JPS5941753A - Cooling device - Google Patents

Cooling device

Info

Publication number
JPS5941753A
JPS5941753A JP15191282A JP15191282A JPS5941753A JP S5941753 A JPS5941753 A JP S5941753A JP 15191282 A JP15191282 A JP 15191282A JP 15191282 A JP15191282 A JP 15191282A JP S5941753 A JPS5941753 A JP S5941753A
Authority
JP
Japan
Prior art keywords
temperature
low
refrigerator
signal
evaporator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15191282A
Other languages
Japanese (ja)
Inventor
雅彦 清水
和弘 丸山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP15191282A priority Critical patent/JPS5941753A/en
Publication of JPS5941753A publication Critical patent/JPS5941753A/en
Pending legal-status Critical Current

Links

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 この発明は、複数の温度の異なる保冷室をもつ冷蔵庫な
どの冷却装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a cooling device such as a refrigerator having a plurality of cold storage chambers having different temperatures.

従来、高温庫と、低温庫vi台の冷凍ユニットで冷却す
るという形態は、家庭用の冷凍冷蔵庫などの冷却システ
ムに代表的なものが見られ、基本的には第1図に示すよ
うな冷却クステムを採用している。
Conventionally, the cooling system in which a high-temperature storage and a low-temperature storage refrigeration unit are used for cooling is typically seen in cooling systems such as household refrigerator-freezers, and basically the cooling system shown in Figure 1 is It uses Kustem.

第1図は従来の冷却装置を示す構成略図で、1は圧縮機
、2はコンデンサ、3は第1毛細管、4は高温蒸発器、
Tは第2毛細管、8は低温蒸発器、10は高温庫、11
は低温庫、12はアキュムレータである。
FIG. 1 is a schematic diagram showing the configuration of a conventional cooling device, in which 1 is a compressor, 2 is a condenser, 3 is a first capillary tube, 4 is a high-temperature evaporator,
T is the second capillary tube, 8 is the low temperature evaporator, 10 is the high temperature chamber, 11
12 is a low-temperature refrigerator and an accumulator.

次に1動作について説明する。Next, one operation will be explained.

第1図において、圧縮機1から吐出され、コンデンサ2
で液化された冷媒液は、第1毛細管3で減圧され高温庫
10内に配設された高温蒸発器4で一部分が蒸発し、そ
の際、高温庫10内の冷却作用を行う。、高温蒸発器4
を出た気液2相の冷媒液は第2毛細管7で再び減圧され
、低温庫11内に配設された低温蒸発器8で残りが蒸発
し、その際、低温庫11を冷却する。低温蒸発器8を出
た冷媒液はアキュムレータ12を介して圧縮機1に吸い
込まれる。高、低温庫10.11内の温度管理は高温庫
10.低温庫11のどちらかの庫内に配設された温度調
節器(図示せず)により圧縮機1を駆動、停止させるこ
とにより行う。
In FIG. 1, the air is discharged from the compressor 1, and the condenser 2
The liquefied refrigerant liquid is depressurized in the first capillary tube 3 and partially evaporated in the high-temperature evaporator 4 disposed in the high-temperature refrigerator 10, at which time it performs a cooling effect in the high-temperature refrigerator 10. , high temperature evaporator 4
The two-phase gas-liquid refrigerant liquid that has exited is depressurized again in the second capillary tube 7, and the remainder is evaporated in a low-temperature evaporator 8 disposed within the low-temperature refrigerator 11, at which time the low-temperature refrigerator 11 is cooled. The refrigerant liquid exiting the low-temperature evaporator 8 is sucked into the compressor 1 via the accumulator 12. Temperature control in high and low temperature storage 10.11 is performed in high temperature storage 10.11. This is performed by driving and stopping the compressor 1 using a temperature controller (not shown) disposed in either of the low-temperature refrigerators 11.

