JPH11148761A - Refrigerator - Google Patents

Refrigerator

Info

Publication number
JPH11148761A
JPH11148761A JP31549497A JP31549497A JPH11148761A JP H11148761 A JPH11148761 A JP H11148761A JP 31549497 A JP31549497 A JP 31549497A JP 31549497 A JP31549497 A JP 31549497A JP H11148761 A JPH11148761 A JP H11148761A
Authority
JP
Japan
Prior art keywords
temperature
refrigerator
cooling
compartment
compressor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP31549497A
Other languages
Japanese (ja)
Inventor
Hiroko Hongo
裕子 本郷
Tsutomu Sakuma
勉 佐久間
Kumiko Yamaguchi
久美子 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP31549497A priority Critical patent/JPH11148761A/en
Publication of JPH11148761A publication Critical patent/JPH11148761A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2511Evaporator distribution valves

Landscapes

  • Devices That Are Associated With Refrigeration Equipment (AREA)

Abstract

PROBLEM TO BE SOLVED: To achieve a saving of energy by controlling a cold storage compart ment and a freezer compartment within the optimum temperatures respectively. SOLUTION: This refrigerator is so arranged to alternately cool a cold storage compartment 7 and a freezer compartment 8 switching a refrigerant passage to respective evaporators 15 and 17 arranged in the cold storage compartment 7 and the freezer compartment 8. Evaporation temperatures of the evaporators 15 and 17 are controlled so as to reach values corresponding to a specified temperature of the cold storage compartment and a specified temperature of the freezer compartment by changing the number of revolutions of a compressor 20 from the respective detected temperatures and the respective set temperatures of the cold storage compartment 7 and the freezer compartment 8.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、冷蔵室と冷凍室の
異なる2温度帯空間にそれぞれ蒸発器を備えた冷蔵庫に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a refrigerator provided with an evaporator in two different temperature zones of a refrigerator compartment and a freezer compartment.

【0002】[0002]

【従来の技術】一般に冷蔵庫は、圧縮機から吐出された
冷媒が凝縮器→絞り弁→蒸発器を通り、再び圧縮機に戻
る冷凍サイクルを構成し、冷蔵室と冷凍室の異なる2温
度空間を1つの蒸発器と1つの冷気循環ファンからなる
冷却システムで冷却している。通常、蒸発器と冷気循環
ファンからなる冷却システムは、冷凍室に配置され、蒸
発器で熱交換された冷気は、冷気循環ファンで冷気ダク
トや流路切り替え用のダンパを介して各部屋に供給さ
れ、それぞれの所定温度に冷却している。
2. Description of the Related Art Generally, a refrigerator comprises a refrigeration cycle in which refrigerant discharged from a compressor passes through a condenser → a throttle valve → an evaporator and returns to a compressor again. Cooling is performed by a cooling system including one evaporator and one cool air circulation fan. Normally, a cooling system consisting of an evaporator and a cool air circulation fan is placed in a freezing room, and cool air exchanged by the evaporator is supplied to each room by a cool air circulation fan via a cool air duct and a damper for switching channels. Then, each is cooled to a predetermined temperature.

【0003】これに対し、冷蔵室と冷凍室に各々直列に
接続された蒸発器と冷気循環ファンを配置し、各区画室
の温度に基づいて各冷気循環ファンを制御し、冷媒の使
用量、消費電力を減少せしめ、各区画室の急速冷却を実
現しようという考えがある。このような従来の冷蔵庫の
例を図9を用いて説明する(特開平8−210753号
公報)。図9(a)において、冷蔵庫30は、相互間の
冷気混合が起こらないように、区画された冷凍室31と
冷蔵室32を有し、冷凍室31には第1蒸発器33及び
第1ファン34が設置され、冷蔵室32には第2蒸発器
35及び第2ファン36が設置されている。図9(b)
は、その冷凍サイクルであり、圧縮機37、凝縮器3
8、毛細管39、第1蒸発器33及び第2蒸発器35が
冷媒管40によって順次連結されて閉回路を形成してい
る。このように、第1蒸発器33と第2蒸発器35は直
列に連結されており、第1蒸発器33を通過した冷媒が
第2蒸発器35を通過する。したがって、圧縮機37に
おいて圧縮され、凝縮器38において凝縮され、毛細管
39において膨張した冷媒は、第1蒸発器33を通過し
ながら一部が蒸発し、第2蒸発器35を通過しながら残
りが蒸発して各区画室における熱交換機能を成す。この
後、冷媒はガス状態で再び圧縮機37に吸入されること
により冷凍サイクルを完了する。この冷凍サイクルは、
圧縮機37が駆動されるにしたがって繰り返される。ま
た、第1ファン34が第1蒸発器33の作動と共に回転
され、第2ファン36が第2蒸発器35の作動と共に回
転されて、冷凍室31及び冷蔵室32の空気が各々強制
送風され、各蒸発器33、35において熱交換される。
この冷蔵庫では、冷気ダクトや流路切り替え用のダンパ
等の構造を単純化することができる。
[0003] On the other hand, an evaporator and a cool air circulating fan connected in series to a refrigerator compartment and a freezer compartment, respectively, are arranged to control each cool air circulating fan based on the temperature of each compartment, thereby reducing the amount of refrigerant used and consumed. There is an idea to reduce power and achieve rapid cooling of each compartment. An example of such a conventional refrigerator will be described with reference to FIG. 9 (JP-A-8-210755). In FIG. 9A, the refrigerator 30 has a freezer compartment 31 and a refrigerating compartment 32 which are partitioned so that cold air does not mix with each other. The freezer compartment 31 has a first evaporator 33 and a first fan. The refrigerator 34 is provided with a second evaporator 35 and a second fan 36. FIG. 9B
Is the refrigeration cycle, the compressor 37, the condenser 3
8. The capillary 39, the first evaporator 33, and the second evaporator 35 are sequentially connected by the refrigerant tube 40 to form a closed circuit. Thus, the first evaporator 33 and the second evaporator 35 are connected in series, and the refrigerant that has passed through the first evaporator 33 passes through the second evaporator 35. Therefore, the refrigerant that has been compressed in the compressor 37, condensed in the condenser 38, and expanded in the capillary tube 39 is partially evaporated while passing through the first evaporator 33, and the remainder is passed while passing through the second evaporator 35. It evaporates to perform the heat exchange function in each compartment. Thereafter, the refrigerant is sucked into the compressor 37 again in a gaseous state, thereby completing the refrigeration cycle. This refrigeration cycle
It is repeated as the compressor 37 is driven. Further, the first fan 34 is rotated together with the operation of the first evaporator 33, the second fan 36 is rotated together with the operation of the second evaporator 35, and the air in the freezing room 31 and the refrigerator room 32 is forcibly blown, respectively. Heat is exchanged in each of the evaporators 33 and 35.
In this refrigerator, the structure of the cool air duct, the damper for switching the flow path, and the like can be simplified.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、従来の
冷蔵庫では、冷蔵室及び冷凍室に配置される蒸発器は、
直列に接続されているため、どちらか一方の部屋のみを
冷却するときでも両方の蒸発器を冷却することになり、
エネルギ消費の点で問題がある。また、圧縮機運転中は
両方の蒸発器温度がほぼ同一の温度となるため、冷蔵室
への吹出し冷気温度は低く、冷蔵室内の食品へ悪影響を
及ぼすことが考えられる。さらに、圧縮機及び冷気循環
用のファンはオン・オフを繰り返す断続運転を行うた
め、各部屋の庫内温度変動が大きく、最適温度制御には
限界があった。
However, in the conventional refrigerator, the evaporators disposed in the refrigerator compartment and the freezer compartment are:
Because they are connected in series, both evaporators will be cooled even when cooling only one of the rooms,
There is a problem in terms of energy consumption. Further, during the operation of the compressor, the temperature of both evaporators is substantially the same, so that the temperature of the cool air blown out to the refrigerator compartment is low, which may adversely affect the food in the refrigerator compartment. Further, since the compressor and the fan for circulating cool air perform an intermittent operation that is repeatedly turned on and off, the temperature inside the refrigerator in each room greatly fluctuates, and there is a limit to the optimal temperature control.

【0005】本発明は、上記に鑑みてなされたもので、
第1に冷蔵室、冷凍室をそれぞれ最適温度内に制御する
ことができ、第2に省エネを図ることができ、第3にサ
イクルロスを低減することができ、第4に庫内食品への
温度的影響を最小限に抑えることができる冷蔵庫を提供
することを目的とする。
[0005] The present invention has been made in view of the above,
First, the refrigerating compartment and the freezing compartment can be controlled within the optimum temperature, respectively, secondly, energy saving can be achieved, thirdly, cycle loss can be reduced, and fourthly, foods in the refrigerator can be stored. It is an object of the present invention to provide a refrigerator capable of minimizing a temperature influence.

【0006】[0006]

【課題を解決するための手段】上記課題を解決するため
に、請求項1記載の発明は、冷蔵庫本体に、開閉扉をそ
れぞれ備えた庫内を多段構成し、この多段構成した庫内
を断熱仕切壁により冷蔵室と冷凍室に仕切り、この冷蔵
室と冷凍室には蒸発器及び冷気循環ファンをそれぞれ配
置するとともに前記両蒸発器は並列に接続し、その各蒸
発器への冷媒流路を切り替えて前記冷蔵室と冷凍室を交
互に冷却する冷蔵庫であって、前記冷蔵室と冷凍室の各
検出温度及び各設定温度から圧縮機の回転数を変えて所
要の冷蔵室温度と冷凍室温度に対応した蒸発温度になる
ように前記各蒸発器の蒸発温度を制御するように構成し
てなることを要旨とする。この構成により、冷蔵室と冷
凍室の各蒸発器が、その各部屋の検出温度及び設定温度
に基づいて何れか一方のみが作動するとともに、圧縮機
が各部屋の状況に合った回転数に制御されて各部屋が最
適な温度に保たれる。
According to a first aspect of the present invention, there is provided a refrigerator having a refrigerator body having a multi-stage interior provided with an opening / closing door, and having the multi-stage interior heat-insulated. A partition wall separates a refrigerator compartment and a freezer compartment, and an evaporator and a cool air circulation fan are arranged in the refrigerator compartment and the freezer compartment, respectively, and the two evaporators are connected in parallel, and a refrigerant flow path to each evaporator is provided. A refrigerator for switching between the refrigerator compartment and the freezer compartment to alternately cool the refrigerator compartment and the freezer compartment, and changing the number of rotations of the compressor from the detected temperature and the set temperature of the refrigerator compartment and the freezer compartment to obtain the required refrigerator compartment temperature and freezer compartment temperature. The gist is that the evaporation temperature of each of the evaporators is controlled so that the evaporation temperature corresponds to the above. With this configuration, only one of the evaporators in the refrigerator compartment and the freezer compartment operates based on the detected temperature and the set temperature in each compartment, and the compressor controls the number of revolutions to match the situation in each compartment. Being kept each room at the optimal temperature.

【0007】請求項2記載の発明は、上記請求項1記載
の冷蔵庫において、前記冷蔵室と冷凍室に設けた各冷気
循環ファンは能力可変であり、その時の各部屋の検出温
度又は前記圧縮機回転数の少なくとも何れかに応じて回
転数が制御されるように構成してなることを要旨とす
る。この構成により、冷蔵室と冷凍室の各冷気循環ファ
ンが、圧縮機の能力変動等に応じて回転数が制御され、
各部屋はさらに最適な温度に保たれる。
According to a second aspect of the present invention, in the refrigerator according to the first aspect, each of the cooling air circulating fans provided in the refrigerating compartment and the freezing compartment has a variable capacity, and the detected temperature of each room at that time or the compressor. The gist is that the rotation speed is controlled in accordance with at least one of the rotation speeds. With this configuration, the number of revolutions of each of the cool air circulation fans in the refrigerator compartment and the freezer compartment is controlled in accordance with a change in the capacity of the compressor,
Each room is kept at a more optimal temperature.

【0008】請求項3記載の発明は、上記請求項1記載
の冷蔵庫において、通常冷却モードでは、前記冷蔵室の
冷却運転と前記冷凍室の冷却運転の切り替えは、現在冷
却を行っている部屋の設定下限温度又は他方の部屋の設
定上限温度で行うように構成してなることを要旨とす
る。この構成により、通常冷却モードでは、冷蔵室と冷
凍室の各庫内温度は、常にその設定温度内に保たれる。
According to a third aspect of the present invention, in the refrigerator according to the first aspect, in the normal cooling mode, switching between the cooling operation of the refrigerating compartment and the cooling operation of the freezing compartment is performed in the room currently being cooled. The gist of the invention is that the temperature is set at the set lower limit temperature or the set upper limit temperature of the other room. With this configuration, in the normal cooling mode, the temperatures in the refrigerator compartment and the freezer compartment are always kept within the set temperatures.

