JP2001133112A - Refrigerator - Google Patents

Refrigerator

Info

Publication number
JP2001133112A
JP2001133112A JP31923999A JP31923999A JP2001133112A JP 2001133112 A JP2001133112 A JP 2001133112A JP 31923999 A JP31923999 A JP 31923999A JP 31923999 A JP31923999 A JP 31923999A JP 2001133112 A JP2001133112 A JP 2001133112A
Authority
JP
Japan
Prior art keywords
evaporator
temperature
refrigerator
refrigerant flow
cooling chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP31923999A
Other languages
Japanese (ja)
Inventor
Masashi Yuasa
雅司 湯浅
Shuzo Kamimura
修三 上村
Hiroshi Yamada
宏 山田
Hideki Fukui
秀樹 福井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Refrigeration Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Refrigeration Co filed Critical Matsushita Refrigeration Co
Priority to JP31923999A priority Critical patent/JP2001133112A/en
Publication of JP2001133112A publication Critical patent/JP2001133112A/en
Pending legal-status Critical Current

Links

Landscapes

  • Devices That Are Associated With Refrigeration Equipment (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a refrigerator having a plurality of evaporators in which high storage quality of food is ensured through freezing cycle exhibiting high cooling efficiency. SOLUTION: A compressor 51, a condenser 52, a capillary tube 53, a first evaporator 48 in a refrigeration compartment 46, and a second evaporator 49 in a freezing compartment 47 are coupled in series to constitute a refrigeration cycle. A refrigerant flow rate varying unit 50 is disposed between the first evaporator 48 and the second evaporator 49 and the difference between the room temperature and the evaporation temperature is reduced by controlling the evaporation temperature of the first evaporator 48 and the second evaporator 49 variably. According to the arrangement, efficiency of the refrigeration cycle is enhanced and storage performance of foods is enhanced by suppressing room temperature variation or dehumidifying function.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、複数の冷却室を備
え、複数の蒸発器を設けた冷蔵庫に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a refrigerator having a plurality of cooling chambers and a plurality of evaporators.

【0002】[0002]

【従来の技術】 近年、複数の庫内にそれぞれに蒸発器
を設けて冷却する冷蔵庫が提案されている。
2. Description of the Related Art In recent years, refrigerators have been proposed in which an evaporator is provided in each of a plurality of refrigerators to cool the refrigerator.

【0003】従来のこの種の冷蔵庫としては、特開平8
−210753号公報に示されているものがある。
A conventional refrigerator of this kind is disclosed in
JP-A-210753 discloses an example.

【0004】以下、図面を参照しながら上記従来の冷蔵
庫を説明する。
Hereinafter, the conventional refrigerator will be described with reference to the drawings.

【0005】図4は従来例を示す冷蔵庫の概略的な構成
を示した側断面図である。図5は従来例を示す冷凍サイ
クル図である。図6は従来例を示す運転制御回路のブロ
ック図である。
FIG. 4 is a side sectional view showing a schematic structure of a refrigerator showing a conventional example. FIG. 5 is a refrigeration cycle diagram showing a conventional example. FIG. 6 is a block diagram of an operation control circuit showing a conventional example.

【0006】図4において、1は冷蔵庫本体であり、相
互間の冷気混合が起こらないように区画された冷凍室2
と冷蔵室3に構成されている。冷凍室2には、第一の蒸
発器4が設置されており冷蔵室3には第二の蒸発器5が
設置されている。また、6は第一の蒸発器4と隣接して
設けられた第一の送風機、7は第二の蒸発器5と隣接し
て設けられた第二の送風機である。8は冷蔵庫本体1の
下部後方に設けられた圧縮機である。
In FIG. 4, reference numeral 1 denotes a refrigerator main body, which is a freezer compartment 2 partitioned so as not to mix cold air with each other.
And the refrigerator compartment 3. A first evaporator 4 is installed in the freezer compartment 2, and a second evaporator 5 is installed in the refrigerator compartment 3. Reference numeral 6 denotes a first blower provided adjacent to the first evaporator 4, and reference numeral 7 denotes a second blower provided adjacent to the second evaporator 5. Reference numeral 8 denotes a compressor provided at a lower rear portion of the refrigerator body 1.

【0007】また、図5において、9は凝縮器、10は
減圧器としてのキャピラリチューブ、11は第一の蒸発
器4と第二の蒸発器5を接続する冷媒管であり、圧縮機
8、凝縮器9、キャピラリチューブ10、第一の蒸発器
4、冷媒管11、第二の蒸発器5を順に接続して閉回路
を構成している。
In FIG. 5, reference numeral 9 denotes a condenser, 10 denotes a capillary tube as a decompressor, 11 denotes a refrigerant tube connecting the first evaporator 4 and the second evaporator 5, and a compressor 8; The condenser 9, the capillary tube 10, the first evaporator 4, the refrigerant pipe 11, and the second evaporator 5 are sequentially connected to form a closed circuit.

【0008】次に、図6において、制御部である制御手
段12は、入力端子に、冷凍室2の温度を設定する冷凍
室温度調節器13及び冷蔵室3の温度を設定する冷蔵室
温度調節器14と、冷凍室2の温度を検知する冷凍室温
度検知手段15と、冷蔵室3の温度を検知する冷蔵室温
度検知手段16とが接続され、出力端子には、第一のリ
レー17と第二のリレー18とが接続されている。
Next, in FIG. 6, a control means 12, which is a control section, has, as input terminals, a freezer compartment temperature controller 13 for setting the temperature of the freezer compartment 2 and a refrigerator compartment temperature control for setting the temperature of the refrigerating compartment 3. A refrigerator 14, a freezer compartment temperature detecting means 15 for detecting the temperature of the freezing compartment 2, and a refrigerator compartment temperature detecting means 16 for detecting the temperature of the refrigerating compartment 3 are connected. The second relay 18 is connected.

【0009】また、電源19の端子の一方には、第一の
リレー17の動作に従ってオン/オフされる第一のスイ
ッチ20が接続され、第一のスイッチ20の出力端に
は、圧縮機8と第二のスイッチ21が接続されている。
また、第二のスイッチ21の接点aには前述した第一の
送風機6が、接点bには、前述した第二の送風機7が各
々が接続されている。
A first switch 20 that is turned on / off in accordance with the operation of the first relay 17 is connected to one of the terminals of the power supply 19, and the output terminal of the first switch 20 is connected to the compressor 8. And the second switch 21 are connected.
The contact point a of the second switch 21 is connected to the first blower 6 described above, and the contact b is connected to the second blower 7 described above.

【0010】以上のように構成された冷蔵庫について、
以下その動作を説明する。
[0010] Regarding the refrigerator configured as described above,
The operation will be described below.

【0011】圧縮機8で圧縮、凝縮器9で放熱、液化さ
れた冷媒は、キャピラリチューブ10にて減圧され第一
の蒸発器4にて一部が蒸発し、第二の蒸発器5を通過し
ながら残りが蒸発してそれぞれ熱交換作用を行う。その
後、ガス状態の冷媒は、圧縮機8に吸入される。このよ
うな冷凍サイクルは、圧縮機8が駆動されるに従って繰
り返される。
The refrigerant compressed by the compressor 8 and radiated and liquefied by the condenser 9 is decompressed by the capillary tube 10, partially evaporated in the first evaporator 4, and passed through the second evaporator 5. While the remainder evaporates, each performs a heat exchange action. Thereafter, the gaseous refrigerant is sucked into the compressor 8. Such a refrigeration cycle is repeated as the compressor 8 is driven.

【0012】また、第一の送風機6と、第二の送風機7
の強制通風作用により、冷凍室2及び冷蔵室3の空気が
第一の蒸発器4及び第二の蒸発器5において熱交換され
る。
A first blower 6 and a second blower 7
, The air in the freezing compartment 2 and the refrigerating compartment 3 undergo heat exchange in the first evaporator 4 and the second evaporator 5.

