JPS5952173A - Cooling device - Google Patents

Cooling device

Info

Publication number
JPS5952173A
JPS5952173A JP16168482A JP16168482A JPS5952173A JP S5952173 A JPS5952173 A JP S5952173A JP 16168482 A JP16168482 A JP 16168482A JP 16168482 A JP16168482 A JP 16168482A JP S5952173 A JPS5952173 A JP S5952173A
Authority
JP
Japan
Prior art keywords
temperature
low
evaporator
signal
gate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16168482A
Other languages
Japanese (ja)
Inventor
菅原 作雄
文雄 松岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP16168482A priority Critical patent/JPS5952173A/en
Publication of JPS5952173A publication Critical patent/JPS5952173A/en
Pending legal-status Critical Current

Links

Landscapes

  • Devices That Are Associated With Refrigeration Equipment (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 この発明は、複数の温度の異なる保冷室をもつ冷蔵庫な
どの冷却装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a cooling device such as a refrigerator having a plurality of cold storage chambers having different temperatures.

従来、高温厚と低温庫を一台の冷却装置で冷却するとい
う形態は家庭用の冷凍冷蔵庫などに見られ、その基本的
冷却装置を第1図に示す。以下、第1図に従って従来例
の動作を説明する。
Conventionally, a configuration in which both a high-temperature and a low-temperature compartment are cooled by a single cooling device has been seen in household refrigerator-freezers, etc., and the basic cooling device is shown in FIG. The operation of the conventional example will be described below with reference to FIG.

第1図において、圧縮機1から吐出されυC縮器2で液
化された冷媒は毛細管3で減圧し、低温庫5内に配設さ
れた蒸発器4で蒸発し、この時、低温庫5および高温厚
6の冷却を行う。低温庫5は蒸発器4の近傍に配設され
た送風機1により冷却された空気が庫内を循環し冷却さ
れる。一方、高温厚6は前記送風機1により冷却された
空気の一部がサーモダンパ8を介し、庫内に供給され冷
却される。低温庫5の温度制御は、低温庫5内に設置さ
れた温度調整器(図示せず)により圧縮機1を発停させ
て行い、高温厚6の温度制御は、ダクト9σ)出口付近
に設置され高温床6内の温度を感知するサーモダンパ8
により、供給される冷却空気量を調整して行う。
In FIG. 1, the refrigerant discharged from the compressor 1 and liquefied in the υC compressor 2 is depressurized in the capillary tube 3 and evaporated in the evaporator 4 disposed in the low temperature storage 5. Cooling is performed at high temperature and thickness 6. The low-temperature refrigerator 5 is cooled by circulating air cooled by a blower 1 disposed near the evaporator 4 inside the refrigerator. On the other hand, the high temperature thickness 6 is cooled by a part of the air cooled by the blower 1 being supplied into the refrigerator via the thermo pump 8. The temperature of the low-temperature chamber 5 is controlled by starting and stopping the compressor 1 using a temperature regulator (not shown) installed in the low-temperature chamber 5, and the temperature of the high-temperature thickness 6 is controlled by a temperature regulator (not shown) installed near the outlet of the duct 9σ. Thermal damper 8 detects the temperature inside the high-temperature bed 6
This is done by adjusting the amount of cooling air supplied.

しかるに、上記のような従来例においては、蒸発器4の
圧力は低温庫5の温度に依存するため、圧縮機1の成績
係数は非常に小さ℃・値となり、冷却装置として効率の
悪い運転なしていた。また、高温厚6を冷却する蒸発器
4の温度゛が低温庫5に見合った低い温度となるため、
高温床6内が乾燥過多となり、蒸発器4への着霜が多く
なり頻繁な除霜が必要になる等の欠点があった。
However, in the conventional example as described above, since the pressure of the evaporator 4 depends on the temperature of the low temperature storage 5, the coefficient of performance of the compressor 1 is a very small °C value, and there is no inefficient operation as a cooling device. was. In addition, since the temperature of the evaporator 4 that cools the high temperature thickness 6 becomes a low temperature commensurate with the low temperature storage 5,
There were drawbacks such as the inside of the high-temperature bed 6 becoming excessively dry and frost forming on the evaporator 4 increasing, necessitating frequent defrosting.