【0009】請求項4記載の発明は、上記請求項3記載
の冷蔵庫において、前記冷却運転の切り替えを判定する
各部屋の温度検出は、扉閉状態が1分以上経過を確認し
てから行い、扉開放時又は開放直後は行わないように構
成してなることを要旨とする。この構成により、通常冷
却モードにおいて、一時的な温度変動が冷却運転の切り
替えに悪影響を及ぼすことがなくなる。
According to a fourth aspect of the present invention, in the refrigerator according to the third aspect, the temperature of each room for determining the switching of the cooling operation is detected after confirming that the door closed state has elapsed for one minute or more. The gist is that it is configured not to be performed when the door is opened or immediately after opening. With this configuration, in the normal cooling mode, temporary temperature fluctuation does not adversely affect the switching of the cooling operation.

【0010】請求項5記載の発明は、上記請求項3記載
の冷蔵庫において、前記通常冷却モードの圧縮機運転周
波数は、前記冷蔵室及び冷凍室毎の前回の冷却時又は非
冷却時における庫内検出温度の下降・上昇率を含む運転
データから決定し、前記冷却運転の切り替え時に圧縮機
回転数の見直しを行うように構成してなることを要旨と
する。この構成により、通常冷却モードにおいて、その
時の冷却負荷等による異なった庫内温度状況に応じて圧
縮機運転周波数が決定され、最適な冷却運転が行われ
て、庫内の内容量が変わっても各部屋は最適な温度に保
たれる。
According to a fifth aspect of the present invention, in the refrigerator according to the third aspect, the compressor operating frequency in the normal cooling mode is set in the refrigerator at the time of last cooling or non-cooling for each of the refrigerator compartment and the freezer compartment. The gist of the present invention is that it is determined from operation data including a decrease / increase rate of the detected temperature, and the compressor speed is reviewed when the cooling operation is switched. With this configuration, in the normal cooling mode, the compressor operating frequency is determined according to a different internal temperature condition due to a cooling load or the like at that time, an optimal cooling operation is performed, and even if the internal capacity of the internal storage changes. Each room is kept at an optimal temperature.

【0011】請求項6記載の発明は、上記請求項3記載
の冷蔵庫において、通常冷却モードの圧縮機運転周波数
は、冷蔵室及び冷凍室毎の前回の冷却運転が停止したと
きの庫内温度と設定下限温度の差又は冷却運転を開始す
るときの庫内温度と設定上限温度の差の何れかにより決
定し、前記冷却運転の切り替え時に圧縮機回転数の見直
しを行うように構成してなることを要旨とする。この構
成により、通常冷却モードにおいて、その時の冷却の必
要性に応じて圧縮機運転周波数が決定され、各部屋は最
適な温度に保たれる。
According to a sixth aspect of the present invention, in the refrigerator according to the third aspect, the compressor operating frequency in the normal cooling mode is the same as the temperature in the refrigerator when the previous cooling operation for each of the refrigerator compartment and the freezer compartment was stopped. The difference between the set lower limit temperature or the difference between the internal temperature at the time of starting the cooling operation and the set upper limit temperature is determined, and the compressor speed is changed when the cooling operation is switched. Is the gist. With this configuration, in the normal cooling mode, the compressor operating frequency is determined according to the necessity of cooling at that time, and each room is kept at an optimum temperature.

【0012】請求項7記載の発明は、上記請求項3記載
の冷蔵庫において、前記冷蔵室又は冷凍室の何れかの庫
内温度が設定上限温度に達したときには、その部屋の冷
却運転に切り替えるとともに前記圧縮機は最大周波数で
運転を開始するように構成してなることを要旨とする。
この構成により、通常冷却モードにおいて、設定上限温
度に達した部屋の庫内温度が、最適な温度に向かって早
急に冷却される。
According to a seventh aspect of the present invention, in the refrigerator according to the third aspect, when the internal temperature of either the refrigerator compartment or the freezer compartment reaches a set upper limit temperature, the refrigerator is switched to a cooling operation for that compartment. The gist of the invention is that the compressor is configured to start operation at a maximum frequency.
With this configuration, in the normal cooling mode, the internal temperature of the room that has reached the set upper limit temperature is immediately cooled to the optimum temperature.

【0013】請求項8記載の発明は、上記請求項3記載
の冷蔵庫において、前記冷蔵室及び冷凍室毎に前記設定
上限温度より高く庫内温度として許容できる許容温度を
設け、この許容温度を超えた場合、許容温度を超えた側
の部屋を優先して冷却するように構成してなることを要
旨とする。この構成により、通常冷却モードにおいて、
例えば、熱容量が大きく温度の高いもの等が投入されて
許容温度を超えた場合、その部屋が優先冷却されて、各
部屋が設定温度内に保たれる。
According to an eighth aspect of the present invention, in the refrigerator of the third aspect, an allowable temperature which is higher than the set upper limit temperature and which is allowable as an internal temperature is provided for each of the refrigerator compartment and the freezer compartment, and the allowable temperature exceeds the allowable temperature. In this case, the gist is that the room on the side exceeding the allowable temperature is preferentially cooled. With this configuration, in the normal cooling mode,
For example, when an object having a large heat capacity and a high temperature is supplied and exceeds an allowable temperature, the room is preferentially cooled and each room is kept within a set temperature.

【0014】請求項9記載の発明は、上記請求項8記載
の冷蔵庫において、前記冷蔵室の冷却時間と前記冷凍室
の冷却時間に最小冷却時間を設け、前記冷蔵室と冷凍室
が共に前記許容温度を超えた場合、前記最小冷却時間毎
に冷却室を切り替えるように構成してなることを要旨と
する。この構成により、通常冷却モードにおいて、両部
屋が許容温度を超えた時は、設定された最小冷却時間毎
に冷却運転が切り替えられて各部屋が設定温度になるよ
うに制御される。
According to a ninth aspect of the present invention, in the refrigerator according to the eighth aspect, a minimum cooling time is provided for a cooling time of the refrigerator compartment and a cooling time of the freezer compartment, and both the refrigerator compartment and the freezer compartment have the allowable cooling time. The gist is such that the cooling chamber is switched every time the minimum cooling time is exceeded when the temperature is exceeded. With this configuration, in the normal cooling mode, when both rooms exceed the allowable temperature, the cooling operation is switched at every set minimum cooling time, and control is performed so that each room reaches the set temperature.

【0015】請求項10記載の発明は、上記請求項3記
載の冷蔵庫において、前記冷蔵室の冷却時間と前記冷凍
室の冷却時間に最大冷却時間を設け、前記冷蔵室と冷凍
室が共に設定温度内にあるとき、前記最大冷却時間が経
過したら冷却室を切り替えるように構成してなることを
要旨とする。この構成により、通常冷却モードにおい
て、圧縮機の運転周波数が非常に低い場合など、ある長
時間経過しても両部屋が設定温度内にあるときは、設定
された最大冷却時間毎に冷却運転の切り替えが実行さ
れ、圧縮機に連動する冷気循環ファンが運転されて両部
屋内の温度むら発生が防止される。
According to a tenth aspect of the present invention, in the refrigerator according to the third aspect, a maximum cooling time is provided for a cooling time of the refrigerator compartment and a cooling time of the freezer compartment, and both the refrigerator compartment and the freezer compartment have a set temperature. The point is that the cooling chamber is switched when the maximum cooling time elapses. With this configuration, in the normal cooling mode, when both rooms are within the set temperature even after a certain long time, such as when the operating frequency of the compressor is very low, the cooling operation is performed at every set maximum cooling time. The switching is performed, and the cool air circulation fan linked to the compressor is operated to prevent the occurrence of temperature unevenness in both rooms.

【0016】請求項11記載の発明は、上記請求項1記
載の冷蔵庫において、電源投入時は前記冷凍室から冷却
を開始し、冷凍室温度が設定下限温度に到達した時点か
ら通常冷却モードに移行するように構成してなることを
要旨とする。この構成により、まず、冷却負荷の大きな
冷凍室用の蒸発器に冷媒が流れて圧縮機への液バックが
なくなり、効率のよい冷却運転が行われる。また、冷凍
室温度が所定の温度まで早急に下げられて、食品への温
度的悪影響が抑えられる。
According to an eleventh aspect of the present invention, in the refrigerator according to the first aspect, cooling is started from the freezer compartment when the power is turned on, and the refrigerator shifts to a normal cooling mode when the freezer compartment temperature reaches a set lower limit temperature. The gist of the invention is that it is configured to With this configuration, first, the refrigerant flows into the evaporator for the freezing compartment having a large cooling load, and there is no liquid back to the compressor, so that an efficient cooling operation is performed. In addition, the temperature of the freezer compartment is immediately lowered to a predetermined temperature, so that adverse effects on the food can be suppressed.

【0017】請求項12記載の発明は、上記請求項1記
載の冷蔵庫において、電源投入時は前記冷凍室から冷却
を開始するとともに、各室毎に段階的に設けた設定温度
到達時に前記冷蔵室と冷凍室の冷却を交互に切り替える
電源投入モードで運転するように構成してなることを要
旨とする。この構成により、上記と同様に、圧縮機への
液バックがなくなって効率のよい冷却運転が行われると
ともに、両部屋が徐々に冷却されて食品への温度的悪影
響が最小限に抑えられる。
According to a twelfth aspect of the present invention, in the refrigerator according to the first aspect, cooling is started from the freezing compartment when power is turned on, and the refrigeration compartment is set when a set temperature set in each compartment is reached. It is configured to operate in a power-on mode in which the cooling of the refrigerator and the cooling of the freezer are alternately performed. With this configuration, similarly to the above, there is no liquid back to the compressor, and an efficient cooling operation is performed. In addition, both rooms are gradually cooled, and adverse temperature effects on the food are minimized.

【0018】請求項13記載の発明は、上記請求項12
記載の冷蔵庫において、前記電源投入モードで前記冷蔵
室と冷凍室を交互に冷却中にそれぞれの室温が設定温度
に到達した時点から通常冷却モードに移行するように構
成してなることを要旨とする。この構成により、冷却し
ている部屋の設定下限温度又は冷却していない部屋の設
定上限温度によって運転の切り替えが行われ、電源投入
モードから通常冷却モードに移行して各部屋が設定温度
内に保たれる。
The invention according to claim 13 is the invention according to claim 12.
In the refrigerator, the gist is such that a transition is made to a normal cooling mode from a point in time when each room temperature reaches a set temperature while the refrigerating room and the freezing room are alternately cooled in the power-on mode. . With this configuration, the operation is switched according to the set lower limit temperature of the room that is cooling or the set upper limit temperature of the room that is not cooled, and the mode is switched from the power-on mode to the normal cooling mode to keep each room within the set temperature. Dripping.

【0019】請求項14記載の発明は、上記請求項11
記載の冷蔵庫において、前記電源投入時の圧縮機は、最
大周波数で運転を開始するように構成してなることを要
旨とする。この構成により、冷凍室温度が所定の温度ま
で一層早急に下げられて、食品への温度的悪影響が確実
に抑えられる。
The invention according to claim 14 is the invention according to claim 11.
In the refrigerator, the compressor at the time of turning on the power is configured to start operating at a maximum frequency. With this configuration, the temperature of the freezer compartment is more quickly lowered to the predetermined temperature, and the adverse effect of the temperature on the food is reliably suppressed.

【0020】請求項15記載の発明は、上記請求項11
記載の冷蔵庫において、前記電源投入時の圧縮機運転周
波数は、外気温度に応じて設定するように構成してなる
ことを要旨とする。この構成により、外気温度が高いと
きの圧縮機への負荷の増加が抑えられて効率のよい冷却
運転が保証される。
The invention according to claim 15 is the invention according to claim 11.
In the refrigerator described above, the compressor operating frequency at the time of turning on the power is configured to be set in accordance with the outside air temperature. With this configuration, an increase in load on the compressor when the outside air temperature is high is suppressed, and efficient cooling operation is guaranteed.

【0021】請求項16記載の発明は、上記請求項1記
載の冷蔵庫において、前記冷蔵室と冷凍室がそれぞれ設
定温度内にあって、かつ一定時間扉開放がないとき、前
記冷蔵室の冷却と前記冷凍室の冷却の切り替えを所定の
設定時間で行う省エネモードに移行するように構成して
なることを要旨とする。この構成により、一定時間扉の
開放がないとき、庫内温度上昇は少なく、圧縮機は最低
周波数で運転される。このとき、冷却の切り替えを設定
時間で行うことで、冷却運転の切り替え回数や圧縮機停
止回数を少なくすることが可能となる。
According to a sixteenth aspect of the present invention, in the refrigerator according to the first aspect, when the refrigerating compartment and the freezing compartment are each within a set temperature and the door is not opened for a certain period of time, the cooling of the refrigerating compartment is performed. The gist of the present invention is to shift to an energy saving mode in which the cooling of the freezer is switched in a predetermined time. With this configuration, when the door is not opened for a certain period of time, the internal temperature rise is small, and the compressor is operated at the lowest frequency. At this time, by performing the switching of the cooling for the set time, the number of switching of the cooling operation and the number of times of stopping the compressor can be reduced.

