JPH11304328A - Cooling operation controller of refrigerator - Google Patents

Cooling operation controller of refrigerator

Info

Publication number
JPH11304328A
JPH11304328A JP11541398A JP11541398A JPH11304328A JP H11304328 A JPH11304328 A JP H11304328A JP 11541398 A JP11541398 A JP 11541398A JP 11541398 A JP11541398 A JP 11541398A JP H11304328 A JPH11304328 A JP H11304328A
Authority
JP
Japan
Prior art keywords
refrigeration
refrigerator
cooling operation
temperature
refrigerating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11541398A
Other languages
Japanese (ja)
Other versions
JP3476361B2 (en
Inventor
Atsushi Kusunoki
敦 楠
Minoru Tenmyo
稔 天明
Shinji Hirai
慎二 平井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP11541398A priority Critical patent/JP3476361B2/en
Publication of JPH11304328A publication Critical patent/JPH11304328A/en
Application granted granted Critical
Publication of JP3476361B2 publication Critical patent/JP3476361B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/02Compressor control
    • F25B2600/025Compressor control by controlling speed
    • F25B2600/0251Compressor control by controlling speed with on-off operation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2511Evaporator distribution valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D2700/00Means for sensing or measuring; Sensors therefor
    • F25D2700/14Sensors measuring the temperature outside the refrigerator or freezer

Abstract

PROBLEM TO BE SOLVED: To provide a refrigerator which can raise the cooling efficiency of a freezing cycle and cool both of a freezing room and a refrigerating room with a cooler at a proper evaporation temperature. SOLUTION: This controller has a refrigerating room 14 and a freezing room 22 heat-insulated from each other. The cooling inside the refrigerator is performed, by switching the refrigerating room cooling operation to circulate a refrigerant to an evaporator 50 for refrigeration and an evaporator 52 for freezing, and the freezing room-cooling operation to circulate the refrigerant only to the evaporator 52 for freezing alternately by means of a three-way valve 68. The initial operation time ratio between both cooling operations is set in advance. Then, the number of revolution in operation of a compressor 46 required for each cooling operation is obtained, based on the operation time ratio, the required cooling capacity wherein the ambient temperature is taken into consideration, and others.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、冷蔵庫の冷却運
転制御装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a refrigerator cooling operation control device.

【0002】[0002]

【従来の技術】2つの蒸発器のそれぞれで冷凍室と冷蔵
室とを冷却するよう成された従来の冷蔵庫では、冷媒回
路中で冷凍用蒸発器と冷蔵用蒸発器とを直列に接続して
いた。そして冷凍室と冷蔵室とのそれぞれに冷却用の送
風機を有することなく、冷蔵用蒸発器の絞り開度を小さ
くするなどして冷凍サイクルを構成していた。
2. Description of the Related Art In a conventional refrigerator in which a freezer compartment and a refrigerator compartment are cooled by two evaporators, a refrigerating evaporator and a refrigerating evaporator are connected in series in a refrigerant circuit. Was. In addition, the refrigerating cycle is configured by reducing the aperture of the refrigerating evaporator without having a cooling blower in each of the freezing compartment and the refrigerating compartment.

【0003】[0003]

【発明が解決しようとする課題】ところが上記のように
構成された冷蔵庫では、比較的高温度の冷蔵室まで低温
度の蒸発器で冷却することになるため、冷凍サイクルの
冷却効率が低くなるという問題があった。
However, in the refrigerator configured as described above, the cooling efficiency of the refrigeration cycle is reduced because the refrigerator having a relatively high temperature is cooled by a low-temperature evaporator. There was a problem.

【0004】また上記のような冷蔵庫では、冷凍室を冷
却している際にも冷蔵用蒸発器は非常に低温になる。し
かしながら冷蔵室内は高湿度となっているため、冷蔵用
蒸発器が着霜しやすいという問題もあった。そしてこの
ように冷蔵用蒸発器に着霜が生じると、冷蔵用蒸発器の
熱交換効率が低下して消費電力量が大きくなるという問
題を生ずると共に、液冷媒が圧縮機に返流して液圧縮が
起こり、冷凍サイクル中に設けられた部品の信頼性が低
下してしまうという問題があった。
[0004] In the above-mentioned refrigerator, the temperature of the refrigerating evaporator becomes extremely low even when the freezer compartment is cooled. However, there is also a problem that the refrigeration evaporator is liable to frost due to high humidity in the refrigeration room. When frost is formed on the evaporator for refrigeration in this way, the heat exchange efficiency of the refrigeration evaporator is reduced and the power consumption is increased. There is a problem that compression occurs and the reliability of components provided in the refrigeration cycle is reduced.

【0005】この発明は、上記従来の課題を解決するた
めになされたものであって、その目的は、冷凍サイクル
の冷却効率を向上させると共に、冷凍室と冷蔵室との双
方を適度な蒸発温度の蒸発器で冷却することが可能な冷
蔵庫を提供する。
The present invention has been made to solve the above-mentioned conventional problems, and an object of the present invention is to improve the cooling efficiency of a refrigeration cycle and to set both a freezing room and a refrigerating room at an appropriate evaporation temperature. To provide a refrigerator that can be cooled by an evaporator.

【0006】[0006]

【課題を解決するための手段】請求項1の発明は、圧縮
機と、凝縮器と、冷蔵用絞り装置と、冷蔵用送風機を併
設した冷蔵用蒸発器と、冷凍用送風機を併設した冷凍用
蒸発器とを順次環状に接続して成ると共に、凝縮器と冷
蔵用絞り装置との間から分岐する冷媒支管を有し、この
冷媒支管に冷凍用絞り装置を備えると共にこの冷媒支管
の下流側を冷蔵用蒸発器と冷凍用蒸発器との間に接続
し、さらに凝縮器から流出した冷媒の流通先を冷蔵用蒸
発器側と冷媒支管側との間で切り替える流路切替手段を
設けた冷媒回路を備え、流路切替手段を冷蔵用蒸発器側
に切り替えると共に冷蔵用送風機を駆動する一方で冷凍
用送風機を停止させて行う冷蔵室冷却運転と、流路切替
手段を冷媒支管側に切り替えると共に冷凍用送風機を駆
動する一方で冷蔵用送風機を停止させて行う冷凍室冷却
運転とを交互に時間比で切り替えて行うことを特徴とす
る冷蔵庫の冷却運転制御装置である。
According to the first aspect of the present invention, there is provided a refrigerating machine provided with a compressor, a condenser, a refrigerating expansion device, a refrigerating evaporator provided with a refrigerating blower, and a refrigerating blower. The evaporator and the evaporator are sequentially connected in a ring shape, and the refrigerant branch pipe is branched from between the condenser and the refrigeration throttle device.The refrigerant branch pipe is provided with a refrigeration throttle device, and the downstream side of the refrigerant branch pipe is connected to the refrigerant branch pipe. A refrigerant circuit connected between the refrigerating evaporator and the refrigerating evaporator, and further provided with flow path switching means for switching the distribution destination of the refrigerant flowing out of the condenser between the refrigerating evaporator side and the refrigerant branch pipe side. A cooling chamber cooling operation performed by switching the flow path switching means to the refrigeration evaporator side and stopping the refrigeration blower while driving the refrigeration blower, and switching the flow path switching means to the refrigerant branch pipe side and refrigeration. For refrigeration while driving air blower A refrigerator cooling operation control apparatus characterized by performing the freezing compartment cooling operation performed by the wind machine is stopped by switching the time ratio alternately.

【0007】請求項2の発明は、能力可変な圧縮機と、
凝縮器と、冷蔵用絞り装置と、冷蔵用送風機を併設した
冷蔵用蒸発器と、冷凍用送風機を併設した冷凍用蒸発器
とを順次環状に接続して成ると共に、凝縮器と冷蔵用絞
り装置との間から分岐する冷媒支管を有し、この冷媒支
管に冷凍用絞り装置を備え、この冷媒支管の下流側を冷
蔵用蒸発器と冷凍用蒸発器との間に接続し、さらに凝縮
器からの冷媒を冷蔵用蒸発器側と冷媒支管側とに切り替
える流路切替手段を設けた冷媒回路を備え、流路切替手
段を冷蔵用蒸発器側に切り替えると共に冷蔵用送風機を
駆動する冷蔵室冷却運転と、流路切替手段の冷媒支管側
への切り替えで冷凍用送風機を駆動するそれぞれの基準
温度及び外気温度により各冷却運転を行う際の圧縮機能
力と両冷却運転同士の運転継続時間比を設定し、冷凍室
冷却運転と冷蔵室冷却運転とを交互に行うように成され
ていることを特徴とする冷蔵庫の冷却運転制御装置であ
る。
According to a second aspect of the present invention, there is provided a compressor having a variable capacity,
A condenser, a refrigeration throttle device, a refrigeration evaporator provided with a refrigeration blower, and a refrigeration evaporator provided with a refrigeration fan are sequentially connected in a ring shape. And a refrigerant branch pipe branched from between the refrigerant branch pipe and the refrigerant branch pipe. The refrigerant branch pipe is provided with a refrigerating throttle device, and the downstream side of the refrigerant branch pipe is connected between the refrigeration evaporator and the refrigerating evaporator. A refrigerant circuit provided with a flow path switching means for switching the refrigerant between the refrigeration evaporator side and the refrigerant branch pipe side, the refrigeration chamber cooling operation for switching the flow path switching means to the refrigeration evaporator side and driving the refrigeration blower And, by switching the flow path switching means to the refrigerant branch pipe side, the compression function force when performing each cooling operation and the operation continuation time ratio between the two cooling operations are set by the respective reference temperature and the outside air temperature driving the refrigeration blower. And freezer compartment cooling operation and refrigerator compartment It is refrigerator cooling operation control device according to claim which has been made and a retirement operation to alternate.

