JPS5952170A - Cooling device - Google Patents

Cooling device

Info

Publication number
JPS5952170A
JPS5952170A JP16168182A JP16168182A JPS5952170A JP S5952170 A JPS5952170 A JP S5952170A JP 16168182 A JP16168182 A JP 16168182A JP 16168182 A JP16168182 A JP 16168182A JP S5952170 A JPS5952170 A JP S5952170A
Authority
JP
Japan
Prior art keywords
temperature
low
evaporator
signal
gate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16168182A
Other languages
Japanese (ja)
Inventor
菅原 作雄
雅彦 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP16168182A priority Critical patent/JPS5952170A/en
Publication of JPS5952170A publication Critical patent/JPS5952170A/en
Pending legal-status Critical Current

Links

Landscapes

  • Devices That Are Associated With Refrigeration Equipment (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 この発明は、複数の温度の異なる保冷室をもつ冷蔵庫な
どの冷却装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a cooling device such as a refrigerator having a plurality of cold storage chambers having different temperatures.

従来、高濃厚と低温庫を一台の冷却装置で冷却するとい
う形態は家庭用の冷凍冷蔵庫などに見られ、その基本的
冷却装置を第1図に示す。以下、第1図に従って従来例
の動作を説明する。
Conventionally, a system in which a high-concentration and a low-temperature storage are cooled by a single cooling device has been seen in household refrigerator-freezers, etc., and the basic cooling device is shown in FIG. The operation of the conventional example will be described below with reference to FIG.

第1図において、圧縮機1から吐出され凝縮器2で液化
された冷媒は毛細管3で減圧し、低温庫5内に配設され
た蒸発器4で蒸発し、この時、低温庫5および高濃厚6
の冷却を行プ。低温庫5は蒸発器4の近傍に配設された
送風機IKより冷却された空気が庫内を循環し冷却され
る。一方、高温床6は送風機7により冷却された空気の
一部がサーモダンパ8を介し、庫内に供給され冷却され
る。低温庫5の温度制御は、低温庫5内に設置された温
度調整器(図示せず)により圧縮機1を発停させて行い
、高温厚6の温度制御は、ダクト9の出口付近に設置さ
れ、高温厚6内の温度を感知するサーモダンパ8により
、供給される冷却空気量を調整して行う。
In FIG. 1, refrigerant discharged from a compressor 1 and liquefied in a condenser 2 is depressurized in a capillary tube 3 and evaporated in an evaporator 4 disposed in a low temperature storage 5. Rich 6
Perform cooling. The low-temperature refrigerator 5 is cooled by circulating air cooled by a blower IK disposed near the evaporator 4 inside the refrigerator. On the other hand, a portion of the air cooled by the blower 7 is supplied to the high-temperature floor 6 into the refrigerator via the thermo pump 8 and is cooled. The temperature of the low-temperature chamber 5 is controlled by starting and stopping the compressor 1 using a temperature regulator (not shown) installed in the low-temperature chamber 5, and the temperature of the high-temperature thickness 6 is controlled by a temperature regulator (not shown) installed near the outlet of the duct 9. This is done by adjusting the amount of cooling air supplied by a thermometer 8 that senses the temperature within the high temperature thickness 6.

しかるに、上記のような従来例においては、蒸発器4の
圧力は低温庫5の温度に依存するため、圧縮機1の成績
係数は非常に小さい値となり、冷却装置として効率の悪
い運転をしていた。また、高温厚6を冷却する蒸発器4
の温度が低温庫5に見合った低い温度となるため、高温
厚6内が乾燥過多となり、蒸発器4への着絹が多くなり
頻繁な除霜が必要になる等の欠点があった。
However, in the conventional example described above, the pressure of the evaporator 4 depends on the temperature of the low temperature storage 5, so the coefficient of performance of the compressor 1 is a very small value, resulting in an inefficient operation as a cooling device. Ta. Also, an evaporator 4 that cools the high temperature thickness 6
Since the temperature is low enough to match the temperature of the low-temperature storage 5, the inside of the high-temperature thickness 6 becomes excessively dry, resulting in a large amount of silk deposited on the evaporator 4, which requires frequent defrosting.

この発明は、低温、高温の各系統を単独に運転すること
により、従来の欠点を改良することを目的としたもので
ある。以下この発明を図面について説明する。
The purpose of this invention is to improve the drawbacks of the conventional system by operating each of the low temperature and high temperature systems independently. The present invention will be explained below with reference to the drawings.