【0022】請求項17記載の発明は、上記請求項1記
載の冷蔵庫において、前記圧縮機の運転周波数が最低周
波数であって、前記冷蔵室と冷凍室がそれぞれ設定下限
温度に達したとき、圧縮機停止モードに移行して前記圧
縮機を停止し、その後、前記冷蔵室或いは冷凍室の何れ
かが設定温度上限を超えた場合に前記圧縮機を起動して
設定温度上限を超えた側から冷却を行うように構成して
なることを要旨とする。この構成により、両部屋が十分
に冷却され、圧縮機の運転周波数が最低周波数であると
いう条件が成り立つとき圧縮機を停止して圧縮機停止モ
ードに移行する。
According to a seventeenth aspect of the present invention, in the refrigerator according to the first aspect, when the operating frequency of the compressor is the lowest frequency, and the refrigerator compartment and the freezer compartment each reach a set lower limit temperature, The compressor is stopped by shifting to the machine stop mode, and thereafter, when either the refrigerator compartment or the freezer compartment exceeds the set temperature upper limit, the compressor is started to cool from the side exceeding the set temperature upper limit. The gist of the present invention is to perform the following. With this configuration, when both the rooms are sufficiently cooled and the condition that the operating frequency of the compressor is the lowest frequency is satisfied, the compressor is stopped and the mode is shifted to the compressor stop mode.

【0023】[0023]

【発明の実施の形態】以下、本発明の実施の形態を図面
に基づいて説明する。
Embodiments of the present invention will be described below with reference to the drawings.

【0024】図1乃至図7は、本発明の第1の実施の形
態を示す図である。本実施の形態は、冷蔵室用の蒸発器
を庫内上部に配置した例である。まず、図1、図2を用
いて、冷蔵庫の構成を説明する。図1において、1は冷
蔵庫本体であり、上より冷蔵室2、低温室3、第1冷凍
室4及び第2冷凍室5を有し、冷蔵庫本体1の庫内は上
下に仕切る断熱仕切り壁6によって、冷蔵室2と低温室
3からなる冷蔵温度帯空間7と、第1冷凍室4と第2冷
凍室5からなる冷凍温度帯空間8に区画され、さらに冷
蔵室2と低温室3は冷蔵室仕切板9で区画され、第1冷
凍室4と第2冷凍室5は冷凍室仕切板10で区画されて
いる。したがって、冷蔵室2、低温室3、第1冷凍室4
及び第2冷凍室5は、それぞれ異なる温度に冷却するこ
とが可能であり、各部屋はそれぞれの開閉扉11,1
2,13,14の開閉により食品の出し入れが行え、冷
蔵温度帯空間7と冷凍温度帯空間8は完全に独立し、各
空間の冷気が混合することがない構造となっている。冷
蔵室用蒸発器15と冷蔵室用冷気循環ファン16は冷蔵
室2の最上段奥の使い勝手の悪いとされるデッドスペー
スに配置され、冷凍室用蒸発器17と冷凍室用冷気循環
ファン18は第2冷凍室5の背面壁側に配置されてい
る。また、冷蔵庫本体1の背面側下部の機械室19に
は、能力可変圧縮機20、凝縮器21及び絞り弁22が
配置されている。図2の流路に示すように、圧縮機2
0から吐出された冷媒が、凝縮器21→絞り弁22→冷
凍室用蒸発器17を通り圧縮機20に戻る、或いは流
路に示すように、圧縮機20から吐出された冷媒が、凝
縮器21→絞り弁23→冷蔵室用蒸発器15を通り圧縮
機20に戻るという冷凍サイクルを構成している。ここ
で、との流路の切り替えは切替弁24によって行わ
れ、これにより冷凍温度帯空間8と冷蔵温度帯空間7は
交互に切り替え冷却される。このとき、能力可変圧縮機
20はそれぞれの冷却空間に応じた蒸発器温度となるよ
う運転回転数が制御される。
FIG. 1 to FIG. 7 are views showing a first embodiment of the present invention. The present embodiment is an example in which an evaporator for a refrigerator is arranged in an upper part of a refrigerator. First, the configuration of the refrigerator will be described with reference to FIGS. In FIG. 1, reference numeral 1 denotes a refrigerator main body, which includes a refrigerator room 2, a low-temperature room 3, a first freezing room 4 and a second freezing room 5 from above, and a heat insulating partition wall 6 for vertically partitioning the inside of the refrigerator main body 1. Thereby, a refrigeration temperature zone space 7 including the refrigeration compartment 2 and the low temperature compartment 3 and a refrigeration temperature zone space 8 including the first freezing compartment 4 and the second freezing compartment 5 are defined. The first freezer compartment 4 and the second freezer compartment 5 are partitioned by a compartment partition plate 9. Therefore, the refrigerator compartment 2, the low temperature compartment 3, the first freezer compartment 4
And the second freezer compartment 5 can be cooled to different temperatures, respectively, and each room has its own opening and closing doors 11, 1
Food can be taken in and out by opening and closing 2, 13, and 14, the refrigerated temperature zone space 7 and the frozen temperature zone space 8 are completely independent, and the structure is such that cold air in each space is not mixed. The refrigerating room evaporator 15 and the refrigerating room cool air circulating fan 16 are arranged in an inconvenient dead space at the top of the refrigerating room 2 and the freezing room evaporator 17 and the refrigerating room cool air circulating fan 18 are disposed. It is arranged on the rear wall side of the second freezer compartment 5. A variable capacity compressor 20, a condenser 21, and a throttle valve 22 are arranged in a lower machine room 19 on the rear side of the refrigerator body 1. As shown in the flow path of FIG.
0 returns to the compressor 20 through the condenser 21 → the throttle valve 22 → the freezer evaporator 17, or as shown in the flow path, the refrigerant discharged from the compressor 20 A refrigeration cycle is configured in which the refrigerant passes through the evaporator 15 for the refrigerator compartment and returns to the compressor 20. Here, the switching of the flow path is performed by the switching valve 24, whereby the freezing temperature zone space 8 and the refrigeration temperature zone space 7 are alternately cooled. At this time, the rotational speed of the variable capacity compressor 20 is controlled so that the evaporator temperature is adjusted to each cooling space.

【0025】上述したように、本実施の形態の冷蔵庫
は、冷蔵室用の蒸発器15と冷凍室用の蒸発器17とは
並列に接続されており、切替弁24によってどちらか一
方のみが冷却される。このため、冷却すべき蒸発器15
又は17の体積は小さく、圧縮機20は能力の小さいも
のでよいため小型化が図れ、省エネにつながる。圧縮機
20は能力可変であるため、冷却する部屋の検出温度と
設定温度に基づきそれぞれの状況に合った回転数に制御
される。
As described above, in the refrigerator of the present embodiment, the evaporator 15 for the refrigerator compartment and the evaporator 17 for the freezer compartment are connected in parallel, and only one of them is cooled by the switching valve 24. Is done. For this reason, the evaporator 15 to be cooled
Alternatively, the volume of the compressor 17 is small, and the compressor 20 may have a small capacity. Since the capacity of the compressor 20 is variable, the number of revolutions is controlled to match the situation based on the detected temperature of the room to be cooled and the set temperature.

【0026】次に、上述のように構成された冷蔵庫の各
制御法及びその効果を(A)〜(Q)の順に説明する。
Next, each control method of the refrigerator configured as described above and its effects will be described in the order of (A) to (Q).

【0027】(A)冷蔵温度帯空間7と冷凍温度帯空間
8の各検出温度と各設定温度から圧縮機20の回転数を
変えて冷蔵温度帯空間7と冷凍温度帯空間8に適した蒸
発温度になるよう各蒸発器15,17の蒸発温度を制御
する。
(A) Evaporation suitable for the refrigerated temperature zone 7 and the refrigerated temperature zone 8 by changing the rotation speed of the compressor 20 from the detected temperatures and the set temperatures of the refrigerated temperature zone 7 and the refrigerated temperature zone 8. The evaporation temperature of each of the evaporators 15 and 17 is controlled so as to reach the temperature.

【0028】冷蔵室用の蒸発器15と冷凍室用の蒸発器
17が、その各部屋の検出温度と設定温度に基づいて何
れか一方のみが作動するとともに圧縮機20が各部屋の
状況に合った回転数に制御される。このため、各部屋は
最適な温度に保たれる。また、能力可変の圧縮機20を
用い低回転数で運転できるため、圧縮機運転時間が長く
なり、断続の回数が減ることによってサイクルロスを低
減することができる。
Only one of the evaporator 15 for the refrigerator compartment and the evaporator 17 for the freezer compartment operates based on the detected temperature and the set temperature of each room, and the compressor 20 adjusts to the situation of each room. The rotation speed is controlled. For this reason, each room is maintained at an optimum temperature. In addition, since the compressor 20 can be operated at a low rotation speed by using the compressor 20 having a variable capacity, the compressor operation time is prolonged, and the number of intermittent operations is reduced, thereby reducing cycle loss.

【0029】(B)冷蔵室用冷気循環ファン16及び冷
凍室用冷気循環ファン18は能力可変であり、その時の
各部屋の検出温度や圧縮機20の回転数に応じて回転数
が制御される。
(B) The cooling air circulation fan 16 for the refrigerator compartment and the cooling air circulation fan 18 for the freezer compartment are variable in capacity, and the rotation speed is controlled in accordance with the detected temperature of each room and the rotation speed of the compressor 20 at that time. .

【0030】冷蔵室用冷気循環ファン16と冷凍室用冷
気循環ファン18はそれぞれ能力可変であり、例えば圧
縮機20の能力変動に合わせて回転数を変えることや、
急速冷凍運転・省エネ運転など、必要に応じて回転数が
変えられる。したがって、庫内の最適温度制御を図るこ
とや省エネを図ることができる。
The cool air circulation fan 16 for the refrigerator compartment and the cool air circulation fan 18 for the freezer compartment have variable capacities. For example, the number of revolutions can be changed in accordance with the fluctuation of the capacity of the compressor 20.
The number of revolutions can be changed as needed, such as quick refrigeration operation and energy saving operation. Therefore, it is possible to achieve optimal temperature control in the refrigerator and to save energy.

【0031】(C)通常冷却モードでは、冷蔵温度帯空
間7の冷却運転と冷凍温度帯空間8の冷却運転の切り替
えは、現在冷却を行っている部屋の設定下限温度又は他
方の部屋の設定上限温度で行う。
(C) In the normal cooling mode, the switching between the cooling operation of the refrigeration temperature zone space 7 and the cooling operation of the refrigeration temperature zone space 8 is performed by setting the lower limit temperature of the room currently cooling or the upper limit setting of the other room. Perform at temperature.

【0032】図3に示すように、冷蔵温度帯空間7及び
冷凍温度帯空間8に、それぞれ目標とする温度に対し、
ある幅を持たせた温度帯を設定し、その温度帯を設定温
度帯とする。両室の庫内温度は常にその設定温度内に保
つことが望ましい。通常冷却時は、冷蔵温度帯空間7と
冷凍温度帯空間8のうち冷却運転を行っている部屋の温
度が設定温度帯の下限温度に達したときに、もう一方の
部屋の冷却運転に切り替える(t1 )。又は、冷却運転
を行っていない部屋の温度が設定温度帯の上限温度に達
したときは、冷却中の部屋の温度が設定下限温度に達し
ていなくても、上限温度に達した部屋の冷却運転に切り
替える(t2 )。この制御により、通常冷却モードで冷
却運転を行っているとき、冷蔵温度帯空間7、冷凍温度
帯空間8ともに設定温度からずれることなく、常に目的
とする温度を保つことができる。そして庫内の温度変動
は小さく、食品への温度的悪影響がない。
As shown in FIG. 3, the refrigerated temperature zone space 7 and the refrigerated temperature zone space 8 each have a target temperature.
A temperature zone having a certain width is set, and the temperature zone is set as a set temperature zone. It is desirable that the temperature in both chambers is always kept within the set temperature. At the time of normal cooling, when the temperature of the room performing the cooling operation of the refrigeration temperature zone space 7 and the freezing temperature zone space 8 reaches the lower limit temperature of the set temperature zone, the operation is switched to the cooling operation of the other room ( t 1 ). Or, when the temperature of the room that is not performing the cooling operation reaches the upper limit temperature of the set temperature zone, the cooling operation of the room that has reached the upper limit temperature even if the temperature of the room being cooled has not reached the set lower temperature limit (T 2 ). With this control, when the cooling operation is performed in the normal cooling mode, the target temperature can always be maintained without deviating from the set temperature in both the refrigerated temperature zone space 7 and the refrigerated temperature zone space 8. Further, the temperature fluctuation in the refrigerator is small, and there is no adverse temperature effect on the food.

