JPS5952175A - Cooling device - Google Patents

Cooling device

Info

Publication number
JPS5952175A
JPS5952175A JP16168682A JP16168682A JPS5952175A JP S5952175 A JPS5952175 A JP S5952175A JP 16168682 A JP16168682 A JP 16168682A JP 16168682 A JP16168682 A JP 16168682A JP S5952175 A JPS5952175 A JP S5952175A
Authority
JP
Japan
Prior art keywords
temperature
low
signal
evaporator
gate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16168682A
Other languages
Japanese (ja)
Inventor
菅原 作雄
裕 瀬下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP16168682A priority Critical patent/JPS5952175A/en
Publication of JPS5952175A publication Critical patent/JPS5952175A/en
Pending legal-status Critical Current

Links

Landscapes

  • Devices That Are Associated With Refrigeration Equipment (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 この発明は、複数の温度の異なる保冷室tもつ冷蔵庫な
どの冷却装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a cooling device such as a refrigerator having a plurality of cold storage chambers t having different temperatures.

従来、高温床と低温庫ン一台の冷却装置で冷却するとい
う形態は家庭用の冷凍冷蔵庫などに見られ、その基本的
冷却装置を第1図に示す。以下、第1図に従って従来例
の動作を説明する。
Conventionally, a system in which cooling is performed using a single cooling device including a high-temperature floor and a low-temperature oven has been seen in home-use refrigerator-freezers, and the basic cooling device is shown in FIG. The operation of the conventional example will be described below with reference to FIG.

第1図において、圧縮機1から吐出され凝縮器2で液化
された冷媒は毛細管3で減圧し、低温庫5内に配設され
た蒸発器4で蒸発し、この時、低温庫5および高温床6
の冷却を行う。低温庫5は蒸発器4の近傍に配設された
送風機7により冷却された空気が庫内を循環し冷却され
る。一方、高温布6は送風機TVcより冷却された空気
の一部がサーモダンパ8を介し、庫内に供給され冷却さ
れる。低温庫5の温度制御は、低温庫5内に設置された
温度調整器(図示せず)により圧縮機1を発停させて行
い、高濃厚6の温度制御は、ダクト9の出口付近に設置
Rされ高濃厚6内の温度ン感知でるサーモダンパ8によ
り、供給される冷却空気量を調整して行う。
In FIG. 1, refrigerant discharged from a compressor 1 and liquefied in a condenser 2 is depressurized in a capillary tube 3 and evaporated in an evaporator 4 disposed in a low temperature storage 5. floor 6
cooling. The low-temperature refrigerator 5 is cooled by circulating air cooled by a blower 7 disposed near the evaporator 4 inside the refrigerator. On the other hand, the high-temperature cloth 6 is cooled by a portion of the air cooled by the blower TVc being supplied into the refrigerator via the thermo pump 8. The temperature of the low-temperature chamber 5 is controlled by starting and stopping the compressor 1 using a temperature regulator (not shown) installed in the low-temperature chamber 5, and the temperature of the high-concentration chamber 6 is controlled by a temperature regulator (not shown) installed near the outlet of the duct 9. This is done by adjusting the amount of cooling air supplied by a thermometer 8 which senses the temperature inside the high concentration 6.

しかるに、上記のような従来例においては、蒸発器4の
圧力は低温庫5の温度に依存するため、圧縮機1の成績
係数は非常に小さい値となり、冷却装置として効率の悪
い運転をしていた。また、高濃厚6を冷却する蒸発器4
の温度が低温庫5に見合った低い温度となるため、高濃
厚6内が乾燥過多となり、蒸発器4への着霜が多(なり
頻繁な除霜が必要になる等の欠点があった。
However, in the conventional example described above, the pressure of the evaporator 4 depends on the temperature of the low temperature storage 5, so the coefficient of performance of the compressor 1 is a very small value, resulting in an inefficient operation as a cooling device. Ta. In addition, the evaporator 4 that cools the highly concentrated 6
Since the temperature is low enough to match the temperature of the low-temperature refrigerator 5, the inside of the high-concentration chamber 6 becomes too dry, resulting in frequent frost formation on the evaporator 4 (which has the disadvantage of requiring frequent defrosting).