この発明は、低温、高温の各系統を単独に運転すること
により、従来の欠点を改良することを目的としたもので
ある。以下この発明を図面について説明する。
The purpose of this invention is to improve the drawbacks of the conventional system by operating each of the low temperature and high temperature systems independently. The present invention will be explained below with reference to the drawings.

第2図、第3図はこの発明の一実施例を示す構 。FIGS. 2 and 3 show an embodiment of the present invention.

成略図と運転制御回路のグロック図である。It is a schematic diagram and a Glock diagram of an operation control circuit.

第2図において、11は圧縮機、12は第】凝縮器、1
3は逆止弁、14は第2凝縮器、15゜16は冷媒流路
を切り換える高温系統電磁弁と低温系統電磁弁、17は
高温系統毛細管で、高温布19内に配設された高温蒸発
器18と連通し、高温系統電磁弁15との間に配設され
る。20は低温系統毛細管で、低温庫22内に配設され
た低温蒸発器21と連通し、低温系統電磁弁16との間
に配設される。23は逆止弁である。
In FIG. 2, 11 is a compressor, 12 is a condenser, 1
3 is a check valve, 14 is a second condenser, 15° and 16 are a high temperature system solenoid valve and a low temperature system solenoid valve that switch the refrigerant flow path, 17 is a high temperature system capillary tube, and a high temperature evaporator disposed in the high temperature cloth 19. The high temperature system solenoid valve 15 communicates with the high temperature system electromagnetic valve 15 . 20 is a low-temperature system capillary tube, which communicates with a low-temperature evaporator 21 disposed in a low-temperature storage 22 and is disposed between a low-temperature system solenoid valve 16. 23 is a check valve.

第3図はこの発明の運転方法を説明するための運転制御
回路のブロック図であり、31.32はそれぞれ前記高
温厚19.低温庫22の内部温度を検出する温度検出端
、33.34は常温より下限設定値までオン信号を出力
し、また、下限設定値より上限設定値までオフ信号を出
力する高温厚19および低温庫22用の第1.第2の温
度制御器、35は前記温度制御器33のオフ信号と、温
度制御器340オン信号により成立するANDグー)、
36は前記ANDゲート35σ)オン信号または温度制
御器33のオン信号のいずれかで成立するORゲートで
ある。
FIG. 3 is a block diagram of an operation control circuit for explaining the operation method of the present invention, and 31 and 32 are the high temperature thicknesses 19 and 32, respectively. A temperature detection terminal 33.34 detects the internal temperature of the low temperature refrigerator 22, and a high temperature thickness 19 and a low temperature refrigerator output an ON signal from room temperature to a lower limit setting value, and outputs an OFF signal from the lower limit setting value to an upper limit setting value. 1st for 22. A second temperature controller 35 is an AND result formed by the off signal of the temperature controller 33 and the on signal of the temperature controller 340,
36 is an OR gate that is established by either the ON signal of the AND gate 35σ) or the ON signal of the temperature controller 33.

11.15.16は第1図に示すものと同じである。す
なわち、圧縮機11はORゲート36の出力で駆動され
、高温系統電磁弁15は温度制御器33のオン信号で開
動作を行う。低温系統電磁弁16はANDN−ゲート0
オン信号で開動作を行う。
11.15.16 are the same as shown in FIG. That is, the compressor 11 is driven by the output of the OR gate 36, and the high temperature system solenoid valve 15 is opened by the ON signal from the temperature controller 33. Low temperature system solenoid valve 16 is ANDN-gate 0
Performs opening operation with ON signal.

温度検出端31で検出された高温布19内の温度が下限
設定値に比較し高い場合、温度制御器33はオン信号を
出力し、これKより高温系統電磁弁15と圧縮機11が
動作する。圧縮機11から吐出された冷媒は、第1凝縮
器12.逆止弁13゜第21!、縮器14.高温系統電
磁弁15.高温系統毛細管17.高温蒸発器1B、圧縮
機11と流れ、高温厚19の冷却運転を行う。
When the temperature inside the high temperature cloth 19 detected by the temperature detection end 31 is higher than the lower limit set value, the temperature controller 33 outputs an ON signal, and from this K the high temperature system solenoid valve 15 and the compressor 11 operate. . The refrigerant discharged from the compressor 11 is transferred to the first condenser 12. Check valve 13° 21st! , compressor 14. High temperature system solenoid valve 15. High temperature system capillary tube 17. It flows through the high temperature evaporator 1B and the compressor 11, and performs a cooling operation with a high temperature thickness 19.