【0033】(D)冷却運転の切り替えを判定する庫内
の温度検出は扉閉状態が1分以上経過を確認してから行
い、扉開放時又は開放直後は行わない。
(D) The temperature in the refrigerator for judging the switching of the cooling operation is detected after the door has been closed for one minute or more, and not when the door is opened or immediately after the door is opened.

【0034】各部屋とも扉の開閉直後は庫外の空気が入
り込み、一時的に庫内温度は上昇する。しかし、これは
一瞬であり、冷蔵庫本体1や中の食品等の熱容量が大き
いために直ぐに元の庫内温度に戻る。この一瞬の温度の
上昇変化が冷却運転の切り替えに影響を与えないため
に、扉を閉めて約1分経過までは、また扉開放中は、運
転切り替えのための庫内温度検出を行わない。この制御
により、一時的な温度変動が冷却運転の切り替えに悪影
響を及ぼすことなく、安定した庫内温度制御を行うこと
ができる。
In each room, immediately after the door is opened and closed, air outside the refrigerator enters, and the temperature in the refrigerator temporarily rises. However, this is an instant, and since the heat capacity of the refrigerator body 1 and the food therein is large, the temperature immediately returns to the original temperature in the refrigerator. In order to prevent the instantaneous change in temperature from affecting the switching of the cooling operation, the inside temperature detection for the operation switching is not performed until the door is closed for about one minute or while the door is open. By this control, stable temperature control in the refrigerator can be performed without the temporary temperature fluctuation adversely affecting the switching of the cooling operation.

【0035】(E)通常冷却モードの圧縮機運転周波数
は、冷蔵温度帯空間7及び冷凍温度帯空間8毎の前回の
冷却時又は非冷却時における庫内検出温度の下降・上昇
率等の運転データから決定し、冷却運転の切り替え時に
圧縮機回転数の見直しを行う。
(E) The operating frequency of the compressor in the normal cooling mode is the operation of the refrigerator temperature zone space 7 and the freezing temperature zone space 8 such as the rate of decrease / increase of the temperature detected inside the refrigerator during the previous cooling or non-cooling. Determined from the data, and review the compressor speed when switching the cooling operation.

【0036】庫内温度の下降・上昇率に対応した圧縮機
運転周波数を予め決定しておき、その時の温度データに
よりそれに応じた圧縮機運転周波数が選択される。冷却
運転の切り替えと同時にその周波数での圧縮機運転が開
始される。冷却時の温度下降や非冷却時の温度上昇カー
ブは、庫内の内容量によって異なる。例えば、熱容量が
大きく温度の高いものが投入されると、その部屋の温度
は急激に上昇し、冷却運転が行われる。しかし、投入さ
れたものの熱容量が大きいために、前回までの圧縮機周
波数で冷却運転を行っても所定の温度まで冷却するには
大変時間がかかることが予想される。このとき、温度上
昇率の大きさから圧縮機20の運転周波数を大きくする
必要があると判断し、高回転数での冷却運転を行う。こ
の制御により、その時の冷却負荷により異なる庫内温度
状況に応じて圧縮機回転数が決定されるため、無駄のな
い最適な冷却運転が行われ、省エネを図ることができ
る。また、庫内の温度変動を低減することができる。
The compressor operating frequency corresponding to the rate of decrease / increase of the internal temperature is determined in advance, and the compressor operating frequency corresponding to that is selected based on the temperature data at that time. At the same time as the switching of the cooling operation, the compressor operation at that frequency is started. The temperature decrease curve during cooling and the temperature increase curve during non-cooling vary depending on the internal capacity of the refrigerator. For example, when an object having a large heat capacity and a high temperature is supplied, the temperature of the room rapidly rises, and a cooling operation is performed. However, since the heat capacity is large, it is expected that it takes a very long time to cool to a predetermined temperature even if the cooling operation is performed at the compressor frequency up to the previous time. At this time, it is determined from the magnitude of the temperature rise rate that the operating frequency of the compressor 20 needs to be increased, and the cooling operation at a high rotation speed is performed. By this control, the compressor rotation speed is determined according to the temperature condition in the refrigerator which differs depending on the cooling load at that time, so that an optimal cooling operation without waste is performed and energy saving can be achieved. Further, temperature fluctuations in the refrigerator can be reduced.

【0037】(F)通常冷却モードの圧縮機運転周波数
は、冷蔵温度帯空間7及び冷凍温度帯空間8毎の前回の
冷却運転が停止したときの庫内温度と設定下限温度の
差、或いは冷却運転を開始するときの庫内温度と設定上
限温度の差により決定し、冷却運転の切り替え時に圧縮
機回転数の見直しを行う。
(F) The compressor operating frequency in the normal cooling mode is the difference between the internal temperature and the set lower limit temperature at the time when the previous cooling operation for each of the refrigeration temperature zone space 7 and the refrigeration temperature zone space 8 is stopped, or cooling. Determined based on the difference between the internal temperature at the time of starting the operation and the set upper limit temperature, and reviewing the compressor speed when switching the cooling operation.

【0038】通常冷却モードでは、冷却中の部屋の庫内
温度が設定下限温度に達したとき、或いは冷却を行って
いない部屋の庫内温度が設定上限温度に達したときに冷
却室の切り替えを行うが、どちらか一方の部屋が設定温
度に達して運転が切り替わった時点で、もう一方の部屋
は別の設定温度には達していない。この時の上限又は下
限設定温度までの差により次の冷却運転時の圧縮機周波
数を決定する。即ち、例えば図4に示すように、ある一
方の部屋を冷却中に庫内温度が設定下限温度に達したと
きに冷却運転が切り替わるが、これから冷却を行うもう
一方の部屋の庫内温度はまだ設定上限温度には達しては
いない(t3 )。この時の庫内温度と設定上限温度との
差(R)の大きさによりその後の冷却運転時の圧縮機周
波数を決める。設定上限温度と現在の庫内温度の差が大
きいときは早急な冷却は必要ないと判断し、圧縮機回転
数は小さく、差が小さいときは早急な冷却が必要と判断
し、圧縮機回転数は大きくなる。この温度差の大きさに
より、段階的に圧縮機回転数を予め決定しておく。この
制御により、その時の冷却の必要性に応じた冷却が行わ
れる。早急な冷却が必要ないときは、圧縮機20は低回
転で無駄のない運転となり、省エネを図ることができ
る。また、大きな冷却力を必要とするときは、圧縮機2
0は高回転で運転し、庫内温度上昇を抑え、温度変動を
低減できる。
In the normal cooling mode, the cooling room is switched when the inside temperature of the room being cooled reaches the set lower limit temperature or when the inside temperature of the room not cooled reaches the set upper limit temperature. However, when one of the rooms reaches the set temperature and the operation is switched, the other room has not reached another set temperature. The compressor frequency for the next cooling operation is determined based on the difference between the upper and lower set temperatures at this time. That is, for example, as shown in FIG. 4, the cooling operation is switched when the inside temperature of the room reaches the set lower limit temperature while cooling a certain room, but the inside room temperature of the other room to be cooled is still low. The temperature has not reached the set upper limit temperature (t 3 ). The compressor frequency during the subsequent cooling operation is determined based on the difference (R) between the inside temperature and the set upper limit temperature at this time. If the difference between the set upper limit temperature and the current inside temperature is large, it is determined that immediate cooling is not necessary.If the difference is small, it is determined that immediate cooling is necessary. Becomes larger. Based on the magnitude of the temperature difference, the compressor rotation speed is determined in advance in a stepwise manner. By this control, cooling according to the necessity of cooling at that time is performed. When immediate cooling is not required, the compressor 20 operates at a low rotation speed without waste, and energy can be saved. When a large cooling power is required, the compressor 2
0 can be operated at a high rotation speed to suppress a rise in the internal temperature and reduce temperature fluctuations.

【0039】(G)冷蔵温度帯空間7又は冷凍温度帯空
間8の何れかの庫内温度が設定上限温度に達したときに
は、その部屋の冷却運転に切り替え、この時、圧縮機2
0は最大周波数で運転を開始する。
(G) When the internal temperature of either the refrigeration temperature zone space 7 or the freezing temperature zone space 8 reaches the set upper limit temperature, the operation mode is switched to the cooling operation of the room.
0 starts operation at the maximum frequency.

【0040】通常冷却モードでは、冷却中の部屋の庫内
温度が設定下限温度に達したとき、或いは、冷却を行っ
ていない部屋の庫内温度が設定上限温度に達したときに
冷却運転の切り替えを行うが、このうち、庫内温度が設
定上限温度に達してその部屋の冷却運転に切り替わる場
合、その部屋の冷却を早急に行う必要があるため、圧縮
機は最大周波数で運転を開始する。この制御により、設
定上限温度に達してしまった高い庫内温度を早急に冷却
できるため、より早く目的の庫内温度にすることができ
る。
In the normal cooling mode, the cooling operation is switched when the inside temperature of the room being cooled reaches the set lower limit temperature or when the inside temperature of the room not cooled reaches the set upper limit temperature. When the inside temperature reaches the set upper limit temperature and the operation is switched to the cooling operation of the room, the compressor needs to be cooled immediately, and the compressor starts operating at the maximum frequency. With this control, a high internal temperature that has reached the set upper limit temperature can be quickly cooled, and thus the target internal temperature can be quickly reached.

【0041】(H)冷蔵温度帯空間7及び冷凍温度帯空
間8毎に、設定温度の上限値より高く、庫内温度として
許容できる許容温度を設け、許容温度を超えた場合、許
容温度が超えた側を優先して冷却する。
(H) For each of the refrigerated temperature zone space 7 and the freezing temperature zone space 8, an allowable temperature higher than the upper limit of the set temperature and allowable as the internal temperature is provided. Cooling with priority on the side.

【0042】通常冷却モードでは、冷却している部屋の
庫内温度が設定下限温度に達したとき、或いは、冷却し
ていない部屋の庫内温度が設定上限温度に達したとき
に、冷却する部屋を切り替える。しかし、例えば、両室
に熱容量が大きく温度の高いものが投入されると両室と
もその設定上限温度を超えることがある。このため、図
5に示すように、設定上限温度よりもさらに高い許容温
度を部屋毎に設定しておき、庫内検出温度がこの許容温
度を超えたときにはその部屋の冷却運転を優先して行
う。この制御により、早急な冷却運転の必要性に応じて
冷却運転を優先的に行うため、庫内温度変動を抑えるこ
とができる。
In the normal cooling mode, the room to be cooled is cooled when the inside temperature of the room being cooled reaches the set lower limit temperature or when the inside temperature of the room not cooled reaches the set upper limit temperature. Switch. However, for example, when a large heat capacity and a high temperature are supplied to both chambers, both chambers may exceed the set upper limit temperature. For this reason, as shown in FIG. 5, an allowable temperature higher than the set upper limit temperature is set for each room, and when the detected temperature in the refrigerator exceeds the allowable temperature, the cooling operation of the room is preferentially performed. . By this control, the cooling operation is preferentially performed according to the necessity of the immediate cooling operation, so that the temperature fluctuation in the refrigerator can be suppressed.

【0043】(I)冷蔵温度帯空間7の冷却時間と冷凍
温度帯空間8の冷却時間に最小冷却時間を設け、冷蔵温
度帯空間7と冷凍温度帯空間8がともに許容温度を超え
た場合、最小冷却時間毎に冷却運転を切り替える。
(I) A minimum cooling time is provided for the cooling time of the refrigerated temperature zone space 7 and the cooling time of the refrigerated temperature zone space 8, and when both the refrigerated temperature zone space 7 and the refrigerated temperature zone space 8 exceed the allowable temperature, The cooling operation is switched every minimum cooling time.

【0044】冷蔵温度帯空間7、冷凍温度帯空間8とも
に許容温度を超えたとき、両室を冷却する必要がある
が、切り替え冷却運転のため、どちらか一方の冷却とな
る。このとき、両室の庫内温度とも許容温度近傍にある
場合、冷却運転の切り替えが頻繁に起こることになり、
ハンチングを起こしたり、切り替えの際にはサイクルロ
スが生じるが、これが増大することとなる。これらを防
止するため、図6に示すように、運転を切り替えてから
例えば10分間はその運転を継続する、といった最小冷
却時間(Tmin )を設け、両室を早急に冷却する必要が
ある場合は、最小冷却時間毎に冷却運転を切り替える。
この制御により、冷却運転切り替えの制御がハンチング
を起こすことを防止し、安定した切り替え制御を行うこ
とができ、また、冷却運転切り替えの際に生じるサイク
ルロスを最小限に抑えることができる。
When both the refrigerating temperature zone space 7 and the freezing temperature zone space 8 exceed the permissible temperatures, it is necessary to cool both chambers. At this time, if the temperatures in both chambers are near the permissible temperature, the cooling operation is frequently switched,
When hunting occurs or switching occurs, cycle loss occurs, but this will increase. In order to prevent these, as shown in FIG. 6, a minimum cooling time (Tmin) is provided such that the operation is continued for, for example, 10 minutes after the operation is switched. The cooling operation is switched every minimum cooling time.
With this control, it is possible to prevent hunting from occurring in the cooling operation switching control, perform stable switching control, and minimize the cycle loss that occurs when the cooling operation is switched.

