JPS5941766A - Cooling device - Google Patents

Cooling device

Info

Publication number
JPS5941766A
JPS5941766A JP15299182A JP15299182A JPS5941766A JP S5941766 A JPS5941766 A JP S5941766A JP 15299182 A JP15299182 A JP 15299182A JP 15299182 A JP15299182 A JP 15299182A JP S5941766 A JPS5941766 A JP S5941766A
Authority
JP
Japan
Prior art keywords
temperature
low
evaporator
cooling
storage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15299182A
Other languages
Japanese (ja)
Inventor
雅彦 清水
裕 瀬下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP15299182A priority Critical patent/JPS5941766A/en
Publication of JPS5941766A publication Critical patent/JPS5941766A/en
Pending legal-status Critical Current

Links

Landscapes

  • Sampling And Sample Adjustment (AREA)
  • Surgical Instruments (AREA)
  • Encapsulation Of And Coatings For Semiconductor Or Solid State Devices (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 この発明は、複数の温度の異なる保冷室をもつ冷蔵庫な
どの冷却装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a cooling device such as a refrigerator having a plurality of cold storage chambers having different temperatures.

従来、高温床と低温庫を1台の冷凍ユニットで冷却する
という形態は、家庭用の冷凍冷蔵庫などの冷却システム
に代表的なものが見られ、基本的には第1図に示すよう
な冷却システムケ採用して(・ろ。
Conventionally, a system in which a high-temperature floor and a low-temperature chamber are cooled by a single refrigeration unit is typically seen in cooling systems such as household refrigerator-freezers, and basically the cooling system shown in Figure 1 Adopt System Ke (・ro).

第1図は従来の冷却装買乞示j槽成略図で、1は圧縮機
、2はコンデンサ、3は第1毛M管、4は高儲蒸発器、
Tは第2毛細管、8は低温蒸発器、10は高温床、11
は低温庫、12は7キユムレータである。
Figure 1 is a schematic diagram of a conventional cooling tank, where 1 is a compressor, 2 is a condenser, 3 is a first capillary M tube, 4 is a high-cost evaporator,
T is the second capillary tube, 8 is the low temperature evaporator, 10 is the hot bed, 11
is a low-temperature refrigerator, and 12 is a 7-cumulator.

次に、動作について説明j7)。Next, the operation will be explained j7).

第1図において、圧縮機1から吐出され、コンデンサ2
で液化された冷媒液は、第1毛細管3で減圧され高温床
10内に配設された高温蒸発器4で一部分が蒸発し、そ
め際、高温床10内の冷却作用を行う。高温蒸発器4を
出た気液2相の冷°媒液は第1毛細管3で再び減圧され
、低温庫11内に配設された低温蒸発器8で残りが蒸発
し、その際、低温庫11を冷却jろ。低温蒸発器8を出
た冷媒液は/キー・−ムレータ12を介して圧扁機1に
吸い込まれろ。高、低温庫10.11内の温度′[1理
は晶温庫10.低温庫11のどちらかの庫内に配設され
た温度L11節器(図示せず)により圧縮少1を駆動、
停止さ仕ろことにより行う。
In FIG. 1, the air is discharged from the compressor 1, and the condenser 2
The liquefied refrigerant liquid is depressurized in the first capillary 3 and partially evaporated in the high-temperature evaporator 4 disposed within the high-temperature bed 10, and at the same time performs a cooling action within the high-temperature bed 10. The gas-liquid two-phase refrigerant liquid that exits the high-temperature evaporator 4 is depressurized again in the first capillary tube 3, and the remainder is evaporated in the low-temperature evaporator 8 disposed in the low-temperature chamber 11. Cool down 11. The refrigerant liquid exiting the low-temperature evaporator 8 is sucked into the compressor 1 via the key mulrator 12. Temperature in high and low temperature storage 10.11 [1st theory is crystal temperature storage 10. The compression low 1 is driven by a temperature L11 regulator (not shown) disposed in either of the low-temperature refrigerators 11;
This is done by stopping the robot.