以上のような構成の従来例においては、圧縮機1の吸入
圧力が低温蒸発器8の蒸発圧力に依存してしまうため、
高温蒸発器4の蒸発圧力がいかに高くとも圧縮機1の成
績係数は非常忙悪いものとなり、冷却システムとしても
効率の悪い運転7余儀なくされていた。また、前述のよ
うに庫内温度調整が高、低温庫10,11のどちらか一
方の庫内温度によらざるt得ないため、他方の庫内温度
は成り行きまかせとなってしまう欠点があった。
In the conventional example with the above configuration, the suction pressure of the compressor 1 depends on the evaporation pressure of the low-temperature evaporator 8.
No matter how high the evaporation pressure of the high-temperature evaporator 4 is, the coefficient of performance of the compressor 1 is extremely poor, and the cooling system is forced to operate inefficiently. In addition, as mentioned above, since the temperature inside the refrigerator must be adjusted depending on the temperature inside either the high or low temperature chambers 10 and 11, there is a drawback that the temperature inside the other chamber is left to its own devices. .

一方、各庫内温度の独立コントロールを可能とするため
に、蒸発器を1台とし、それによって高温庫10はダン
パー制御によって庫内温度ケコントロールし、低温庫1
1の温度は圧縮機1の駆動。
On the other hand, in order to enable independent control of the internal temperature of each refrigerator, only one evaporator is used, so that the temperature inside the high-temperature refrigerator 10 is controlled by damper control, and the temperature inside the low-temperature refrigerator 10 is controlled by damper control.
Temperature 1 is the drive of compressor 1.

停心によって行うという冷却システムも家庭用冷蔵庫な
どで近年一般的となっている。この方式は、両庫内温度
の独立コントロールは可能であるが、蒸発器の蒸発温度
はやはり低温庫11の温度に依存してしまうため、従来
例について述べたように冷却システムの効率が非常に悪
いことには変りはない。また、この方式を用いた場合、
高温庫10を冷却する蒸発器の冷却面温度が低温庫11
に見合った低いものとなるため、高温庫10内の乾燥過
多の問題が生じ、また、蒸発器上への着霜量が大きくな
り頻繁な除霜が必要になるほどの欠点があった。
In recent years, cooling systems that rely on stopping have become common in household refrigerators and the like. Although this method allows for independent control of the temperature inside both chambers, the evaporation temperature of the evaporator still depends on the temperature of the low-temperature chamber 11, so as described for the conventional example, the efficiency of the cooling system is extremely low. It's still bad. Also, when using this method,
The cooling surface temperature of the evaporator that cools the high-temperature refrigerator 10 is lower than the low-temperature refrigerator 11
As a result, the inside of the high-temperature storage 10 becomes too dry, and the amount of frost on the evaporator becomes large, necessitating frequent defrosting.

この発明は、上記従来装置の種々の欠点を改良するため
になされたもので、従来の家庭用冷蔵庫などの冷却シス
テムを大きく変えるものである。
This invention was made to improve the various drawbacks of the above-mentioned conventional devices, and significantly changes the conventional cooling systems of home refrigerators and the like.

以下この発明について説明する。This invention will be explained below.

第2図はこの発明の一実施例を示′1−構成略図である
。この図において、5,6は第1.第2亀磁弁、7は第
2毛細管で、低温庫11内に配設された低温蒸発器8と
連通し、第1毛細管3の出口の第2電磁弁6との間の冷
媒配管路中に配設される。
FIG. 2 is a schematic diagram illustrating an embodiment of the present invention. In this figure, 5 and 6 are the first . A second hexagonal valve 7 is a second capillary tube that communicates with a low-temperature evaporator 8 disposed in the low-temperature storage 11 and is in a refrigerant piping line between the outlet of the first capillary tube 3 and the second solenoid valve 6. will be placed in

9は逆止弁、13は前記高温庫10内忙配設された高温
庫ファン、14は前記低温J111内に配設された低温
庫ファンであり、その他は第1図と同じものである。
9 is a check valve, 13 is a high-temperature refrigerator fan disposed inside the high-temperature refrigerator 10, and 14 is a low-temperature refrigerator fan disposed in the low-temperature refrigerator J111, and the other components are the same as in FIG.