【0045】(J)冷蔵温度帯空間7の冷却時間と冷凍
温度帯空間8の冷却時間に最大冷却時間を設け、冷蔵温
度帯空間7と冷凍温度帯空間8がともに設定温度内にあ
るとき、最大冷却時間が経過したら冷却運転を切り替え
る。
(J) A maximum cooling time is provided for the cooling time of the refrigerated temperature zone space 7 and the cooling time of the refrigerated temperature zone space 8. When both the refrigerated temperature zone space 7 and the refrigerated temperature zone space 8 are within the set temperature, After the maximum cooling time has elapsed, the cooling operation is switched.

【0046】圧縮機20の運転周波数が非常に低いと
き、長時間経過しても冷却室側の庫内温度が設定下限温
度に達しなかったり、他方の部屋の温度上昇が小さく設
定上限温度に達しないために、冷却運転が切り替わらな
いことがある。このため、図7に示すように、各部屋の
冷却時間に最大冷却時間(Tmax )を受け、その時間が
経過したときには、冷却室の庫内温度が設定下限温度に
達していなくても、又は他方の庫内温度が設定上限温度
に達していなくても、冷却運転を切り替える。この制御
により、冷気循環ファンは圧縮機20に連動して運転し
ているが、長時間冷却が行われない部屋はその間、冷気
の循環が止まっている。庫内のある部分に設けた庫内温
度検出装置によって庫内温度を検出しているが、非冷却
時の部屋内は長時間冷気の循環がないことにより、温度
むらが生じている可能性がある。例えば、冷凍温度帯空
間8の冷却が長時間行われた場合、その間、冷蔵温度帯
空間7内の冷気の循環は止まり、自然対流によって冷気
は下降し、最上段の温度は目的とする温度からずれてし
まうことがある。ある一定時間で冷却運転を切り替える
ことにより、これらの庫内の温度むらが生じることを防
止し、庫内の温度上昇を抑えることができる。また、小
さい回転数で圧縮機20を運転し過ぎると潤滑油が圧縮
機20内に行き渡らず、圧縮機20の故障の原因となる
が、ある一定時間で冷却運転を切り替えることにより、
圧縮機20の運転状況が変わるため、低回転での長時間
運転は防止され、圧縮機20の故障を防止できる。
When the operating frequency of the compressor 20 is very low, the internal temperature of the cooling room does not reach the set lower limit temperature even after a long time elapses, or the temperature rise in the other room is small and reaches the set upper limit temperature. Because of this, the cooling operation may not be switched. Therefore, as shown in FIG. 7, a maximum cooling time (Tmax) is received as the cooling time of each room, and when the time has elapsed, even if the temperature in the cooling chamber has not reached the set lower limit temperature, or Even if the other inside temperature has not reached the set upper limit temperature, the cooling operation is switched. With this control, the cool air circulation fan operates in conjunction with the compressor 20, but in a room where cooling is not performed for a long time, the cool air circulation is stopped. Although the temperature inside the refrigerator is detected by a refrigerator temperature detector installed in a certain part of the refrigerator, there is a possibility that uneven temperature may occur due to the absence of cooling air circulation for a long time in the room when it is not cooled. is there. For example, when the cooling of the freezing temperature zone space 8 is performed for a long time, the circulation of the cool air in the refrigerated temperature zone space 7 stops, the cool air descends by natural convection, and the temperature of the uppermost stage is changed from the target temperature. It may shift. By switching the cooling operation for a certain period of time, it is possible to prevent the occurrence of the temperature unevenness in the refrigerator and to suppress the temperature rise in the refrigerator. Further, if the compressor 20 is operated at a low rotation speed too much, the lubricating oil does not reach the inside of the compressor 20 and causes a failure of the compressor 20, but by switching the cooling operation in a certain period of time,
Since the operation state of the compressor 20 changes, long-time operation at low rotation is prevented, and failure of the compressor 20 can be prevented.

【0047】(K)電源投入時は冷凍温度帯空間8から
冷却を開始し、冷凍温度帯空間8の温度が設定下限温度
に到達した時点から通常冷却モードに移行する。
(K) When the power is turned on, cooling is started from the freezing temperature zone space 8, and the mode shifts to the normal cooling mode from the time when the temperature of the freezing temperature zone space 8 reaches the set lower limit temperature.

【0048】冷蔵庫購入時、或いは停電直後などの電源
投入時は、まず冷凍温度帯空間8から冷却運転を始め
る。その後、冷凍温度帯空間8の温度が設定下限温度に
到達するまで切り替えは行わず冷凍温度帯空間8の冷却
を行い、設定下限温度に到達したときに冷却運転を冷蔵
温度帯空間7に切り替え、これにより通常冷却モードに
よる運転を行う。この制御により、冷蔵庫起動は、冷凍
温度帯空間8の冷却から運転を開始することで、冷却負
荷の大きな冷凍室用蒸発器17に冷媒が流れることにな
り、液の状態で冷媒が圧縮機20に戻るといったことが
なくなり、良好な効率の冷却運転が得られる。また、冷
凍室と冷蔵室に保存された食品への温度上昇の影響を考
慮すると、冷凍温度帯空間8の庫内温度を所定の温度ま
で早急に下げることが望ましい。冷凍温度帯空間8を優
先して冷却することにより、食品への温度的悪影響を最
小限に抑えることができる。
When the refrigerator is purchased or when the power is turned on immediately after a power failure, the cooling operation is first started from the freezing temperature zone space 8. Thereafter, the cooling operation is not performed until the temperature of the freezing temperature zone space 8 reaches the set lower limit temperature, and the freezing temperature zone space 8 is cooled. When the temperature reaches the set lower limit temperature, the cooling operation is switched to the refrigerated temperature zone space 7, Thus, the operation in the normal cooling mode is performed. With this control, the refrigerator starts to operate from the cooling of the freezing temperature zone space 8, so that the refrigerant flows to the freezing compartment evaporator 17 having a large cooling load, and the refrigerant is transferred to the compressor 20 in a liquid state. The cooling operation with good efficiency can be obtained. Further, in consideration of the effect of temperature rise on the foods stored in the freezer compartment and the refrigerator compartment, it is desirable to immediately lower the internal temperature of the freezer temperature zone 8 to a predetermined temperature. By giving priority to cooling in the freezing temperature zone space 8, it is possible to minimize adverse effects on temperature of food.

【0049】(L)電源投入時は冷凍温度帯空間8から
冷却を開始し、各室毎に段階的に設けた設定温度到達時
に冷蔵温度帯空間7と冷凍温度帯空間8の冷却を交互に
切り替える電源投入モードで運転する。
(L) Cooling is started from the freezing temperature zone space 8 when the power is turned on, and the cooling of the refrigerated temperature zone space 7 and the freezing temperature zone space 8 is alternately performed when the set temperature set in each room is reached. Operate in power-on mode to switch.

【0050】電源投入時は、まず冷凍温度帯空間8から
冷却運転を始める。設定温度に到達するまでの間にいく
つかの運転切り替えのための温度を部屋毎に段階的に設
けておき、その温度に到達していく度に他方への冷却運
転を切り替えて、両室を徐々に冷却していく。この制御
により、冷蔵庫起動は、冷凍温度帯空間8の冷却運転か
ら開始することで、冷却負荷の大きな冷凍室用蒸発器1
7に冷媒が流れることになり、液の状態で冷媒が圧縮機
20の戻るといったことがなくなり、良好な効率の冷却
運転が得られる。冷却運転は、両室の温度を徐々に下げ
ていくために、どちらか一方の部屋が暫くの間全く冷え
ないといった問題を防止できる。
When the power is turned on, first, the cooling operation is started from the freezing temperature zone space 8. Before the set temperature is reached, several temperatures for switching the operation are provided stepwise for each room, and each time the temperature is reached, the cooling operation for the other is switched, and both rooms are switched. Cool slowly. By this control, starting of the refrigerator is started from the cooling operation of the freezing temperature zone space 8, so that the freezer evaporator 1 having a large cooling load is started.
7, the refrigerant does not return to the compressor 20 in a liquid state, and a cooling operation with good efficiency can be obtained. The cooling operation can prevent the problem that one of the rooms does not cool at all for a while because the temperature of both rooms is gradually lowered.

【0051】(M)電源投入モードで冷蔵温度帯空間7
と冷凍温度帯空間8を交互に冷却中にそれぞれの室温が
設定温度に到達した時点から通常冷却モードに移行す
る。
(M) Refrigerated temperature zone space 7 in power-on mode
When the room temperature reaches the set temperature while cooling the cooling zone 8 and the freezing temperature zone 8 alternately, the mode shifts to the normal cooling mode.

【0052】制御法(L)に示した電源投入モードで冷
却運転を行い、両室は徐々に冷却が進み、それぞれの庫
内温度は設定温度に達する。この時点より、冷却してい
る部屋の設定下限温度又は、冷却していない部屋の設定
上限温度によって冷却運転の切り替えを行う通常冷却モ
ードにより運転を行う。この制御により、設定温度に達
したところで通常冷却モードに切り替えることにより、
両室を良好な庫内温度に保つことができる。
The cooling operation is performed in the power-on mode shown in the control method (L), and the cooling of both chambers gradually progresses, and the temperatures in the respective compartments reach the set temperatures. From this point on, the operation is performed in the normal cooling mode in which the cooling operation is switched according to the set lower limit temperature of the room being cooled or the set upper limit temperature of the room not cooled. By this control, when the set temperature is reached, by switching to the normal cooling mode,
Both chambers can be kept at a good internal temperature.

【0053】(N)電源投入時の圧縮機20は、最大周
波数で運転を開始する。
(N) When the power is turned on, the compressor 20 starts operating at the maximum frequency.

【0054】冷蔵庫本体1の起動は、能力可変圧縮機2
0を最大回転数で運転する。この制御により、冷蔵庫本
体1の起動時は、圧縮機20を最大回転数で運転するこ
とで、早急に冷却を行うことができる。
The starting of the refrigerator body 1 is performed by the variable capacity compressor 2.
Run at 0 at maximum speed. With this control, when the refrigerator main body 1 is started, the compressor 20 can be cooled immediately by operating the compressor 20 at the maximum rotation speed.

【0055】(O)電源投入時の圧縮機運転周波数は、
外気温度に応じて設定する。
(O) The compressor operating frequency when the power is turned on is
Set according to the outside air temperature.

【0056】冷蔵庫本体1の起動時、特に冷蔵庫が設置
された外気の温度が高いときには、冷却負荷が大きく、
圧縮機20の温度が急激に上昇する。このため、外気温
度が設定外気温度よりも高いときには、最大周波数より
も低い周波数で圧縮機20の運転を行う。この制御によ
り、圧縮機20の負荷を小さくすることで、圧縮機温度
が起動時に急激に上昇し過ぎることがなくなり、圧縮機
20の故障を防止できる。
When the refrigerator body 1 is started, especially when the temperature of the outside air in which the refrigerator is installed is high, the cooling load is large,
The temperature of the compressor 20 rises rapidly. For this reason, when the outside air temperature is higher than the set outside air temperature, the compressor 20 is operated at a frequency lower than the maximum frequency. With this control, the load on the compressor 20 is reduced, so that the compressor temperature does not suddenly rise excessively at the time of startup, and failure of the compressor 20 can be prevented.

【0057】(P)冷蔵温度帯空間7と冷凍温度帯空間
8がそれぞれ設定温度内にあって、かつ一定時間扉開放
がないとき、冷蔵温度帯空間7の冷却と冷凍温度帯空間
8の冷却の切り替えを設定時間で行う省エネモードに移
行する。
(P) When the refrigerated temperature zone space 7 and the freezing temperature zone space 8 are each within the set temperature and the door is not opened for a certain period of time, the cooling of the refrigerated temperature zone space 7 and the cooling of the frozen temperature zone space 8 are performed. The mode shifts to the energy-saving mode in which the switching is performed at the set time.