【0013】ここで、冷凍室温度調節器13の設定に基
づいた設定温度より冷凍室温度検知手段15の温度が高
い場合には、制御手段12により第一のリレー17が作
動して第一のスイッチ20がオンし、圧縮機8が運転さ
れる。さらに、冷蔵室温度調節器14の設定に基づいた
設定温度より冷蔵室温度検知手段16の温度が高い場合
には、制御手段12により第二のリレー18が作動して
第二のスイッチ21の接点bに接続され、第二の送風機
7が運転される。この作用によって冷蔵室3が選択的に
冷却され、所定温度に制御される。
Here, if the temperature of the freezing room temperature detecting means 15 is higher than the set temperature based on the setting of the freezing room temperature controller 13, the first relay 17 is operated by the control means 12 and the first relay 17 is operated. The switch 20 is turned on, and the compressor 8 is operated. Further, when the temperature of the refrigerator compartment temperature detecting means 16 is higher than the set temperature based on the setting of the refrigerator compartment temperature controller 14, the second relay 18 is operated by the control means 12 and the contact of the second switch 21 is turned on. b, and the second blower 7 is operated. By this action, the refrigerator compartment 3 is selectively cooled and controlled to a predetermined temperature.

【0014】一方、冷凍室温度調節器13の設定に基づ
いた設定温度より冷凍室温度検知手段15の温度が高
く、且つ、冷蔵室温度調節器14の設定に基づいた設定
温度より冷蔵室温度検知手段16の温度が低い場合に
は、制御手段12により第二のリレー18が作動して第
二のスイッチ21の接点aに接続され、第一の送風機6
が運転される。この作用によって冷凍室2が選択的に冷
却され、所定温度に制御される。
On the other hand, the temperature of the freezer compartment temperature detecting means 15 is higher than the set temperature based on the setting of the freezer compartment temperature controller 13, and the temperature of the refrigerator compartment is detected from the set temperature based on the setting of the refrigerator compartment temperature controller 14. When the temperature of the means 16 is low, the second relay 18 is operated by the control means 12 to be connected to the contact a of the second switch 21 and the first blower 6
Is driven. By this operation, the freezing compartment 2 is selectively cooled and controlled to a predetermined temperature.

【0015】そして、冷凍室温度調節器13の設定に基
づいた設定温度より冷凍室温度検知手段15の温度が低
い場合には、制御手段12により第一のリレー17が作
動して第一のスイッチ20がオフし、圧縮機8の運転が
停止される。
When the temperature of the freezing room temperature detecting means 15 is lower than the set temperature based on the setting of the freezing room temperature controller 13, the first relay 17 is operated by the control means 12 and the first switch is operated. 20 turns off, and the operation of the compressor 8 is stopped.

【0016】[0016]

【発明が解決しようとする課題】しかしながら、上記従
来の構成は、第一の蒸発器4と第二の蒸発器5が減圧機
能のない冷媒管11で連結されているため、各蒸発器の
蒸発温度がほぼ同一であり、且つ、冷凍室2、冷蔵室3
の冷却制御を、第一の送風機6と第二の送風機7の運転
制御で行っているため、特に、蒸発温度との温度差が大
きい冷蔵室3において必要以上の低温度冷気による冷却
で冷却効率が低下して無駄な電力を消費し、、併せて室
内の温度変動や湿度低下を招き、食品に温度ストレスが
かかったり、乾燥が促進されて食品品質が低下するとい
う欠点を有していた。
However, in the above-mentioned conventional structure, the first evaporator 4 and the second evaporator 5 are connected by the refrigerant pipe 11 having no decompression function. The temperatures are almost the same, and the freezer compartment 2 and the refrigerator compartment 3
Is controlled by the operation control of the first blower 6 and the second blower 7, so that the cooling efficiency is increased by cooling with the low-temperature cold air more than necessary especially in the refrigerator compartment 3 having a large temperature difference from the evaporation temperature. This leads to the disadvantage that power is wasted and wasteful electric power is consumed, and at the same time, indoor temperature fluctuations and humidity decrease are caused, temperature stress is applied to the food, and drying is accelerated, thereby deteriorating the quality of the food.

【0017】本発明は従来の課題を解決するもので、各
蒸発器の蒸発温度を各冷却室の設定温度に近づけること
により、冷却効率が高く、食品の貯蔵品質が高い冷蔵庫
を提供することを目的とする。
The present invention solves the conventional problems, and provides a refrigerator having high cooling efficiency and high food storage quality by bringing the evaporation temperature of each evaporator closer to the set temperature of each cooling chamber. Aim.

【0018】[0018]

【課題を解決するための手段】この目的を達成するため
に本発明は、食品を冷却貯蔵する複数の冷却室を備えた
ものにおいて、圧縮機と、凝縮器と、直列接続した複数
の蒸発器と、冷媒流量可変装置を設け、複数の蒸発器を
冷凍サイクルの上流側から順に設定温度の高い冷却室に
設置したのである。
SUMMARY OF THE INVENTION In order to achieve this object, the present invention is directed to an apparatus having a plurality of cooling chambers for cooling and storing food, comprising a compressor, a condenser, and a plurality of evaporators connected in series. A variable refrigerant flow rate device was provided, and a plurality of evaporators were installed in a cooling chamber having a higher set temperature in order from the upstream side of the refrigeration cycle.

【0019】これにより、各蒸発器の蒸発温度を任意に
可変、制御して、各冷却室の設定温度に近い冷却で効率
を高め、乾燥を抑制することができる。
Thus, the evaporation temperature of each evaporator can be arbitrarily changed and controlled to increase the efficiency by cooling close to the set temperature of each cooling chamber and suppress drying.

【0020】食品を冷却貯蔵する冷却室を備えたものに
おいて、圧縮機と、凝縮器と、直列接続した複数の蒸発
器と、凝縮器と蒸発器の間に設けたキャピラリチューブ
と、複数の蒸発器の相互間に設けた冷媒流量可変装置を
設け、複数の蒸発器を冷凍サイクルの上流側から順に設
定温度の高い冷却室に設置したのである。
In the apparatus provided with a cooling chamber for cooling and storing food, a compressor, a condenser, a plurality of evaporators connected in series, a capillary tube provided between the condenser and the evaporator, and a plurality of evaporators are provided. A variable refrigerant flow device was provided between the units, and a plurality of evaporators were installed in a cooling chamber having a higher set temperature in order from the upstream side of the refrigeration cycle.

【0021】これにより、各蒸発器の蒸発温度をより確
実に可変、制御して、各冷却室の設定温度により近い冷
却でさらに効率を高め、乾燥を抑制することができる。
This makes it possible to more reliably change and control the evaporation temperature of each evaporator, to further increase the efficiency by cooling closer to the set temperature of each cooling chamber, and to suppress drying.

【0022】[0022]

【発明の実施の形態】本発明の請求項1に記載の発明
は、食品を冷却貯蔵する複数の冷却室を備えたものにお
いて、圧縮機と、凝縮器と、直列接続した複数の蒸発器
と、冷媒流量可変装置を設けた冷凍サイクルを構成し、
前記複数の蒸発器を冷凍サイクルの上流側から順に設定
温度の高い冷却室に設置したものであり、複数の蒸発器
の蒸発温度を可変、制御することができ、冷凍サイクル
の効率が高まり、食品の貯蔵温度と冷気温度の差が縮ま
って温度変動や乾燥が抑制される。
DETAILED DESCRIPTION OF THE INVENTION The invention according to claim 1 of the present invention comprises a plurality of cooling chambers for cooling and storing food, comprising a compressor, a condenser, and a plurality of evaporators connected in series. Constitute a refrigeration cycle provided with a refrigerant flow variable device,
The plurality of evaporators are installed in a cooling chamber having a higher set temperature in order from the upstream side of the refrigerating cycle, and the evaporating temperatures of the plurality of evaporators can be changed and controlled, so that the efficiency of the refrigerating cycle increases, and The difference between the storage temperature and the cold air temperature is reduced, and temperature fluctuation and drying are suppressed.