この発明は、低温、高温の各系統を単独に運転すること
により、従来の欠点を改良することを目的としたもので
ある。以下、この発明を図面について説明する。
The purpose of this invention is to improve the drawbacks of the conventional system by operating each of the low temperature and high temperature systems independently. Hereinafter, this invention will be explained with reference to the drawings.

第2図、第3囚はこの発明の一実施例を示す構成略図と
運転制御回路のブロック図である。
FIGS. 2 and 3 are a schematic configuration diagram and a block diagram of an operation control circuit showing an embodiment of the present invention.

第2図において、11は圧縮機、12は第1凝縮器、1
3は逆止弁、14は第2凝縮器、15゜16は冷媒流路
l切り換えろ高温系統電磁弁と低温系統電磁弁、1Tは
高温系統毛細管で、高濃厚19内に配設された高温蒸発
器18と連通し、高温系統電磁弁15との間に配設され
る。20は低温系統毛細管で、低温庫22内に配設され
た低温蒸発器21と連通し、低温系統電磁弁16との間
に配設されろ。23は逆止弁である。
In FIG. 2, 11 is a compressor, 12 is a first condenser, 1
3 is a check valve, 14 is a second condenser, 15° 16 is a refrigerant flow path switching high-temperature system solenoid valve and low-temperature system solenoid valve, 1T is a high-temperature system capillary tube, which is a high-temperature system installed in the high-concentration 19. It communicates with the evaporator 18 and is arranged between the high temperature system solenoid valve 15. 20 is a low-temperature system capillary tube, which communicates with a low-temperature evaporator 21 disposed in a low-temperature storage 22 and is disposed between a low-temperature system solenoid valve 16. 23 is a check valve.

第゛3図はこの発明の運転方法を説明するための運転制
御回路のブロック図であり、31.32はそれぞれ前記
高濃厚19.低温庫22の内部温度を検出する温度検出
端、33.34は常温より下限設定値までオン信号ヶ出
力し、また、下限設定値J、9上限設定値までオフ信号
を出力する高濃厚19および低温庫22用の第1.第2
の温度制御器、35は前記温度制御器33のオフ信号と
、温度制御器340オン信号により成立するANDゲー
ト、36は前記ANDN−ゲート0オン信号または温度
制御器330オン信号のいずれかで成立jるORゲート
、37はタイマで、ANDゲート35のオン信号からあ
る所定時間後にオン信号を出力する。
FIG. 3 is a block diagram of an operation control circuit for explaining the operation method of the present invention, and 31 and 32 are the high concentration 19 and 32, respectively. Temperature detection terminals 33 and 34 that detect the internal temperature of the low-temperature refrigerator 22 output ON signals from room temperature to the lower limit set value, and also output off signals up to the lower limit set value J, 9 and the upper limit set value. The first one for the low temperature storage 22. Second
temperature controller, 35 is an AND gate established by the off signal of the temperature controller 33 and the temperature controller 340 on signal, and 36 is established by either the ANDN-gate 0 on signal or the temperature controller 330 on signal. The OR gate 37 is a timer that outputs an ON signal after a certain predetermined time from the ON signal of the AND gate 35.

11.15.16は第1図に示すものと同じである。す
なわち、圧縮機11はORゲート36の出力で駆動され
、高温系統電磁弁15は温度制御器330オン信号で開
動作を行う1、低温系統電磁弁16はタイマ370オン
信号で開動作を行う。
11.15.16 are the same as shown in FIG. That is, the compressor 11 is driven by the output of the OR gate 36, the high temperature system solenoid valve 15 opens when the temperature controller 330 turns on, and the low temperature system solenoid valve 16 opens when the timer 370 turns on.