第2図の実施例は、通常の蒸発器を並列接続した冷凍シ
ステムに似ているが基本的には全く異なったものである
。すなわち、まず、異なる筒蓋発器4,8の蒸発圧力を
同一の吸入圧力に整合させるための従来の並列冷却シス
テムに具備されていた圧力調整部がこの発明の高温蒸発
器4の後に存在しない。つまり、この発明の特徴的な動
作は筒蓋発器4,8には同時に冷媒液は流さないという
点にあり、さらに詳しくは第2電磁弁61両毛細高温蒸
発器4とによって構成される高温系統の各系統の仕様は
圧縮機1とコンデンサ2の熱源側と各系統単独の組み合
わせにおいて筒蓋発器4,8の蒸発温度(圧力)が、例
えば低温蒸発器8が一30℃、高温蒸発器4が0℃とな
るように設定されているという点にある。
The embodiment of FIG. 2 resembles a conventional refrigeration system with parallel evaporators, but is fundamentally different. That is, first, the pressure adjustment unit provided in the conventional parallel cooling system for matching the evaporation pressures of the different cap generators 4 and 8 to the same suction pressure does not exist after the high temperature evaporator 4 of the present invention. . In other words, the characteristic operation of the present invention is that the refrigerant liquid does not flow into the cap generators 4 and 8 at the same time. The specifications of each system are such that in the combination of the heat source side of the compressor 1 and condenser 2 and each system alone, the evaporation temperature (pressure) of the tube cover generators 4 and 8 is, for example, 130°C for the low-temperature evaporator 8 and 30°C for the high-temperature evaporator. The point is that the temperature of the container 4 is set to 0°C.

つまり、この発明は、低温、高温の各系統を単独に運転
、いい換えれはコンデンサ2を出た冷媒液を時系列的に
筒蓋発器4,8に分配し、高温庫10を冷却する際の高
温蒸発器4の蒸発温度(圧力)を高く維持することによ
って圧縮機1の成績係数な向上させ、冷凍システムの運
転効率を向上させようとするものである。
In other words, the present invention operates each of the low temperature and high temperature systems independently, or in other words, distributes the refrigerant liquid exiting the condenser 2 to the lid generators 4 and 8 in chronological order to cool the high temperature storage 10. By maintaining the evaporation temperature (pressure) of the high-temperature evaporator 4 at a high level, the coefficient of performance of the compressor 1 is improved and the operating efficiency of the refrigeration system is improved.

第3図は運転制御回路のブロック図である。第3図Vc
おい℃、21,22は前記高温点io、低温庫11内に
それぞれ配設された温度検出センサ、23.24は温度
制御器、25は前記温度制御器23のオフ信号と温度制
御器240オン信号によって成立するANDゲートなど
の論理積回路、26は前記論理積回路25の出力と温度
制御器230オン信号のどちらかで成立するOIL、f
−ト等の論理和回路、2Tは高温庫スイッチ、28は低
温庫スイッチであり、1,5,6,13.14は第2図
と同じく圧縮機、第1電磁弁、第2電磁弁、高温庫ファ
ン、低温庫ファンである。
FIG. 3 is a block diagram of the operation control circuit. Figure 3 Vc
℃, 21 and 22 are temperature detection sensors arranged in the high temperature point io and the low temperature storage 11, respectively, 23 and 24 are temperature controllers, and 25 is an off signal of the temperature controller 23 and an on temperature controller 240. An AND circuit such as an AND gate established by a signal, and 26 an OIL f established by either the output of the AND circuit 25 or the ON signal of the temperature controller 230.
2T is a high temperature storage switch, 28 is a low temperature storage switch, 1, 5, 6, 13.14 is a compressor, the first solenoid valve, the second solenoid valve, as in FIG. They are a high temperature storage fan and a low temperature storage fan.

次に、第2図の実施例の動作を第3図の運転制御回路の
ブロック図を参照しながら説明する。
Next, the operation of the embodiment shown in FIG. 2 will be explained with reference to the block diagram of the operation control circuit shown in FIG. 3.