以上のような4iff成の従来例において(士、圧縮機
1の吸入圧力が低温蒸発器8の蒸発圧力に依存してしま
うため、高温蒸発器4の蒸発圧力がいかに高(とも圧縮
機1の成績係数(よ非常に悪いものとなり、冷却7ステ
ムとしても効率の悪い運転ケ余儀なくされていた。また
、前述のように庫内温度調整が高、低温庫10.11の
どちらか一方の庫内温度によらざるを得ないため、他方
の庫内温度は成9行きまかせとなってしまう欠点があっ
に0一方、各庫内温度の独立コントロール乞可能と−す
るために、蒸発器71台とし、それによって高濃厚10
はダンパー制御によって庫内温度奢コントロールし、低
温庫11の温度は圧縮機1の駆動。
In the conventional example of the 4iff configuration as described above, the suction pressure of the compressor 1 depends on the evaporation pressure of the low-temperature evaporator 8. The coefficient of performance (coefficient of performance) was very poor, and even with a 7-stem cooling system, we were forced to operate inefficiently.Also, as mentioned above, the temperature inside the refrigerator was adjusted to either high or low temperature. On the other hand, in order to be able to independently control the temperature inside each refrigerator, we installed 71 evaporators. , thereby making it highly concentrated 10
The temperature inside the refrigerator is controlled by damper control, and the temperature of the low-temperature refrigerator 11 is controlled by the compressor 1.

停止によって行うという冷却システムも家庭用冷蔵庫な
どで近年一般的となっている。この方式は、両庫内温度
の独立コントロールは可能であるが、蒸発器の蒸発温度
はやはり低温庫11の温度に依存してしま5ため、従来
例について述べたように冷却システムの効率が非常に悪
いことには変りはない。また、この方式を用いた場合、
高濃厚10を冷却する蒸発器の冷却面温度が低温庫11
に見合つ1こ低いものとなろ1こめ、高濃厚10内の乾
燥過多の問題が生じ、また、蒸発器上への着霜量が大き
く1より頻繁1工除f’ifが必要に1.C,全]など
の欠点があつ魁 この発明し1、上記従米装随の穂々の欠点ン改良1′る
ためKなされたもので、従来の家庭用冷蔵庫1↓どの冷
却システム2太き(変えるものであ4)。
Cooling systems that perform shutdown operations have also become common in household refrigerators and the like in recent years. Although this system allows for independent control of the internal temperatures of both chambers, the evaporation temperature of the evaporator still depends on the temperature of the low-temperature chamber 115, so as mentioned for the conventional example, the efficiency of the cooling system is extremely low. It's still bad. Also, when using this method,
The cooling surface temperature of the evaporator that cools the high concentration 10 is low temperature storage 11
If it is lower than 1, there will be a problem of excessive drying in the high concentration 10, and the amount of frost on the evaporator will be large, making it necessary to remove f'if more frequently than 1. This invention was made in order to improve the defects of the above-mentioned conventional home refrigerators, which have drawbacks such as It is something that can be changed 4).

以下この発明について説明j 6 +1第2図はこの発
明の一実施例ヶ示−寸一構成略図である。この図におい
て、5.6は第1.第2屯鰻弁、Iは第2毛測管で、低
温庫11内に配設された低温蒸発器8と連通し、第1毛
細管3の出口の第2′FrL磁弁6との間の冷媒配管路
中に配設されろ、9は逆止弁、その他は第1図と同じも
のである。
The present invention will be explained below.j 6 +1 Fig. 2 is a schematic diagram showing one embodiment of the present invention. In this figure, 5.6 is the first. The second tun eel valve, I, is a second capillary tube, which communicates with the low temperature evaporator 8 disposed in the low temperature storage 11, and is connected to the 2'FrL magnetic valve 6 at the outlet of the first capillary tube 3. A check valve 9 is disposed in the refrigerant piping, and the other parts are the same as those shown in FIG.

第2図の実施例は、通常の蒸発器を並列接続した冷凍シ
ステムに似ているが基本的には全(異ったものである。
The embodiment of FIG. 2 is similar to, but fundamentally different from, a conventional refrigeration system with parallel evaporators.