【0058】外気温度がある温度以下で、冷蔵温度帯空
間7と冷凍温度帯空間8の庫内温度は設定温度以内にあ
り、かつ一定時間扉の開放がないときは、庫内温度の上
昇は少なく、圧縮機20は最低周波数で運転される。こ
の条件が満たされないとき、これまでの通常冷却モード
から省エネモードに移行し冷却運転を行う。省エネモー
ドでは、設定上限温度や設定下限温度による冷却運転の
切り替えは行わず、予め設定した設定時間で冷却運転の
切り替えを行う。圧縮機周波数はその時の外気温度によ
って異なる予め設定された周波数で運転される。この制
御により、扉開閉のないときは庫内の温度変動が小さい
ため、圧縮機20の運転回転数を小さくして省エネを図
る。また、圧縮機20の回転数が小さく、設定時間で運
転切り替えを行うため、冷却運転の切り替え回数や、圧
縮機停止回数が少なくなり、冷媒流路切り替えに伴うサ
イクルロスが低減できる。
When the outside air temperature is below a certain temperature, the inside temperature of the refrigerated temperature zone space 7 and the freezing temperature zone space 8 is within the set temperature, and when the door is not opened for a certain period of time, the inside temperature rises. At a minimum, the compressor 20 operates at the lowest frequency. When this condition is not satisfied, the mode shifts from the normal cooling mode to the energy saving mode to perform the cooling operation. In the energy saving mode, the cooling operation is not switched based on the set upper limit temperature or the set lower limit temperature, but is switched over in a preset set time. The compressor frequency is operated at a preset frequency that differs depending on the outside air temperature at that time. With this control, when the door is not opened and closed, the temperature fluctuation inside the refrigerator is small, so that the operating speed of the compressor 20 is reduced to save energy. In addition, since the number of rotations of the compressor 20 is small and the operation is switched at the set time, the number of times of switching of the cooling operation and the number of times of stopping the compressor are reduced, and the cycle loss associated with the refrigerant flow path switching can be reduced.

【0059】(Q)圧縮機運転周波数が最低周波数であ
って、冷蔵温度帯空間7と冷凍温度帯空間8がそれぞれ
設定下限温度に達したとき、圧縮機停止モードに移行し
て圧縮機20を停止し、その後、冷蔵温度帯空間7或い
は冷凍温度帯空間8の何れかが設定温度上限を超えた場
合に圧縮機20を起動して設定温度上限を超えた側から
冷却を行う。
(Q) When the operating frequency of the compressor is the lowest frequency, and the refrigerated temperature zone space 7 and the refrigerating temperature zone space 8 reach the set lower limit temperatures respectively, the operation shifts to the compressor stop mode and the compressor 20 is operated. The compressor 20 is stopped, and then, when either the refrigeration temperature zone space 7 or the freezing temperature zone space 8 exceeds the set temperature upper limit, the compressor 20 is started to perform cooling from the side where the temperature exceeds the set temperature upper limit.

【0060】冷蔵温度帯空間7と冷凍温度帯空間8の庫
内温度が双方とも十分に冷却され設定下限温度に達し、
そのときの圧縮機運転周波数が最低周波数であるときは
圧縮機20を停止する。圧縮機停止後は、双方の部屋と
も徐々に庫内温度は上昇していくが、どちらかの庫内温
度が設定上限温度に達したときに圧縮機20の運転を開
始し、設定上限温度に達した部屋から冷却運転を行う。
この制御により、冷蔵温度帯空間7と冷凍温度帯空間8
の双方とも十分に冷却され、圧縮機周波数が最小である
という条件が成り立って初めて圧縮機20が停止する。
このため、圧縮機20の停止回数が少なくなり、サイク
ルロスが低減できる。
The temperatures inside the refrigerator temperature zone space 7 and the freezing temperature zone space 8 are both sufficiently cooled to reach the set lower limit temperature,
When the compressor operating frequency at that time is the lowest frequency, the compressor 20 is stopped. After the compressor stops, the inside temperature of both rooms gradually rises, but when either of the inside temperatures reaches the set upper limit temperature, the operation of the compressor 20 starts and the set upper limit temperature is reached. Perform cooling operation from the room that has reached.
By this control, the refrigerated temperature zone space 7 and the frozen temperature zone space 8
Are sufficiently cooled and the compressor 20 is stopped only when the condition that the compressor frequency is minimum is satisfied.
For this reason, the number of stops of the compressor 20 is reduced, and the cycle loss can be reduced.

【0061】図8には、本発明の第2の実施の形態を示
す。本実施の形態は、冷蔵室用蒸発器15及び冷蔵室用
冷気循環ファン16を冷蔵温度帯空間7内の最も低温度
となる底部に配置したものである。冷凍サイクルの構成
及び作用、効果は、上記第1の実施の形態と略同様であ
る。
FIG. 8 shows a second embodiment of the present invention. In this embodiment, the refrigerator evaporator 15 and the refrigerator cold air circulation fan 16 are arranged at the lowest temperature in the refrigerator temperature zone space 7. The configuration, operation, and effects of the refrigeration cycle are substantially the same as those of the first embodiment.

【0062】[0062]

【発明の効果】以上説明したように、請求項1記載の発
明によれば、各蒸発器への冷媒流路を切り替えて冷蔵室
と冷凍室を交互に冷却する冷蔵庫であって、前記冷蔵室
と冷凍室の各検出温度及び各設定温度から圧縮機の回転
数を変えて所要の冷蔵室温度と冷凍室温度に対応した蒸
発温度になるように前記各蒸発器の蒸発温度を制御する
ようにしたため、冷蔵室と冷凍室の各蒸発器の何れか一
方のみが作動するとともに、圧縮機が各部屋の状況に合
った回転数に制御されて各部屋を最適な温度に保つこと
ができる。各蒸発器は一方の部屋のみを冷却するので体
積は小さいものでよく、圧縮機も能力の小さいものでよ
いので省エネを図ることができる。また、圧縮機は低回
転数で運転できるため、運転時間が長くなり、断続の回
数が減ることでサイクルロスを低減することができる。
As described above, according to the first aspect of the present invention, there is provided a refrigerator for alternately cooling a refrigerating room and a freezing room by switching a refrigerant flow path to each evaporator. And changing the number of revolutions of the compressor from each detected temperature and each set temperature of the freezing room and controlling the evaporating temperature of each of the evaporators so as to be a required evaporating temperature corresponding to the required refrigerating room temperature and the freezing room temperature. Thus, only one of the evaporators in the refrigerator compartment and the freezer compartment operates, and the compressor is controlled at a rotation speed suitable for the situation of each room, so that each room can be maintained at an optimum temperature. Since each evaporator cools only one room, the volume may be small, and the compressor may have a small capacity, so that energy can be saved. In addition, since the compressor can be operated at a low rotation speed, the operation time is long, and the number of intermittent operations is reduced, so that the cycle loss can be reduced.

【0063】請求項2記載の発明によれば、前記冷蔵室
と冷凍室に設けた各冷気循環ファンは能力可変であり、
その時の各部屋の検出温度又は前記圧縮機回転数の少な
くとも何れかに応じて回転数が制御されるようにしたた
め、両部屋の各冷気循環ファンは、圧縮機の能力変動等
に応じて回転数が制御されるので、さらに各部屋の最適
温度制御を図ることができるとともに省エネを図ること
ができる。
According to the second aspect of the present invention, each cooling air circulation fan provided in the refrigerator compartment and the freezer compartment has a variable capacity,
Since the rotation speed is controlled in accordance with at least one of the detected temperature of each room or the compressor rotation speed at that time, the cooling air circulation fans in both rooms are rotated in accordance with the fluctuations in compressor capacity and the like. Is controlled, it is possible to further control the optimum temperature of each room and to save energy.

【0064】請求項3記載の発明によれば、通常冷却モ
ードでは、前記冷蔵室の冷却運転と前記冷凍室の冷却運
転の切り替えは、現在冷却を行っている部屋の設定下限
温度又は他方の部屋の設定上限温度で行うようにしたた
め、通常冷却モードでは、冷蔵室と冷凍室の各庫内温度
を、常に、目標とするその設定温度内に保つことができ
る。
According to the third aspect of the present invention, in the normal cooling mode, the switching between the cooling operation of the refrigerator compartment and the cooling operation of the freezer compartment is performed by setting the lower limit temperature of the room currently performing cooling or the other room. In the normal cooling mode, the internal temperatures of the refrigerator compartment and the freezer compartment can always be kept within the target set temperatures in the normal cooling mode.

【0065】請求項4記載の発明によれば、前記冷却運
転の切り替えを判定する各部屋の温度検出は、扉閉状態
が1分以上経過を確認してから行い、扉開放時又は開放
直後は行わないようにしたため、通常冷却モードにおい
て、一時的な温度変動が冷却運転の切り替えに悪影響を
及ぼすことがなく、安定した庫内温度制御をすることが
できる。
According to the fourth aspect of the invention, the temperature of each room for judging the switching of the cooling operation is detected after the door has been closed for one minute or more. Since this is not performed, in the normal cooling mode, a temporary temperature change does not adversely affect the switching of the cooling operation, and stable internal temperature control can be performed.

【0066】請求項5記載の発明によれば、前記通常冷
却モードの圧縮機運転周波数は、前記冷蔵室及び冷凍室
毎の前回の冷却時又は非冷却時における庫内検出温度の
下降・上昇率を含む運転データから決定し、前記冷却運
転の切り替え時に圧縮機回転数の見直しを行うようにし
たため、通常冷却モードにおいて、無駄のない最適な冷
却運転を行うことができて、省エネを図ることができる
とともに庫内の温度変動を低減することができる。
According to the fifth aspect of the present invention, the compressor operating frequency in the normal cooling mode is determined by the rate of decrease / increase in the temperature detected in the refrigerator at the time of the previous cooling or non-cooling for each of the refrigerator compartment and the freezer compartment. It is determined from the operation data including, and the compressor rotation speed is reviewed at the time of switching the cooling operation, so that in the normal cooling mode, it is possible to perform the optimal cooling operation without waste, and to save energy. In addition, it is possible to reduce the temperature fluctuation in the refrigerator.

【0067】請求項6記載の発明によれば、通常冷却モ
ードの圧縮機運転周波数は、冷蔵室及び冷凍室毎の前回
の冷却運転が停止したときの庫内温度と設定下限温度の
差又は冷却運転を開始するときの庫内温度と設定上限温
度の差の何れかにより決定し、前記冷却運転の切り替え
時に圧縮機回転数の見直しを行うようにしたため、通常
冷却モードにおいて、その時の冷却の必要性に応じた冷
却運転を行うことができて、省エネを図ることができる
とともに庫内の温度変動を低減することができる。
According to the sixth aspect of the present invention, the compressor operating frequency in the normal cooling mode is determined by the difference between the inside temperature and the set lower limit temperature when the previous cooling operation for each of the refrigerator compartment and the freezer compartment was stopped, or the cooling operation. It is determined by either the internal temperature at the time of starting the operation or the difference between the set upper limit temperature and the compressor rotation speed is reviewed when the cooling operation is switched, so that the cooling at that time is required in the normal cooling mode. It is possible to perform a cooling operation according to the characteristics, thereby saving energy and reducing temperature fluctuations in the refrigerator.

【0068】請求項7記載の発明によれば、前記冷蔵室
又は冷凍室の何れかの庫内温度が設定上限温度に達した
ときには、その部屋の冷却運転に切り替えるとともに前
記圧縮機は最大周波数で運転を開始するようにしたた
め、通常冷却モードにおいて、設定上限温度に達した部
屋の庫内温度を、より早く目的の庫内温度にすることが
できる。
According to the invention of claim 7, when the internal temperature of either the refrigerator compartment or the freezer compartment reaches the set upper limit temperature, the operation is switched to the cooling operation of the compartment and the compressor operates at the maximum frequency. Since the operation is started, in the normal cooling mode, the internal temperature of the room that has reached the set upper limit temperature can be quickly set to the target internal temperature.

【0069】請求項8記載の発明によれば、前記冷蔵室
及び冷凍室毎に前記設定上限温度より高く庫内温度とし
て許容できる許容温度を設け、この許容温度を超えた場
合、許容温度を超えた側の部屋を優先して冷却するよう
にしたため、通常冷却モードにおいて、例えば、熱容量
が大きく温度の高いもの等が投入されて許容温度を超え
た場合、その部屋を優先冷却することで、庫内の温度変
動を抑えることができる。
According to the present invention, an allowable temperature which is higher than the set upper limit temperature and which is allowable as the internal temperature is provided for each of the refrigerator compartment and the freezer compartment, and when the allowable temperature is exceeded, the allowable temperature is exceeded. In the normal cooling mode, for example, when a large heat capacity or a high temperature is thrown in and the temperature exceeds the allowable temperature in the normal cooling mode, the room is preferentially cooled, and The temperature fluctuation in the inside can be suppressed.

