以下のときは温
度検出センサー16,17からの検出値で温度制
御器18,19より信号が出、ANDゲート20、
ORゲート21を介して圧縮機1の運転を停止す
る。
When both cooling chambers 4, 7 are below the predetermined lower limit temperature, a signal is output from the temperature controllers 18, 19 based on the detected values from the temperature detection sensors 16, 17, and the AND gate 20,
The operation of the compressor 1 is stopped via the OR gate 21.

次に冷凍用蒸発器8に霜が積層して除霜する必
要があるときは第1の開閉弁10を開、第3の開
閉弁15を開とすることにより、圧縮機1から吐
出された高温冷媒ガスを凝縮器2を流さずに第2
のバイパス路14を流すようにして、冷凍用蒸発
器8に導いて冷凍用蒸発器8の霜を融解し、高温
冷媒ガスは液化する。この冷媒液は三方弁11の
a→cを通過し、第3の開閉弁13が閉じている
ので第1毛細管3の上流側に導かれ、この毛細管
3で減圧され冷蔵用蒸発器5で蒸発し、冷蔵室4
内を冷却して、除霜時の熱回収を行なう。通常冷
蔵用蒸発器5は冷媒の蒸発温度が高いので、この
蒸発器5に霜が積層することは少いが、このとき
に第3の開閉弁13を開にすれば冷蔵用蒸発器5
の除霜もできる。
Next, when frost builds up on the refrigeration evaporator 8 and it is necessary to defrost it, the first on-off valve 10 and the third on-off valve 15 are opened, and the air is discharged from the compressor 1. The high temperature refrigerant gas is passed through the second condenser without flowing through the condenser 2.
The high-temperature refrigerant gas is introduced into the freezing evaporator 8 to melt the frost in the freezing evaporator 8, and the high-temperature refrigerant gas is liquefied. This refrigerant liquid passes through the three-way valve 11 from a to c, and since the third on-off valve 13 is closed, it is guided to the upstream side of the first capillary tube 3, where it is depressurized and evaporated in the refrigerating evaporator 5. Refrigerator room 4
It cools the inside and recovers heat during defrosting. Normally, the evaporation temperature of the refrigerant in the refrigeration evaporator 5 is high, so frost rarely builds up on the evaporator 5, but if you open the third on-off valve 13 at this time, the refrigeration evaporator 5
It can also defrost.

第4図は本発明による他の実施例を示す冷却シ
ステム図であり、22は第2図における三方弁1
1の代りに逆止弁12への冷媒分岐路の下流に設
置された第4の開閉弁である。この第4の開閉弁
22は第2図における三方弁11の流通路がa→
bになつているときは開、a→cになつていると
きは閉となるが第1の開閉弁10が開のときは
閉、第1の開閉弁10が閉のときは冷蔵室4内の
温度状況によつて開閉する。このように構成して
も同様の機能を有し、同等の効果を有する。
FIG. 4 is a cooling system diagram showing another embodiment of the present invention, and 22 is a three-way valve 1 in FIG.
This is a fourth on-off valve installed downstream of the refrigerant branch path to the check valve 12 instead of the check valve 1. This fourth on-off valve 22 has a flow path of the three-way valve 11 in FIG.
Open when the change is from a to c, closed when the first on-off valve 10 is open, and closed when the first on-off valve 10 is closed. It opens and closes depending on the temperature situation. Even with this configuration, it has the same function and the same effect.

また上記実施例では減圧器として毛細管を使用
した場合について述べたが膨張弁などを用いても
よいことは勿論であり、負荷側が2系統以上の多
系統の場合についてもそれぞれ温度レベルに適合
した減圧器を各系統に設定し、冷媒制御弁を多系
統に設定することによつて本発明を多系統に適合
させることができる。
In the above embodiment, a capillary tube is used as a pressure reducer, but it goes without saying that an expansion valve or the like may also be used, and even in the case of multiple systems with two or more load sides, the pressure reduction device is adapted to each temperature level. The present invention can be applied to multiple systems by setting a refrigerant control valve for each system and setting refrigerant control valves for multiple systems.

本発明は以上述べてきたように、冷媒を蒸発圧
力の異なる蒸発器に時系列的に分配することによ
り圧縮機および冷却装置全体の運転効率を向上さ
せることができ、加えて各冷却室内温度の独立制
御が可能なこと、また高温側保冷室の冷却が適正
な高い蒸発温度で行なわれるため、高温側保冷室
の乾燥などの問題も生じないものである。
As described above, the present invention can improve the operating efficiency of the compressor and the cooling system as a whole by distributing refrigerant to evaporators with different evaporation pressures in time series. Since independent control is possible and the cooling of the high-temperature side cold storage chamber is performed at an appropriately high evaporation temperature, problems such as drying of the high-temperature side cold storage chamber do not occur.