温度検出センサ21,22によって一定時間ごとに検出
された両庫内温度は温度制御器23.24に入力される
。温度制御器23は高温庫1o内の温度が高い場合は、
オン信号乞高温庫ファン13と第11肛磁弁5と、論理
和回路26を介して圧縮機1とに出力し、両者を動作さ
せる。
The internal temperatures of both chambers detected at regular intervals by the temperature detection sensors 21 and 22 are input to temperature controllers 23 and 24. When the temperature inside the high temperature warehouse 1o is high, the temperature controller 23
The ON signal is outputted to the high-temperature storage fan 13, the eleventh anal valve 5, and the compressor 1 via the OR circuit 26, causing both to operate.

このようにしたとき、高温庫1o内の高温蒸発器4で冷
媒液は蒸発し高温庫1oの冷却作用を行う。
When this is done, the refrigerant liquid evaporates in the high-temperature evaporator 4 in the high-temperature refrigerator 1o, thereby performing a cooling action on the high-temperature refrigerator 1o.

このとき、低温庫11内の温度が高(なり、温度制御器
24からオンイδ号がでても第3図に示すように論理積
回路25が成立しないため、第2電磁弁6は開かず、低
温庫11は冷却されない。しかし、高温庫10が冷却さ
れ所定値に達すると、温度制御器23はオフ信号を出力
し、高温庫ファン13と第1電磁弁5を閉止する。その
時、低温庫11の温度制御器24からオフ信号が出てい
れば圧縮機1は停止する。しかし、このとき低温庫11
内の温度が高く温度制御器24からオン信号が出ていれ
ば、このオン信号と温度制御器23のオフ信号とによっ
て論理積回路25が成立ずろので論理和回路26によっ
て圧縮機1は運転を続け、第2電磁弁6と低温庫ファン
14も前記論理積出力によって開きそれによって低温庫
11が冷却される。
At this time, even if the temperature inside the low-temperature refrigerator 11 becomes high (and the ON signal δ is output from the temperature controller 24), the AND circuit 25 is not established as shown in FIG. 3, so the second solenoid valve 6 does not open. , the low-temperature refrigerator 11 is not cooled. However, when the high-temperature refrigerator 10 is cooled and reaches a predetermined value, the temperature controller 23 outputs an off signal and closes the high-temperature refrigerator fan 13 and the first solenoid valve 5. If the off signal is output from the temperature controller 24 of the refrigerator 11, the compressor 1 will stop.
If the internal temperature is high and the ON signal is output from the temperature controller 24, the AND circuit 25 will be established by this ON signal and the OFF signal from the temperature controller 23, so the OR circuit 26 will cause the compressor 1 to start operating. Subsequently, the second electromagnetic valve 6 and the low temperature refrigerator fan 14 are also opened by the logical product output, thereby cooling the low temperature refrigerator 11.

このようK、低温fL11の冷却運転を行っている途中
に、再び高温庫10の温度が所定値より上昇すれは、温
度制御器23からのオン信号によって内11述のよ5K
K温庫10の冷却運転圧切り替わる。双方の庫内温度が
所定値以下となれは温度制御器23.24は各々オフ信
号を出し、第1.第2電磁弁5,6と両ファン13.1
4は閉止し、圧縮機1は停止する。
If the temperature of the high-temperature warehouse 10 rises above the predetermined value again during the cooling operation at the low temperature fL11, an ON signal from the temperature controller 23 will be sent to the
The cooling operating pressure of the K warmer 10 is switched. When the internal temperature of both chambers falls below a predetermined value, the temperature controllers 23 and 24 each issue an off signal, and the first... Second solenoid valve 5, 6 and both fans 13.1
4 is closed and the compressor 1 is stopped.

上記制御に加え、高温庫10または低温庫11の扉開放
により高温庫スイッチ27または低温庫スイッチ28は
オフ信号を温度制御器2,3または24に出力し、この
オフ信号が一定時間継続した時、各温度制御523.2
4はオフ信号を出力し、上記の制御にもどる。
In addition to the above control, when the door of the high-temperature refrigerator 10 or the low-temperature refrigerator 11 is opened, the high-temperature refrigerator switch 27 or the low-temperature refrigerator switch 28 outputs an off signal to the temperature controller 2, 3, or 24, and when this off signal continues for a certain period of time, , each temperature control 523.2
4 outputs an off signal and returns to the above control.