第2図、第3図はこの発明の一実施例を示す構成略図と
運転制御回路のブロック図である。
FIGS. 2 and 3 are a schematic configuration diagram and a block diagram of an operation control circuit showing an embodiment of the present invention.

第2図において、11は圧縮機、12は第1凝縮器、1
3は逆止弁、14は第2凝縮器、15゜16は冷媒流路
を切り換える高温系統電磁弁と低温系統電磁弁、17は
高温系統毛細管で、高温厚19内に配設された高温蒸発
器18と連通し、高温系統電磁弁15との間に配設され
る。20は低温系統毛細管で、低温庫22内に配設され
た低温蒸発器21と連通し、低温系統電磁弁16との間
に配設される。高温蒸発器18および低温蒸発器21の
吐出管はそれぞれ独立して配設され、圧縮機11の近傍
においてその吸込管に接続されている。
In FIG. 2, 11 is a compressor, 12 is a first condenser, 1
3 is a check valve, 14 is a second condenser, 15° and 16 are a high temperature system solenoid valve and a low temperature system solenoid valve that switch the refrigerant flow path, 17 is a high temperature system capillary tube, and a high temperature evaporator installed in the high temperature thickness 19. The high temperature system solenoid valve 15 communicates with the high temperature system electromagnetic valve 15 . 20 is a low-temperature system capillary tube, which communicates with a low-temperature evaporator 21 disposed in a low-temperature storage 22 and is disposed between a low-temperature system solenoid valve 16. The discharge pipes of the high-temperature evaporator 18 and the low-temperature evaporator 21 are arranged independently, and are connected to the suction pipe in the vicinity of the compressor 11.

第3図はこの発明の運転方法を説明するための運転制御
回路のブロック図であり、31.32はそれぞれ前記高
温厚19.低温庫22の内部温度を検出する温度検出端
、33゜34は常温より下限設定値までオン信号を出力
し、また、下限設定値より上限設定値までオフ信号を出
力する高温厚19および低温庫22用の第1.第2の温
度制御器、35は前記温度制御器33のオフ信号と、温
度制御器340オン信号により成立するANDゲート、
36は前記ANDゲート35のオン信号または温度制御
器330オン信号のいずれかで成立するORゲートであ
る。
FIG. 3 is a block diagram of an operation control circuit for explaining the operation method of the present invention, and 31 and 32 are the high temperature thicknesses 19 and 32, respectively. Temperature detection terminals 33 and 34 detect the internal temperature of the low-temperature chamber 22, which outputs an on signal from room temperature to the lower limit set value, and outputs an off signal from the lower limit set value to the upper limit set value. 1st for 22. A second temperature controller 35 is an AND gate established by the off signal of the temperature controller 33 and the on signal of the temperature controller 340;
36 is an OR gate that is established by either the ON signal of the AND gate 35 or the ON signal of the temperature controller 330.

11.15.16は第1図に示すものと同じである。す
なわち、圧縮機11はORゲート36の出力で駆動され
、高温系統電磁弁15は温度制御器330オン信号で開
動作を行う。低温系統電磁弁16はANDN−ゲート0
オン信号で開動作を行う。
11.15.16 are the same as shown in FIG. That is, the compressor 11 is driven by the output of the OR gate 36, and the high temperature system solenoid valve 15 is opened by the temperature controller 330 ON signal. Low temperature system solenoid valve 16 is ANDN-gate 0
Performs opening operation with ON signal.