【0008】請求項3の発明は、冷蔵室と冷凍室とを有
すると共に、能力可変な圧縮機と、凝縮器と、冷蔵用絞
り装置と、冷蔵用送風機を併設した冷蔵用蒸発器と、冷
凍用送風機を併設した冷凍用蒸発器とを順次環状に接続
して成ると共に、凝縮器と冷蔵用絞り装置との間から分
岐する冷媒支管を有し、この冷媒支管に冷凍用絞り装置
を備えると共にこの冷媒支管の下流側を冷蔵用蒸発器と
冷凍用蒸発器との間に接続し、さらに凝縮器から流出し
た冷媒の流通先を冷蔵用蒸発器側と冷媒支管側との間で
切り替える流路切替手段を設けた冷媒回路を備え、流路
切替手段を冷蔵用蒸発器側に切り替えると共に冷蔵用送
風機を駆動する一方で冷凍用送風機を停止させて行う冷
蔵室冷却運転と、流路切替手段を冷媒支管側に切り替え
ると共に冷凍用送風機を駆動する一方で冷蔵用送風機を
停止させて行う冷凍室冷却運転とを交互に切り替えて行
う冷蔵庫の冷却運転制御装置であって、冷蔵室の庫内温
度を検知する冷蔵室温度センサと、冷凍室の庫内温度を
検知する冷凍室温度センサと、外気温度を検知する外気
温度センサと、制御手段とを備え、この制御手段は、冷
凍室冷却運転及び冷蔵室冷却運転のそれぞれについて設
定された所定の基準温度及び外気温度を用いて前記各冷
却運転を行う際の圧縮機の圧縮能力と両冷却運転同士の
運転継続時間比とを把握し、把握したこれらの圧縮能力
と運転継続時間比とに基づいて、冷凍室冷却運転と冷蔵
室冷却運転とを交互に行うよう成されていることを特徴
とする冷蔵庫の冷却運転制御装置である。
According to a third aspect of the present invention, there is provided a refrigerator having a refrigerating compartment and a refrigerating compartment and having a variable capacity compressor, a condenser, a refrigerating expansion device, a refrigerating evaporator provided with a refrigerating blower, and a refrigerating machine. And a refrigerating evaporator provided with a blower for the refrigerant are sequentially connected in a ring shape, and a refrigerant branch pipe is branched from between the condenser and the refrigerating throttle device, and the refrigerant branch pipe is provided with a refrigerating throttle device. A flow path that connects the downstream side of the refrigerant branch pipe between the refrigeration evaporator and the refrigerating evaporator, and further switches the distribution destination of the refrigerant flowing out of the condenser between the refrigeration evaporator side and the refrigerant branch pipe side. A refrigerant circuit provided with switching means, a cooling chamber cooling operation performed by switching the flow path switching means to the refrigeration evaporator side and driving the refrigeration blower while stopping the refrigeration blower, and a flow path switching means. Switch to refrigerant branch side and send for freezing A refrigerator cooling operation control device that alternately switches between the freezing room cooling operation performed by stopping the refrigeration blower while driving the refrigerator, and a refrigerator room temperature sensor that detects the temperature in the refrigerator room, A freezer compartment temperature sensor for detecting the temperature inside the freezer compartment, an outside air temperature sensor for detecting the outside air temperature, and control means are provided, and the control means is set for each of the freezer compartment cooling operation and the refrigerator compartment cooling operation. Using the predetermined reference temperature and the outside air temperature, the compression capacity of the compressor when performing each of the cooling operations and the operation duration ratio between the two cooling operations are grasped, and the grasped compression capacity and operation duration ratio are grasped. The cooling operation control device for a refrigerator is characterized in that the cooling room cooling operation and the refrigerator room cooling operation are alternately performed based on the above.

【0009】請求項4の発明は、前記制御手段は、冷凍
室の庫内温度と所定の冷凍室上限温度との差、及び冷蔵
室の庫内温度と所定の冷蔵室上限温度との差に基づい
て、圧縮機の圧縮能力の調整と前記各送風機の回転数の
調整とを行うよう成されていることを特徴とする請求項
3の冷蔵庫の冷却運転制御装置である。
According to a fourth aspect of the present invention, the control means is configured to determine a difference between the inside temperature of the freezer compartment and a predetermined upper limit temperature of the freezer compartment and a difference between the inside temperature of the refrigerator compartment and the predetermined upper limit temperature of the refrigerator compartment. 4. The cooling operation control device for a refrigerator according to claim 3, wherein adjustment of the compression capacity of the compressor and adjustment of the rotation speed of each of the blowers are performed based on the adjustment.

【0010】請求項5の発明は、制御手段は、圧縮機の
圧縮能力を段階的に変化させるよう成されていることを
特徴とする請求項4の冷蔵庫の冷却運転制御装置であ
る。
According to a fifth aspect of the present invention, there is provided the cooling operation control apparatus for a refrigerator according to the fourth aspect, wherein the control means changes the compression capacity of the compressor in a stepwise manner.

【0011】請求項6の発明は、制御手段は、冷凍室冷
却運転又は冷蔵室冷却運転のうちいずれかの冷却運転を
行う際の圧縮機の圧縮能力が所定の上側基準能力を超え
たときは、その冷却運転の継続時間が長くなるように前
記運転継続時間比を調整する一方、いずれかの冷却運転
を行う際の圧縮機の圧縮能力が所定の下側基準能力を下
回ったときは、その冷却運転の継続時間が短くなるよう
に前記運転継続時間比を調整よう成されていることを特
徴とする請求項4の冷蔵庫の冷却運転制御装置である。
According to a sixth aspect of the present invention, when the compression capacity of the compressor in performing any one of the freezing room cooling operation and the refrigerating room cooling operation exceeds a predetermined upper reference capacity, While adjusting the operation duration ratio so that the duration of the cooling operation becomes longer, when the compression capacity of the compressor when performing any of the cooling operations falls below a predetermined lower reference capacity, 5. The cooling operation control device for a refrigerator according to claim 4, wherein the operation duration time ratio is adjusted so that the duration of the cooling operation is shortened.

【0012】請求項7の発明は、制御手段は、いずれの
冷却運転を行う際の圧縮機の圧縮能力も共に最低圧縮能
力であって、かつ冷却している側の庫内温度が所定の運
転停止温度に達したときに、冷却していない側の庫内温
度が未だ所定の運転開始温度に達していないときには圧
縮機の運転を停止すると共に、圧縮機を停止させた後
に、冷凍室又は冷蔵室のうち庫内温度が先に所定の運転
開始温度に達した方から冷却運転を再開するよう成され
ていることを特徴とする請求項4の冷蔵庫の冷却運転制
御装置である。
According to a seventh aspect of the present invention, the control means is characterized in that the compressor has a minimum compression capacity when performing any of the cooling operations, and the internal temperature of the cooling side is a predetermined operation. When the internal temperature of the uncooled side has not yet reached the predetermined operation start temperature when the stop temperature is reached, the operation of the compressor is stopped, and after the compressor is stopped, the freezing room or the refrigerator is stopped. 5. The cooling operation control device for a refrigerator according to claim 4, wherein the cooling operation is restarted from the one in which the inside temperature of the chamber reaches the predetermined operation start temperature first.