次に、上述したこの発明の効果を家庭用冷蔵庫を例とし
て具体的な数値によって説明する。
Next, the effects of the invention described above will be explained using specific numerical values using a household refrigerator as an example.

通常、家庭用冷凍冷蔵庫の低温庫(冷凍庫)11の温度
は一18°C程度で、その庫内温度を実現するためには
−25〜−30℃の蒸発温度が必要である。一方、高温
庫(冷蔵室)10の温度は3℃程度であ゛す、蒸発温度
はO〜−5℃位で十分である。また、両者の冷却負荷比
率は4:6程度で、高温庫(冷蔵室)10の負荷の方が
太きい。加えて圧縮機1の成績係数、つまり運転効率を
−25〜−30℃とO〜−5℃の画然発温度で比較した
場合、後者は前者の約2〜2,5倍である。
Normally, the temperature of the low-temperature compartment (freezer) 11 of a domestic refrigerator-freezer is about -18°C, and in order to achieve this internal temperature, an evaporation temperature of -25 to -30°C is required. On the other hand, the temperature of the high temperature storage (refrigeration room) 10 is about 3°C, and the evaporation temperature is about 0 to -5°C. Further, the cooling load ratio between the two is about 4:6, and the load on the high temperature storage (refrigeration room) 10 is greater. In addition, when comparing the coefficient of performance, that is, the operating efficiency, of the compressor 1 at a temperature of -25 to -30°C and a temperature of 0 to -5°C, the latter is about 2 to 2.5 times the former.

つまり、第2図、第3図で説明し工きたこの発明の実施
例ケ、例えば家庭用の冷凍冷蔵庫に適用した場合、60
%を占める冷蔵室の冷却負荷を従来の2倍以上の圧縮機
1の運転効率で吸収することができ、大きな省エネルギ
ー効果が期待できることが判る。また、扉開放時の冷却
運転を防ぐことができ、高温庫10側だけの連続冷却運
転になるのを防ぐことができる。
In other words, when the embodiment of this invention explained in FIGS. 2 and 3 is applied to a household refrigerator-freezer, for example, 60
% of the cooling load in the refrigerator compartment can be absorbed by the operating efficiency of the compressor 1, which is more than twice that of the conventional one, and it can be seen that a large energy saving effect can be expected. Further, cooling operation when the door is opened can be prevented, and continuous cooling operation only on the high temperature refrigerator 10 side can be prevented.

なお、上記実施例においては、説明を簡単にするために
低温系に第2電磁弁6を入れであるが、低温用の第2毛
細管Tの流通抵抗が高温用に比べ著しく大きくなるため
低温系の第2電磁弁6は入れなくともよい。
In the above embodiment, the second electromagnetic valve 6 is placed in the low temperature system to simplify the explanation, but since the flow resistance of the second capillary tube T for low temperatures is significantly larger than that for high temperatures, The second solenoid valve 6 does not need to be inserted.

また、前述の説明は負荷側が2系統のものについてのみ
行ってきたが、より多系統の負荷についてもこの発明は
適用できることはいうまでもない。
Further, although the above explanation has been made only for a load having two systems, it goes without saying that the present invention can be applied to loads having more systems.