温度検出端31で検出された高濃厚19内の温度が下限
設定値に比較し高い場合、温度制御器33はオン信号を
出力し、これにより高温系統電磁弁15と圧縮機11が
動作する。圧縮機11から吐出された冷媒は、第1凝縮
器12.逆止弁13゜第2凝縮器14.高温系統電磁弁
15.高温系統毛細管17.高温蒸発器18.圧縮機1
1と流れ、高濃厚19の冷却運転を行う。
When the temperature inside the high concentration 19 detected by the temperature detection end 31 is higher than the lower limit set value, the temperature controller 33 outputs an on signal, and the high temperature system solenoid valve 15 and compressor 11 are thereby operated. The refrigerant discharged from the compressor 11 is transferred to the first condenser 12. Check valve 13° Second condenser 14. High temperature system solenoid valve 15. High temperature system capillary tube 17. High temperature evaporator 18. Compressor 1
1 and performs a high concentration 19 cooling operation.

また、低温系統電磁弁16はANDゲート35のため、
低温庫22内の温度が高(、温度制御器34からオン信
号が出ても閉状態であり、低温系統の冷媒回路は、この
低温系統電磁弁16と逆止弁231Cより高温系統から
分離される。
In addition, since the low temperature system solenoid valve 16 is an AND gate 35,
When the temperature inside the low-temperature storage 22 is high (it remains closed even when the ON signal is output from the temperature controller 34, the refrigerant circuit of the low-temperature system is separated from the high-temperature system by the low-temperature system solenoid valve 16 and the check valve 231C). Ru.

さて、高温w、19が冷却され下限設定値に達すると、
温度制御器33はオフ信号を出力し、高温系統電磁弁1
5は閉止する1、このとき低温庫22の温度が高く、温
度制御器34かもオン信号が出ていると、ANDゲート
35が成立する。これによりORゲート36は成立を続
けるため、圧縮機11は運転を続ける。
Now, when the high temperature w, 19 is cooled and reaches the lower limit set value,
The temperature controller 33 outputs an off signal, and the high temperature system solenoid valve 1
5 closes 1. At this time, if the temperature of the low-temperature refrigerator 22 is high and the temperature controller 34 also outputs an ON signal, the AND gate 35 is established. As a result, the OR gate 36 continues to be established, so the compressor 11 continues to operate.

一方、ANDゲート35の成立によりタイマ31は時間
計測を開始するが、ある時間まではオフ信号を出力する
ため低温系統電磁弁16は閉止の状態である。これ罠よ
り圧縮機11より吐出された冷媒は、第1凝縮器12.
第2凝縮器14で凝縮し、各凝縮器へ溜り込む。低温系
統運転と高温系統運転を同一の冷媒量で行うと、低温系
統運転の時、冷媒過多となり液バンク等の現象があられ
れる。この発明では低温系統運転開始時に上述のタイマ
3Tの遅延動作により第2凝縮器14へ過剰冷媒を溜め
込む。所定時間が経過し、タイマ37がオン信号を出力
すると、低温系統電磁弁16は開状態となり、冷媒は第
1凝縮器12から低温系統電磁弁16.低温系統毛細管
20.低温蒸発器21、逆止弁23へと流れ、低温庫2
2の冷媒運゛転を始める。
On the other hand, when the AND gate 35 is established, the timer 31 starts measuring time, but until a certain time, the low temperature system solenoid valve 16 remains closed because it outputs an off signal. The refrigerant discharged from the compressor 11 from this trap is transferred to the first condenser 12.
It is condensed in the second condenser 14 and accumulated in each condenser. If low-temperature system operation and high-temperature system operation are performed with the same amount of refrigerant, there will be an excess of refrigerant during low-temperature system operation, causing phenomena such as liquid banks. In the present invention, excess refrigerant is accumulated in the second condenser 14 by the delay operation of the timer 3T described above at the start of low-temperature system operation. When the predetermined period of time has elapsed and the timer 37 outputs an on signal, the low temperature system solenoid valve 16 becomes open, and the refrigerant flows from the first condenser 12 to the low temperature system solenoid valve 16. Low temperature system capillary 20. Flows to low temperature evaporator 21, check valve 23, and low temperature storage 2
Start the second refrigerant operation.