【0023】請求項2に記載の発明は、食品を冷却貯蔵
する複数の冷却室を備えたものにおいて、圧縮機と、凝
縮器と、直列接続した複数の蒸発器と、前記凝縮器と前
記蒸発器の間に設けたキャピラリチューブと、前記複数
の蒸発器の相互間に設けた冷媒流量可変装置とよりなる
冷凍サイクルを構成し、前記複数の蒸発器を冷凍サイク
ルの上流側から順に設定温度の高い冷却室に設置したも
のであり、複数の蒸発器の蒸発温度をより確実に可変、
制御することができ、冷凍サイクルの効率が高まり、食
品の貯蔵温度と冷気温度の差が縮まって温度変動や乾燥
が抑制される。
According to a second aspect of the present invention, there is provided an apparatus having a plurality of cooling chambers for cooling and storing food, wherein a compressor, a condenser, a plurality of evaporators connected in series, the condenser and the evaporator are provided. A refrigeration cycle comprising a capillary tube provided between the vessels and a variable refrigerant flow device provided between the plurality of evaporators, and the plurality of evaporators are sequentially set at a set temperature from the upstream side of the refrigeration cycle. Installed in a high cooling room, the evaporation temperature of multiple evaporators can be more reliably changed,
It can be controlled, the efficiency of the refrigeration cycle is increased, and the difference between the storage temperature of the food and the cool air temperature is reduced, thereby suppressing temperature fluctuation and drying.

【0024】請求項3に記載の発明は、請求項1または
2に記載の発明において、各蒸発器の蒸発温度と庫内温
度との温度差を5℃以下にするように、冷媒流量可変装
置の絞り量を制御するものであり、冷却室内の温度変動
や乾燥をより抑えることができ、また、より冷凍サイク
ルの効率化が図れ、省エネルギーとなる。
According to a third aspect of the present invention, in the first or the second aspect of the present invention, the refrigerant flow variable device is configured so that the temperature difference between the evaporation temperature of each evaporator and the internal temperature is 5 ° C. or less. , The temperature fluctuation and drying in the cooling chamber can be further suppressed, the efficiency of the refrigeration cycle can be further improved, and energy can be saved.

【0025】請求項4に記載の発明は、請求項1から3
のいずれか一項に記載の発明において、上流側から順に
第一の蒸発器、第二の蒸発器とし、前記第一の蒸発器を
冷蔵室内に、前記第二の蒸発器を冷凍室内に設置したも
のであり、特にプラス温度の冷蔵室温度と第一の蒸発器
の蒸発温度との温度差を縮め、冷蔵室の温度変動や除湿
作用を抑えることで冷蔵室の食品貯蔵性が高まる。
[0025] The invention described in claim 4 is the invention according to claims 1 to 3.
In the invention according to any one of the above, the first evaporator and the second evaporator in order from the upstream side, the first evaporator is installed in the refrigerator compartment, the second evaporator is installed in the freezer compartment In particular, the temperature difference between the plus temperature of the refrigerator compartment and the evaporation temperature of the first evaporator is reduced, and the temperature fluctuation and the dehumidifying action of the refrigerator compartment are suppressed, so that the food storage property of the refrigerator compartment is enhanced.

【0026】請求項5に記載の発明は、請求項4記載の
発明において、冷蔵室内蒸発器の蒸発温度を−5〜5℃
の範囲で制御するものであり、冷蔵室温度と第一の蒸発
器の蒸発温度との温度差が一層縮まり、冷蔵室の温度変
動や除湿作用を抑えて冷蔵室の食品貯蔵性がさらに高ま
る。
According to a fifth aspect of the present invention, in the fourth aspect of the present invention, the evaporating temperature of the evaporator in the refrigerator is -5 to 5 ° C.
The temperature difference between the refrigerator compartment temperature and the evaporation temperature of the first evaporator is further reduced, and the temperature fluctuation and the dehumidifying action of the refrigerator compartment are suppressed, and the food storage property of the refrigerator compartment is further enhanced.

【0027】請求項6に記載の発明は、請求項4記載の
発明において、冷凍室の急速冷凍時、前記冷媒流量可変
装置の絞り量を絞り、冷凍室内蒸発器の蒸発温度を低く
するものであり、冷凍室に供給される冷気温度が低温化
し食品などの冷凍スピードが速くなり、急速冷凍の効果
が高まる。
According to a sixth aspect of the present invention, in the fourth aspect of the present invention, during rapid freezing of the freezing chamber, the throttle amount of the refrigerant flow variable device is reduced to lower the evaporation temperature of the evaporator in the freezing chamber. In addition, the temperature of cold air supplied to the freezing room is lowered, and the freezing speed of food and the like is increased, and the effect of quick freezing is enhanced.

【0028】[0028]

【実施例】以下、本発明による冷蔵庫の実施例につい
て、図面を参照しながら説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of a refrigerator according to the present invention will be described below with reference to the drawings.

【0029】(実施例1)図1は本発明による冷蔵庫の
実施例1の冷凍サイクル図である。図2は同実施例の冷
蔵庫の冷凍サイクルのモリエル線図である。
(Embodiment 1) FIG. 1 is a refrigeration cycle diagram of Embodiment 1 of a refrigerator according to the present invention. FIG. 2 is a Mollier diagram of a refrigeration cycle of the refrigerator of the embodiment.

【0030】図1において、22は圧縮機、23は凝縮
器、24は第一の蒸発器、25は第二の蒸発器、26は
第三の蒸発器であり直列に接続されている。27はキャ
ピラリチューブで、凝縮器23の出口と第一の蒸発器2
4の入口に接続されている。28は第一の蒸発器24と
第二の蒸発器25の間に設けられた冷媒流量可変装置、
29は第二の蒸発器25と第三の蒸発器26の間に設け
られた冷媒流量可変装置である。冷媒流量可変装置2
8、29は例えば電動式の膨張弁などが用いられる。3
0はサクションパイプで、第三の蒸発器26の出口と圧
縮機22を接続し環状の冷凍サイクルを構成している。
In FIG. 1, reference numeral 22 denotes a compressor, 23 denotes a condenser, 24 denotes a first evaporator, 25 denotes a second evaporator, and 26 denotes a third evaporator, which are connected in series. 27 is a capillary tube, the outlet of the condenser 23 and the first evaporator 2
4 is connected to the entrance. 28 is a refrigerant flow variable device provided between the first evaporator 24 and the second evaporator 25,
Reference numeral 29 denotes a refrigerant flow variable device provided between the second evaporator 25 and the third evaporator 26. Refrigerant flow rate variable device 2
For example, electric expansion valves 8 and 29 are used. Three
Reference numeral 0 denotes a suction pipe which connects the outlet of the third evaporator 26 and the compressor 22 to form an annular refrigeration cycle.

【0031】そして第一の蒸発器24は、冷蔵庫本体3
1の最も設定温度の高い第一の冷却室32内に、第二の
蒸発器25は、次に設定温度の高い第二の冷却室33内
に、第三の蒸発器26は、最も温度の低い第三の冷却室
34内に設置されている。
The first evaporator 24 is connected to the refrigerator body 3
In the first cooling chamber 32 having the highest set temperature, the second evaporator 25 is provided in the second cooling chamber 33 having the next highest set temperature, and the third evaporator 26 is provided in the first cooling chamber 33 having the highest temperature. It is installed in the lower third cooling chamber 34.

【0032】35は第一の冷却室32内に設置した第一
の送風機、36は第二の冷却室33内に設置した第二の
送風機、37は第三の冷却室34内に設置した第三の送
風機である。38は第一の蒸発器24の出口近傍に設け
た第一の蒸発器温度検知手段、39は第一の冷却室32
内の温度を検知する第一の冷却室温度検知手段である。
40は第二の蒸発器25の出口近傍に設けた第二の蒸発
器温度検知手段、41は第二の冷却室33内の温度を検
知する第二の冷却室温度検知手段である。42は第三の
蒸発器26の出口近傍に設けた第三の蒸発器温度検知手
段、43は第三の冷却室34内の温度を検知する第三の
冷却室温度検知手段である。
Reference numeral 35 denotes a first blower provided in the first cooling chamber 32, 36 denotes a second blower provided in the second cooling chamber 33, and 37 denotes a first blower provided in the third cooling chamber 34. Three blowers. 38 is a first evaporator temperature detecting means provided near the outlet of the first evaporator 24, 39 is a first cooling chamber 32
It is a first cooling chamber temperature detecting means for detecting the temperature inside the cooling chamber.
Reference numeral 40 denotes a second evaporator temperature detecting means provided near the outlet of the second evaporator 25, and reference numeral 41 denotes a second cooling chamber temperature detecting means for detecting a temperature in the second cooling chamber 33. Reference numeral 42 denotes third evaporator temperature detecting means provided near the outlet of the third evaporator 26, and reference numeral 43 denotes third cooling chamber temperature detecting means for detecting the temperature in the third cooling chamber 34.