また、低温系統電磁弁16はANDゲート35のため、
低温庫22内の温度が高く、温度制御器34からオン信
号が出ても閉状態であり、低温系統の冷媒回路は、この
低温系統電磁弁16と逆止弁23により高温系統から分
離される。
In addition, since the low temperature system solenoid valve 16 is an AND gate 35,
The temperature inside the low-temperature refrigerator 22 is high, and even if the ON signal is output from the temperature controller 34, it remains closed, and the refrigerant circuit of the low-temperature system is separated from the high-temperature system by the low-temperature system solenoid valve 16 and check valve 23. .

さて、高温厚19が冷却され下限設定値に達すると、温
度制御器33はオフ信号を出力し、高温系統電磁弁15
は閉止する。このとき低温庫22の温度が高く、温度制
御器34からオン信号が出ていると、AN′Dゲート3
5が成立し、低温系統電磁弁16が開動作する。また、
これによりORゲート36は成立を続けるため、圧縮機
11は運転を続け、冷媒は第】凝縮器12.低温系統電
磁弁16.低温系統毛細管20.低温蒸発器21゜逆止
弁23と流れ、低温庫22の冷却運転を始める。つまり
、高温系統運転から低温系統運転へ切り換えたことにな
る。
Now, when the high temperature thickness 19 is cooled and reaches the lower limit set value, the temperature controller 33 outputs an off signal, and the high temperature system solenoid valve 15
is closed. At this time, if the temperature of the low-temperature refrigerator 22 is high and the ON signal is output from the temperature controller 34, the AN'D gate 3
5 is established, and the low temperature system solenoid valve 16 is opened. Also,
As a result, the OR gate 36 continues to be established, so the compressor 11 continues to operate, and the refrigerant is transferred to the condenser 12. Low temperature system solenoid valve 16. Low temperature system capillary 20. The low temperature evaporator 21 flows through the check valve 23, and the cooling operation of the low temperature storage 22 is started. In other words, the system has switched from high-temperature system operation to low-temperature system operation.

また、低温庫22の冷却運転を行っている途中に再び高
温厚19の温度が上限設定値まで達すると、前述のよ5
に高温厚19の運転に切り換わる。
In addition, if the temperature of the high temperature thickness 19 reaches the upper limit setting value again during the cooling operation of the low temperature refrigerator 22, the above-mentioned 5
The operation is switched to high temperature thickness 19.

高温床19.低温庫22双方の庫内温度が下限設定値以
下となれば、温度制御器33.34はオフ信号を出力し
、両電磁弁15.16は閉止し、圧縮機11は停止する
High temperature bed19. When the internal temperature of both low-temperature refrigerators 22 falls below the lower limit set value, the temperature controllers 33, 34 output an off signal, both electromagnetic valves 15, 16 close, and the compressor 11 stops.

一般に蒸発温度が高くなると、冷媒循環員は多くなり、
同一凝縮器でみると完全に液化せず冷却装置の運転効率
i悪くなる。従って高い蒸発温度の場合、低い蓋開温度
に比較し太き(する必要があり、この発明の場合、低温
系統運転時は、第1凝縮器12のみとし、高温系統運転
時は、この第1凝縮器12の他に第2凝縮器14が作動
し、高温系統の冷却装置の運転効率を向上させる。つま
りこの発明は、低温、高温の各系統を蒸発器を切り換え
、凝縮器の大きさを切り換えて単独に運転し、高温床1
9を冷却する際の高温蒸発温度を高く維持することによ
り、圧縮機11の成績効率を向上させ、冷却装置の運転
効率を向上させるものである。したがって、この発明を
家庭用冷凍冷蔵庫に適用すると、冷却負喬比率は4:6
程度で冷蔵庫(高温床)の負荷が大きく、圧縮機11の
成績係数は1:゛2〜2.5程度で冷蔵室が太き−いの
で、およそ数十チ程度の省電力化がはかれる。
Generally, as the evaporation temperature increases, the number of refrigerant circulation members increases.
If we look at the same condenser, it will not completely liquefy and the operating efficiency of the cooling system will deteriorate. Therefore, when the evaporation temperature is high, it is necessary to make the lid open larger than when the lid is opened at a low temperature.In the case of this invention, only the first condenser 12 is used during low temperature system operation, and this In addition to the condenser 12, a second condenser 14 operates to improve the operating efficiency of the cooling system for the high temperature system.In other words, the present invention switches the evaporator for each of the low temperature and high temperature systems, and changes the size of the condenser. Switch and operate independently, high temperature bed 1
By maintaining the high temperature evaporation temperature when cooling the compressor 9, the performance efficiency of the compressor 11 is improved, and the operating efficiency of the cooling device is improved. Therefore, when this invention is applied to a household refrigerator-freezer, the cooling load ratio is 4:6.
The load on the refrigerator (high-temperature floor) is large, the coefficient of performance of the compressor 11 is about 1:2 to 2.5, and the refrigerator compartment is large, so power savings of about several tens of centimeters can be achieved.