一方、第2凝縮器14へ溜り込んだ冷媒は、逆止弁13
.高温系統電磁弁15によりそのまま溜り込む。つまり
、冷媒量を適正に調整し、高温系統運転から低温系統運
転へ切り換えたことになる。
On the other hand, the refrigerant accumulated in the second condenser 14 is removed by the check valve 13.
.. The high temperature system solenoid valve 15 causes the water to accumulate as it is. In other words, the amount of refrigerant was adjusted appropriately and the high temperature system operation was switched to the low temperature system operation.

また、低温庫22の冷却運転を行っている途中に再び高
温床19の温度が上限設定値まで達すると、前述のよう
に高温床19の運転に切り換わる。双方の庫内温度が下
限設定値以下となれば、温度制御器33.34はオフ信
号を出力し、両電磁弁15゜16は閉止し、圧縮機11
は停止する。
Further, when the temperature of the high-temperature bed 19 reaches the upper limit set value again during the cooling operation of the low-temperature storage 22, the operation is switched to the high-temperature bed 19 as described above. When both chamber temperatures are below the lower limit set value, the temperature controllers 33 and 34 output an off signal, both solenoid valves 15 and 16 close, and the compressor 11
stops.

この発明は、低温、高温の各系統を蒸発器を切り換え、
凝縮器の大きさt切り換えて単独に運転し、高温床19
を冷却する際の高温蒸発温度を高(維持することにより
、圧縮機11の成績効率を向上させ、冷却装置の運転効
率を向上させろとともに冷媒量を適正に調整する機能を
合わせもつものである。したがって、この発明を家庭用
冷凍冷蔵庫に適用すると、冷却負荷比率は4:6程度で
冷蔵庫(高温床)の負荷が太き(、圧縮機11の成績係
数は1:2〜2.5程度で冷蔵室が大きいので、およそ
数十%程度の省電力化がはかれる。
This invention switches the evaporator for each low-temperature and high-temperature system,
Switch the condenser size t and operate it independently, high temperature bed 19
By maintaining a high evaporation temperature when cooling the compressor 11, it improves the performance efficiency of the compressor 11, improves the operating efficiency of the cooling device, and has the function of appropriately adjusting the amount of refrigerant. Therefore, when this invention is applied to a household refrigerator-freezer, the cooling load ratio is about 4:6, and the load on the refrigerator (high temperature bed) is heavy (the coefficient of performance of the compressor 11 is about 1:2 to 2.5). Since the refrigerator compartment is large, power consumption can be reduced by approximately several tens of percent.

なお、上記実施例では運転効率の良い高温系統運転を主
に、低温系統運転を従として運転するように説明したが
、この逆であっても良いことはもちろんである。また、
上記実施例は負荷側が2系統のものについて説明したが
、より多系統の負荷についてもこの発明は容易に適合で
きることは明らかである。
In the above embodiment, the high-temperature system operation with good operational efficiency is mainly performed, and the low-temperature system operation is performed as a secondary operation, but it goes without saying that the reverse may be used. Also,
Although the above embodiment has been described with respect to a case where there are two load systems, it is clear that the present invention can be easily applied to loads with a larger number of systems.

さらに、上記実施例では減圧器として、高温系統と低温
系統の毛細管17と20’に使用した場合について述べ
たが、膨張弁などを用いてもよいことはもちろんであり
、また、冷媒の開閉弁も高温系統、低温系統電磁弁15
.16で構成するのではな(、高温蒸発器18と低温蒸
発器21への冷媒分岐部に三方弁を設げて構成してもよ
い。
Furthermore, in the above embodiment, the case where the capillary tubes 17 and 20' of the high-temperature system and the low-temperature system are used as a pressure reducer was described, but it goes without saying that an expansion valve or the like may also be used. High temperature system, low temperature system solenoid valve 15
.. 16 (although a three-way valve may be provided at the refrigerant branch to the high-temperature evaporator 18 and the low-temperature evaporator 21).