【0033】44は制御手段で、第一の蒸発器温度検知
手段38、第一の冷却室温度検知手段39、第二の蒸発
器温度検知手段40、第二の冷却室温度検知手段41、
第三の蒸発器温度検知手段42、第三の冷却室温度検知
手段43により冷媒流量可変装置28、29の開度を制
御する。
Reference numeral 44 denotes control means, which is a first evaporator temperature detecting means 38, a first cooling chamber temperature detecting means 39, a second evaporator temperature detecting means 40, a second cooling chamber temperature detecting means 41,
The opening degree of the refrigerant flow variable devices 28 and 29 is controlled by the third evaporator temperature detecting means 42 and the third cooling chamber temperature detecting means 43.

【0034】以上のように構成された冷凍サイクルにつ
いて、以下その動作を説明する。
The operation of the refrigeration cycle configured as described above will be described below.

【0035】圧縮機21で圧縮された冷媒は凝縮器23
にて放熱、液化しキャピラリチューブ27に入る。そし
て減圧された液冷媒は第一の蒸発器24、第二の蒸発器
25に入り、冷媒流量可変装置28、29の絞り量(開
度)に応じた圧力の飽和温度で液冷媒の一部が蒸発す
る。第一の蒸発器24の蒸発温度は、冷媒流量可変装置
28の開度が大きくなれば第二の蒸発器25の蒸発圧力
に近くなるため低くなる。逆に冷媒流量可変装置28の
開度を小さくすれば、第一の蒸発器24内の圧力が高く
なり蒸発温度も高くなる。
The refrigerant compressed by the compressor 21 is supplied to the condenser 23
And liquefies into the capillary tube 27. The depressurized liquid refrigerant enters the first evaporator 24 and the second evaporator 25, and a part of the liquid refrigerant at a saturation temperature of a pressure corresponding to the throttle amount (opening degree) of the refrigerant flow variable devices 28 and 29. Evaporates. The evaporating temperature of the first evaporator 24 becomes lower because the closer the opening of the refrigerant flow rate varying device 28 becomes, the closer the evaporating pressure of the second evaporator 25 becomes. Conversely, if the opening degree of the refrigerant flow variable device 28 is reduced, the pressure in the first evaporator 24 increases, and the evaporation temperature also increases.

【0036】第一の蒸発器24、第二の蒸発器25の蒸
発温度の制御は、制御手段44により、冷媒流量可変装
置28、29の開度を調節するが、その判断情報は、第
一の蒸発器温度検知手段38、第一の冷却室温度検知手
段39、第二の蒸発器温度検知手段40、第二の冷却室
温度検知手段41、第三の蒸発器温度検知手段42、第
三の冷却室温度検知手段43である。
The evaporating temperatures of the first evaporator 24 and the second evaporator 25 are controlled by controlling the degree of opening of the refrigerant flow variable devices 28 and 29 by the control means 44. Evaporator temperature detecting means 38, first cooling chamber temperature detecting means 39, second evaporator temperature detecting means 40, second cooling chamber temperature detecting means 41, third evaporator temperature detecting means 42, Of the cooling chamber temperature detecting means 43.

【0037】そして冷媒流量可変装置28、29でさら
に減圧された冷媒の残りは第三の蒸発器26において圧
縮機22の吸込み圧力(低圧)に相当する蒸発温度で蒸
発し、サクションパイプ30を通り圧縮機21へ戻る。
The remainder of the refrigerant further depressurized by the refrigerant flow variable devices 28 and 29 evaporates in the third evaporator 26 at an evaporation temperature corresponding to the suction pressure (low pressure) of the compressor 22 and passes through the suction pipe 30. Return to the compressor 21.

【0038】上記動作を、図2のモリエル線図で説明す
れば、凝縮器23によりA点からB点へ、キャピラリチ
ューブ27によりB点からC点に減圧、C点で第一の蒸
発器24に入った冷媒はP1の圧力に飽和した温度で蒸
発する。D点は冷媒流量可変装置28の入口で、出口E
点まで減圧され第二の蒸発器25に入りP2の圧力に飽
和した温度で蒸発する。F点は冷媒流量可変装置29の
入口で、出口G点まで減圧され第三の蒸発器26に入り
P3の圧力に飽和した温度で蒸発する。そしてH点で圧
縮機22に吸込まれ、A点まで圧縮される。
The above operation will be described with reference to the Mollier diagram shown in FIG. 2. The condenser 23 reduces the pressure from the point A to the point B, the capillary tube 27 reduces the pressure from the point B to the point C, and the point C reduces the first evaporator 24. The entered refrigerant evaporates at a temperature saturated to the pressure of P1. Point D is the inlet of the refrigerant flow variable device 28 and outlet E
The pressure is reduced to a point and enters the second evaporator 25 to evaporate at a temperature saturated to the pressure of P2. The point F is the inlet of the variable refrigerant flow device 29, the pressure is reduced to the point G of the outlet, and the refrigerant enters the third evaporator 26 and evaporates at the temperature saturated with the pressure of P3. Then, it is sucked into the compressor 22 at the point H and is compressed to the point A.

【0039】ここで、冷媒流量可変装置28の開度を絞
るとC点がC'点に、D点がD'点となり、P4の圧力ま
で上昇し第一の蒸発器24の蒸発温度も上昇する。逆に
冷媒流量可変装置28の開度を開くとC点の圧力は下が
り第一の蒸発器24の蒸発温度も下がる。
Here, when the opening degree of the refrigerant flow variable device 28 is reduced, the point C becomes the point C 'and the point D becomes the point D', the pressure rises to the pressure of P4, and the evaporation temperature of the first evaporator 24 also rises. I do. Conversely, when the opening degree of the refrigerant flow variable device 28 is increased, the pressure at the point C decreases and the evaporation temperature of the first evaporator 24 also decreases.

【0040】従って、最も設定温度の高い第一の冷却室
32は、例えば冷蔵温度(0〜5℃)に保つ場合、冷媒
流量可変装置28の開度を制御して第一の蒸発器24の
蒸発温度を高め、冷却室と蒸発器の温度差を小さくする
ことにより、第一の送風機35で送り込まれる冷気温度
の過冷却が抑えられ冷却室内の温度変動を小さくし、除
湿作用を抑えることができる。このため、第一の冷却室
32内に貯蔵される食品の貯蔵品質が高まる。また、適
度に蒸発温度を高めることで冷凍サイクルの効率が高ま
り省エネルギーとなる。
Therefore, when the first cooling chamber 32 having the highest set temperature is kept at, for example, the refrigeration temperature (0 to 5 ° C.), the opening degree of the refrigerant flow variable device 28 is controlled to control the first evaporator 24. By increasing the evaporation temperature and reducing the temperature difference between the cooling chamber and the evaporator, the supercooling of the temperature of the cool air sent by the first blower 35 is suppressed, the temperature fluctuation in the cooling chamber is reduced, and the dehumidifying action can be suppressed. it can. For this reason, the storage quality of the food stored in the first cooling chamber 32 is improved. In addition, by increasing the evaporation temperature appropriately, the efficiency of the refrigeration cycle is increased and energy is saved.