【0070】請求項9記載の発明によれば、前記冷蔵室
の冷却時間と前記冷凍室の冷却時間に最小冷却時間を設
け、前記冷蔵室と冷凍室が共に前記許容温度を超えた場
合、前記最小冷却時間毎に冷却室を切り替えるようにし
たため、通常冷却モードにおいて、両部屋が許容温度を
超えた時、ハンチングを起こすことなく安定した冷却運
転の切り替え制御を行うことができるとともに冷却運転
の切り替えの際に生じるサイクルロスを最小限に抑える
ことができる。
According to the ninth aspect of the present invention, a minimum cooling time is provided between the cooling time of the refrigerator compartment and the cooling time of the freezer compartment, and when both the refrigerator compartment and the freezer compartment exceed the allowable temperature, Since the cooling chamber is switched every minimum cooling time, in the normal cooling mode, when both rooms exceed the allowable temperature, stable switching control of the cooling operation can be performed without causing hunting and switching of the cooling operation. In this case, the cycle loss that occurs during the process can be minimized.

【0071】請求項10記載の発明によれば、前記冷蔵
室の冷却時間と前記冷凍室の冷却時間に最大冷却時間を
設け、前記冷蔵室と冷凍室が共に設定温度内にあると
き、前記最大冷却時間が経過したら冷却室を切り替える
ようにしたため、通常冷却モードにおいて、ある長時間
経過しても両部屋が設定温度内にあるとき、設定された
最大冷却時間毎に冷却運転の切り替えが実行され、圧縮
機に連動する冷気循環ファンが運転されて両部屋内の温
度むらの発生を防止することができる。
According to the tenth aspect of the present invention, a maximum cooling time is provided for the cooling time of the refrigerator compartment and the cooling time of the freezer compartment, and when both the refrigerator compartment and the freezer compartment are within the set temperature, the maximum cooling time is provided. Since the cooling room is switched after the cooling time has elapsed, in the normal cooling mode, when both rooms are within the set temperature even after a certain long time, the cooling operation is switched at every set maximum cooling time. In addition, the cool air circulation fan that operates in conjunction with the compressor is operated to prevent the occurrence of temperature unevenness in both rooms.

【0072】請求項11記載の発明によれば、電源投入
時は前記冷凍室から冷却を開始し、冷凍室温度が設定下
限温度に到達した時点から通常冷却モードに移行するよ
うにしたため、電源投入時に冷却負荷の大きな冷凍室用
の蒸発器に冷媒が流れて圧縮機への液バックがなく、効
率のよい冷却運転により各部屋を最適な温度に保つこと
ができる。また、冷凍室温度が所定の温度まで早急に下
げられて、食品への温度的悪影響を抑えることができ
る。
According to the eleventh aspect of the present invention, when the power is turned on, cooling is started from the freezing room, and when the freezing room temperature reaches the set lower limit temperature, the mode shifts to the normal cooling mode. Refrigerant sometimes flows into an evaporator for a freezing room having a large cooling load, and there is no liquid back to the compressor. Therefore, each room can be maintained at an optimum temperature by an efficient cooling operation. In addition, the temperature of the freezer compartment is quickly lowered to a predetermined temperature, so that adverse effects on the food can be suppressed.

【0073】請求項12記載の発明によれば、電源投入
時は前記冷凍室から冷却を開始するとともに、各室毎に
段階的に設けた設定温度到達時に前記冷蔵室と冷凍室の
冷却を交互に切り替える電源投入モードで運転するよう
にしたため、上記と同様に、効率のよい冷却運転によ
り、両部屋を徐々に冷却して最適な温度に保つことがで
きる。また食品への温度的悪影響を最小限に抑えること
ができる。
According to the twelfth aspect of the invention, when the power is turned on, cooling is started from the freezer compartment, and the cooling of the refrigerating compartment and the freezer compartment is alternately performed when a set temperature set in each compartment is reached. As described above, both rooms can be gradually cooled and maintained at an optimum temperature by an efficient cooling operation as described above. In addition, adverse temperature effects on food can be minimized.

【0074】請求項13記載の発明によれば、前記電源
投入モードで前記冷蔵室と冷凍室を交互に冷却中にそれ
ぞれの室温が設定温度に到達した時点から通常冷却モー
ドに移行するようにしたため、各部屋を良好に設定温度
内に保つことができる。
According to the thirteenth aspect of the present invention, the cooling room and the freezing room are alternately cooled in the power-on mode, and when the room temperature reaches the set temperature, the mode shifts to the normal cooling mode. , Each room can be kept well within the set temperature.

【0075】請求項14記載の発明によれば、前記電源
投入時の圧縮機は、最大周波数で運転を開始するように
したため、効率のよい冷却運転により各部屋を最適な温
度に保つことができるとともに、冷凍室温度が所定の温
度まで一層早急に下げられて、食品への温度的悪影響を
確実に抑えることができる。
According to the fourteenth aspect of the present invention, since the compressor at the time of turning on the power is started to operate at the maximum frequency, each room can be maintained at an optimum temperature by an efficient cooling operation. At the same time, the temperature of the freezer compartment is more quickly lowered to a predetermined temperature, so that adverse effects on the food can be reliably suppressed.

【0076】請求項15記載の発明によれば、前記電源
投入時の圧縮機運転周波数は、外気温度に応じて設定す
るようにしたため、外気温度が高いときの圧縮機への負
荷の増加を抑えることができて効率のよい冷却運転を行
わせることができる。
According to the present invention, the compressor operating frequency when the power is turned on is set in accordance with the outside air temperature, so that an increase in the load on the compressor when the outside air temperature is high is suppressed. Thus, an efficient cooling operation can be performed.

【0077】請求項16記載の発明によれば、前記冷蔵
室と冷凍室がそれぞれ設定温度内にあって、かつ一定時
間扉開放がないとき、前記冷蔵室の冷却と前記冷凍室の
冷却の切り替えを所定の設定時間で行う省エネモードに
移行するようにしたため、冷却運転の切り替え回数や圧
縮機停止回数が少なくなってサイクルロスを低減するこ
とができる。
According to the sixteenth aspect, when the refrigerator compartment and the freezer compartment are each within the set temperature and the door is not opened for a certain period of time, switching between the cooling of the refrigerator compartment and the cooling of the freezer compartment is performed. Is switched to the energy saving mode in which a predetermined time is set, the number of times of switching the cooling operation and the number of times of stopping the compressor are reduced, and the cycle loss can be reduced.

【0078】請求項17記載の発明によれば、前記圧縮
機の運転周波数が最低周波数であって、前記冷蔵室と冷
凍室がそれぞれ設定下限温度に達したとき、圧縮機停止
モードに移行して前記圧縮機を停止し、その後、前記冷
蔵室或いは冷凍室の何れかが設定温度上限を超えた場合
に前記圧縮機を起動して設定温度上限を超えた側から冷
却を行うようにしたため、圧縮機の停止回数が少なくな
ってサイクルロスを低減することができる。
According to the seventeenth aspect of the present invention, when the operating frequency of the compressor is the lowest frequency and the refrigerating compartment and the freezing compartment each reach the set lower limit temperature, the compressor shifts to the compressor stop mode. Stopping the compressor, and then, when either the refrigerator compartment or the freezer compartment exceeds the set temperature upper limit, the compressor is started to perform cooling from the side exceeding the set temperature upper limit. The number of stoppages of the machine is reduced, and cycle loss can be reduced.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る冷蔵庫の第1の実施の形態を示す
縦断面図である。
FIG. 1 is a longitudinal sectional view showing a first embodiment of a refrigerator according to the present invention.

【図2】上記第1の実施の形態の冷凍サイクルを示す図
である。
FIG. 2 is a diagram showing a refrigeration cycle according to the first embodiment.

【図3】上記第1の実施の形態において設定温度と冷蔵
室・冷凍室の庫内温度変化例を示す図である。
FIG. 3 is a diagram showing an example of a change in a set temperature and a temperature in a refrigerator / freezer compartment in the first embodiment.

【図4】上記第1の実施の形態において設定温度と冷蔵
室・冷凍室の庫内温度変化例を示す図である。
FIG. 4 is a diagram showing an example of a change in a set temperature and a temperature in a refrigerator / freezer compartment in the first embodiment.

【図5】上記第1の実施の形態において設定温度と冷蔵
室・冷凍室の許容温度及び庫内温度変化例を示す図であ
る。
FIG. 5 is a diagram showing an example of a change in a set temperature, a permissible temperature of a refrigerating compartment and a freezing compartment, and a temperature in a refrigerator in the first embodiment.

【図6】上記第1の実施の形態において最小冷却時間に
よる冷却運転の切り替えの様子と冷蔵室・冷凍室の庫内
温度変化例を示す図である。
FIG. 6 is a diagram showing a state of switching of a cooling operation by a minimum cooling time and an example of a change in the temperature in the refrigerator compartment / freezer compartment in the first embodiment.

【図7】上記第1の実施の形態において最大冷却時間に
よる冷却運転の切り替えの様子と冷蔵室・冷凍室の庫内
温度変化例を示す図である。
FIG. 7 is a diagram showing a state of switching of the cooling operation according to the maximum cooling time and an example of a change in the temperature in the refrigerator compartment / freezer compartment in the first embodiment.

【図8】本発明の第2の実施の形態を示す縦断面図であ
る。
FIG. 8 is a longitudinal sectional view showing a second embodiment of the present invention.

【図9】従来の冷蔵庫の縦断面図及び冷凍サイクルを示
す図である。
FIG. 9 is a vertical sectional view of a conventional refrigerator and a diagram showing a refrigeration cycle.

【符号の説明】[Explanation of symbols]

1 冷蔵庫本体 6 断熱仕切壁 7 冷蔵温度帯空間 8 冷凍温度帯空間 15 冷蔵室用蒸発器 16 冷蔵室用冷気循環ファン 17 冷凍室用蒸発器 18 冷凍室用冷気循環ファン 20 圧縮機 24 切替弁 DESCRIPTION OF SYMBOLS 1 Refrigerator main body 6 Heat insulation partition wall 7 Refrigeration temperature zone space 8 Refrigeration temperature zone space 15 Evaporator for refrigerator compartment 16 Cooling air circulation fan 17 Refrigeration compartment evaporator 18 Cold air circulation fan for refrigerator compartment 20 Compressor 24 Switching valve

Claims (17)