以上詳細に説明したように、この発明は冷媒を蒸発添置
の異なる蒸発器に時系列的に分配するとともに、凝縮器
の大きさを切り換えるようにしたので、圧縮機および冷
却装置の運転効率ケ太き(向上させることができ、加え
℃各庫内温度の独立制御が可能となる。また、低温系統
の冷却時にタイマによってその開始を遅らせ、第2凝縮
器へ冷媒l溜め込むようにしたので、冷媒過多となるこ
とがない等の利点を有する。
As explained in detail above, this invention distributes refrigerant to evaporators with different evaporation attachments in chronological order and switches the size of the condenser, thereby increasing the operating efficiency of the compressor and cooling device. In addition, it is possible to independently control the internal temperature of each refrigerator.In addition, when cooling the low-temperature system, a timer is used to delay the start of cooling, and the refrigerant is stored in the second condenser. It has the advantage that it will not become excessive.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の冷却装置の一例を示す構成略図、第2図
はこの発明の一実施例を示″f′構成略図、第3図は第
2図の実施例の運転制御回路のブロック図である。 図中、11は圧縮機、12は第1凝縮器、13は逆止弁
、14は第2凝縮器、15は高温系統電磁弁、16は低
温系統電磁弁、17は高温系統毛細管、18は高温蒸発
器、19は高温床、20は低温系統毛細管、21d低温
蒸発器、22は低温庫、23は逆止弁、31.32は温
度検出端、33゜34は第1.第2の温度制御器、35
はANDゲート、36はORゲート、37はタイマであ
る。 なお、図中の同一符号は同一または相当部分を示す。 代理人 葛野信−(外1名) 第1図 5 第2図 第3図
Fig. 1 is a schematic diagram of the configuration of an example of a conventional cooling device, Fig. 2 is a schematic diagram of the configuration of an embodiment of the present invention, and Fig. 3 is a block diagram of the operation control circuit of the embodiment of Fig. 2. In the figure, 11 is a compressor, 12 is a first condenser, 13 is a check valve, 14 is a second condenser, 15 is a high temperature system solenoid valve, 16 is a low temperature system solenoid valve, and 17 is a high temperature system capillary. , 18 is a high-temperature evaporator, 19 is a high-temperature bed, 20 is a low-temperature system capillary, 21d is a low-temperature evaporator, 22 is a low-temperature storage, 23 is a check valve, 31.32 is a temperature detection end, 33.34 is the first. 2 temperature controller, 35
is an AND gate, 36 is an OR gate, and 37 is a timer. Note that the same reference numerals in the figures indicate the same or corresponding parts. Agent Makoto Kuzuno (1 other person) Figure 1 5 Figure 2 Figure 3

Claims (1)