【0013】請求項1,2,3の発明では、冷凍用蒸発
器にだけ冷媒を流通させると共に冷凍用送風機だけを駆
動して行う冷凍室冷却運転と、冷蔵用送風機だけを駆動
して行う冷蔵室冷却運転とを交互に切り替えて冷蔵庫の
冷却を行っている。従って冷凍室と冷蔵室とをそれぞれ
適切な冷凍能力で冷却でき、冷却効率を向上させること
が可能となる。また冷蔵用蒸発器を適度な温度に維持で
きるので、これに着霜が生じたり、液圧縮の一因となる
のを回避することが可能となる。
According to the first, second and third aspects of the present invention, the refrigerant is circulated only through the refrigeration evaporator and the refrigeration compartment is driven by driving only the refrigeration fan, and the refrigeration is performed by driving only the refrigeration fan. The refrigerator is cooled by alternately switching the room cooling operation. Therefore, the freezing compartment and the refrigerating compartment can be cooled with appropriate refrigerating capacity, respectively, and the cooling efficiency can be improved. Further, since the refrigerating evaporator can be maintained at an appropriate temperature, it is possible to prevent frost formation on the evaporator and contribute to liquid compression.

【0014】請求項4の発明では、庫内温度と各上限温
度との差に基づいて冷却能力の調整しているので、より
適切な冷却運転によって冷却効率をさらに向上させるこ
とが可能となる。
According to the fourth aspect of the present invention, since the cooling capacity is adjusted based on the difference between the internal temperature and each upper limit temperature, the cooling efficiency can be further improved by a more appropriate cooling operation.

【0015】請求項5の発明では、圧縮機の圧縮能力を
段階的に変化させているので、例えば冷蔵庫全体の共振
周波数等を避けて圧縮機を駆動することができ、静音性
を向上させることが可能となる。
According to the fifth aspect of the present invention, since the compression capacity of the compressor is changed stepwise, the compressor can be driven while avoiding, for example, the resonance frequency of the entire refrigerator, thereby improving the quietness. Becomes possible.

【0016】請求項6の発明では、圧縮機に極端に大き
な負荷がかかるのを回避できるので、圧縮機の信頼性を
向上することが可能となる。また無駄な冷却運転が行わ
れるのを回避して、一段と冷却効率を向上させることが
可能となる。
According to the sixth aspect of the present invention, it is possible to prevent an extremely large load from being applied to the compressor, thereby improving the reliability of the compressor. Further, it is possible to further improve the cooling efficiency by avoiding the useless cooling operation.

【0017】請求項7の発明では、無駄な冷却運転が行
われるのを回避し、効率的な冷却運転によって庫内を一
段と適度な温度に保つことが可能となる。
According to the seventh aspect of the present invention, it is possible to avoid the useless cooling operation and to keep the inside of the refrigerator at a more appropriate temperature by the efficient cooling operation.

【0018】[0018]

【発明の実施の形態】次に、この発明の冷蔵庫の具体的
な実施の形態について、図面を参照しつつ詳細に説明す
る。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Next, a specific embodiment of the refrigerator of the present invention will be described in detail with reference to the drawings.

【0019】図1は、本実施形態の冷蔵庫10を扉を開
けた状態で示す正面図である。冷蔵庫10の本体である
キャビネット12には、上段から冷蔵室14、野菜室1
6、温度切替室18、冷凍室22が設けられている。ま
た温度切替室18の左側には製氷室20が設けられてい
る。そして、野菜室16と温度切替室18、製氷室20
との間には断熱仕切体24が配されている。
FIG. 1 is a front view showing a refrigerator 10 of the present embodiment with a door opened. The cabinet 12 which is the main body of the refrigerator 10 has a refrigerator compartment 14 and a vegetable compartment 1 from the top.
6, a temperature switching room 18 and a freezing room 22 are provided. An ice making chamber 20 is provided on the left side of the temperature switching chamber 18. And the vegetable room 16, the temperature switching room 18, the ice making room 20
A heat insulating partition 24 is disposed between the two.

【0020】冷蔵室14の下部には、約0℃付近で庫内
温度を維持するチルド室26が設けられている。野菜室
16には引出式の野菜室扉(図示せず)が設けられ、こ
の扉と共に野菜容器28が引き出し可能となっている。
温度切替室18には引出式の温度切替室扉(図示せず)
が設けられ、この扉と共に温度切替室容器30が引き出
し可能となっている。冷凍室22にも引出式の冷凍室扉
(図示せず)が設けられ、この扉と共に冷凍容器32が
引き出し可能となっている。製氷室20にはその天井部
付近に製氷装置34が設けられ、この下方には貯氷容器
36が設けられている。なお製氷装置34に水を供給す
るタンク44は、チルド室26の左側に設けられてい
る。
At the lower part of the refrigerator compartment 14, a chilled compartment 26 for maintaining the temperature inside the refrigerator at about 0 ° C. is provided. The vegetable compartment 16 is provided with a drawer-type vegetable compartment door (not shown), and the vegetable container 28 can be pulled out together with the door.
The temperature switching chamber 18 has a draw-out type temperature switching chamber door (not shown).
The temperature switching chamber container 30 can be pulled out together with the door. The freezer compartment 22 is also provided with a drawer-type freezer compartment door (not shown), with which the freezer container 32 can be pulled out. An ice making device 34 is provided near the ceiling of the ice making room 20, and an ice storage container 36 is provided below the ice making device 34. The tank 44 that supplies water to the ice making device 34 is provided on the left side of the chilled chamber 26.

【0021】次に、前記図1、この冷蔵庫の縦断面図で
ある図2、及び冷凍サイクルの装置の配置を概説した図
3に基づいて、冷蔵庫10の冷凍サイクルの構造及びそ
の配置について説明する。まず、圧縮機46は、キャビ
ネット12の底部、すなわち冷凍室22の後方下部に設
けられた機械室48に設けられている。冷蔵庫10の蒸
発器は冷蔵用と冷凍用の2つ存在し、冷蔵用蒸発器50
は野菜室16の後方に配され、冷凍用蒸発器52は冷凍
室22の後方上部に設けられている。また、冷蔵用蒸発
器50の上方には冷蔵用送風機54が設けられ、冷凍用
蒸発器52の上方には冷凍用送風機56が設けられてい
る。また、冷凍用蒸発器52の下方には除霜ヒータ98
が設けられている。
Next, the structure and arrangement of the refrigeration cycle of the refrigerator 10 will be described with reference to FIG. 1, FIG. 2 which is a longitudinal sectional view of the refrigerator, and FIG. 3 which outlines the arrangement of the refrigeration cycle apparatus. . First, the compressor 46 is provided in a machine room 48 provided at the bottom of the cabinet 12, that is, at a lower rear portion of the freezing room 22. The refrigerator 10 has two evaporators, one for refrigeration and the other for freezing.
Is disposed behind the vegetable compartment 16, and the freezing evaporator 52 is provided at the upper rear portion of the freezing compartment 22. A refrigeration blower 54 is provided above the refrigeration evaporator 50, and a refrigeration blower 56 is provided above the refrigeration evaporator 52. A defrost heater 98 is provided below the freezing evaporator 52.
Is provided.

【0022】図4は、この冷蔵庫に設けられた冷媒回路
を示す図である。以下、この図に基づいて冷媒の流れに
ついて説明する。圧縮機46から出た冷媒は、マフラー
58、放熱パイプ60、凝縮器62、防露パイプ64、
ドライヤー66を経て三方弁(流路切替手段)68に至
る。三方弁68において冷媒流路は分岐し、一方は冷蔵
用キャピラリーチューブ(絞り装置)70に向かい、他
方は冷媒支管103に介設された冷凍用キャピラリーチ
ューブ(絞り装置)72に向かう。冷蔵用キャピラリー
チューブ70から前記した冷蔵用蒸発器50に至り、冷
凍用キャピラリーチューブ72の出口側と1つになり、
前記した冷凍用蒸発器52に至る。その後、アキュムレ
ータ74、サクションパイプ76を通って圧縮機46に
戻る。
FIG. 4 is a diagram showing a refrigerant circuit provided in the refrigerator. Hereinafter, the flow of the refrigerant will be described with reference to FIG. The refrigerant flowing out of the compressor 46 is supplied to a muffler 58, a heat radiating pipe 60, a condenser 62, a dew proof pipe 64,
A three-way valve (flow path switching means) 68 passes through the dryer 66. In the three-way valve 68, the refrigerant flow path branches, one of which is directed to the refrigeration capillary tube (throttle device) 70, and the other is directed to the refrigeration capillary tube (throttle device) 72 provided in the refrigerant branch pipe 103. From the refrigeration capillary tube 70 to the above-mentioned refrigeration evaporator 50, it becomes one with the outlet side of the refrigeration capillary tube 72,
It reaches the above-mentioned freezing evaporator 52. Thereafter, the flow returns to the compressor 46 through the accumulator 74 and the suction pipe 76.