【特許請求の範囲】[Claims] 【請求項1】 冷蔵庫本体に、開閉扉をそれぞれ備えた
庫内を多段構成し、この多段構成した庫内を断熱仕切壁
により冷蔵室と冷凍室に仕切り、この冷蔵室と冷凍室に
は蒸発器及び冷気循環ファンをそれぞれ配置するととも
に前記両蒸発器は並列に接続し、その各蒸発器への冷媒
流路を切り替えて前記冷蔵室と冷凍室を交互に冷却する
冷蔵庫であって、前記冷蔵室と冷凍室の各検出温度及び
各設定温度から圧縮機の回転数を変えて所要の冷蔵室温
度と冷凍室温度に対応した蒸発温度になるように前記各
蒸発器の蒸発温度を制御するように構成してなることを
特徴とする冷蔵庫。
1. A refrigerator having a refrigerator body provided with an opening / closing door in a multi-stage configuration, wherein the multi-stage configuration is partitioned into a refrigerator compartment and a freezer compartment by a heat insulating partition wall. And a refrigerator for arranging a cooler and a cooling air circulation fan, respectively, and connecting the two evaporators in parallel, switching a refrigerant flow path to each of the evaporators and alternately cooling the refrigerator compartment and the freezer compartment, The evaporating temperature of each of the evaporators is controlled by changing the number of rotations of the compressor from each detected temperature and each set temperature of the room and the freezing room so that the required evaporating temperature corresponds to the required refrigerator room temperature and freezing room temperature. A refrigerator comprising:
【請求項2】 前記冷蔵室と冷凍室に設けた各冷気循環
ファンは能力可変であり、その時の各部屋の検出温度又
は前記圧縮機回転数の少なくとも何れかに応じて回転数
が制御されるように構成してなることを特徴とする請求
項1記載の冷蔵庫。
2. The cooling air circulation fans provided in the refrigerating compartment and the freezing compartment have variable capacity, and the rotation speed is controlled according to at least one of the detected temperature of each room and the rotation speed of the compressor at that time. The refrigerator according to claim 1, wherein the refrigerator is configured as follows.
【請求項3】 通常冷却モードでは、前記冷蔵室の冷却
運転と前記冷凍室の冷却運転の切り替えは、現在冷却を
行っている部屋の設定下限温度又は他方の部屋の設定上
限温度で行うように構成してなることを特徴とする請求
項1記載の冷蔵庫。
3. In a normal cooling mode, switching between the cooling operation of the refrigerator compartment and the cooling operation of the freezer compartment is performed at a set lower limit temperature of the room currently performing cooling or at a set upper limit temperature of the other room. The refrigerator according to claim 1, wherein the refrigerator is configured.
【請求項4】 前記冷却運転の切り替えを判定する各部
屋の温度検出は、扉閉状態が1分以上経過を確認してか
ら行い、扉開放時又は開放直後は行わないように構成し
てなることを特徴とする請求項3記載の冷蔵庫。
4. The temperature detection of each room for judging the switching of the cooling operation is performed after confirming that the door closed state has elapsed for one minute or more, and is not performed when the door is opened or immediately after the door is opened. The refrigerator according to claim 3, wherein:
【請求項5】 前記通常冷却モードの圧縮機運転周波数
は、前記冷蔵室及び冷凍室毎の前回の冷却時又は非冷却
時における庫内検出温度の下降・上昇率を含む運転デー
タから決定し、前記冷却運転の切り替え時に圧縮機回転
数の見直しを行うように構成してなることを特徴とする
請求項3記載の冷蔵庫。
5. The compressor operating frequency in the normal cooling mode is determined from operating data including a decrease / increase rate of a detected temperature in a refrigerator at the time of previous cooling or non-cooling for each of the refrigerator compartment and the freezer compartment, 4. The refrigerator according to claim 3, wherein the number of rotations of the compressor is reviewed when the cooling operation is switched.
【請求項6】 通常冷却モードの圧縮機運転周波数は、
冷蔵室及び冷凍室毎の前回の冷却運転が停止したときの
庫内温度と設定下限温度の差又は冷却運転を開始すると
きの庫内温度と設定上限温度の差の何れかにより決定
し、前記冷却運転の切り替え時に圧縮機回転数の見直し
を行うように構成してなることを特徴とする請求項3記
載の冷蔵庫。
6. The compressor operating frequency in the normal cooling mode is as follows:
Determined by either the difference between the inside temperature and the set lower limit temperature when the previous cooling operation for each refrigerator compartment and freezer room was stopped or the difference between the inside temperature and the set upper limit temperature when starting the cooling operation, and 4. The refrigerator according to claim 3, wherein the number of revolutions of the compressor is reviewed when the cooling operation is switched.
【請求項7】 前記冷蔵室又は冷凍室の何れかの庫内温
度が設定上限温度に達したときには、その部屋の冷却運
転に切り替えるとともに前記圧縮機は最大周波数で運転
を開始するように構成してなることを特徴とする請求項
3記載の冷蔵庫。
7. When the internal temperature of either the refrigerator compartment or the freezer compartment reaches a set upper limit temperature, the refrigerator is switched to a cooling operation of the room and the compressor starts operating at a maximum frequency. 4. The refrigerator according to claim 3, wherein the refrigerator comprises:
【請求項8】 前記冷蔵室及び冷凍室毎に前記設定上限
温度より高く庫内温度として許容できる許容温度を設
け、この許容温度を超えた場合、許容温度を超えた側の
部屋を優先して冷却するように構成してなることを特徴
とする請求項3記載の冷蔵庫。
8. An allowable temperature which is higher than the set upper limit temperature and which is allowable as the internal temperature is provided for each of the refrigerator compartment and the freezer compartment, and when the allowable temperature is exceeded, the room on the side exceeding the allowable temperature is given priority. The refrigerator according to claim 3, wherein the refrigerator is configured to be cooled.
【請求項9】 前記冷蔵室の冷却時間と前記冷凍室の冷
却時間に最小冷却時間を設け、前記冷蔵室と冷凍室が共
に前記許容温度を超えた場合、前記最小冷却時間毎に冷
却室を切り替えるように構成してなることを特徴とする
請求項8記載の冷蔵庫。
9. A minimum cooling time is provided for the cooling time of the refrigerator compartment and the cooling time of the freezer compartment, and when both the refrigerator compartment and the freezer compartment exceed the allowable temperature, the cooling compartment is set every the minimum cooling time. 9. The refrigerator according to claim 8, wherein the refrigerator is configured to be switched.
【請求項10】 前記冷蔵室の冷却時間と前記冷凍室の
冷却時間に最大冷却時間を設け、前記冷蔵室と冷凍室が
共に設定温度内にあるとき、前記最大冷却時間が経過し
たら冷却室を切り替えるように構成してなることを特徴
とする請求項3記載の冷蔵庫。
10. A maximum cooling time is provided for the cooling time of the refrigerator compartment and the cooling time of the freezer compartment. When both the refrigerator compartment and the freezer compartment are within the set temperature, the cooling compartment is set after the maximum cooling time has elapsed. 4. The refrigerator according to claim 3, wherein the refrigerator is configured to be switched.
【請求項11】 電源投入時は前記冷凍室から冷却を開
始し、冷凍室温度が設定下限温度に到達した時点から通
常冷却モードに移行するように構成してなることを特徴
とする請求項1記載の冷蔵庫。
11. The cooling apparatus according to claim 1, wherein cooling is started from said freezer compartment when power is turned on, and a transition is made to a normal cooling mode when the freezer compartment temperature reaches a set lower limit temperature. The refrigerator as described.
【請求項12】 電源投入時は前記冷凍室から冷却を開
始するとともに、各室毎に段階的に設けた設定温度到達
時に前記冷蔵室と冷凍室の冷却を交互に切り替える電源
投入モードで運転するように構成してなることを特徴と
する請求項1記載の冷蔵庫。
12. When the power is turned on, cooling is started from the freezer compartment, and the operation is performed in a power-on mode in which the cooling of the refrigerating compartment and the cooling of the freezer compartment are alternately performed when a set temperature set in each compartment is reached. The refrigerator according to claim 1, wherein the refrigerator is configured as follows.
【請求項13】 前記電源投入モードで前記冷蔵室と冷
凍室を交互に冷却中にそれぞれの室温が設定温度に到達
した時点から通常冷却モードに移行するように構成して
なることを特徴とする請求項12記載の冷蔵庫。
13. The apparatus is characterized in that the cooling chamber and the freezing chamber are alternately cooled in the power-on mode, and a transition is made to a normal cooling mode when the respective room temperature reaches a set temperature. The refrigerator according to claim 12.
【請求項14】 前記電源投入時の圧縮機は、最大周波
数で運転を開始するように構成してなることを特徴とす
る請求項11記載の冷蔵庫。
14. The refrigerator according to claim 11, wherein the compressor at power-on is configured to start operating at a maximum frequency.
【請求項15】 前記電源投入時の圧縮機運転周波数
は、外気温度に応じて設定するように構成してなること
を特徴とする請求項11記載の冷蔵庫。
15. The refrigerator according to claim 11, wherein the compressor operating frequency at the time of turning on the power is set according to the outside air temperature.
【請求項16】 前記冷蔵室と冷凍室がそれぞれ設定温
度内にあって、かつ一定時間扉開放がないとき、前記冷
蔵室の冷却と前記冷凍室の冷却の切り替えを所定の設定
時間で行う省エネモードに移行するように構成してなる
ことを特徴とする請求項1記載の冷蔵庫。
16. An energy saving method for switching between cooling of the refrigerator and cooling of the freezer for a predetermined time when the refrigerator and the freezer are at respective set temperatures and the door is not opened for a predetermined time. 2. The refrigerator according to claim 1, wherein the refrigerator is configured to shift to a mode.
【請求項17】 前記圧縮機の運転周波数が最低周波数
であって、前記冷蔵室と冷凍室がそれぞれ設定下限温度
に達したとき、圧縮機停止モードに移行して前記圧縮機
を停止し、その後、前記冷蔵室或いは冷凍室の何れかが
設定温度上限を超えた場合に前記圧縮機を起動して設定
温度上限を超えた側から冷却を行うように構成してなる
ことを特徴とする請求項1記載の冷蔵庫。
17. When the operating frequency of the compressor is the lowest frequency and the refrigerator compartment and the freezer compartment each reach a set lower limit temperature, the compressor shifts to a compressor stop mode to stop the compressor. Wherein when one of the refrigerator compartment or the freezer compartment exceeds a set temperature upper limit, the compressor is started to perform cooling from a side having exceeded the set temperature upper limit. The refrigerator according to 1.
JP31549497A 1997-11-17 1997-11-17 Refrigerator Pending JPH11148761A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31549497A JPH11148761A (en) 1997-11-17 1997-11-17 Refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31549497A JPH11148761A (en) 1997-11-17 1997-11-17 Refrigerator

Publications (1)

Publication Number Publication Date
JPH11148761A true JPH11148761A (en) 1999-06-02

Family

ID=18066055

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31549497A Pending JPH11148761A (en) 1997-11-17 1997-11-17 Refrigerator

Country Status (1)

Country Link
JP (1) JPH11148761A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1729074A2 (en) 2005-05-31 2006-12-06 Sanyo Electric Co., Ltd. Refrigerator
JP2009525423A (en) * 2006-01-31 2009-07-09 アトラス コプコ エアーパワー,ナームローゼ フェンノートシャップ Improved compressor device
JP2009236343A (en) * 2008-03-26 2009-10-15 Suido Kiko Kaisha Ltd Liquid cooling system
JP2011033326A (en) * 2008-12-24 2011-02-17 Panasonic Corp Refrigerator
JP2011080696A (en) * 2009-10-07 2011-04-21 Toshiba Corp Refrigerator
JP2013200081A (en) * 2012-03-26 2013-10-03 Panasonic Corp Cooling storage
JP2014036951A (en) * 2012-07-18 2014-02-27 Hitachi Koki Co Ltd Centrifuge
JP2015114091A (en) * 2013-12-16 2015-06-22 三菱電機株式会社 Refrigerator and control method for refrigerator
JP2020085406A (en) * 2018-11-30 2020-06-04 ホシザキ株式会社 Cooling storage
JP2020139639A (en) * 2019-02-26 2020-09-03 東芝ライフスタイル株式会社 refrigerator
JP2021032531A (en) * 2019-08-28 2021-03-01 東芝ライフスタイル株式会社 refrigerator

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1729074A2 (en) 2005-05-31 2006-12-06 Sanyo Electric Co., Ltd. Refrigerator
US8894379B2 (en) 2006-01-31 2014-11-25 Atlas Copco Airpower, N.V. Compressor device
JP2009525423A (en) * 2006-01-31 2009-07-09 アトラス コプコ エアーパワー,ナームローゼ フェンノートシャップ Improved compressor device
JP2009236343A (en) * 2008-03-26 2009-10-15 Suido Kiko Kaisha Ltd Liquid cooling system
JP2011033326A (en) * 2008-12-24 2011-02-17 Panasonic Corp Refrigerator
JP2011033325A (en) * 2008-12-24 2011-02-17 Panasonic Corp Refrigerator
JP2011080696A (en) * 2009-10-07 2011-04-21 Toshiba Corp Refrigerator
JP2013200081A (en) * 2012-03-26 2013-10-03 Panasonic Corp Cooling storage
JP2014036951A (en) * 2012-07-18 2014-02-27 Hitachi Koki Co Ltd Centrifuge
JP2015114091A (en) * 2013-12-16 2015-06-22 三菱電機株式会社 Refrigerator and control method for refrigerator
JP2020085406A (en) * 2018-11-30 2020-06-04 ホシザキ株式会社 Cooling storage
JP2020139639A (en) * 2019-02-26 2020-09-03 東芝ライフスタイル株式会社 refrigerator
JP2021032531A (en) * 2019-08-28 2021-03-01 東芝ライフスタイル株式会社 refrigerator

Similar Documents

Publication Publication Date Title
RU2137064C1 (en) Refrigerator with highly-effective refrigeration cycle with several evaporators (continuous evaporating cycle) and method of control of this refrigerator
US6935127B2 (en) Refrigerator
EP3093588B1 (en) Refrigerator and method for controlling a refrigerator
KR20030062212A (en) Refrigerator
WO2005038365A1 (en) Cooling storage
KR20170067559A (en) A refrigerator and a method for controlling the same
EP1418392B1 (en) Cooling apparatus
JPH10318645A (en) Refrigerator
JPH11148761A (en) Refrigerator
JP2002081817A (en) Refrigerator
JP3515920B2 (en) refrigerator
KR102617277B1 (en) Refrigerator and method for controlling the same
JPH11304328A (en) Cooling operation controller of refrigerator
JP2000121226A (en) Refrigerator
JPH1163775A (en) Multi-refrigerator
JPH10267504A (en) Refrigerator
JP2002333254A (en) Refrigerator
KR20210069360A (en) Refrigerator and method for controlling the same
JP2002206840A (en) Refrigerator
JP2003287331A (en) Refrigerator
JP2002071233A (en) Refrigerator and its controlling method
JP2000111231A (en) Freezer-refrigerator
KR102589265B1 (en) Refrigerator and method for controlling the same
JP3710353B2 (en) refrigerator
JP4286106B2 (en) Freezer refrigerator