【0041】また、冷媒流量可変装置28、29の開度
を制御し、定期的(例えば1時間に一回程度)に第一の
蒸発器24、第二の蒸発器25の蒸発温度を+5℃〜1
0℃程度にすることにより、特別な加熱装置を必要とせ
ず、冷却室内の温度上昇を抑えて、蒸発器を除霜するこ
とができ、加熱装置の合理化が図れる。
Further, the opening degrees of the refrigerant flow variable devices 28 and 29 are controlled, and the evaporation temperatures of the first evaporator 24 and the second evaporator 25 are periodically (for example, about once an hour) + 5 ° C. ~ 1
By setting the temperature to about 0 ° C., a special heating device is not required, the temperature rise in the cooling chamber can be suppressed, the evaporator can be defrosted, and the heating device can be rationalized.

【0042】また、冷却室の負荷が大きかったり、設置
初期の場合、冷媒流量可変装置28、29の開度を制御
し冷媒循環量を多くすることにより、短い時間で所定の
温度にすることができる。
When the load on the cooling chamber is large or at the initial stage of installation, the opening degree of the refrigerant flow variable devices 28 and 29 is controlled to increase the amount of circulating refrigerant so that the predetermined temperature can be reached in a short time. it can.

【0043】また、第三の冷却室34は、第三の蒸発器
26および第三の送風機37により、所定の温度、例え
ば冷凍温度(−20℃)に保たれるが、冷却室の負荷が
大きくなった時には、第一の蒸発器温度検知手段38、
第一の冷却室温度検知手段39、第二の蒸発器温度検知
手段40、第二の冷却室温度検知手段41、第三の蒸発
器温度検知手段42、第三の冷却室温度検知手段43に
より冷媒流量可変装置28、29の開度を制御し、冷媒
循環量を多くすることにより短い時間で所定の温度にす
ることができる。逆に冷却室の負荷が小さい時は、冷媒
流量可変装置28、29の開度を制御し、冷媒循環量を
少なくすることによりシステム効率向上が図れ、省エネ
ルギーとなる。
The third cooling chamber 34 is maintained at a predetermined temperature, for example, a freezing temperature (-20 ° C.) by the third evaporator 26 and the third blower 37, but the load of the cooling chamber is reduced. When it becomes larger, the first evaporator temperature detecting means 38,
The first cooling chamber temperature detecting means 39, the second evaporator temperature detecting means 40, the second cooling chamber temperature detecting means 41, the third evaporator temperature detecting means 42, and the third cooling chamber temperature detecting means 43 By controlling the degree of opening of the refrigerant flow variable devices 28 and 29 and increasing the amount of circulating refrigerant, a predetermined temperature can be achieved in a short time. Conversely, when the load on the cooling chamber is small, the opening degree of the refrigerant flow variable devices 28 and 29 is controlled to reduce the amount of circulating refrigerant, thereby improving system efficiency and saving energy.

【0044】さらに第一の冷却室32、第二の冷却室3
3は、冷媒流量可変装置28、29の開度を制御して冷
蔵から冷凍の温度まで自由に設定することができ、使用
者の需要に応じた利便性の高い冷蔵庫を提供することが
できる。
Further, the first cooling chamber 32 and the second cooling chamber 3
3 can control the opening degree of the refrigerant flow variable devices 28 and 29 to freely set the temperature from refrigeration to freezing, and can provide a highly convenient refrigerator according to the demand of the user.

【0045】また、第一の蒸発器温度検知手段38、第
一冷却室温度検知手段39、第二の蒸発器温度検知手段
40、第二の冷却室温度検知手段41、第三の蒸発器温
度検知手段42、第三の冷却室温度検知手段43で得ら
れた情報を制御手段44により判断し、各冷却室内の蒸
発器の蒸発温度と冷却室内の温度差を5℃以下にするよ
うに、冷媒流量可変装置28、29の開度を制御するこ
とで、さらに各冷却室の温度変動や除湿作用を抑えるこ
とができ、また、適切な蒸発温度、冷媒循環量により一
層システム効率向上よる省エネルギー化が図れる。
Further, the first evaporator temperature detecting means 38, the first cooling chamber temperature detecting means 39, the second evaporator temperature detecting means 40, the second cooling chamber temperature detecting means 41, the third evaporator temperature detecting means The information obtained by the detecting means 42 and the third cooling chamber temperature detecting means 43 is determined by the control means 44, and the difference between the evaporation temperature of the evaporator in each cooling chamber and the temperature in the cooling chamber is set to 5 ° C. or less. By controlling the degree of opening of the refrigerant flow variable devices 28 and 29, it is possible to further suppress temperature fluctuations and dehumidifying effects in each cooling chamber, and to further improve system efficiency by setting an appropriate evaporation temperature and refrigerant circulation amount, thereby conserving energy. Can be achieved.

【0046】(実施例2)図3は本発明による冷蔵庫の
実施例2の冷凍サイクル図である。図3において、冷蔵
庫本体45は冷蔵室46、冷凍室47を備えており、第
一の蒸発器48は冷蔵室46に、第二の蒸発器49は冷
凍室47に設置されている。50は例えば電動式の膨張
弁などの冷媒流量可変装置であり、第一の蒸発器48と
第二の蒸発器49の間に設けられている。51は圧縮
機、52は凝縮器、53はキャピラリチューブ、54は
第二の蒸発器49と圧縮機51を接続するサクションパ
イプであり、第一の蒸発器48と第二の蒸発器49は直
列に接続された上で環状の冷凍サイクルを構成してい
る。
(Embodiment 2) FIG. 3 is a refrigeration cycle diagram of Embodiment 2 of a refrigerator according to the present invention. In FIG. 3, the refrigerator main body 45 includes a refrigerator compartment 46 and a freezer compartment 47. The first evaporator 48 is installed in the refrigerator compartment 46, and the second evaporator 49 is installed in the freezer compartment 47. Reference numeral 50 denotes a refrigerant flow variable device such as an electric expansion valve, which is provided between the first evaporator 48 and the second evaporator 49. 51 is a compressor, 52 is a condenser, 53 is a capillary tube, 54 is a suction pipe connecting the second evaporator 49 and the compressor 51, and the first evaporator 48 and the second evaporator 49 are connected in series. To form an annular refrigeration cycle.

【0047】また、55は第一の蒸発器48と冷蔵室4
6の空気を強制的に熱交換させる第一の送風機であり、
56は第二の蒸発器49と冷凍室47の空気を強制的に
熱交換させる第二の送風機である。57は第一の蒸発器
48の出口近傍に設けた第一の蒸発器温度検知手段、5
8は冷蔵室46内の温度を検知する冷蔵室温度検知手段
である。59は第二の蒸発器49の出口近傍に設けた第
二の蒸発器温度検知手段、60は冷凍室47内の温度を
検知する冷凍室温度検知手段である。
Reference numeral 55 denotes the first evaporator 48 and the refrigerator 4
6 is the first blower for forcibly exchanging heat with the air,
Reference numeral 56 denotes a second blower for forcibly exchanging heat between the second evaporator 49 and the air in the freezing room 47. 57 is a first evaporator temperature detecting means provided near the outlet of the first evaporator 48;
Reference numeral 8 denotes a refrigerator compartment temperature detecting means for detecting the temperature in the refrigerator compartment 46. 59 is a second evaporator temperature detecting means provided near the outlet of the second evaporator 49, and 60 is a freezing room temperature detecting means for detecting the temperature in the freezing room 47.

【0048】61は制御手段で、第一の蒸発器温度検知
手段57、冷蔵室温度検知手段58、第二の蒸発器温度
検知手段59、冷凍室温度検知手段60により冷媒流量
可変装置50の開度を制御する。
Reference numeral 61 denotes a control means. The first evaporator temperature detection means 57, the refrigerator temperature detection means 58, the second evaporator temperature detection means 59, and the freezing room temperature detection means 60 open the refrigerant flow rate variable device 50. Control the degree.