【0023】さらにこの冷蔵庫には、冷凍室22の庫内
温度tFを検知する冷凍室温度センサ101と、冷蔵室
14の庫内温度tRを検知する冷蔵室温度センサ102
と、外気温tAを検知する外気温度センサ104とが設
けられ、さらに冷凍サイクルの制御を行う制御部(制御
手段)が、マイクロコンピュータ等を用いて構成されて
いる。そしてこの制御部により、前記三方弁68を冷蔵
用蒸発器50側に切り替えると共に冷蔵用送風機54を
駆動する一方で冷凍用送風機56を停止させて行う冷蔵
室冷却運転と、前記三方弁68を冷媒支管103側に切
り替えると共に冷凍用送風機56を駆動する一方で冷蔵
用送風機54を停止させて行う冷凍室冷却運転とがおこ
なわれる。そして冷蔵室冷却運転は、冷蔵室冷却時間T
Rのあいだ圧縮機46を冷蔵用運転回転数fRで運転し
て行われ、冷凍室冷却運転は、冷凍室冷却時間TFのあ
いだ圧縮機46を冷凍用運転回転数fFで運転して行わ
れるのであるが、前記制御部によるこのときの制御を図
5のフローチャートに基づいて次に説明する。
Further, the refrigerator has a freezer compartment temperature sensor 101 for detecting the inside temperature tF of the freezer compartment 22 and a refrigerator compartment temperature sensor 102 for detecting the inside temperature tR of the refrigerator compartment 14.
And an outside air temperature sensor 104 for detecting an outside air temperature tA, and a control unit (control means) for controlling a refrigeration cycle is configured using a microcomputer or the like. The control unit switches the three-way valve 68 to the refrigerating evaporator 50 side and drives the refrigerating blower 54 while stopping the refrigerating blower 56 to perform a refrigerating room cooling operation. Switching to the side of the branch pipe 103 and driving of the refrigerating blower 56 while stopping the refrigerating blower 54 perform a freezing room cooling operation. And the refrigerator compartment cooling operation is performed by the refrigerator compartment cooling time T.
Since the compressor 46 is operated at the refrigerating operation speed fR during the period R, the freezing room cooling operation is performed by operating the compressor 46 at the refrigerating operation speed fF during the freezing room cooling time TF. However, the control performed by the control unit at this time will be described below with reference to the flowchart of FIG.

【0024】ステップS1では、冷凍室冷却時間TFと
冷蔵室冷却時間TRとの時間比を初期設定する。例えば
外気温度tAが30℃であった場合、初期値として冷凍
室冷却時間TFを30分、冷蔵室冷却時間TRを15分
とし、前記時間比を2:1とする。
In step S1, the time ratio between the freezing room cooling time TF and the refrigerating room cooling time TR is initially set. For example, when the outside air temperature tA is 30 ° C., the freezing room cooling time TF is set to 30 minutes, the refrigerator room cooling time TR is set to 15 minutes, and the time ratio is set to 2: 1.

【0025】次にステップS2では、圧縮機46の圧縮
能力、すなわち運転回転数を、外気温度tAを用いて算
出する。この算出の手法を図6に示している。まず制御
部には、外気温度tAと必要となる冷凍能力との相関関
係を、冷凍室22及び冷蔵室14についてそれぞれ設定
した所定の基準温度について記憶させておく。ここでは
冷凍室22の基準温度は−18℃とし、冷蔵室14の基
準温度は3℃としている。そして外気温度センサ104
から外気温度tAを読み込むと共に、記憶した前記相関
関係から冷凍室22及び冷蔵室14について必要となる
冷却能力をそれぞれ把握する。また前記制御部には、圧
縮機46の運転回転数と冷凍能力との相関関係を、冷凍
用蒸発器52および冷蔵用蒸発器50の各蒸発温度につ
いて記憶させている。そしてこの相関関係から、各冷却
運転において必要となる圧縮機46の運転回転数、すな
わち冷凍用運転回転数fF及び冷蔵用運転回転数fRを
求めるのである。
Next, at step S2, the compression capacity of the compressor 46, that is, the operating speed is calculated using the outside air temperature tA. FIG. 6 shows a method of this calculation. First, the control section stores the correlation between the outside air temperature tA and the required refrigerating capacity for predetermined reference temperatures set for the freezing compartment 22 and the refrigerating compartment 14, respectively. Here, the reference temperature of the freezer compartment 22 is -18 ° C, and the reference temperature of the refrigerator compartment 14 is 3 ° C. And the outside air temperature sensor 104
, The cooling capacity required for the freezing room 22 and the refrigerating room 14 is grasped from the stored correlation. The controller stores the correlation between the operating speed of the compressor 46 and the refrigerating capacity for each evaporating temperature of the refrigerating evaporator 52 and the refrigerating evaporator 50. Then, from this correlation, the operating speed of the compressor 46 required for each cooling operation, that is, the freezing operating speed fF and the refrigeration operating speed fR are determined.

【0026】このようにして冷凍室冷却時間TFと冷蔵
室冷却時間TR、及び各冷却運転における圧縮機46の
運転回転数fF、fRを求めたら、ステップS3で冷却
運転を開始する。ここでは冷凍室冷却運転から開始した
ものとして説明を続ける。
After the freezing room cooling time TF and the refrigerator room cooling time TR and the operating speeds fF and fR of the compressor 46 in each cooling operation are obtained in this way, the cooling operation is started in step S3. Here, the description will be continued assuming that the operation has been started from the freezing compartment cooling operation.

【0027】ステップS4では、ステップS3で開始し
た冷凍室冷却運転の継続時間と前記冷凍室冷却時間TF
とを比較する。そして未だ冷凍室冷却時間TFが経過し
ていないときは、このステップS4を繰り返す。一方、
冷凍室冷却運転を開始してから冷凍室冷却時間TFが経
過したときは、ステップS5に進む。このステップS5
では、冷却していない側の庫内温度、すなわち冷蔵室温
度tRと冷蔵室上限温度tRuとを比較する。そして冷
蔵室温度tRが冷蔵室上限温度tRuよりも高かったと
きはステップS6に進み、冷蔵室温度tRが冷蔵室上限
温度tRu以下であったときはステップS7に進む。そ
してステップS6では冷蔵用運転回転数fRを低下さ
せ、ステップS7では冷蔵用運転回転数fRを上昇させ
る。つまり、これらのステップS6、S7によって冷蔵
用運転回転数fRの調整を行うということである。そこ
で次に、このときの調整の手法を図7のタイムチャート
に基づいて説明する。
In step S4, the duration of the freezing room cooling operation started in step S3 and the freezing room cooling time TF
Compare with If the freezing room cooling time TF has not yet elapsed, this step S4 is repeated. on the other hand,
When the freezing room cooling time TF has elapsed since the start of the freezing room cooling operation, the process proceeds to step S5. This step S5
Then, the inside temperature of the uncooled side, that is, the refrigerator room temperature tR and the refrigerator room upper limit temperature tRu are compared. When the refrigerator compartment temperature tR is higher than the refrigerator compartment upper limit temperature tRu, the process proceeds to step S6, and when the refrigerator compartment temperature tR is lower than the refrigerator compartment upper limit temperature tRu, the process proceeds to step S7. Then, in step S6, the refrigeration operation speed fR is decreased, and in step S7, the refrigeration operation speed fR is increased. That is, the steps S6 and S7 adjust the refrigerating operation speed fR. Therefore, an adjustment method at this time will be described next with reference to a time chart of FIG.

【0028】時刻T0において圧縮機46を冷凍用運転
回転数fFで駆動して開始した冷凍室冷却運転は、時刻
T1で冷凍室冷却時間TFが経過する。そこでこの時刻
T1において、次式 fR2=fR+α・(tR−tRu) ・・・(1) を計算し、調整後の冷蔵用運転回転数fR2を求める。
fRは前回設定した冷蔵用運転回転数であり、αは定数
である。従って冷蔵室温度tRが冷蔵室上限温度tRu
よりも高かったときにはその差に比例した分だけ冷蔵用
運転回転数fRが上昇する一方、冷蔵室温度tRが冷蔵
室上限温度tRuよりも低かったときは、同様にその差
に比例した分だけ冷蔵用運転回転数fRが低下して、圧
縮機46の冷蔵用運転回転数fRが調整されることにな
る。
In the freezing room cooling operation started by driving the compressor 46 at the freezing operation speed fF at time T0, the freezing room cooling time TF elapses at time T1. Therefore, at this time T1, the following equation fR2 = fR + α · (tR−tRu) (1) is calculated, and the adjusted refrigerating operation speed fR2 is obtained.
fR is the previously set refrigerating operation speed, and α is a constant. Therefore, the refrigerator compartment temperature tR becomes equal to the refrigerator compartment upper limit temperature tRu.
When the temperature is higher than the upper limit temperature tRu, the refrigeration operation speed fR increases by an amount proportional to the difference, and when the refrigerator temperature tR is lower than the upper limit temperature tRu, the refrigeration similarly increases. Operating speed fR decreases, and the refrigeration operating speed fR of the compressor 46 is adjusted.