すなわち、まず、異なる画然発器4.8の蒸発圧力を同
一の吸入圧力に整合させるための従来の並列冷却システ
ムに具備されていた圧力調整部がこの発明の高温蒸発器
4の後に存在しない。つまり、この発明の特徴的な動作
は画然発器4,8には同時に冷媒液は流さないという点
にあり、さらに詳しくは第21Tt磁弁61両毛細管3
、T、低温蒸発器8.逆止弁9によって構成されろ低温
系統と、第1電磁弁5.第1毛細管3゜高温蒸発器4と
によって構成される高温系統の各系統の仕様は圧縮機1
とコンデンサ2の熱源側と各系統単独の租み合わせにお
いて画然発器4,8の蒸発温度(圧力)が、例えば低温
蒸発器8が一30℃、高温蒸発器4が0℃となるように
設定されているといり点にある。
That is, first, the pressure adjustment section provided in the conventional parallel cooling system for matching the evaporation pressures of different evaporators 4.8 to the same suction pressure does not exist after the high temperature evaporator 4 of the present invention. . In other words, the characteristic operation of this invention is that the refrigerant liquid does not flow into the generators 4 and 8 at the same time.
, T, low temperature evaporator8. A low temperature system consisting of a check valve 9 and a first solenoid valve 5. The specifications of each system in the high-temperature system consisting of the first capillary tube 3° and the high-temperature evaporator 4 are as follows:
In the heat source side of the condenser 2 and each system individually, the evaporation temperature (pressure) of the generators 4 and 8 is set such that, for example, the evaporation temperature (pressure) of the low-temperature evaporator 8 is -30°C and the high-temperature evaporator 4 is 0°C. It is located at the perforation point set to .

つまり、この発明は、低温、高温の各系統乞単独に運転
、いい換えればコンデンサ2を出た冷媒液を時系列的に
画然発器4,8に分配し、高濃厚10を冷却jろ際の高
温蒸発器4の蒸発温度(圧力)を高(維持することによ
って圧縮機1の成績係数を向上させ、冷凍システムの運
転効率を向上させようとするものである。
In other words, this invention operates the low and high temperature systems individually, in other words, distributes the refrigerant liquid coming out of the condenser 2 to the generators 4 and 8 in a chronological order, and cools the highly concentrated 10. By maintaining the evaporation temperature (pressure) of the high-temperature evaporator 4 at a high level, the coefficient of performance of the compressor 1 is improved and the operating efficiency of the refrigeration system is improved.

第3図は運転制御回路のブロック図である。第3図にお
いて、21.22は前記高濃厚10.低温庫11内にそ
れぞれ配設された温度検出センサ、23.24は温度制
御器、25は前記温度制御器23σフオフ信号と温度制
御器240オンイ3号によって成立するANDゲートな
どの論理積回路、26は前記論理積回路25の出力と温
度制御器230オン信号のどちらかで成立するORゲー
ト等の論理和回路、27は高温側の温度検出センサ21
かもの温度を記憶する温度メモリであり、1,5゜6は
第2図と同じ(圧縮機、第1電磁弁、第2電磁弁である
FIG. 3 is a block diagram of the operation control circuit. In FIG. 3, 21.22 is the high concentration 10. Temperature detection sensors respectively arranged in the low temperature storage 11, 23 and 24 a temperature controller, 25 an AND circuit such as an AND gate formed by the temperature controller 23σ off signal and the temperature controller 240 ONI No. 3; 26 is an OR circuit such as an OR gate established by either the output of the AND circuit 25 and the ON signal of the temperature controller 230, and 27 is a temperature detection sensor 21 on the high temperature side.
This is a temperature memory that stores the temperature of the spider, and 1.5°6 is the same as in Fig. 2 (compressor, first solenoid valve, and second solenoid valve).

次に、第2図の実施例の動作を第3図の運転制御回路の
ブロックl7参照しながら説明する。
Next, the operation of the embodiment shown in FIG. 2 will be explained with reference to block 17 of the operation control circuit shown in FIG.

温度検出センサ21,22によって一定時間ごとに検出
された両庫内温度は温度制御器23.24に入力される
。このとき、高温側の温度検出センサ21からの温度は
温度メモリ27に記憶されろ。
The internal temperatures of both chambers detected at regular intervals by the temperature detection sensors 21 and 22 are input to temperature controllers 23 and 24. At this time, the temperature from the temperature detection sensor 21 on the high temperature side is stored in the temperature memory 27.

温度制御器23は高温側10内の温度が高い場合はオン
信号を第1電・両弁5と、論理和回路26を介して圧縮
機1とに出力し、両者を動作させる。
When the temperature in the high temperature side 10 is high, the temperature controller 23 outputs an on signal to the first electric/double valve 5 and the compressor 1 via the OR circuit 26 to operate both.

このようにしたとき、高温側10内の高温蒸発器4で冷
媒液は蒸発し高温側10の冷却作用7行う、。
When this is done, the refrigerant liquid evaporates in the high-temperature evaporator 4 in the high-temperature side 10, thereby performing a cooling action 7 on the high-temperature side 10.