【特許請求の範囲】 高温床と低温庫にそれぞれ高温蒸発器と低温蒸発器を備
え、圧縮機からの冷媒を第1凝縮器を介して前記高温蒸
発器と低温蒸発器に通し冷却を行う冷却装置において、
前記第1凝縮器と高温蒸発器との間に逆止弁、第2凝縮
器、高温系統開閉弁。 および高温系統減圧器を順次設け、前記第1凝縮器と低
温蒸発器との間に低温系統開閉弁および低温系統減圧器
とを設け、前記低温蒸発器と前記高温蒸発器の両下流間
に逆上弁を設け、前記高温庫内の温度を感知しオン、オ
フ信号を出力する第1の温度制御器と、前記低温庫内の
温度を感知しオン、オフ信号を出力する第2の温度制御
器とをそれぞれ設け、さらに、前記第1の温度制御器の
オフまたはオン信号と第2の温度制御器のオンまたはオ
フ信号により成立するANDゲート、このANDゲート
のオン信号と第1の温度制御器のオン信号のいずれかで
成立するORゲート、および前記ANDゲートのオン信
号から所定時間後オン信号を出力するタイマとを設け、
前記ORゲートの出力を前記圧縮機に接続し、前記第1
の温度制御器の出力を前記高温系統開閉弁に接続し、前
記タイマの出力を前記低温系統開閉弁に接続したことを
特徴とする冷却装置。
[Claims] A cooling system in which a high-temperature bed and a low-temperature storage are provided with a high-temperature evaporator and a low-temperature evaporator, respectively, and the refrigerant from the compressor is passed through the high-temperature evaporator and the low-temperature evaporator via a first condenser. In the device,
A check valve, a second condenser, and a high-temperature system opening/closing valve are provided between the first condenser and the high-temperature evaporator. and a high-temperature system pressure reducer are provided in sequence, a low-temperature system on-off valve and a low-temperature system pressure reducer are provided between the first condenser and the low-temperature evaporator, and a reverse pressure is provided between both downstream of the low-temperature evaporator and the high-temperature evaporator. A first temperature controller that includes an upper valve and senses the temperature inside the high-temperature refrigerator and outputs an on/off signal, and a second temperature controller that senses the temperature inside the low-temperature refrigerator and outputs an on/off signal. an AND gate established by the off or on signal of the first temperature controller and the on or off signal of the second temperature controller, the on signal of the AND gate and the first temperature control; an OR gate established by any of the ON signals of the AND gate, and a timer that outputs an ON signal after a predetermined time from the ON signal of the AND gate,
an output of the OR gate is connected to the compressor;
An output of the temperature controller is connected to the high-temperature system on-off valve, and an output of the timer is connected to the low-temperature system on-off valve.
JP16168682A 1982-09-17 1982-09-17 Cooling device Pending JPS5952175A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16168682A JPS5952175A (en) 1982-09-17 1982-09-17 Cooling device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16168682A JPS5952175A (en) 1982-09-17 1982-09-17 Cooling device

Publications (1)

Publication Number Publication Date
JPS5952175A true JPS5952175A (en) 1984-03-26

Family

ID=15739918

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16168682A Pending JPS5952175A (en) 1982-09-17 1982-09-17 Cooling device

Country Status (1)

Country Link
JP (1) JPS5952175A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3540052A1 (en) * 1984-11-16 1986-05-28 Diesel Kiki Co. Ltd., Tokio/Tokyo FUEL INJECTION PUMP FOR COMBUSTION ENGINES
DE3612709A1 (en) * 1985-04-17 1986-10-23 Diesel Kiki Co. Ltd., Tokio/Tokyo FUEL INJECTION PUMP
US4754737A (en) * 1984-05-08 1988-07-05 Mitsubishi Jidosha Kogyo Kabushiki Kaisha Fuel injection pump device and method for settling the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4754737A (en) * 1984-05-08 1988-07-05 Mitsubishi Jidosha Kogyo Kabushiki Kaisha Fuel injection pump device and method for settling the same
DE3590194C2 (en) * 1984-05-08 1996-03-28 Diesel Kiki Co Fuel injection pump
DE3540052A1 (en) * 1984-11-16 1986-05-28 Diesel Kiki Co. Ltd., Tokio/Tokyo FUEL INJECTION PUMP FOR COMBUSTION ENGINES
DE3612709A1 (en) * 1985-04-17 1986-10-23 Diesel Kiki Co. Ltd., Tokio/Tokyo FUEL INJECTION PUMP

Similar Documents

Publication Publication Date Title
KR20000014024A (en) Freezing cycle device for refrigerator
JPS6350628B2 (en)
JPS5952175A (en) Cooling device
JPS5952171A (en) Cooling device
JP3954835B2 (en) refrigerator
JPS6350630B2 (en)
JPS6350629B2 (en)
JPS5952170A (en) Cooling device
JPS6222396B2 (en)
JPS58108364A (en) Cooling device
JPS5952169A (en) Cooling device
JPH05768Y2 (en)
JPH0222615Y2 (en)
JPS5952176A (en) Cooling device
KR100202591B1 (en) Cooling cycle device
JPS5952173A (en) Cooling device
JPS58217177A (en) Cooling device
JPS5952172A (en) Cooling device
JPH05769Y2 (en)
JP2001153477A (en) Refrigerating plant
JPS58210454A (en) Cooling device
JPS58198668A (en) Cooling device
JPS58210450A (en) Cooling device
JPS5952174A (en) Cooling device
JPS5941751A (en) Cooling device