【0029】ところで以上は冷凍室冷却運転が行われて
いることを前提に説明した。しかし後述するステップS
10で冷蔵室冷却運転に切り替えられた後のルーチンで
は冷却していない側が冷凍室22になるので、前記ステ
ップS5では冷凍室温度tFと冷凍室上限温度tFuと
を比較することになる。そしてこの場合における圧縮機
46の運転回転数の調整は、次式 fF2=fF+β・(tF−tFu) ・・・(2) を用いて行う。fF2は調整後の冷凍用運転回転数であ
り、fFは前回設定した冷凍用運転回転数であり、βは
定数である。
The above description has been made on the assumption that the freezing compartment cooling operation is being performed. However, step S described later
In the routine after the operation is switched to the refrigerator compartment cooling operation in step 10, since the uncooled side is the freezer compartment 22 in step S5, the freezer compartment temperature tF is compared with the freezer compartment upper limit temperature tFu. The operation speed of the compressor 46 in this case is adjusted using the following equation: fF2 = fF + β · (tF−tFu) (2) fF2 is the refrigeration operation speed after adjustment, fF is the refrigeration operation speed set previously, and β is a constant.

【0030】さらに上記のようにして決定された運転回
転数fR2、fF2は、冷蔵庫全体での振動、騒音の共
振点を避けて設定された数段階(例えば30、38、4
7、59、73rpsの5段階)の運転回転数値に近似
し、圧縮機46の運転回転数を段階的に変化させるよう
にしている。またこの圧縮機46の運転回転数の調整に
対応して、送風機54、56の回転数も調整する。もち
ろん圧縮機46の運転回転数を上昇させたときは送風機
54、56の回転数を上昇させ、圧縮機46の運転回転
数を低下させたときは送風機54、56の回転数を低下
させるのである。そしてこのときの送風機54、56の
回転数も、冷蔵庫全体での振動、騒音の共振点を避けて
設定された数段階(例えば3段階)の回転数で、段階的
に変化させるようになっている。
Further, the operating rotational speeds fR2 and fF2 determined as described above are set in several steps (for example, 30, 38, 4) which are set to avoid resonance points of vibration and noise in the entire refrigerator.
(5 stages of 7, 59, 73 rps), and the operating speed of the compressor 46 is changed stepwise. The rotation speeds of the blowers 54 and 56 are also adjusted in accordance with the adjustment of the operation rotation speed of the compressor 46. Of course, when the operating rotation speed of the compressor 46 is increased, the rotation speed of the blowers 54 and 56 is increased, and when the operating rotation speed of the compressor 46 is reduced, the rotation speed of the blowers 54 and 56 is reduced. . The rotation speeds of the blowers 54 and 56 at this time are also changed stepwise at several stages (for example, three stages) of rotation speeds set to avoid resonance points of vibration and noise in the entire refrigerator. I have.

【0031】上記のようにして圧縮機46の運転回転数
を調整したら、次にステップS8で、圧縮機46を停止
させるための条件が成立していないかどうかを判断す
る。この条件は、冷凍用運転回転数fFと冷蔵用運転回
転数fRとが共に最低運転回転数以下(従って圧縮機4
6は最低圧縮能力以下)であって、かつ冷却している側
の庫内温度(上記では冷凍室温度tF)がその下限温度
(同様に冷凍室下限温度tFl)に達しているのに、冷
却していない側の庫内温度(上記では冷蔵室温度tR)
が未だその上限温度(同様に冷蔵室上限温度tRu)に
達していない時に成立する。この条件が成立したら後述
するステップS11に移行するが、成立していないとき
はステップS9に進む。
After the operating speed of the compressor 46 has been adjusted as described above, it is next determined in step S8 whether or not a condition for stopping the compressor 46 has been satisfied. This condition is that both the refrigerating operation speed fF and the refrigerating operation speed fR are equal to or lower than the minimum operation speed (accordingly, the compressor 4
6 is equal to or less than the minimum compression capacity), and the temperature inside the refrigerator (freezing room temperature tF in the above description) on the cooling side has reached its lower limit temperature (similarly, the freezing room lower limit temperature tFl). The temperature in the free side (refrigerator temperature tR in the above case)
Is established when the temperature has not yet reached the upper limit temperature (similarly, the refrigerator upper limit temperature tRu). If this condition is satisfied, the process proceeds to step S11 described below. If not, the process proceeds to step S9.

【0032】ステップS9では、冷却しようとする側の
圧縮能力が所定の上側圧縮能力を超えたとき、あるいは
前記圧縮能力が所定の下側圧縮能力を下回ったときに、
冷凍室冷却時間TFと冷蔵室冷却時間TRとの時間比を
調整する。つまり、次に冷却しようとする側の冷蔵用運
転回転数fR2が所定の上側基準運転回転数(例えば6
0rps)に達しているときには冷蔵室冷却時間TRを
長くする一方、これが所定の下側基準運転回転数(例え
ば30rps)になっているにもかかわらず、さらに低
下させる方向に冷蔵用運転回転数fRの調整が行われる
ようなときには、冷蔵室冷却時間TRを短くするのであ
る。冷凍室冷却時間TFについても同様である。そして
このような運転回転数及び運転継続時間比の調整が完了
すると、ステップS10で冷凍室冷却運転から冷蔵室冷
却運転へ、または冷蔵室冷却運転から冷凍室冷却運転へ
と運転を切り替え、ステップS4に戻る。
In step S9, when the compression capacity on the side to be cooled exceeds a predetermined upper compression capacity, or when the compression capacity falls below a predetermined lower compression capacity,
The time ratio between the freezer compartment cooling time TF and the refrigerator compartment cooling time TR is adjusted. That is, the refrigeration operation speed fR2 on the side to be cooled next becomes equal to the predetermined upper reference operation speed (for example, 6
0 rps), the refrigerating room cooling time TR is lengthened, but the refrigerating operation speed fR is further reduced in spite of the fact that it is a predetermined lower reference operation speed (for example, 30 rps). Is adjusted, the refrigerator compartment cooling time TR is shortened. The same applies to the freezing room cooling time TF. When the adjustment of the operation speed and the operation continuation time ratio is completed, the operation is switched from the freezer compartment cooling operation to the refrigerator compartment cooling operation or from the refrigerator compartment cooling operation to the freezer compartment cooling operation in step S10, and step S4 is performed. Return to

【0033】一方、ステップS8で圧縮機46を停止さ
せる条件が成立したときは、次にステップS11に進ん
で圧縮機46の運転を停止させる。そしてステップS1
2で、各庫内温度tF、tRのうちいずれかが所定の運
転開始温度に達していないかを監視する。すなわち、冷
蔵室温度tRが冷蔵室上限温度tRuよりも高くなって
いないか、及び冷凍室温度tFが冷凍室上限温度tFu
よりも高くなっていないかを監視するということであ
る。そして先に冷蔵室温度tRが冷蔵室上限温度tRu
よりも高くなったときは、ステップS13に進んで冷蔵
室冷却運転を開始し、前記ステップS4に戻る。一方、
先に冷凍室温度tFが冷凍室上限温度tFuよりも高く
なったときには、ステップS14に進んで冷凍室冷却運
転を開始し、ステップS4に戻る。
On the other hand, when the condition for stopping the compressor 46 is satisfied in step S8, the process proceeds to step S11 to stop the operation of the compressor 46. And step S1
In step 2, it is monitored whether any of the internal temperatures tF and tR has not reached the predetermined operation start temperature. That is, the refrigerator compartment temperature tR is not higher than the refrigerator compartment upper limit temperature tRu, and the freezer compartment temperature tF is the freezer compartment upper limit temperature tFu.
It is to monitor whether it is higher than that. First, the refrigerator compartment temperature tR is changed to the refrigerator compartment upper limit temperature tRu.
If it is higher than the above, the process proceeds to step S13 to start the refrigerator compartment cooling operation, and returns to step S4. on the other hand,
When the freezing room temperature tF becomes higher than the freezing room upper limit temperature tFu first, the process proceeds to step S14 to start the freezing room cooling operation, and returns to step S4.

【0034】上記のように構成され制御される冷蔵庫で
は、冷凍室冷却運転と冷蔵室冷却運転とを交互に行うこ
とによって冷蔵庫全体の冷却を行っている。そのため比
較的高温度の冷蔵室を冷却するときには高蒸発温度で冷
凍サイクルの運転ができ、これによって冷却効率を向上
させることができると共に、冷蔵用蒸発器50に着霜が
生じたり、これに起因して液圧縮が生じたりするのを回
避できる。そしてこのときの運転継続時間比や圧縮機4
6の運転回転数fF、fRを、外気温度tAを用いて把
握した必要冷凍能力(ヒートリーク)に基づいて設定し
ている。従って冷蔵庫の使用状態に応じた適切な運転を
行うことにより、冷却効率をさらに向上させることがで
きる。
In the refrigerator configured and controlled as described above, the entire refrigerator is cooled by alternately performing the freezing room cooling operation and the refrigerator room cooling operation. Therefore, when cooling the refrigerating compartment at a relatively high temperature, the refrigerating cycle can be operated at a high evaporating temperature, whereby the cooling efficiency can be improved. Liquid compression can be avoided. At this time, the operation duration ratio and the compressor 4
The operating rotational speeds fF and fR of No. 6 are set based on the required refrigerating capacity (heat leak) grasped using the outside air temperature tA. Therefore, by performing an appropriate operation according to the use state of the refrigerator, the cooling efficiency can be further improved.