以上説明したようにこの発明は、冷媒液を蒸発圧力の異
なる濾発器に時系列的に分配するようにしたので、圧縮
機および冷凍システム全体の運転効率を飛跡的に向上さ
せることができる。加えて、各庫内温度の独立制御が可
能であり、また”、扉開放時の冷却運転と高温庫だけの
連続冷却運転を防ぐことが可能になり、さらに、圧力調
整弁等が不要になるなど大きな効果がある。また、高温
庫の冷却が適正な高い蒸発温度で行われるため、高温庫
の乾燥などの問題も生じない等の利点な有する。
As explained above, in the present invention, the refrigerant liquid is distributed in time series to the filters having different evaporation pressures, so that the operating efficiency of the compressor and the entire refrigeration system can be dramatically improved. In addition, it is possible to independently control the temperature inside each compartment, and it is also possible to prevent cooling operation when the door is open and continuous cooling operation only in the high-temperature compartment, and furthermore, there is no need for pressure regulating valves, etc. In addition, since the high-temperature storage is cooled at an appropriately high evaporation temperature, there are no problems such as drying of the high-temperature storage.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の冷却装置を示す概略構成図、第2図はこ
の発明の一実施例を示す概略構成図、第3図は第2図の
動作を説明するため運転制御回路のブロック図である。 図中、1は圧縮機、2はコンデンサ、3は第1毛細管、
4は高温蒸発器、5は第1電磁弁、6は第2電磁弁、7
は第2毛細管、8は低温蒸発器、9は逆止弁、10は高
温庫、11は低温庫、12はアキュムレータ、13は高
温庫ファン、14は低温庫ファン、21.22は温度検
出センサ、23゜24は温度制御器、25は論理積回路
、26は論理和回路、27は高温庫スイッチ、28は低
温庫スイッチである。なお、図中の同一符号は同一また
は相当部分を示す。 代理人 葛野信−(外1名) 第1図 1 第2図 1 第3図
Fig. 1 is a schematic diagram showing a conventional cooling device, Fig. 2 is a schematic diagram showing an embodiment of the present invention, and Fig. 3 is a block diagram of an operation control circuit to explain the operation of Fig. 2. be. In the figure, 1 is a compressor, 2 is a condenser, 3 is a first capillary,
4 is a high temperature evaporator, 5 is a first solenoid valve, 6 is a second solenoid valve, 7
is a second capillary, 8 is a low temperature evaporator, 9 is a check valve, 10 is a high temperature storage, 11 is a low temperature storage, 12 is an accumulator, 13 is a high temperature storage fan, 14 is a low temperature storage fan, 21.22 is a temperature detection sensor , 23 and 24 are temperature controllers, 25 is an AND circuit, 26 is an OR circuit, 27 is a high temperature storage switch, and 28 is a low temperature storage switch. Note that the same reference numerals in the figures indicate the same or corresponding parts. Agent Makoto Kuzuno (1 other person) Figure 1 1 Figure 2 1 Figure 3

Claims (2)