【0049】以上のような構成によって、冷蔵室46の
温度と第一の蒸発器48の蒸発温度との温度差を小さく
保ち、冷凍サイクルの効率を高めることができる。ま
た、冷蔵室46の温度変動を小さくすることができる。
さらに、冷蔵室46内に対するの除湿作用も抑えること
ができ、冷蔵室46を高湿に保って食品の乾燥を抑える
ことができる。
With the above configuration, the temperature difference between the temperature of the refrigerator compartment 46 and the evaporation temperature of the first evaporator 48 can be kept small, and the efficiency of the refrigeration cycle can be increased. Further, the temperature fluctuation of the refrigerator compartment 46 can be reduced.
Furthermore, the dehumidifying effect on the inside of the refrigerator compartment 46 can be suppressed, and the refrigerator compartment 46 can be kept high in humidity to suppress the drying of the food.

【0050】また、冷媒流量可変装置50の開度を制御
し、定期的(例えば1時間に一回程度)に第一の蒸発器
48の蒸発温度を+5℃〜10℃程度にすることによ
り、特別な加熱装置を必要とせず、冷蔵室46の温度上
昇を抑えて、第一の蒸発器48を除霜することができ、
加熱装置の合理化が図れる。
Further, by controlling the opening of the refrigerant flow variable device 50 and periodically (eg, about once an hour), the evaporating temperature of the first evaporator 48 is set to + 5 ° C. to 10 ° C. The first evaporator 48 can be defrosted without requiring a special heating device, suppressing the temperature rise of the refrigerator compartment 46,
The heating device can be rationalized.

【0051】そして、冷蔵室46の負荷が大きかった
り、設置初期の場合、冷媒流量可変装置50の開度を制
御し冷媒循環量を多くすることにより、短い時間で所定
の温度にすることができる。
When the load of the refrigerator compartment 46 is large or in the initial stage of installation, the predetermined temperature can be reached in a short time by controlling the opening degree of the refrigerant flow variable device 50 and increasing the refrigerant circulation amount. .

【0052】さらに、冷蔵室46は、冷媒流量可変装置
50の開度を制御し、冷蔵から冷凍の温度まで自由に設
定できる温度切換室としての機能を付与することもで
き、使用者の需要に応じた利便性の高い冷蔵庫を提供す
ることもできる。
Further, the refrigerating chamber 46 can be provided with a function as a temperature switching chamber capable of controlling the opening degree of the refrigerant flow variable device 50 to freely set the temperature from refrigeration to freezing. It is also possible to provide a highly convenient refrigerator according to the requirements.

【0053】一方、冷凍室47は、第二の蒸発器49お
よび第二の送風機56により、所定の温度、例えば冷凍
温度(−20℃)に保たれるが、冷凍室の負荷が大きく
なった時には、第一の蒸発器温度検知手段57、冷蔵室
温度検知手段58、第二の蒸発器温度検知手段59、冷
凍室温度検知手段60により冷媒流量可変装置50の開
度を制御し、冷媒循環量を多くすることにより、短い時
間で所定の温度にすることができる。逆に冷蔵室46、
冷凍室47の負荷が小さい時は、前記冷媒流量可変装置
50の開度を制御し、冷媒循環量を少なくすることによ
り、システム効率向上が図れ、省エネルギーとなる。
On the other hand, the freezing room 47 is maintained at a predetermined temperature, for example, a freezing temperature (−20 ° C.) by the second evaporator 49 and the second blower 56, but the load on the freezing room is increased. In some cases, the opening degree of the refrigerant flow variable device 50 is controlled by the first evaporator temperature detecting means 57, the refrigerator temperature detecting means 58, the second evaporator temperature detecting means 59, and the freezing room temperature detecting means 60, thereby circulating the refrigerant. By increasing the amount, a predetermined temperature can be reached in a short time. Conversely, the refrigerator compartment 46,
When the load on the freezing chamber 47 is small, the opening degree of the refrigerant flow variable device 50 is controlled to reduce the amount of circulating refrigerant, thereby improving system efficiency and saving energy.

【0054】また、第一の蒸発器温度検知手段57、冷
蔵室温度検知手段58で得られた情報を制御手段61に
より判断し、冷蔵室46の第一の蒸発器48の蒸発温度
を−5〜5℃の範囲で制御するように、冷媒流量可変装
置50の開度を制御することで、第一の蒸発器48の蒸
発温度と冷蔵室46の温度差がさらに小さくなり、冷蔵
室46の温度変動をより小さくすることができる。また
第一の蒸発器48の蒸発温度がより高いことにより、冷
蔵室46に対する除湿作用も抑えることができ、冷蔵室
46をより高湿に保ち食品の乾燥を抑えて貯蔵品質を一
層高めることができる。
The information obtained by the first evaporator temperature detecting means 57 and the refrigerating room temperature detecting means 58 is judged by the control means 61, and the evaporating temperature of the first evaporator 48 in the refrigerating room 46 is reduced by -5. By controlling the opening degree of the refrigerant flow variable device 50 so as to control the temperature in the range of up to 5 ° C., the difference between the evaporation temperature of the first evaporator 48 and the temperature of the refrigerator compartment 46 is further reduced. Temperature fluctuation can be further reduced. Further, since the evaporation temperature of the first evaporator 48 is higher, the dehumidifying effect on the refrigerator compartment 46 can also be suppressed, and the refrigerator compartment 46 can be kept more humid to suppress the drying of food and further improve the storage quality. it can.

【0055】さらに、冷凍室47において、ホームフリ
ージングなどで食品の急速冷凍をする必要があるとき、
第一の蒸発器温度検知手段57、冷蔵室温度検知手段5
8、第二の蒸発器温度検知手段59、冷凍室用温度検知
手段60で得られた情報を制御手段61により判断し、
第二の蒸発器49の蒸発温度を低くするように冷媒流量
可変装置50の開度を絞ることにより、第二の蒸発器4
9の蒸発温度が低くなり、第二の送風機56によって冷
凍室47に供給される冷気が低温化され急速冷凍が可能
となる。
Further, in the freezer compartment 47, when it is necessary to rapidly freeze foods for home freezing or the like,
First evaporator temperature detecting means 57, refrigerator compartment temperature detecting means 5
8. The information obtained by the second evaporator temperature detecting means 59 and the freezing room temperature detecting means 60 is determined by the control means 61,
By narrowing the opening of the refrigerant flow variable device 50 so as to lower the evaporation temperature of the second evaporator 49, the second evaporator 4
9, the temperature of the cold air supplied to the freezer compartment 47 by the second blower 56 is lowered, and rapid freezing is enabled.

【0056】[0056]

【発明の効果】以上説明したように請求項1に記載の発
明は、食品を冷却貯蔵する複数の冷却室を備えたものに
おいて、圧縮機と、凝縮器と、直列接続した複数の蒸発
器と、冷媒流量可変装置を設け、複数の蒸発器を冷凍サ
イクルの上流側から順に設定温度の高い冷却室に設置し
たので、各蒸発器の蒸発温度を任意に可変、制御して、
各冷却室の設定温度に近い冷却で冷凍サイクルの効率を
高め省エネルギー化を図ることができる。また、温度変
動や乾燥を抑制して食品の貯蔵品質を高めることができ
る。
As described above, according to the first aspect of the present invention, there are provided a plurality of cooling chambers for cooling and storing food, wherein a compressor, a condenser, and a plurality of evaporators connected in series are provided. Since a refrigerant flow variable device is provided and a plurality of evaporators are installed in a cooling chamber having a higher set temperature in order from the upstream side of the refrigeration cycle, the evaporation temperature of each evaporator is arbitrarily varied and controlled,
Cooling close to the set temperature of each cooling chamber can increase the efficiency of the refrigeration cycle and save energy. In addition, it is possible to improve the storage quality of food by suppressing temperature fluctuation and drying.

【0057】また、冷媒流量可変装置の開度を定期的に
制御し、特別な加熱装置を必要とせず蒸発器を除霜する
ことができ、加熱装置の合理化が図れる。
Further, the degree of opening of the refrigerant flow variable device is controlled periodically, and the evaporator can be defrosted without requiring a special heating device, so that the heating device can be rationalized.