【0035】また予め冷凍室冷却時間TFと冷蔵室冷却
時間TRとを初期設定して冷却運転を行うようにしてい
る。従って、例えば10分ごとのような短い間隔で冷凍
室冷却運転と冷蔵室冷却運転とが切り替わることがな
く、三方弁68、送風機54、56の回転数、圧縮機4
6の運転回転数fF、fR等が頻繁に変更されるのを回
避して、要素部品の信頼性を向上させることができる。
The cooling operation is performed by setting the freezing room cooling time TF and the refrigerator compartment cooling time TR in advance. Therefore, the freezing room cooling operation and the refrigerating room cooling operation are not switched at short intervals, for example, every 10 minutes, and the three-way valve 68, the rotation speed of the blowers 54 and 56, the compressor 4
6 can be prevented from frequently changing, and the reliability of the element parts can be improved.

【0036】さらに冷却運転を切り替える際に圧縮機4
6の運転回転数fF、fR及び送風機54、56の回転
数の調整を行っている。従って食品等の負荷が庫内1
4、22に投入されたようなときにも、それに応じた適
切な冷却運転を行うことができる。そしてこのとき圧縮
機46の運転回転数fF、fRおよび送風機54、56
の回転数は、冷蔵庫全体の振動共振点と一致しないよう
段階的に変化させている。従って静音性が阻害されるの
を確実に回避することができる。
When switching the cooling operation, the compressor 4
6, the rotational speeds fF and fR and the rotational speeds of the blowers 54 and 56 are adjusted. Therefore, the load of food etc.
Even when it is thrown into 4, 22, an appropriate cooling operation corresponding to it can be performed. At this time, the operating rotational speeds fF and fR of the compressor 46 and the blowers 54 and 56
Is gradually changed so as not to coincide with the vibration resonance point of the entire refrigerator. Therefore, it is possible to reliably prevent the silence from being impaired.

【0037】そして上記冷蔵庫では、圧縮機46の運転
回転数fF、fRが所定の上側基準回転数以上になった
ときには冷凍室冷却運転と冷蔵室冷却運転との運転継続
時間比を調整するようにしている。そのため圧縮機46
に大きな負荷をかけたままその運転を継続することは回
避され、従って機器の信頼性を一段と向上させることが
できる。また前記運転回転数が所定の下側基準回転数以
下となったときにも前記時間比を調整するようにしてい
る。そのため無駄な冷却運転を防止して冷却効率をさら
に向上させることができる。
In the refrigerator, when the operating speeds fF and fR of the compressor 46 become equal to or higher than a predetermined upper reference speed, the operation continuation time ratio between the freezing room cooling operation and the refrigerator room cooling operation is adjusted. ing. Therefore, the compressor 46
It is avoided that the operation is continued with a large load applied to the device, so that the reliability of the device can be further improved. Further, the time ratio is adjusted also when the operation speed becomes equal to or lower than a predetermined lower reference speed. Therefore, useless cooling operation can be prevented, and the cooling efficiency can be further improved.

【0038】また、例えば環境温度が15℃以下で、か
つ扉の開閉がされないような低負荷条件化では、前記ヒ
ートリークが非常に小さいので、圧縮機46を最低圧縮
能力で駆動しても冷却能力が過剰となる場合がある。上
記冷蔵庫ではこのような場合に圧縮機46を停止するよ
うにしているので、無駄な冷却運転を行うことは確実に
回避される。そして圧縮機46を停止したときには、庫
内温度tF、tRが先に上限温度tFu、tRuに達し
た側から冷却運転を行うようにしている。従って庫内温
度tF、tRを確実に適度な低温に維持することができ
る。
Further, for example, under a low load condition where the environmental temperature is 15 ° C. or less and the door is not opened and closed, the heat leak is very small. The capacity may be excessive. In such a refrigerator, the compressor 46 is stopped in such a case, so that useless cooling operation is reliably avoided. Then, when the compressor 46 is stopped, the cooling operation is performed from the side where the temperatures tF and tR reach the upper limit temperatures tFu and tRu first. Therefore, the temperatures tF and tR in the refrigerator can be reliably maintained at an appropriate low temperature.

【0039】[0039]

【発明の効果】以上のように請求項1の発明では、冷凍
用送風機だけを駆動して行う冷凍室冷却運転と、冷蔵用
送風機だけを駆動して行う冷蔵室冷却運転とを交互に切
り替えて冷蔵庫の冷却を行っている。従って冷凍室と冷
蔵室とをそれぞれ適切な冷凍能力で冷却でき、冷却効率
を向上させることが可能となる。また冷蔵用蒸発器を適
度な温度に維持できるので、これに着霜が生じたり、液
圧縮の一因となるのを回避することが可能となる。
As described above, according to the first aspect of the present invention, the freezing room cooling operation performed by driving only the refrigeration fan and the refrigeration room cooling operation performed by driving only the refrigeration fan are alternately switched. Cooling the refrigerator. Therefore, the freezing compartment and the refrigerating compartment can be cooled with appropriate refrigerating capacity, respectively, and the cooling efficiency can be improved. Further, since the refrigerating evaporator can be maintained at an appropriate temperature, it is possible to prevent frost formation on the evaporator and contribute to liquid compression.

【0040】また請求項2の発明では、庫内温度と各上
限温度との差に基づいて冷却能力の調整しているので、
より適切な冷却運転によって冷却効率をさらに向上させ
ることが可能となる。
According to the second aspect of the present invention, the cooling capacity is adjusted based on the difference between the internal temperature and each upper limit temperature.
Cooling efficiency can be further improved by a more appropriate cooling operation.

【0041】さらに請求項3の発明では、圧縮機の圧縮
能力を段階的に変化させているので、例えば冷蔵庫全体
の共振周波数等を避けて圧縮機を駆動することができ、
静音性を向上させることが可能となる。
Further, according to the third aspect of the invention, since the compression capacity of the compressor is changed stepwise, the compressor can be driven while avoiding the resonance frequency of the entire refrigerator, for example.
It is possible to improve quietness.

【0042】請求項4の発明では、圧縮機に極端に大き
な負荷がかかるのを回避できるので、圧縮機の信頼性を
向上することが可能となる。また無駄な冷却運転を回避
して、一段と冷却効率を向上させることが可能となる。
According to the fourth aspect of the present invention, it is possible to prevent an extremely large load from being applied to the compressor, thereby improving the reliability of the compressor. In addition, it is possible to further improve the cooling efficiency by avoiding unnecessary cooling operation.

【0043】請求項5の発明では、無駄な冷却運転を回
避した効率的な冷却運転によって、庫内を一段と適度な
温度に保つことが可能となる。
According to the fifth aspect of the present invention, the inside of the refrigerator can be maintained at a more appropriate temperature by an efficient cooling operation avoiding useless cooling operation.

【図面の簡単な説明】[Brief description of the drawings]

【図1】この発明の一実施形態の冷蔵庫について、その
キャビネット内部を示す正面図である。
FIG. 1 is a front view showing the inside of a cabinet of a refrigerator according to an embodiment of the present invention.

【図2】上記冷蔵庫の縦断面図である。FIG. 2 is a longitudinal sectional view of the refrigerator.

【図3】上記冷蔵庫の冷凍サイクルを構成する各装置の
配置図である。
FIG. 3 is an arrangement diagram of each device constituting a refrigeration cycle of the refrigerator.

【図4】上記冷蔵庫の冷媒回路図である。FIG. 4 is a refrigerant circuit diagram of the refrigerator.

【図5】制御部が行う制御を示すフローチャートであ
る。
FIG. 5 is a flowchart illustrating control performed by a control unit.

【図6】制御部が行う制御を説明するグラフである。FIG. 6 is a graph illustrating control performed by a control unit.

【図7】上記制御を説明するタイムチャートである。FIG. 7 is a time chart illustrating the above control.