なお、上記実施例では運転効率の良い高温系統運転を主
に、低温系統運転を従として運転するように説明したが
、この逆であっても良いことはもちろんである。また、
上記実施例は負荷側が2系統のものについて説明したが
、より多系統の負荷についてもこの発明は容易に適合で
きることは明らかである。
In the above embodiment, the high-temperature system operation with good operational efficiency is mainly performed, and the low-temperature system operation is performed as a secondary operation, but it goes without saying that the reverse may be used. Also,
Although the above embodiment has been described with respect to a case where there are two load systems, it is clear that the present invention can be easily applied to loads with a larger number of systems.

さらに、上記実施例では減圧器として、高温系統と低部
系統の毛細管17と2カを使用した場合について述べた
が、膨張弁などを用いてもよいことはもちろんであり、
また、冷媒の開閉弁も尚温系統、低温系統電磁弁15.
16で構成するのではなく、高温蒸発器1Bと低温蒸発
器21への冷媒分岐部に三方弁を設けて構成してもよい
Further, in the above embodiment, the case was described in which the capillary tubes 17 and 2 of the high temperature system and the low part system were used as the pressure reducer, but it goes without saying that an expansion valve or the like may be used.
In addition, the refrigerant on-off valve is also the solenoid valve 15 for the still temperature system and the low temperature system.
16, a three-way valve may be provided at the refrigerant branch to the high temperature evaporator 1B and the low temperature evaporator 21.

以上詳細に説明したように、この発明は冷媒を蒸発温度
の異なる蒸発器に時系列的に分配するとともに、凝縮器
の大きさを切り換えるようにしたので、圧縮機および冷
却装置の運転効率を大きく向上させることができ、加え
て各庫内温度り)独立制御が可能となる利点を有する。
As explained in detail above, this invention distributes refrigerant to evaporators with different evaporation temperatures in time series, and also switches the size of the condenser, thereby greatly increasing the operating efficiency of the compressor and cooling device. In addition, it has the advantage of being able to independently control the temperature inside each refrigerator.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の冷却装置の一例を示す構成略図、第2図
はこの発明の一実施例を示す構成略図、第3図は第2図
の実施例の運転制御回路のブロック図である。 図中、11は圧縮機、12は第1凝縮糞、13は逆止弁
、14は第2凝縮器、15は高温系統電磁弁、16は低
温系統電磁弁、17は高温系統毛細管、18は高温蒸発
器、19は高温床、2oは低温系統毛細管、21は低温
蒸発器、22は低温庫、23は逆止弁、31.32は施
皮検出端、33゜34は温度制御器、35はANDゲー
ト、36は0界ゲ〜トである。なお、図中の同一符号は
同一または相当部分を示す。 代理人 葛 野 信 −(外1名) 第1図 ら
FIG. 1 is a schematic diagram of the configuration of an example of a conventional cooling device, FIG. 2 is a schematic diagram of the configuration of an embodiment of the present invention, and FIG. 3 is a block diagram of the operation control circuit of the embodiment of FIG. In the figure, 11 is a compressor, 12 is a first condensate, 13 is a check valve, 14 is a second condenser, 15 is a high temperature system solenoid valve, 16 is a low temperature system solenoid valve, 17 is a high temperature system capillary, 18 is a High-temperature evaporator, 19 is a high-temperature bed, 2o is a low-temperature system capillary, 21 is a low-temperature evaporator, 22 is a low-temperature chamber, 23 is a check valve, 31.32 is a coating detection end, 33° 34 is a temperature controller, 35 is an AND gate, and 36 is a zero field gate. Note that the same reference numerals in the figures indicate the same or corresponding parts. Agent Shin Kuzuno - (1 other person) Figure 1 et al.