【0058】また、冷却室内の高負荷時や設置初期に、
冷媒流量可変装置の開度を制御し冷媒循環量を増やして
短時間で所定の温度にすることができる。逆に、冷却室
の軽負荷時に、冷媒流量可変装置の開度を制御し冷媒循
環量を減らしてシステム効率向上による省エネルギー化
が図れる。
In addition, at the time of high load in the cooling room or at the beginning of installation,
By controlling the opening degree of the refrigerant flow variable device to increase the amount of circulating refrigerant, it is possible to reach a predetermined temperature in a short time. Conversely, when the cooling chamber is lightly loaded, the degree of circulation of the refrigerant is reduced by controlling the degree of opening of the variable refrigerant flow device, thereby conserving energy by improving system efficiency.

【0059】また、冷媒流量可変装置の開度を制御し、
各冷却室を冷蔵から冷凍の温度まで自由に設定すること
により、使用者の利便性の高い冷蔵庫を提供できる。
Further, the opening degree of the refrigerant flow variable device is controlled,
By setting each cooling chamber freely from the temperature of refrigeration to the temperature of freezing, it is possible to provide a refrigerator with high convenience for the user.

【0060】また、請求項2に記載の発明は、食品を冷
却貯蔵する冷却室を備えたものにおいて、圧縮機と、凝
縮器と、直列接続した複数の蒸発器と、凝縮器と蒸発器
の間に設けたキャピラリチューブと、複数の蒸発器の相
互間に設けた冷媒流量可変装置を設け、複数の蒸発器を
冷凍サイクルの上流側から順に設定温度の高い冷却室に
設置したので、各蒸発器の蒸発温度をより確実に可変、
制御して、各冷却室の設定温度により近い冷却でさらに
冷凍サイクルの効率を高め、食品の貯蔵品質を一層高め
ることができる。
According to a second aspect of the present invention, there is provided a cooling room for cooling and storing food, wherein a compressor, a condenser, a plurality of evaporators connected in series, a condenser and an evaporator are provided. Since a capillary tube provided between them and a refrigerant flow rate variable device provided between a plurality of evaporators were provided, and a plurality of evaporators were installed in a cooling chamber having a higher set temperature in order from the upstream side of the refrigeration cycle. The evaporation temperature of the vessel can be more reliably changed,
By controlling, the efficiency of the refrigeration cycle can be further increased by cooling closer to the set temperature of each cooling chamber, and the storage quality of the food can be further enhanced.

【0061】請求項3に記載の発明は、請求項1または
2に記載の発明において、各蒸発器の蒸発温度と庫内温
度との温度差を5℃以下にするように、冷媒流量可変装
置の絞り量を制御するので、冷却室内の温度変動や乾燥
をより安定して抑えることができ、また、より冷凍サイ
クルの効率化が図れ、省エネルギーとなる。
According to a third aspect of the present invention, in the first or the second aspect of the present invention, the refrigerant flow variable device is configured so that the temperature difference between the evaporation temperature of each evaporator and the internal temperature is 5 ° C. or less. , The temperature fluctuation and drying in the cooling chamber can be suppressed more stably, the efficiency of the refrigeration cycle can be further improved, and energy can be saved.

【0062】請求項4に記載の発明は、請求項1から3
のいずれか一項に記載の発明において、上流側から順に
第一の蒸発器、第二の蒸発器とし、前記第一の蒸発器を
冷蔵室内に、前記第二の蒸発器を冷凍室内に設置したの
で、特にプラス温度の冷蔵室温度と第一の蒸発器の蒸発
温度との温度差を縮め、冷蔵室の温度変動や除湿作用を
抑えることで冷蔵室の食品貯蔵性が高まる。
[0062] The invention described in claim 4 is the invention according to claims 1 to 3.
In the invention according to any one of the above, the first evaporator and the second evaporator in order from the upstream side, the first evaporator is installed in the refrigerator compartment, the second evaporator is installed in the freezer compartment Therefore, the temperature difference between the plus temperature of the refrigerator compartment and the evaporation temperature of the first evaporator is reduced, and the temperature fluctuation and the dehumidifying action of the refrigerator compartment are suppressed, so that the food storage property of the refrigerator compartment is improved.

【0063】請求項5に記載の発明は、請求項4に記載
の発明において、冷蔵室内蒸発器の蒸発温度を−5〜5
℃の範囲で制御するので、冷蔵室温度と第一の蒸発器の
蒸発温度との温度差が一層縮まり、冷蔵室の温度変動や
除湿作用を抑えて冷蔵室の食品貯蔵性がさらに高まる。
According to a fifth aspect of the present invention, in the fourth aspect of the present invention, the evaporating temperature of the evaporator in the refrigerator compartment is set to -5 to -5.
Since the control is performed in the range of ° C., the temperature difference between the refrigerator compartment temperature and the evaporation temperature of the first evaporator is further reduced, and the temperature fluctuation and the dehumidifying action of the refrigerator compartment are suppressed, and the food storage property of the refrigerator compartment is further enhanced.

【0064】請求項6に記載の発明は、請求項4に記載
の発明において、冷凍室の急速冷凍時、前記冷媒流量可
変装置の絞り量を絞り、冷凍室内蒸発器の蒸発温度を低
くするので、食品などの急速冷凍効果が高まる。
According to a sixth aspect of the present invention, in the fourth aspect of the invention, when the freezing compartment is rapidly frozen, the amount of restriction of the variable refrigerant flow rate device is reduced to lower the evaporation temperature of the evaporator in the freezing compartment. , The effect of quick freezing of food etc. is enhanced.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明による冷蔵庫の実施例1の冷凍サイクル
FIG. 1 is a refrigeration cycle diagram of Embodiment 1 of a refrigerator according to the present invention.

【図2】同実施例の冷蔵庫の冷凍サイクルのモリエル線
FIG. 2 is a Mollier diagram of a refrigeration cycle of the refrigerator of the embodiment.

【図3】本発明による冷蔵庫の実施例2の冷凍サイクル
FIG. 3 is a refrigeration cycle diagram of Embodiment 2 of the refrigerator according to the present invention.

【図4】従来例を示す冷蔵庫の断面図FIG. 4 is a sectional view of a refrigerator showing a conventional example.

【図5】従来例を示す冷蔵庫の冷凍サイクル図FIG. 5 is a refrigeration cycle diagram of a refrigerator showing a conventional example.

【図6】従来例を示す冷蔵庫の運転制御回路のブロック
FIG. 6 is a block diagram of an operation control circuit of a refrigerator showing a conventional example.

【符号の説明】[Explanation of symbols]

22 圧縮機 23 凝縮器 24 第一の蒸発器 25 第二の蒸発器 26 第三の蒸発器 27 キャピラリチューブ 28、29 冷媒流量可変装置 32 第一の冷却室 33 第二の冷却室 34 第三の冷却室 44 制御手段 46 冷蔵室 47 冷凍室 48 第一の蒸発器 49 第二の蒸発器 50 冷媒流量可変装置 51 圧縮機 52 凝縮器 53 キャピラリチューブ 61 制御手段 22 Compressor 23 Condenser 24 First Evaporator 25 Second Evaporator 26 Third Evaporator 27 Capillary Tube 28, 29 Refrigerant Flow Rate Variable Device 32 First Cooling Room 33 Second Cooling Room 34 Third Cooling room 44 Control means 46 Refrigeration room 47 Freezing room 48 First evaporator 49 Second evaporator 50 Refrigerant flow rate variable device 51 Compressor 52 Condenser 53 Capillary tube 61 Control means

───────────────────────────────────────────────────── フロントページの続き (72)発明者 山田 宏 大阪府東大阪市高井田本通4丁目2番5号 松下冷機株式会社内 (72)発明者 福井 秀樹 大阪府東大阪市高井田本通4丁目2番5号 松下冷機株式会社内 Fターム(参考) 3L045 AA03 BA01 CA02 DA02 EA01 GA07 HA02 HA06 JA12 MA02 MA04 PA01 PA04 PA05 PA06 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Hiroshi Yamada 4-5-2-5 Takaidahondori, Higashiosaka-shi, Osaka Inside Matsushita Refrigerating Machinery Co., Ltd. (72) Hideki Fukui 4-chome Takaidahondori, Higashiosaka-shi, Osaka No.2 No.5 Matsushita Refrigeration Co., Ltd. F term (reference) 3L045 AA03 BA01 CA02 DA02 EA01 GA07 HA02 HA06 JA12 MA02 MA04 PA01 PA04 PA05 PA06