【符号の説明】[Explanation of symbols]

14 冷蔵室 22 冷凍室 46 圧縮機 50 冷蔵用蒸発器 52 冷凍用蒸発器 54 冷蔵用送風機 56 冷凍用送風機 62 凝縮器 70 冷蔵用キャピラリーチューブ 72 冷凍用キャピラリーチューブ 101 冷凍室温度センサ 102 冷蔵室温度センサ 104 外気温度センサ 14 Refrigeration Room 22 Refrigeration Room 46 Compressor 50 Refrigeration Evaporator 52 Refrigeration Evaporator 54 Refrigeration Blower 56 Refrigeration Blower 62 Condenser 70 Refrigeration Capillary Tube 72 Refrigeration Capillary Tube 101 Freezing Room Temperature Sensor 102 Refrigeration Room Temperature Sensor 104 Outside air temperature sensor

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】圧縮機と、凝縮器と、冷蔵用絞り装置と、
冷蔵用送風機を併設した冷蔵用蒸発器と、冷凍用送風機
を併設した冷凍用蒸発器とを順次環状に接続して成ると
共に、 凝縮器と冷蔵用絞り装置との間から分岐する冷媒支管を
有し、この冷媒支管に冷凍用絞り装置を備えると共にこ
の冷媒支管の下流側を冷蔵用蒸発器と冷凍用蒸発器との
間に接続し、さらに凝縮器から流出した冷媒の流通先を
冷蔵用蒸発器側と冷媒支管側との間で切り替える流路切
替手段を設けた冷媒回路を備え、 流路切替手段を冷蔵用蒸発器側に切り替えると共に冷蔵
用送風機を駆動する一方で冷凍用送風機を停止させて行
う冷蔵室冷却運転と、流路切替手段を冷媒支管側に切り
替えると共に冷凍用送風機を駆動する一方で冷蔵用送風
機を停止させて行う冷凍室冷却運転とを交互に時間比で
切り替えて行うことを特徴とする冷蔵庫の冷却運転制御
装置。
1. A compressor, a condenser, a refrigerating expansion device,
A refrigeration evaporator provided with a refrigeration blower and a refrigeration evaporator provided with a refrigeration blower are sequentially connected in a ring shape, and have a refrigerant branch pipe branched from between the condenser and the refrigeration expansion device. The refrigerant branch pipe is provided with a refrigeration throttle device, and the downstream side of the refrigerant branch pipe is connected between the refrigeration evaporator and the refrigeration evaporator. A refrigerant circuit provided with a flow path switching means for switching between the cooling device side and the refrigerant branch pipe side, switching the flow path switching means to the refrigeration evaporator side and driving the refrigeration blower while stopping the refrigeration blower. Refrigeration room cooling operation performed by switching the flow path switching means to the refrigerant branch pipe side and driving the refrigeration blower while stopping the refrigeration blower by alternately switching at a time ratio. Characterized by Refrigerator cooling operation control device.
【請求項2】能力可変な圧縮機と、凝縮器と、冷蔵用絞
り装置と、冷蔵用送風機を併設した冷蔵用蒸発器と、冷
凍用送風機を併設した冷凍用蒸発器とを順次環状に接続
して成ると共に、 凝縮器と冷蔵用絞り装置との間から分岐する冷媒支管を
有し、この冷媒支管に冷凍用絞り装置を備え、この冷媒
支管の下流側を冷蔵用蒸発器と冷凍用蒸発器との間に接
続し、さらに凝縮器からの冷媒を冷蔵用蒸発器側と冷媒
支管側とに切り替える流路切替手段を設けた冷媒回路を
備え、 流路切替手段を冷蔵用蒸発器側に切り替えると共に冷蔵
用送風機を駆動する冷蔵室冷却運転と、流路切替手段の
冷媒支管側への切り替えで冷凍用送風機を駆動するそれ
ぞれの基準温度及び外気温度により各冷却運転を行う際
の圧縮機能力と両冷却運転同士の運転継続時間比を設定
し、冷凍室冷却運転と冷蔵室冷却運転とを交互に行うよ
う成されていることを特徴とする冷蔵庫の冷却運転制御
装置。
2. A compressor having a variable capacity, a condenser, a refrigerating expansion device, a refrigerating evaporator provided with a refrigerating blower, and a refrigerating evaporator provided with a refrigerating blower are sequentially connected in a ring shape. And a refrigerant branch pipe branched from between the condenser and the refrigeration throttle device. The refrigerant branch pipe is provided with a refrigeration throttle device, and a downstream side of the refrigerant branch pipe is provided with a refrigeration evaporator and a refrigeration evaporator. And a refrigerant circuit provided with flow path switching means for switching the refrigerant from the condenser between the refrigeration evaporator side and the refrigerant branch pipe side, wherein the flow path switching means is provided on the refrigeration evaporator side. Compressor function when performing each cooling operation by switching the cooling chamber driving operation to drive the refrigeration blower and switching the flow path switching means to the refrigerant branch pipe side to drive the refrigeration fan by the respective reference temperature and outside air temperature. And the operation duration between both cooling operations Set, refrigerator cooling operation control apparatus characterized by being made to perform alternately and refrigerating compartment cooling operation and the freezing compartment cooling operation.
【請求項3】冷蔵室と冷凍室とを有すると共に、能力可
変な圧縮機と、凝縮器と、冷蔵用絞り装置と、冷蔵用送
風機を併設した冷蔵用蒸発器と、冷凍用送風機を併設し
た冷凍用蒸発器とを順次環状に接続して成ると共に、 凝縮器と冷蔵用絞り装置との間から分岐する冷媒支管を
有し、この冷媒支管に冷凍用絞り装置を備えると共にこ
の冷媒支管の下流側を冷蔵用蒸発器と冷凍用蒸発器との
間に接続し、さらに凝縮器から流出した冷媒の流通先を
冷蔵用蒸発器側と冷媒支管側との間で切り替える流路切
替手段を設けた冷媒回路を備え、 流路切替手段を冷蔵用蒸発器側に切り替えると共に冷蔵
用送風機を駆動する一方で冷凍用送風機を停止させて行
う冷蔵室冷却運転と、流路切替手段を冷媒支管側に切り
替えると共に冷凍用送風機を駆動する一方で冷蔵用送風
機を停止させて行う冷凍室冷却運転とを交互に切り替え
て行う冷蔵庫の冷却運転制御装置であって、 冷蔵室の庫内温度を検知する冷蔵室温度センサと、冷凍
室の庫内温度を検知する冷凍室温度センサと、外気温度
を検知する外気温度センサと、制御手段とを備え、 この制御手段は、 冷凍室冷却運転及び冷蔵室冷却運転のそれぞれについて
設定された所定の基準温度及び外気温度を用いて前記各
冷却運転を行う際の圧縮機の圧縮能力と両冷却運転同士
の運転継続時間比とを把握し、把握したこれらの圧縮能
力と運転継続時間比とに基づいて、冷凍室冷却運転と冷
蔵室冷却運転とを交互に行うよう成されていることを特
徴とする冷蔵庫の冷却運転制御装置。
3. A refrigerator having a refrigerating compartment and a freezing compartment, a compressor having a variable capacity, a condenser, a refrigerating expansion device, a refrigerating evaporator having a refrigerating blower, and a refrigerating blower. A refrigerant evaporator is sequentially connected in a ring shape. The refrigerant evaporator further includes a refrigerant branch pipe branched from between the condenser and the refrigeration expansion device. Side is connected between the refrigerating evaporator and the refrigerating evaporator, and further provided is a flow path switching means for switching the distribution destination of the refrigerant flowing out of the condenser between the refrigerating evaporator side and the refrigerant branch pipe side. A refrigerant circuit, switching the flow path switching means to the refrigeration evaporator side and driving the refrigeration blower while stopping the refrigeration blower, and switching the flow path switching means to the refrigerant branch pipe side To drive the refrigeration blower together with A cooling operation control device for a refrigerator that alternately switches between a freezing room cooling operation performed by stopping a refrigerating blower and a refrigerator room temperature sensor for detecting a temperature in the refrigerator room, and a refrigerator room temperature sensor for detecting a temperature in the refrigerator room. A freezer compartment temperature sensor for detecting a temperature, an outside air temperature sensor for detecting an outside air temperature, and control means, wherein the control means includes a predetermined reference temperature set for each of the freezer compartment cooling operation and the refrigerator compartment cooling operation. Based on the compression capacity of the compressor and the operation duration ratio between the two cooling operations when performing each of the cooling operations using the outside air temperature, and based on the obtained compression capacity and operation duration ratio, A refrigerator cooling operation control device characterized in that a freezer compartment cooling operation and a refrigerator compartment cooling operation are alternately performed.
【請求項4】前記制御手段は、 冷凍室の庫内温度と所定の冷凍室上限温度との差、及び
冷蔵室の庫内温度と所定の冷蔵室上限温度との差に基づ
いて、圧縮機の圧縮能力の調整と前記各送風機の回転数
の調整とを行うよう成されていることを特徴とする請求
項3の冷蔵庫の冷却運転制御装置。
4. The compressor according to claim 1, wherein said control means is configured to control the compressor based on a difference between a temperature inside the freezer compartment and a predetermined upper limit temperature of the freezer compartment and a difference between a temperature inside the refrigerator and a predetermined upper limit temperature of the refrigerator compartment. 4. The cooling operation control device for a refrigerator according to claim 3, wherein adjustment of the compression capacity and adjustment of the rotation speed of each of the blowers are performed.
【請求項5】制御手段は、 圧縮機の圧縮能力を段階的に変化させるよう成されてい
ることを特徴とする請求項4の冷蔵庫の冷却運転制御装
置。
5. The cooling operation control device for a refrigerator according to claim 4, wherein the control means changes the compression capacity of the compressor in a stepwise manner.
【請求項6】制御手段は、 冷凍室冷却運転又は冷蔵室冷却運転のうちいずれかの冷
却運転を行う際の圧縮機の圧縮能力が所定の上側基準能
力を超えたときは、その冷却運転の継続時間が長くなる
ように前記運転継続時間比を調整する一方、いずれかの
冷却運転を行う際の圧縮機の圧縮能力が所定の下側基準
能力を下回ったときは、その冷却運転の継続時間が短く
なるように前記運転継続時間比を調整よう成されている
ことを特徴とする請求項4の冷蔵庫の冷却運転制御装
置。
6. When the compression capacity of the compressor during one of the freezing compartment cooling operation and the refrigerator compartment cooling operation exceeds a predetermined upper reference capacity, the control means controls the cooling operation. While adjusting the operation duration ratio so that the duration becomes longer, when the compression capacity of the compressor during any of the cooling operations falls below a predetermined lower reference capacity, the duration of the cooling operation The cooling operation control device for a refrigerator according to claim 4, wherein the operation continuation time ratio is adjusted so as to shorten the operation time ratio.
【請求項7】制御手段は、 いずれの冷却運転を行う際の圧縮機の圧縮能力も共に最
低圧縮能力であって、かつ冷却している側の庫内温度が
所定の運転停止温度に達したときに、冷却していない側
の庫内温度が未だ所定の運転開始温度に達していないと
きには圧縮機の運転を停止すると共に、圧縮機を停止さ
せた後に、冷凍室又は冷蔵室のうち庫内温度が先に所定
の運転開始温度に達した方から冷却運転を再開するよう
成されていることを特徴とする請求項4の冷蔵庫の冷却
運転制御装置。
7. The control means according to claim 1, wherein each of the compressors has a minimum compression capacity when performing a cooling operation, and the temperature in the refrigerator on the cooling side has reached a predetermined operation stop temperature. When the inside temperature of the uncooled side has not yet reached the predetermined operation start temperature, the operation of the compressor is stopped, and after the compressor is stopped, the inside of the freezer compartment or the refrigerator compartment inside the compartment is stopped. The cooling operation control device for a refrigerator according to claim 4, wherein the cooling operation is restarted when the temperature first reaches the predetermined operation start temperature.
JP11541398A 1998-04-24 1998-04-24 Refrigerator cooling operation control device Expired - Fee Related JP3476361B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11541398A JP3476361B2 (en) 1998-04-24 1998-04-24 Refrigerator cooling operation control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11541398A JP3476361B2 (en) 1998-04-24 1998-04-24 Refrigerator cooling operation control device