さらに従来の蒸発器を並列接続した冷凍システ
ムは冷媒を同時に両蒸発器に流しているので両蒸
発器の蒸発後圧力を同一の吸入圧力に整合させる
ための圧力調整部が高温側蒸発器8の後に必要で
あつたが本発明ではこれが不要となりしかも低温
側冷却運転時、圧縮機に吸い込まれる冷媒のスー
パーヒートが充分行なわれこの面からも効率向上
が図れるものである。さらにまた低温側蒸発器の
除霜時において、この蒸発器で凝縮された冷媒液
を第1減圧器を介して高温側蒸発器で蒸発させ高
温保冷却室の冷却動作に用いているのでさらに効
率向上が図れる。
Furthermore, in a conventional refrigeration system in which evaporators are connected in parallel, refrigerant flows through both evaporators at the same time. Although this was required later, this is not necessary in the present invention, and the refrigerant sucked into the compressor is sufficiently superheated during low-temperature side cooling operation, which also improves efficiency. Furthermore, when defrosting the low-temperature side evaporator, the refrigerant liquid condensed in this evaporator is evaporated in the high-temperature side evaporator via the first pressure reducer and used for cooling the high-temperature cooling chamber, making it even more efficient. Improvements can be made.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の家庭用冷凍冷蔵庫の冷却システ
ム図、第2図は本発明の一実施例を示す家庭用冷
凍冷蔵庫の冷却システム図、第3図はその除霜運
転制御系を除いた制御ブロツク図、第4図は本発
明の他の実施例を示す冷却システム図である。 図中同一符号は同一または相当部分を示し、1
は圧縮機、2は凝縮器、3は第1毛細管、4は冷
蔵室、5は冷蔵用蒸発器、6は第2毛細管、7は
冷凍室、8は冷凍用蒸発器、10は第1の開閉
弁、11は三方弁、12は逆止弁、13は第2の
開閉弁、14は第2のバイパス路、15は第3の
開閉弁、16,17は温度検出センサー、18,
19は温度制御器、20はANDゲート、21は
ORゲート、23は第1のバイパス路である。
Fig. 1 is a diagram of the cooling system of a conventional domestic refrigerator-freezer, Fig. 2 is a diagram of the cooling system of a refrigerator-freezer for domestic use showing an embodiment of the present invention, and Fig. 3 is a control diagram excluding the defrosting operation control system. The block diagram, FIG. 4, is a cooling system diagram showing another embodiment of the present invention. The same symbols in the figures indicate the same or corresponding parts, 1
is a compressor, 2 is a condenser, 3 is a first capillary, 4 is a refrigerator compartment, 5 is a refrigeration evaporator, 6 is a second capillary, 7 is a freezing compartment, 8 is a freezing evaporator, 10 is a first On-off valve, 11 is a three-way valve, 12 is a check valve, 13 is a second on-off valve, 14 is a second bypass path, 15 is a third on-off valve, 16 and 17 are temperature detection sensors, 18,
19 is a temperature controller, 20 is an AND gate, 21 is a
OR gate 23 is the first bypass path.

Claims (1)