温度検出端31で検出された高温厚19内の温度が下限
設定値に比較し高い場合、温度制御器33はオン信号を
出力し、これKより高温系統電磁弁15と圧縮機11が
動作する。圧縮機11から吐出された冷媒は、第1凝縮
器12.逆止弁13゜第2凝縮器14.高温系統電磁弁
15.高温系統毛細管17.高温蒸発器18.圧縮機1
1と流れ、高温厚19の冷却運転を行5゜ また、低温系統電磁弁16はANDゲート35のため、
低温庫22内の温度が高(、温度制御器34からオン信
号が出ても閉状態であり、低温系統の冷媒回路は、この
低温系統電磁弁16により高温系統から分離される。そ
して、低温蒸発器21の吐出管が圧縮機11の吸込付近
まで独立して配設されているため、高温蒸発器1Bにお
いてガスとなった冷媒が低温蒸発器21に流れることは
な(1゜ さて、高温厚19が冷却され下限設定値に達すると、温
度制御器33はオフ信号を出力し、高温系統電磁弁15
は閉止する。このとき低温庫22の温度が高く、温度制
御器34からオン信号が出ていると、ANDゲート35
が成立する。これによりORゲート36は成立を続ける
ため、圧縮機11は゛運転を続ける。ANDゲート35
の成立により低温系統電磁弁16は開状態となり、冷媒
は第1凝縮機12から低温系統電磁弁16.低温系統毛
細管20.低温蒸発器21と流れ、低温庫22の冷却運
転を始める。
When the temperature within the high temperature thickness 19 detected by the temperature detection end 31 is higher than the lower limit set value, the temperature controller 33 outputs an on signal, and from this K the high temperature system solenoid valve 15 and compressor 11 operate. . The refrigerant discharged from the compressor 11 is transferred to the first condenser 12. Check valve 13° Second condenser 14. High temperature system solenoid valve 15. High temperature system capillary tube 17. High temperature evaporator 18. Compressor 1
1 and performs cooling operation with high temperature thickness 19 5° Also, since the low temperature system solenoid valve 16 is an AND gate 35,
When the temperature inside the low-temperature storage 22 is high (it remains closed even if an ON signal is output from the temperature controller 34, the refrigerant circuit of the low-temperature system is separated from the high-temperature system by the low-temperature system solenoid valve 16. Since the discharge pipe of the evaporator 21 is arranged independently up to the vicinity of the suction of the compressor 11, the refrigerant that has become a gas in the high-temperature evaporator 1B does not flow to the low-temperature evaporator 21. When the thickness 19 is cooled and reaches the lower limit set value, the temperature controller 33 outputs an off signal and the high temperature system solenoid valve 15
is closed. At this time, if the temperature of the low-temperature refrigerator 22 is high and the ON signal is output from the temperature controller 34, the AND gate 35
holds true. As a result, the OR gate 36 continues to hold true, so the compressor 11 continues to operate. AND gate 35
When the low temperature system solenoid valve 16 is established, the low temperature system solenoid valve 16 becomes open, and the refrigerant flows from the first condenser 12 to the low temperature system solenoid valve 16. Low temperature system capillary 20. It flows to the low-temperature evaporator 21 and starts the cooling operation of the low-temperature storage 22.

また、低温庫22の冷却運転を行って℃・る途中に再び
高温床19の温度が上限設定値まで達すると、前述のよ
5に高温床19の運転に切り換わる。
Further, when the temperature of the high-temperature bed 19 reaches the upper limit setting value again during the cooling operation of the low-temperature storage 22 and the cooling operation is performed, the operation of the high-temperature bed 19 is switched to as described in 5 above.

高温厚19.低温庫22双方の庫内温度が下限設定値以
下となれば、温゛度制御器33.34はオフ信号を出力
し、両電磁弁15.16は閉止し、圧縮機11は停止す
る。
High temperature thickness 19. When the internal temperature of both low-temperature refrigerators 22 falls below the lower limit set value, the temperature controllers 33 and 34 output an off signal, both electromagnetic valves 15 and 16 close, and the compressor 11 stops.

一般に蒸発温度が高くなると、冷媒循環量は多くなり、
同一凝縮器でみると完全に液化せず冷却装置の運転効率
は悪(なる。従って高い蒸発温度の場合、低い蒸発温度
に比較し大きくする必要があり、この発明の場合、低温
系統運転時は、第1凝縮器12のみとし、高温系統運転
時は、この第1凝縮器12の他に第2凝縮器14が作動
し、高温系統の冷却装置の運転効率を向上させる。した
がってこの発明を冷却負荷比率が4:6程度で、高温床
(冷蔵庫)19の負荷が大きい家庭用冷凍冷蔵庫に適用
すると数十−の省電力がはかれる。
Generally, as the evaporation temperature increases, the amount of refrigerant circulating increases.
If we look at the same condenser, it will not completely liquefy and the operation efficiency of the cooling system will be poor.Therefore, in the case of high evaporation temperature, it is necessary to increase the evaporation temperature compared to low evaporation temperature.In the case of this invention, when operating the low temperature system, , only the first condenser 12 is used, and when the high temperature system is operating, the second condenser 14 is operated in addition to the first condenser 12, improving the operating efficiency of the cooling device for the high temperature system. When applied to a household refrigerator-freezer in which the load ratio is about 4:6 and the high-temperature floor (refrigerator) 19 has a large load, power savings of several tens of times can be achieved.