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 食品を冷却貯蔵する複数の冷却室を備え
たものにおいて、圧縮機と、凝縮器と、直列接続した複
数の蒸発器と、冷媒流量可変装置を設けた冷凍サイクル
を構成し、前記複数の蒸発器を冷凍サイクルの上流側か
ら順に設定温度の高い冷却室に設置したことを特徴とす
る冷蔵庫。
1. A refrigeration cycle comprising a plurality of cooling chambers for cooling and storing food, comprising a compressor, a condenser, a plurality of evaporators connected in series, and a variable refrigerant flow device, A refrigerator characterized in that the plurality of evaporators are installed in a cooling room having a higher set temperature in order from an upstream side of a refrigeration cycle.
【請求項2】 食品を冷却貯蔵する複数の冷却室を備え
たものにおいて、圧縮機と、凝縮器と、直列接続した複
数の蒸発器と、前記凝縮器と前記蒸発器の間に設けたキ
ャピラリチューブと、前記複数の蒸発器の相互間に設け
た冷媒流量可変装置とよりなる冷凍サイクルを構成し、
前記複数の蒸発器を冷凍サイクルの上流側から順に設定
温度の高い冷却室に設置したことを特徴とする冷蔵庫。
2. A refrigerator having a plurality of cooling chambers for cooling and storing food, comprising a compressor, a condenser, a plurality of evaporators connected in series, and a capillary provided between the condenser and the evaporator. A refrigeration cycle comprising a tube and a refrigerant flow variable device provided between the plurality of evaporators,
A refrigerator characterized in that the plurality of evaporators are installed in a cooling room having a higher set temperature in order from an upstream side of a refrigeration cycle.
【請求項3】 各蒸発器の蒸発温度と庫内温度との温度
差を5℃以下にするように、冷媒流量可変装置の絞り量
を制御することを特徴とする請求項1または2に記載の
冷蔵庫。
3. The throttle amount of the variable refrigerant flow device is controlled so that the temperature difference between the evaporation temperature of each evaporator and the temperature in the refrigerator is set to 5 ° C. or less. Refrigerator.
【請求項4】 上流側から順に第一の蒸発器、第二の蒸
発器とし、前記第一の蒸発器を冷蔵室内に、前記第二の
蒸発器を冷凍室内に設置したことを特徴とする請求項1
から3のいずれか一項に記載の冷蔵庫。
4. A first evaporator and a second evaporator are arranged in this order from an upstream side, wherein the first evaporator is installed in a refrigerator compartment and the second evaporator is installed in a freezer compartment. Claim 1
The refrigerator according to any one of claims 1 to 3.
【請求項5】 冷蔵室内蒸発器の蒸発温度を−5〜5℃
の範囲で制御することを特徴とする請求項4に記載の冷
蔵庫。
5. The evaporator in the refrigerator compartment has an evaporation temperature of -5 to 5 ° C.
The refrigerator according to claim 4, wherein the control is performed in the range of:
【請求項6】 冷凍室の急速冷凍時、前記冷媒流量可変
装置の絞り量を絞り、冷凍室内蒸発器の蒸発温度を低く
することを特徴とする請求項4に記載の冷蔵庫。
6. The refrigerator according to claim 4, wherein, during rapid freezing of the freezer, the amount of throttle of the refrigerant flow variable device is reduced to lower the evaporation temperature of the evaporator in the freezer.
JP31923999A 1999-11-10 1999-11-10 Refrigerator Pending JP2001133112A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31923999A JP2001133112A (en) 1999-11-10 1999-11-10 Refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31923999A JP2001133112A (en) 1999-11-10 1999-11-10 Refrigerator

Publications (1)

Publication Number Publication Date
JP2001133112A true JP2001133112A (en) 2001-05-18

Family

ID=18107978

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31923999A Pending JP2001133112A (en) 1999-11-10 1999-11-10 Refrigerator

Country Status (1)

Country Link
JP (1) JP2001133112A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006017959A1 (en) * 2004-08-19 2006-02-23 Hisense Group Co., Ltd. Composite refrigerator having multi-cycle refrigeration system and control method thereof
KR100757109B1 (en) 2006-01-03 2007-09-10 엘지전자 주식회사 Refrigerator and controlling method thereof
US20110030403A1 (en) * 2008-04-21 2011-02-10 Daikin Industries, Ltd. Heat exchanger unit
JP2012063131A (en) * 2011-11-09 2012-03-29 Mitsubishi Electric Corp Refrigerator
WO2015091571A1 (en) * 2013-12-18 2015-06-25 BSH Hausgeräte GmbH Refrigeration device having a plurality of refrigeration compartments
WO2018177809A1 (en) * 2017-03-30 2018-10-04 BSH Hausgeräte GmbH Refrigeration appliance and method for the operation thereof
WO2021083697A1 (en) * 2019-10-28 2021-05-06 BSH Hausgeräte GmbH Refrigeration appliance comprising a compartment that can be heated and cooled

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006017959A1 (en) * 2004-08-19 2006-02-23 Hisense Group Co., Ltd. Composite refrigerator having multi-cycle refrigeration system and control method thereof
KR100757109B1 (en) 2006-01-03 2007-09-10 엘지전자 주식회사 Refrigerator and controlling method thereof
US20110030403A1 (en) * 2008-04-21 2011-02-10 Daikin Industries, Ltd. Heat exchanger unit
US8671714B2 (en) * 2008-04-21 2014-03-18 Daikin Industries, Ltd. Heat exchanger unit
JP2012063131A (en) * 2011-11-09 2012-03-29 Mitsubishi Electric Corp Refrigerator
WO2015091571A1 (en) * 2013-12-18 2015-06-25 BSH Hausgeräte GmbH Refrigeration device having a plurality of refrigeration compartments
CN105829815A (en) * 2013-12-18 2016-08-03 Bsh家用电器有限公司 Refrigeration device having a plurality of refrigeration compartments
US10088215B2 (en) 2013-12-18 2018-10-02 Bsh Hausgeraete Gmbh Refrigeration device having a plurality of refrigeration compartments
CN105829815B (en) * 2013-12-18 2019-03-26 Bsh家用电器有限公司 Refrigerating appliance with multiple refrigeration lattice
WO2018177809A1 (en) * 2017-03-30 2018-10-04 BSH Hausgeräte GmbH Refrigeration appliance and method for the operation thereof
WO2021083697A1 (en) * 2019-10-28 2021-05-06 BSH Hausgeräte GmbH Refrigeration appliance comprising a compartment that can be heated and cooled

Similar Documents

Publication Publication Date Title
JP3576092B2 (en) refrigerator
KR0160436B1 (en) Refrigerator having high efficient cooling cycle and control method thereof
CN100472155C (en) Refrigerator and control method thereof
JP2996656B1 (en) Refrigeration cycle device for refrigerator
JP2005180874A (en) Refrigerator
JP2000230766A (en) Cooling cycle and refrigerator
JPH11173729A (en) Refrigerator
US20070137226A1 (en) Refrigerator and method for controlling the refrigerator
JP2023528838A (en) Refrigerator defrosting control method
JP2001133112A (en) Refrigerator
JP2001108319A (en) Refrigerator
JP3426892B2 (en) Multi evaporator refrigerator
JPH11304328A (en) Cooling operation controller of refrigerator
JPH11257822A (en) Refrigerator
JP2001108345A (en) Two stage compression freezer/refrigerator
US20080190123A1 (en) Refrigerator Having Multi-Cycle Refrigeration System And Control Method Thereof
JP2000283626A (en) Refrigerator
JP2002195726A (en) Refrigerator
JP2002195726A5 (en)
JP3954835B2 (en) refrigerator
CN214371043U (en) Compression refrigeration system of refrigerator and refrigerator
JP2001153477A (en) Refrigerating plant
JP3710353B2 (en) refrigerator
KR100249195B1 (en) Refrigerator
CN118208920A (en) Refrigerator, control method and control device thereof and storage medium