0のとき、低温庫11内の温度が高</エリ、温度制御
器24かもオン信号が−Cても第3図に示すように論理
積回路25が成立しないため、第2電磁弁6は開かず、
低温庫11は冷却されな(・。しかし、高温側10が冷
却され所定籠に達す6と、温度制御器23はオフ信号を
出力し第1電磁弁5ン閉止する。そのとき温度制御器2
4からオフ信号が出ていれば圧縮機1は停止す会。しか
し、このとき低温庫11内の温度が高(温度制御器24
からオン信号が出ていれば、このオン信号と温度制御器
23のオフ信号とによって論理積Erjl路25が成立
するので論理和回路26によって圧縮機1&集運転欠続
け、第2電磁弁6も^(S記論理積出力iCよって開き
それによって低温庫11が冷却さ1tろ。
0, the temperature inside the low-temperature refrigerator 11 is high, and even if the temperature controller 24 is turned on, the AND circuit 25 is not established as shown in FIG. 3, so the second solenoid valve 6 is Doesn't open,
The low temperature storage 11 is not cooled (.However, when the high temperature side 10 is cooled and reaches the predetermined cage 6, the temperature controller 23 outputs an off signal and closes the first solenoid valve 5. At that time, the temperature controller 2
If the off signal is output from 4, compressor 1 will stop. However, at this time, the temperature inside the low temperature refrigerator 11 is high (temperature controller 24
If an on signal is output from the on signal, the logical product Erjl path 25 is established by this on signal and the off signal from the temperature controller 23, so the logical sum circuit 26 continues to interrupt the compressor 1 & collection operation, and the second solenoid valve 6 also ^(S storage product output iC opens and the low temperature refrigerator 11 is cooled by 1t.

このように、低温庫11の冷却運転を行つCI−・ろ途
中に再び高温側10の温度が所定値J−9上昇−rれば
、温度制御器23からのオン信号によって前述のように
高@庫10の冷却運転に切り換わる。
In this way, if the temperature on the high temperature side 10 rises by the predetermined value J-9 again during the CI-filtration operation of the low-temperature storage 11, the ON signal from the temperature controller 23 will cause the temperature to rise as described above. The cooling operation of the high @ warehouse 10 is switched.

双方の庫内温度が所定値以下となれば温度制御器23.
24は各々オフ信号を出し、第1.第2電磁弁5,6は
閉止し圧縮機1は停止する。上記制御に加え高温側10
の冷却時、扉開放や過大負荷などに、J:る高温側10
の連続冷却運転を防止する定め、温度検出センサ21か
もの一定時間ごとσ]。
If the internal temperatures of both chambers are below a predetermined value, the temperature controller 23.
24 each output an off signal, and the first . The second solenoid valves 5 and 6 are closed and the compressor 1 is stopped. In addition to the above control, high temperature side 10
When cooling, opening the door, overloading, etc., the high temperature side 10
temperature detection sensor 21 at regular intervals [σ] to prevent continuous cooling operation.

温Uを記憶−16温度メモリ2Tの値による温度差があ
る一走値以上になると高温側10の温度制御器23はオ
フ信号を出力し上記制御に戻る。。
When the temperature difference according to the value in the temperature memory 2T (memorize temperature U)-16 exceeds a certain one-run value, the temperature controller 23 on the high temperature side 10 outputs an off signal and returns to the above control. .

次に、上述したこの発明の効果を家庭用冷蔵庫を例とし
て異本的な数値によって説明する。。
Next, the effects of the present invention described above will be explained using unconventional numerical values using a household refrigerator as an example. .

通常、家庭用冷凍冷蔵庫の低温*(冷凍床用1の温度は
−18”C程度で、その庫内温度欠実現するためには−
25〜−30℃の蒸発温度が必要である。一方、高温側
(冷蔵室)10の温ル[は3℃程度であり、蒸発温度は
0〜−5 ”0位で十分である。また、両者の冷却負荷
比率は4:6程度で、高温側(冷蔵室)10の負荷の方
が太きい。加えて圧縮機1の成績係数、つまり運転効率
を−25〜−30℃とθ〜−5℃の画然発温度で比較し
fこ場合、後者は前者の約2〜2.5倍である、。
Normally, the low temperature of a household refrigerator-freezer* (the temperature of the freezer floor 1 is around -18"C, and in order to achieve that internal temperature -
Evaporation temperatures of 25 to -30°C are required. On the other hand, the temperature on the high temperature side (refrigerator) 10 is about 3℃, and the evaporation temperature is sufficient at 0 to -5''0. The load on side (refrigeration room) 10 is heavier.In addition, the coefficient of performance, or operating efficiency, of compressor 1 is compared between -25 to -30°C and θ to -5°C, and in this case , the latter is about 2 to 2.5 times the former.