【特許請求の範囲】[Claims] (1)高BSと低温庫にそれぞれ高温蒸発器と低温蒸発
器を備え、圧縮機からの冷媒液を第1毛細管を介して前
記高温蒸発器と低温蒸発器に通し冷却を行う冷却装置に
おいて、前記高温蒸発器の下流ψりに′fJL磁弁を配
置し、前記低温蒸発器の上流側に第2毛細管を配置し、
前記高温蒸発器と電磁弁の直列接続したものと、前記第
2毛細管と低温蒸発器の直列接続したものとを互に並列
に接続し、それぞれの庫内空気を攪拌するための高温庫
ファンおよび低温庫ファンを設け、前記高温庫と低温庫
にそれぞれ温度検出センサを設け、これらの温度検出セ
ンサの出力に応じオン信号およびオフ信号を出力する温
度制御器をそれぞれ設け、また、それぞれの扉開放で前
記それぞれの温度制御器からオフ信号を出させる高温庫
スイッチおよび低温庫スイッチを設け、さらに前記高温
庫の冷却な前記低温庫の冷却より優先させて動作させろ
とともに、前記高温庫の温度制御器のオン信号で前記電
磁弁の開動作と前記高温庫ファンの運転を行わせ、前記
低温庫の冷却時に前記低温庫ファンの運転を行わせる運
転制御回路を設けたことを特徴とする冷却装置。
(1) A cooling device in which the high BS and low temperature storages each include a high temperature evaporator and a low temperature evaporator, and cools the refrigerant liquid from the compressor by passing it through the high temperature evaporator and the low temperature evaporator through a first capillary, A 'fJL magnetic valve is arranged downstream of the high temperature evaporator ψ, a second capillary is arranged upstream of the low temperature evaporator,
A high-temperature refrigerator fan for agitating the air in each refrigerator by connecting in parallel the series connection of the high-temperature evaporator and the solenoid valve and the series connection of the second capillary tube and the low-temperature evaporator; A low-temperature storage fan is provided, a temperature detection sensor is provided in each of the high-temperature storage and the low-temperature storage, a temperature controller is provided for outputting an on signal and an off signal in accordance with the output of these temperature detection sensors, and each door is opened. A high-temperature storage switch and a low-temperature storage switch are provided to issue an off signal from each of the temperature controllers, and furthermore, the cooling of the high-temperature storage is operated with priority over the cooling of the low-temperature storage, and the temperature controller of the high-temperature storage A cooling device comprising: an operation control circuit that causes the solenoid valve to open and the high-temperature refrigerator fan to operate in response to an on signal, and causes the low-temperature refrigerator fan to operate when the low-temperature refrigerator is being cooled.
(2)運転制御回路は、高温庫の扉開放で出力される高
温庫スイッチからのオフ信号が一定時間継続した時、高
温庫の温度制御器からオフ信号を出力させ、また、低温
庫の扉開放で出力される低温庫スイッチからのオフ信号
が一定時間継続した時、低温庫の温度制御器からオフ信
号を出力させろことを特徴とする特許請求の範囲第(1
)頃記載の冷却装置。
(2) The operation control circuit outputs an off signal from the temperature controller of the high-temperature refrigerator when the off signal from the high-temperature refrigerator switch that is output when the door of the high-temperature refrigerator is opened continues for a certain period of time, and also outputs an off signal from the temperature controller of the high-temperature refrigerator. Claim No. 1, characterized in that when the off signal from the low temperature refrigerator switch that is output when opened continues for a certain period of time, an off signal is output from the temperature controller of the low temperature refrigerator.
) Cooling device described around.
JP15191282A 1982-09-01 1982-09-01 Cooling device Pending JPS5941753A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15191282A JPS5941753A (en) 1982-09-01 1982-09-01 Cooling device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15191282A JPS5941753A (en) 1982-09-01 1982-09-01 Cooling device

Publications (1)

Publication Number Publication Date
JPS5941753A true JPS5941753A (en) 1984-03-08

Family

ID=15528906

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15191282A Pending JPS5941753A (en) 1982-09-01 1982-09-01 Cooling device

Country Status (1)

Country Link
JP (1) JPS5941753A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61101754A (en) * 1984-10-24 1986-05-20 有賀 良一 Large-load preferential cooling system in cooling facility having freezing and refrigeration function
JPH08210753A (en) * 1994-11-11 1996-08-20 Samsung Electronics Co Ltd Operation control circuit of refrigerator having high-efficiency multi-evaporator cycle(h.m.cycle) and operation control method thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61101754A (en) * 1984-10-24 1986-05-20 有賀 良一 Large-load preferential cooling system in cooling facility having freezing and refrigeration function
JPH08210753A (en) * 1994-11-11 1996-08-20 Samsung Electronics Co Ltd Operation control circuit of refrigerator having high-efficiency multi-evaporator cycle(h.m.cycle) and operation control method thereof

Similar Documents

Publication Publication Date Title
JPS5941753A (en) Cooling device
JPS6350628B2 (en)
JP2001133112A (en) Refrigerator
JPS6222396B2 (en)
JPS58217177A (en) Cooling device
JPS5941749A (en) Cooling device
JPS5941748A (en) Cooling device
JPS5941751A (en) Cooling device
JPS5941754A (en) Cooling device
JPS6350630B2 (en)
JP3710353B2 (en) refrigerator
JPS5941750A (en) Cooling device
JPS63129286A (en) Refrigerator
JP2001153477A (en) Refrigerating plant
JPS5941766A (en) Cooling device
JPS6350629B2 (en)
JPH0222615Y2 (en)
KR0161949B1 (en) Refrigeration cycle apparatus of refrigerator having two evaporators
JPS58210450A (en) Cooling device
JPS5941752A (en) Cooling device
JPS5895162A (en) Cooling device
JPS5952171A (en) Cooling device
JPS58217176A (en) Cooling device
JPS58198668A (en) Cooling device
JPS5895161A (en) Cooling device