なお、上記実施例では運転効率の良い高温系統運転を主
に、低温系統運転を従として運転するよ5に説明したが
、この逆であっても良いことはもちろんである。また、
上記実施例は負荷側が2系統のものについて説明したが
、より多系統の負荷についてもこの発明は容易に適合で
きることは明らかである。
In the above embodiment, the high temperature system operation with good operational efficiency is mainly operated, and the low temperature system operation is operated as a secondary operation, but it is of course possible to do the opposite. Also,
Although the above embodiment has been described with respect to a case where there are two load systems, it is clear that the present invention can be easily applied to loads with a larger number of systems.

さらに上記実施例では減圧器として、高温系統と低温系
統の毛細管17.20を使用した場合について述べたが
、膨張弁などを用いてもよいことはもちろんであり、ま
た、冷媒の開閉弁も高温系統、低温系統電磁弁15.1
6で構成するのではなく、高温蒸発器18と低温蒸発器
21への冷媒分岐部に三方弁を設けて構成してもよい。
Furthermore, in the above embodiment, the case was described in which the capillary tubes 17 and 20 of the high temperature system and the low temperature system were used as the pressure reducer, but it goes without saying that an expansion valve or the like may also be used. System, low temperature system solenoid valve 15.1
6, a three-way valve may be provided at the refrigerant branch to the high-temperature evaporator 18 and the low-temperature evaporator 21.

以上詳細に説明したように、この発明は冷媒を蒸発温度
の異なる蒸発器に時系列的に分配するとともに、凝縮器
の大きさを切り換えるようにしたので、圧縮機および冷
却装置の運転効率を大きく向上させることができ、加え
て各庫内温度の独立制御が可能となる利点がある。
As explained in detail above, this invention distributes refrigerant to evaporators with different evaporation temperatures in time series, and also switches the size of the condenser, thereby greatly increasing the operating efficiency of the compressor and cooling device. In addition, there is an advantage that the internal temperature of each refrigerator can be controlled independently.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の冷却装置の一例を示す構成略図、第2図
はこの発明の一実施例を示す構成略図、第3図は第2図
の実施例の運転制御回路のブロック図である。 図中、11は圧縮機、12は第1凝縮機、13は逆止弁
、14は第2凝縮機、15は高温系統電磁弁、16は低
温系統電磁弁、17は高温系統毛細管、18は高温蒸発
器、19は高温床、20は低温系統毛細管、21は低温
蒸発器、22は低温庫、31.32は温度検出端、33
.34は第1゜第2の温度制御器、35はANDゲート
、36はORゲートである。なお、図中の、同一符号は
同一または相当部分を示す。 代理人 葛 野 信 −(外1名) 第1図
FIG. 1 is a schematic diagram of the configuration of an example of a conventional cooling device, FIG. 2 is a schematic diagram of the configuration of an embodiment of the present invention, and FIG. 3 is a block diagram of the operation control circuit of the embodiment of FIG. In the figure, 11 is a compressor, 12 is a first condenser, 13 is a check valve, 14 is a second condenser, 15 is a high temperature system solenoid valve, 16 is a low temperature system solenoid valve, 17 is a high temperature system capillary, 18 is a High temperature evaporator, 19 high temperature bed, 20 low temperature system capillary, 21 low temperature evaporator, 22 low temperature storage, 31.32 temperature detection end, 33
.. 34 is a first and second temperature controller, 35 is an AND gate, and 36 is an OR gate. Note that the same reference numerals in the figures indicate the same or corresponding parts. Agent Shin Kuzuno - (1 other person) Figure 1

Claims (1)