つまり、第2図、第3図で説明してきたこの発明の実施
例を、例えば家庭用の吟醸冷蔵庫に適用した場合、60
%を占める冷蔵室の冷却負荷を従来の2倍以上の圧縮機
1の運転効率で吸収τへことができ、大きな省エネルギ
ー効果が期待できることが判る。また、高温側10側の
扉開放や過大負荷などにより高温側10側だけの連続冷
却運転になるのを防ぐことができる。
In other words, when the embodiment of this invention explained in FIGS. 2 and 3 is applied to, for example, a home-use Ginjo refrigerator, 60
% of the cooling load in the refrigerator compartment can be reduced to absorption τ with the operating efficiency of the compressor 1 more than twice that of the conventional system, and it can be seen that a large energy saving effect can be expected. Further, it is possible to prevent continuous cooling operation only on the high temperature side 10 due to opening of the door on the high temperature side 10 or excessive load.

なお、上記実施例においては、説Elllを簡単にする
ために低温系に第2電磁弁6を入れであるが、低温用の
第2毛細管TのR,通抵抗が高温用に比べ著しく大きり
1ヨるため低温系の第2電磁弁6は入れなくてもよい。
In the above embodiment, the second solenoid valve 6 is installed in the low temperature system to simplify the explanation, but the R and conduction resistance of the second capillary tube T for low temperature use are significantly larger than those for high temperature use. 1 yaw, so the second solenoid valve 6 for the low temperature system does not have to be installed.

また、前述の説明は負荷側が2系統のものについてのみ
行ってきたが、より多系統の負荷についてもこの発明は
適用できろことはいうまでもない。
Further, although the above explanation has been made only for a load having two systems, it goes without saying that the present invention can be applied to loads having more systems.

以上説明したようにこの発明をま、冷媒液を蒸発圧力の
異なる蒸発器に時系列的に分配し、高温側の冷却を低温
庫の冷却より優先させるようにし1こので、圧w4機J
6よび冷凍システム全体の運転効率を飛M的に向上させ
ることができる1、加えて、各庫内温度の独立制御が可
能であり、さらに高温側冷却時の扉開放などによく)1
h温坤−flttlだげの連続冷却運転を防ぐことが可
能になり、また、圧力調整弁等が不要になるなど大きな
効果がある。さらに高温側の冷却が適正な高い蒸発温度
で行われるため、高温側の乾燥などの問題も生じ7.(
い等の利点を有する。
As explained above, this invention distributes refrigerant liquid to evaporators with different evaporation pressures in chronological order, and gives priority to the cooling of the high temperature side over the cooling of the low temperature storage.
6 and the operating efficiency of the entire refrigeration system can be dramatically improved1.In addition, it is possible to independently control the temperature inside each refrigerator, and it is also useful for opening the door when cooling the high temperature side)1
It is possible to prevent excessive continuous cooling operation, and there are great effects such as eliminating the need for pressure regulating valves and the like. Furthermore, since the high-temperature side is cooled at an appropriately high evaporation temperature, problems such as drying of the high-temperature side occur.7. (
It has the following advantages.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の冷却装置を示す概略構成図、第2図はこ
の発明の一実施例を示す概略構成図、第3図は第2図の
動作を説明するための運転制御回路のブロック図である
。 図中、1は圧縮憬、2はコンケンザ、3は第1毛1Vl
l管、4は高温蒸発器、5は第1電磁弁、6は第2電磁
弁、7は第2毛細管、8は低温蒸発器、9は逆止弁、1
0は高温庫、11は低温庫、12は7キユムレータ、2
1.22は温度検出センサ、23.24は温度制御器、
25は論理積回路、26は論理和回路、2Tは温度メモ
リである。なお、図中の四−符号は同一または相当部分
を示す。 代理人 葛野化−(外1名) 第1図
FIG. 1 is a schematic configuration diagram showing a conventional cooling device, FIG. 2 is a schematic configuration diagram showing an embodiment of the present invention, and FIG. 3 is a block diagram of an operation control circuit for explaining the operation of FIG. 2. It is. In the figure, 1 is the compressor, 2 is the condenser, and 3 is the first hair 1Vl.
l pipe, 4 is a high temperature evaporator, 5 is a first solenoid valve, 6 is a second solenoid valve, 7 is a second capillary tube, 8 is a low temperature evaporator, 9 is a check valve, 1
0 is a high temperature storage, 11 is a low temperature storage, 12 is a 7 storage unit, 2
1.22 is a temperature detection sensor, 23.24 is a temperature controller,
25 is an AND circuit, 26 is an OR circuit, and 2T is a temperature memory. Note that the numeral 4 in the drawings indicates the same or equivalent parts. Agent Kazuno Kazu (1 other person) Figure 1