【特許請求の範囲】 1 保冷温度の異なる複数の冷却室、この冷却室
毎に設けられ、冷媒流方向に順次直列に接続され
た第1の開閉弁と減圧器と蒸発器とからなる冷媒
回路、この各冷媒回路が並列に接続されてなる並
列回路に直列に接続された1台の圧縮機と凝縮
器、上記各冷却室の温度を検出し、上記凝縮器か
らの冷媒を直接上記各冷媒回路の何れか一つに選
択的に流すように上記第一の開閉弁を制御する温
度制御器、上記蒸発器出口から、逆止弁を介し
て、より高温側冷却室に対応する冷媒回路の減圧
器流入部へ冷媒をバイパスする第1のバイパス
路、この第1のバイパス路の逆止弁出口からその
第1のバイパス路の接続された冷媒回路の蒸発器
流入部へ接続された冷媒路、この冷媒路を開閉す
る第2の開閉弁、上記蒸発器出口側に設けられ、
その蒸発器から出た冷媒を上記第1のバイパス路
または上記圧縮機吸入側いずれかに流す冷媒制御
弁、上記圧縮機の吐出側と最も低温側蒸発器の流
入部とを接続した第2のバイパス路、この第2の
バイパス路中に設けられこれを開閉する第3の開
閉弁を備えてなることを特徴とする冷却装置。 2 冷却室が2室からなるとき、減圧器を毛細管
で構成することにより、低温側冷媒回路の第1の
開閉弁を省いたことを特徴とする特許請求の範囲
第1項記載の冷却装置。 3 冷媒制御弁を蒸発器出口から、第1のバイパ
ス路へ分岐する分岐部に設けられた三方弁とした
ことを特徴とする特許請求の範囲第1項または第
2項記載の冷却装置。 4 冷媒制御弁を蒸発器出口から圧縮機吸込側へ
の流路でかつ第1のバイパス路へ分岐する分岐部
よりも圧縮機側に設けられた第4の開閉弁で構成
したことを特徴とする特許請求の範囲第1項また
は第2項記載の冷却装置。
[Scope of Claims] 1. A refrigerant circuit consisting of a plurality of cooling chambers with different cold storage temperatures, a first on-off valve, a pressure reducer, and an evaporator provided in each cooling chamber and connected in series in the refrigerant flow direction. , one compressor and a condenser connected in series in a parallel circuit in which each of these refrigerant circuits are connected in parallel, detects the temperature of each of the above cooling chambers, and directly supplies the refrigerant from the above condenser to each of the above refrigerants. a temperature controller that controls the first on-off valve so that the refrigerant flows selectively into one of the circuits; a first bypass path that bypasses refrigerant to the pressure reducer inlet; a refrigerant path connected from the check valve outlet of the first bypass path to the evaporator inlet of the refrigerant circuit connected to the first bypass path; , a second on-off valve for opening and closing the refrigerant path, provided on the evaporator outlet side,
A refrigerant control valve that allows the refrigerant discharged from the evaporator to flow into either the first bypass path or the suction side of the compressor; A cooling device comprising a bypass path and a third on-off valve provided in the second bypass path to open and close the bypass path. 2. The cooling device according to claim 1, wherein when the cooling chamber consists of two chambers, the first on-off valve of the low-temperature side refrigerant circuit is omitted by constructing the pressure reducer with a capillary tube. 3. The cooling device according to claim 1 or 2, wherein the refrigerant control valve is a three-way valve provided at a branch section that branches from the evaporator outlet to the first bypass path. 4. The refrigerant control valve is configured with a fourth on-off valve provided in the flow path from the evaporator outlet to the compressor suction side and closer to the compressor than the branch part that branches to the first bypass path. A cooling device according to claim 1 or 2.
JP18644881A 1981-11-20 1981-11-20 Cooling device Granted JPS5888563A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18644881A JPS5888563A (en) 1981-11-20 1981-11-20 Cooling device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18644881A JPS5888563A (en) 1981-11-20 1981-11-20 Cooling device

Publications (2)

Publication Number Publication Date
JPS5888563A JPS5888563A (en) 1983-05-26
JPS6350629B2 true JPS6350629B2 (en) 1988-10-11

Family

ID=16188626

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18644881A Granted JPS5888563A (en) 1981-11-20 1981-11-20 Cooling device

Country Status (1)

Country Link
JP (1) JPS5888563A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61128773U (en) * 1985-01-31 1986-08-12
US9522589B2 (en) * 2012-10-05 2016-12-20 GM Global Technology Operations LLC Vehicular heat pump system and control method
WO2016110481A1 (en) * 2015-01-05 2016-07-14 Arcelik Anonim Sirketi A cooling device

Also Published As

Publication number Publication date
JPS5888563A (en) 1983-05-26

Similar Documents

Publication Publication Date Title
JPS6350628B2 (en)
JPS6350629B2 (en)
JPS6222396B2 (en)
JP2003139459A (en) Refrigerator
JPS6350630B2 (en)
KR19980083062A (en) Integrated refrigeration unit of air conditioner and refrigerator
JPH0222615Y2 (en)
JP2001280768A (en) Refrigerator
KR0161949B1 (en) Refrigeration cycle apparatus of refrigerator having two evaporators
JP6521018B2 (en) Refrigeration system
JP2001183037A (en) Refrigerating device
JPS5952175A (en) Cooling device
JPS58217177A (en) Cooling device
JPS58108364A (en) Cooling device
JPS58198668A (en) Cooling device
JPH0593548A (en) Refrigerator
JPS6229704B2 (en)
JPS58210454A (en) Cooling device
JPS6326829B2 (en)
JPH03113252A (en) Operation control device for refrigerating plant
JPS5825233Y2 (en) air conditioner
JPS5952171A (en) Cooling device
CN113685916A (en) Air conditioning system and control method thereof
JPS6260627B2 (en)
JPS6260628B2 (en)