【特許請求の範囲】 高濃厚と低温庫にそれぞれ高温蒸発器と低温蒸発器を備
え、圧縮機からの冷媒を第1凝縮器を介して前記高温蒸
発器と低温蒸発器に通し冷却を行う冷却装置において、
前記第1凝縮器と高温蒸発器との間に逆止弁、第2凝縮
器、高温系統開閉弁。 および高温系統減圧器を順次設け、前記第1凝縮器と低
温蒸発器との間に低温系統開閉弁および低温系統減圧器
とを設け、前記高温庫内の温度を感知しオン、オフ信号
を出力する第1の温度制御器と、前記低温庫内の温度を
感知しオン、オフ信号を出力する第2の温度制御器とを
それぞれ設け、さらに、前記第1の温度制御器のオフま
たはオン信号と第2の温度制御器のオンまたはオフ信号
により成立するANDゲート、このANDゲートのオン
信号と前記第1の温度制御器のオン信号のいずれかで成
立するORゲートとを設け、前記ORゲートの出力を前
記圧縮機に接続し、前記第1の温度制御器の出力を前記
高温系統開閉弁圧接続し、前記ANDゲートの出力を前
記低温系統開閉弁に接続し、前記高温用蒸発器および低
温用蒸発器の吐出管をそれぞれ単独に配設しかつ前記圧
縮機の吸込管の近傍において接続したことを特徴とする
冷却装置。
[Claims] Cooling in which the high-concentration and low-temperature storages each include a high-temperature evaporator and a low-temperature evaporator, and the refrigerant from the compressor is passed through the high-temperature evaporator and the low-temperature evaporator via a first condenser. In the device,
A check valve, a second condenser, and a high-temperature system opening/closing valve are provided between the first condenser and the high-temperature evaporator. and a high-temperature system pressure reducer are provided in sequence, and a low-temperature system on-off valve and a low-temperature system pressure reducer are provided between the first condenser and the low-temperature evaporator, and the temperature in the high-temperature chamber is sensed and an on/off signal is output. a first temperature controller that senses the temperature inside the low-temperature refrigerator and outputs an on/off signal; and an AND gate established by the ON or OFF signal of the second temperature controller, and an OR gate established by either the ON signal of the AND gate and the ON signal of the first temperature controller, and the OR gate The output of the first temperature controller is connected to the high-temperature system on-off valve pressure, the output of the AND gate is connected to the low-temperature system on-off valve, and the high-temperature evaporator and A cooling device characterized in that the discharge pipes of the low-temperature evaporators are individually arranged and connected in the vicinity of the suction pipe of the compressor.
JP16168182A 1982-09-17 1982-09-17 Cooling device Pending JPS5952170A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16168182A JPS5952170A (en) 1982-09-17 1982-09-17 Cooling device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16168182A JPS5952170A (en) 1982-09-17 1982-09-17 Cooling device

Publications (1)

Publication Number Publication Date
JPS5952170A true JPS5952170A (en) 1984-03-26

Family

ID=15739817

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16168182A Pending JPS5952170A (en) 1982-09-17 1982-09-17 Cooling device

Country Status (1)

Country Link
JP (1) JPS5952170A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100723900B1 (en) * 2004-06-17 2007-06-04 우수이 고쿠사이 산교 가부시키가이샤 High-pressure fuel injection pipe

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100723900B1 (en) * 2004-06-17 2007-06-04 우수이 고쿠사이 산교 가부시키가이샤 High-pressure fuel injection pipe

Similar Documents

Publication Publication Date Title
KR20000014024A (en) Freezing cycle device for refrigerator
JPS6350628B2 (en)
JPS5952170A (en) Cooling device
JPS5952171A (en) Cooling device
JPS5952175A (en) Cooling device
JPS5952174A (en) Cooling device
JPS5952173A (en) Cooling device
JPS5888559A (en) Cooling device
JPS6350630B2 (en)
KR0135133B1 (en) Evaporator structure for cooler with double evaporators
JPS5952172A (en) Cooling device
JPH05769Y2 (en)
JPS58108364A (en) Cooling device
JPS6350629B2 (en)
JPS58217177A (en) Cooling device
JPH05768Y2 (en)
JPH01169283A (en) Refrigerating cycle
JPH0285660A (en) Heat pump type air conditioner
JPH0222615Y2 (en)
KR950004396Y1 (en) Arrangement for vaporising residuum of liquid refrigerant
JPS5941751A (en) Cooling device
JPS6217585A (en) Method of controlling operation of refrigerating open showcase
JPS5941754A (en) Cooling device
KR19980026766A (en) Multi Type Air Conditioning Equipment
JPH055572A (en) Refrigerator