Claims (1)

【特許請求の範囲】[Claims] 高温床と低温庫にそれぞれ高温蒸発器と低温蒸発器な備
え、圧縮機からの冷媒液を第1毛細管を介して前記高温
蒸発器と低温蒸発器に通し冷却を行5冷却装置において
、前記高温蒸発器の下流ツ11に電磁弁χ配置し、前記
低温蒸発器の上流ツIIK第2毛細管ケ配置し、前記高
温蒸発器と電磁弁の直列接続したものと前記第2毛細管
と低温蒸発器の直列接続したものとを互に並列に接続し
、011記高温庫と低温庫にそれぞれ温度検出センサを
設け、これらの温度検出センサの出力に応じオン信号お
よびオフ信号を出力する温度制御器をそれぞれ設け、さ
らに前記高温床の冷却ン前記低温庫の冷却、に9優先さ
せて動作させるとともに、前記高温庫内の温度の一定時
間ごとの温度差がある一定値以上になったとき前記高温
床の温度制御器の出力をオフ信号にさせる制御回路を設
けたこと乞特徴と−[る冷却装置。
A high-temperature evaporator and a low-temperature evaporator are provided in the high-temperature floor and the low-temperature storage, respectively, and the refrigerant liquid from the compressor is cooled by passing it through the high-temperature evaporator and the low-temperature evaporator through the first capillary tube. A solenoid valve χ is arranged in the downstream part 11 of the evaporator, a second capillary tube IIK is arranged in the upstream part of the low-temperature evaporator, and the high-temperature evaporator and the solenoid valve are connected in series, and the second capillary and the low-temperature evaporator are connected in series. 011 high-temperature storage and low-temperature storage are each connected in parallel, and each temperature controller is provided to output an on signal and an off signal according to the output of these temperature detection sensors. Further, the cooling of the high-temperature floor is given priority to the cooling of the low-temperature storage, and when the temperature difference in the high-temperature storage over a certain period of time exceeds a certain value, the high-temperature floor is cooled. The cooling device is characterized by being provided with a control circuit that turns the output of the temperature controller into an OFF signal.
JP15299182A 1982-09-02 1982-09-02 Cooling device Pending JPS5941766A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15299182A JPS5941766A (en) 1982-09-02 1982-09-02 Cooling device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15299182A JPS5941766A (en) 1982-09-02 1982-09-02 Cooling device

Publications (1)

Publication Number Publication Date
JPS5941766A true JPS5941766A (en) 1984-03-08

Family

ID=15552567

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15299182A Pending JPS5941766A (en) 1982-09-02 1982-09-02 Cooling device

Country Status (1)

Country Link
JP (1) JPS5941766A (en)

Similar Documents

Publication Publication Date Title
JPS6350628B2 (en)
JPS5941766A (en) Cooling device
JPS6222396B2 (en)
JPS5941753A (en) Cooling device
JPS5941750A (en) Cooling device
JPS5941748A (en) Cooling device
JPS5941754A (en) Cooling device
JPS6350630B2 (en)
JPS5941749A (en) Cooling device
JPS5941751A (en) Cooling device
JPS58217177A (en) Cooling device
JPH0222615Y2 (en)
JPS6350629B2 (en)
JPS5895162A (en) Cooling device
JPS5952175A (en) Cooling device
JPS6185218A (en) Automotive air conditioner
JPS5941752A (en) Cooling device
JPS5952171A (en) Cooling device
JPS6260628B2 (en)
JPS5952172A (en) Cooling device
JPS6229704B2 (en)
JPS58198668A (en) Cooling device
JPS58210451A (en) Cooling device
JPS5952170A (en) Cooling device
JPS58217176A (en) Cooling device