Claims (1)

【特許請求の範囲】 高温渾と低温庫にそれぞれ高温蒸発器と低温蒸発器を備
え、圧縮機からの冷媒を第1凝縮器を介して前記高温蒸
発器と低温蒸発器に通し冷却を行う冷却装置において、
前記第1凝縮器と高温蒸発器との間に逆止弁、第2凝縮
器、高温系統開閉弁。 および高温系統減圧器を順次設け、前記第1凝縮−と低
温蒸発器との間に低温系統開閉弁および低温系統減圧器
とを設け、前記低温蒸発器の下流と前記高温帯蒸発器の
間に逆止弁を設け、前記高温庫内の温度を感知しオン、
オフ信号を出力する第1の温度制御器と、前記低温庫内
の温度を感知しオン、オフ信号を出力する第2の温度制
御器とをそれぞれ設け、さらに、前記第1の温度制御器
のオフまたはオン信号と第2の温度制御器のオンま1こ
はオフ信号により成立するANDゲート、このANDゲ
ートのオン信号と第1の温度制御器のオン信号のいずれ
かで成立するORゲートを設け。 前記ORゲートの出力を前記圧縮機尾接続し、前記第1
の温度制御器の出力を前記高温系統開閉弁に接続し、前
記ANDゲートの出力を前記低温系統開閉弁に接続した
ことを特徴とする冷却装置。
[Claims of Claims] A cooling system in which a high-temperature evaporator and a low-temperature evaporator are provided in the high-temperature tank and the low-temperature storage, respectively, and the refrigerant from the compressor is passed through the high-temperature evaporator and the low-temperature evaporator via a first condenser. In the device,
A check valve, a second condenser, and a high-temperature system opening/closing valve are provided between the first condenser and the high-temperature evaporator. and a high-temperature system pressure reducer are provided in sequence, a low-temperature system on-off valve and a low-temperature system pressure reducer are provided between the first condenser and the low-temperature evaporator, and between the downstream of the low-temperature evaporator and the high-temperature evaporator. A check valve is installed to sense the temperature inside the high temperature chamber and turn it on.
A first temperature controller that outputs an OFF signal and a second temperature controller that senses the temperature inside the low temperature refrigerator and outputs an ON/OFF signal are provided, and further, the first temperature controller An AND gate is established between the OFF or ON signal and the OFF signal of the second temperature controller, and an OR gate is established between the ON signal of this AND gate and the ON signal of the first temperature controller. Provided. The output of the OR gate is connected to the tail of the compressor, and
An output of the temperature controller is connected to the high temperature system on-off valve, and an output of the AND gate is connected to the low temperature system on-off valve.
JP16168482A 1982-09-17 1982-09-17 Cooling device Pending JPS5952173A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16168482A JPS5952173A (en) 1982-09-17 1982-09-17 Cooling device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16168482A JPS5952173A (en) 1982-09-17 1982-09-17 Cooling device

Publications (1)

Publication Number Publication Date
JPS5952173A true JPS5952173A (en) 1984-03-26

Family

ID=15739876

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16168482A Pending JPS5952173A (en) 1982-09-17 1982-09-17 Cooling device

Country Status (1)

Country Link
JP (1) JPS5952173A (en)

Similar Documents

Publication Publication Date Title
JPS6350628B2 (en)
JPS5952173A (en) Cooling device
JPS5952170A (en) Cooling device
JPS5952175A (en) Cooling device
JPS5952171A (en) Cooling device
JPS5952174A (en) Cooling device
JPS6350630B2 (en)
JP2816526B2 (en) Multi-source refrigeration equipment
JPS5888559A (en) Cooling device
JPS58108364A (en) Cooling device
JPS58217177A (en) Cooling device
JPH0112137Y2 (en)
JPH05306856A (en) Air-cooled type refrigerating plant
JPH0222615Y2 (en)
JPS5952172A (en) Cooling device
JPS5888563A (en) Cooling device
JP2001153477A (en) Refrigerating plant
JPH05768Y2 (en)
JPS631151Y2 (en)
JPH05769Y2 (en)
JPH065570Y2 (en) Refrigeration equipment
JPS626461Y2 (en)
JPS5952169A (en) Cooling device
JPS5952176A (en) Cooling device
JPS5941753A (en) Cooling device