Publications (2)

Publication Number Publication Date
JPH11304328A true JPH11304328A (en) 1999-11-05
JP3476361B2 JP3476361B2 (en) 2003-12-10

Family

ID=14661966

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11541398A Expired - Fee Related JP3476361B2 (en) 1998-04-24 1998-04-24 Refrigerator cooling operation control device

Country Status (1)

Country Link
JP (1) JP3476361B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001241784A (en) * 2000-02-25 2001-09-07 Mitsubishi Electric Corp Refrigerator using combustible refrigerant
KR20030015058A (en) * 2001-08-14 2003-02-20 주식회사 엘지이아이 Kimchi refrigerator
JP2007303796A (en) * 2006-05-15 2007-11-22 Hoshizaki Electric Co Ltd Cooling storage and operation method for it
US7765815B2 (en) 2005-09-28 2010-08-03 Samsung Electronics Co., Ltd. Refrigerator and method for controlling the same
JP2011080696A (en) * 2009-10-07 2011-04-21 Toshiba Corp Refrigerator
KR20150063930A (en) 2013-12-02 2015-06-10 삼성전자주식회사 Cooling apparatus
WO2021034136A1 (en) 2019-08-21 2021-02-25 Lg Electronics Inc. Method for controlling refrigerating system using non-azeotropic mixed refrigerant
CN112629118A (en) * 2019-10-08 2021-04-09 博西华电器(江苏)有限公司 Refrigeration appliance and control method thereof
CN114413543A (en) * 2022-01-14 2022-04-29 海信(山东)冰箱有限公司 Refrigerator and mute control method thereof
CN115265046A (en) * 2021-04-29 2022-11-01 青岛海尔电冰箱有限公司 Refrigerator and control method thereof

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001241784A (en) * 2000-02-25 2001-09-07 Mitsubishi Electric Corp Refrigerator using combustible refrigerant
KR20030015058A (en) * 2001-08-14 2003-02-20 주식회사 엘지이아이 Kimchi refrigerator
US7765815B2 (en) 2005-09-28 2010-08-03 Samsung Electronics Co., Ltd. Refrigerator and method for controlling the same
US9080805B2 (en) 2006-05-15 2015-07-14 Hoshizaki Denki Kabushiki Kaisha Cooling storage cabinet with dual evaporators and an inverter compressor
JP2007303796A (en) * 2006-05-15 2007-11-22 Hoshizaki Electric Co Ltd Cooling storage and operation method for it
WO2007132605A1 (en) * 2006-05-15 2007-11-22 Hoshizaki Denki Kabushiki Kaisha Cooling storage compartment and its operating method
KR101070639B1 (en) * 2006-05-15 2011-10-07 호시자키 덴키 가부시키가이샤 Cooling storage compartment and its operating method
TWI391619B (en) * 2006-05-15 2013-04-01 Hoshizaki Electric Co Ltd Cooling storage and its operation
JP2011080696A (en) * 2009-10-07 2011-04-21 Toshiba Corp Refrigerator
KR20150063930A (en) 2013-12-02 2015-06-10 삼성전자주식회사 Cooling apparatus
WO2021034136A1 (en) 2019-08-21 2021-02-25 Lg Electronics Inc. Method for controlling refrigerating system using non-azeotropic mixed refrigerant
EP4018136A4 (en) * 2019-08-21 2023-10-11 LG Electronics Inc. Method for controlling refrigerating system using non-azeotropic mixed refrigerant
CN112629118A (en) * 2019-10-08 2021-04-09 博西华电器(江苏)有限公司 Refrigeration appliance and control method thereof
CN115265046A (en) * 2021-04-29 2022-11-01 青岛海尔电冰箱有限公司 Refrigerator and control method thereof
CN115265046B (en) * 2021-04-29 2023-08-15 青岛海尔电冰箱有限公司 Refrigerator and control method thereof
CN114413543A (en) * 2022-01-14 2022-04-29 海信(山东)冰箱有限公司 Refrigerator and mute control method thereof
CN114413543B (en) * 2022-01-14 2024-04-05 海信冰箱有限公司 Refrigerator and mute control method thereof

Also Published As

Publication number Publication date
JP3476361B2 (en) 2003-12-10

Similar Documents

Publication Publication Date Title
JP3538021B2 (en) Refrigerator cooling operation control device
JP3636602B2 (en) refrigerator
US6598410B2 (en) Refrigerator with a plurality of parallel refrigerant passages
US6935127B2 (en) Refrigerator
US10082330B2 (en) Refrigerator and method for controlling a refrigerator
US20120023975A1 (en) Refrigerator and control method thereof
JPH09189473A (en) Refrigerator and method for controlling its operation
KR20060110687A (en) Method of controlling refrigerator
JPH10318646A (en) Driving control device of refrigerator and method
JP2001082850A (en) Refrigerator
KR100348068B1 (en) Controlling method of refrigerator
KR20060113366A (en) Refrigerator
JP3476361B2 (en) Refrigerator cooling operation control device
JP3611447B2 (en) refrigerator
JPH11173729A (en) Refrigerator
KR20050062824A (en) Method for control operation of pan in refrigerator
JPH11148761A (en) Refrigerator
JP3049425B2 (en) Refrigerator with two evaporators
KR100913144B1 (en) Time divided multi-cycle type cooling apparatus
JP3874941B2 (en) refrigerator
JP3497759B2 (en) refrigerator
JP4011314B2 (en) refrigerator
JP2002206840A (en) Refrigerator
JP3483764B2 (en) refrigerator
JP2001255050A (en) Refrigerator

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees