JP2009236343A - Liquid cooling system - Google Patents

Liquid cooling system Download PDF

Info

Publication number
JP2009236343A
JP2009236343A JP2008079700A JP2008079700A JP2009236343A JP 2009236343 A JP2009236343 A JP 2009236343A JP 2008079700 A JP2008079700 A JP 2008079700A JP 2008079700 A JP2008079700 A JP 2008079700A JP 2009236343 A JP2009236343 A JP 2009236343A
Authority
JP
Japan
Prior art keywords
liquid
temperature
storage tank
liquid storage
cooling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008079700A
Other languages
Japanese (ja)
Other versions
JP4841583B2 (en
Inventor
Yasuhiro Ono
泰宏 小野
Daisuke Miyatake
大輔 宮武
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Suido Kiko Kaisha Ltd
Original Assignee
Suido Kiko Kaisha Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Suido Kiko Kaisha Ltd filed Critical Suido Kiko Kaisha Ltd
Priority to JP2008079700A priority Critical patent/JP4841583B2/en
Publication of JP2009236343A publication Critical patent/JP2009236343A/en
Application granted granted Critical
Publication of JP4841583B2 publication Critical patent/JP4841583B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Devices That Are Associated With Refrigeration Equipment (AREA)
  • Separation Of Suspended Particles By Flocculating Agents (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a liquid cooling system can cool and maintain liquid, such as chemicals, stored in a plurality of liquid storage tanks at low operation cost while suppressing increase in facility cost. <P>SOLUTION: The liquid storage tanks (10A, 10B) are arranged with respect to one heat exchanger 20. Each of the liquid storage tanks 10 has an outflow control valve 11 and an inflow control valve 12. A relationship between liquid temperature T1 measured by a thermometer 13 when the outflow control valve 11 is opened to start outflow of liquid and liquid temperature T2 when the inflow control valve 12 is closed to stop inflow of liquid is set to T1≤25°C and T1>T2. The liquid in the liquid storage tanks 10 is intermittently cooled and recirculated by the one heat exchanger 20. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、液体貯蔵槽に貯蔵されている水処理施設で使用される薬品等の液体の液温を維持管理する液体の冷却システムに関し、更に詳しくは、水処理施設で使用される薬品等の液体が貯蔵されている液体貯蔵槽から冷却液流路に流出した薬品等の液体を熱交換器で冷却し液体貯蔵槽に還流させることで液体貯蔵槽の薬品等の液体の液温を維持管理する液体の冷却システムに関する。   The present invention relates to a liquid cooling system that maintains the liquid temperature of a liquid such as a chemical used in a water treatment facility stored in a liquid storage tank, and more specifically, a chemical or the like used in a water treatment facility. The liquid temperature of the liquid such as chemicals in the liquid storage tank is maintained and managed by cooling the liquid such as chemicals flowing out from the liquid storage tank where the liquid is stored into the coolant flow path using a heat exchanger and returning it to the liquid storage tank. The present invention relates to a liquid cooling system.

水道水を消毒するために使用される次亜塩素酸ナトリウムには人体に影響を及ぼす塩素酸が含まれているので、塩素酸の濃度を低く抑えることが課題となっている。次亜塩素酸ナトリウムに含まれる塩素酸の濃度は、貯蔵期間が長くなるに従い高くなるが、貯蔵時に次亜塩素酸ナトリウムの液温を20℃以下で維持管理すると増加率を低く抑えることが広く知られており、次亜塩素酸ナトリウムを所定の一定温度で維持管理する試みが始められている。   Since sodium hypochlorite used for disinfecting tap water contains chloric acid that affects the human body, it is an issue to keep the concentration of chloric acid low. The concentration of chloric acid contained in sodium hypochlorite becomes higher as the storage period becomes longer. However, if the liquid temperature of sodium hypochlorite is maintained at 20 ° C or less during storage, the rate of increase is widely kept low. Attempts to maintain and manage sodium hypochlorite at a predetermined constant temperature have begun.

従来、液体の次亜塩素酸ナトリウムを所定の一定温度で維持管理する冷却システムとして、次亜塩素酸ナトリウムが貯蔵されている液体貯蔵槽が屋内に設置されているときは、その屋内の温度を空調機により低下させ次亜塩素酸ナトリウムを所定の一定温度に維持管理することが行われている。しかし、次亜塩素酸ナトリウムを冷却するために室内まで冷却するので、冷却するための運転コストが高くなる不具合があった。   Conventionally, as a cooling system that maintains liquid sodium hypochlorite at a predetermined constant temperature, when a liquid storage tank storing sodium hypochlorite is installed indoors, The sodium hypochlorite is maintained at a predetermined constant temperature by being lowered by an air conditioner. However, since it cools indoors in order to cool sodium hypochlorite, there existed a malfunction to which the operating cost for cooling became high.

また別の冷却システムとして、図6に示すように、液体貯蔵槽101の壁部102を熱伝導率が高いチタン材等の材料で成形し、その外周を帯状の熱交換器103で被覆し、熱交換器103を冷却機104で冷却することで液体貯蔵槽101の内部に貯蔵されている次亜塩素酸ナトリウムを所定の一定温度に維持管理することが行われている。しかし、液体貯蔵槽101の壁部102が厚いので熱交換率が悪く、しかも壁部102には図示されていない配管等が配設されていることによる凹凸が存在するため熱交換器103を密着させて壁部102全体を被覆し効率的に冷却するのは困難であった。   As another cooling system, as shown in FIG. 6, the wall 102 of the liquid storage tank 101 is formed of a material such as titanium material having high thermal conductivity, and the outer periphery thereof is covered with a belt-like heat exchanger 103. The sodium hypochlorite stored in the liquid storage tank 101 is maintained at a predetermined constant temperature by cooling the heat exchanger 103 with the cooler 104. However, since the wall portion 102 of the liquid storage tank 101 is thick, the heat exchange rate is poor, and the wall portion 102 has unevenness due to the arrangement of pipes and the like (not shown), so that the heat exchanger 103 is closely attached. Thus, it is difficult to cover the entire wall portion 102 and efficiently cool it.

更に別の冷却システムとして、図7に示すように、液体貯蔵槽101から流出した冷却液流路111Aの次亜塩素酸ナトリウムを冷却機104で冷却された熱交換器103で冷却し、冷却された冷却液流路111Bの次亜塩素酸ナトリウムを液体貯蔵槽101に還流させることで、液体貯蔵槽101の次亜塩素酸ナトリウムを所定の一定温度に維持管理することが行われている。この方式だと、液体貯蔵槽101の下部に配設されている温度計114で次亜塩素酸ナトリウムの液温を監視し、次亜塩素酸ナトリウムを所定の一定温度に維持管理できるように常時冷却液流路111との間で循環させているので、運転コストが高くなる不具合があった。   As another cooling system, as shown in FIG. 7, the sodium hypochlorite in the coolant flow path 111A flowing out from the liquid storage tank 101 is cooled by the heat exchanger 103 cooled by the cooler 104 and cooled. In addition, the sodium hypochlorite in the liquid storage tank 101 is maintained at a predetermined constant temperature by refluxing the sodium hypochlorite in the coolant channel 111B to the liquid storage tank 101. In this system, the temperature of the sodium hypochlorite is monitored by a thermometer 114 disposed at the bottom of the liquid storage tank 101, so that the sodium hypochlorite can be maintained at a predetermined temperature at all times. Since it circulates between the coolant flow paths 111, there is a problem that the operation cost increases.

また、図8に示すように、次亜塩素酸ナトリウムは浄水場等の水道水の消毒に使用することを目的に貯蔵されているので、次亜塩素酸ナトリウムを貯蔵する液体貯蔵槽101は、予備のものも含め通常2台以上設置される。この場合、液体貯蔵槽101に貯蔵されている次亜塩素酸ナトリウムは、上述の通り冷却液流路111との間で常時循環しているので、各液体貯蔵槽101に1台の熱交換器103を設置する必要があり、設備費が増加する不具合があった。   In addition, as shown in FIG. 8, since sodium hypochlorite is stored for the purpose of disinfecting tap water such as water purification plants, the liquid storage tank 101 for storing sodium hypochlorite is: Two or more units are usually installed, including spare ones. In this case, since sodium hypochlorite stored in the liquid storage tank 101 is constantly circulated between the coolant channel 111 as described above, one heat exchanger is provided in each liquid storage tank 101. 103 had to be installed, and there was a problem that the equipment cost increased.

これに対し、設備費の増加を抑制するため、図9に示すように、2台の液体貯蔵槽(101A,101B)を冷却液流路111で並列に接続し、2台の液体貯蔵槽(101A,101B)から同時に冷却液流路111に流出してきた次亜塩素酸ナトリウムを1台の熱交換器103で冷却し、両方の液体貯蔵槽(101A,101B)に同時に還流させることが行われている(下記特許文献1参照)。しかし、この場合、2台の液体貯蔵槽(101A,101B)の次亜塩素酸ナトリウムの液温を均一に同時に冷却するよう流量制御が必要であるため、運転コストが高くなる不具合があった。更に、2台の液体貯蔵槽(101A,101B)の次亜塩素酸ナトリウムが混合されることで貯蔵期間が長期化し、しかも2台の液体貯蔵槽(101A,101B)が連通するので予備槽としての機能が消失する不具合もあった。   On the other hand, in order to suppress the increase in equipment cost, as shown in FIG. 9, two liquid storage tanks (101A, 101B) are connected in parallel by the coolant flow path 111, and two liquid storage tanks ( 101A and 101B), sodium hypochlorite flowing out into the cooling liquid flow path 111 at the same time is cooled by one heat exchanger 103 and refluxed to both liquid storage tanks (101A and 101B) at the same time. (See Patent Document 1 below). However, in this case, since the flow rate control is required to uniformly cool the liquid temperature of the sodium hypochlorite in the two liquid storage tanks (101A, 101B) at the same time, there is a problem that the operation cost increases. Furthermore, the sodium hypochlorite in the two liquid storage tanks (101A, 101B) is mixed to prolong the storage period, and the two liquid storage tanks (101A, 101B) communicate with each other. There was also a problem that the function of disappeared.

また、液体貯蔵槽101に設置されている温度計114は、貯蔵されている次亜塩素酸ナトリウムの液温を常時監視する必要があるので、次亜塩素酸ナトリウムが常時存在する液体貯蔵槽101の下部に配設され下層部の次亜塩素酸ナトリウムの液温を測定している(図7乃至図9参照)。しかし、次亜塩素酸ナトリウムの液温は、液体貯蔵槽で液体が停滞している場合、図10に示すように、上層部の方が下層部より上昇速度が速い。従って、温度計で計測している液温は、制御しなければならない液体貯蔵槽の次亜塩素酸ナトリウムの液温より低くなっている傾向が認められた。   Moreover, since the thermometer 114 installed in the liquid storage tank 101 needs to constantly monitor the liquid temperature of the stored sodium hypochlorite, the liquid storage tank 101 in which sodium hypochlorite always exists. The liquid temperature of the sodium hypochlorite in the lower layer is measured (see FIG. 7 to FIG. 9). However, when the liquid temperature of sodium hypochlorite is stagnant in the liquid storage tank, as shown in FIG. 10, the upper layer portion has a higher rising speed than the lower layer portion. Therefore, the liquid temperature measured with the thermometer tended to be lower than the liquid temperature of sodium hypochlorite in the liquid storage tank to be controlled.

更に、凝集剤として使用される重合ケイ酸と金属塩を主体とする水処理用凝集剤(下記特許文献2参照)についても、所定の温度以下で維持管理を行わないとゲル化し凝集剤としての機能を発揮できないので、次亜塩素酸ナトリウムと同様な不具合点を有していた。   Furthermore, a water treatment flocculant mainly composed of polymerized silicic acid and a metal salt used as a flocculant (see Patent Document 2 below) is gelled unless it is maintained below a predetermined temperature. Since the function could not be exhibited, it had the same defects as sodium hypochlorite.

特開昭60−228289号JP-A-60-228289 特開2008−12417号JP 2008-12417 A

本発明は上述の不具合点を解決するためになされたものであって、その目的とするところは、複数の液体貯蔵槽に貯蔵されている浄水場等の水道水に使用される薬品等の液体、例えば次亜塩素酸ナトリウム・重合ケイ酸と金属塩を主体とする水処理用凝集剤の冷却について、安い設備費と運転コストで、各液体貯蔵槽の液体を混合させることなく品質を維持管理することができる液体の冷却システムを提供することである。   The present invention has been made to solve the above-mentioned problems, and the object of the present invention is to provide a liquid such as a chemical used for tap water stored in a plurality of liquid storage tanks. For example, for cooling water treatment flocculants mainly composed of sodium hypochlorite / polymerized silicic acid and metal salts, the quality is maintained and managed without mixing the liquid in each liquid storage tank at low equipment and operating costs. It is to provide a liquid cooling system that can.

上記目的を達成するため、本発明の請求項1による液体の冷却システムは、浄水場等の水道水に使用される薬品等の液体が貯蔵される温度測定手段を備えた液体貯蔵槽から冷却液流路に流出した液体を熱交換器で冷却し前記液体貯蔵槽に還流させることで前記液体貯蔵槽の液体の液温を維持管理する液体の冷却システムにおいて、1台の前記熱交換器に対し複数の前記液体貯蔵槽を配設し、前記液体貯蔵槽は、前記熱交換器で冷却させるため前記冷却液流路に流出する液体を制御する流出制御弁と、前記熱交換器で冷却された前記冷却液流路の液体の流入を制御する流入制御弁とを各々備え、前記流出制御弁が開放され液体の冷却を開始させるときの前記温度測定手段にて測定される前記液体貯蔵槽の液体の液温T1と、前記流入制御弁が閉塞され液体の冷却を停止させるときの前記液体貯蔵槽の液体の液温T2との関係を、
T1>T2,且つT1≦25℃
となるように設定し、一の前記液体貯蔵槽の液体の液温が設定値の液温T1に到達したときに冷却を開始し、一の前記液体貯蔵槽の液体の液温が設定値の液温T2に到達するか若しくは他の前記液体貯蔵槽の液体の液温が設定値の液温T1に到達したときのいずれか早いとき、または一の前記液体貯蔵槽の液体の液温が設定値の液温T1に到達し冷却を開始してから所定時間経過後若しくは他の前記液体貯蔵槽の液体の液温が設定値の液温T1に到達したときのいずれか早いとき、一の前記液体貯蔵槽の液体の冷却を停止することで前記液体貯蔵槽の液体を断続的に冷却し、1台の熱交換器で複数の前記液体貯蔵槽の液体の液温を維持管理することを特徴とするものである。
In order to achieve the above object, a liquid cooling system according to claim 1 of the present invention provides a liquid coolant from a liquid storage tank provided with temperature measuring means for storing a liquid such as a chemical used for tap water in a water purification plant or the like. In the liquid cooling system that maintains the liquid temperature of the liquid in the liquid storage tank by cooling the liquid flowing out into the flow path with a heat exchanger and refluxing it to the liquid storage tank, A plurality of the liquid storage tanks are disposed, and the liquid storage tanks are cooled by the heat exchanger and an outflow control valve for controlling the liquid flowing out to the coolant flow path for cooling by the heat exchanger. A liquid in the liquid storage tank that is measured by the temperature measuring means when the outflow control valve is opened and cooling of the liquid is started. Liquid temperature T1 and the inflow control valve are closed Is the relationship between the liquid temperature T2 of the liquid in the liquid storage tank when stopping the cooling liquid,
T1> T2, and T1 ≦ 25 ° C.
Cooling is started when the liquid temperature of the liquid in one liquid storage tank reaches the liquid temperature T1 of the set value, and the liquid temperature of the liquid in the one liquid storage tank is set to the set value. When liquid temperature T2 is reached or when the liquid temperature of the liquid in the other liquid storage tank reaches the set liquid temperature T1, whichever is earlier, or the liquid temperature of the liquid in one liquid storage tank is set When the liquid temperature of the liquid in the other liquid storage tank reaches the set value liquid temperature T1, whichever comes first after the predetermined temperature elapses after the liquid temperature T1 is reached and cooling starts, The liquid in the liquid storage tank is intermittently cooled by stopping the cooling of the liquid in the liquid storage tank, and the liquid temperatures of the liquids in the plurality of liquid storage tanks are maintained and managed by one heat exchanger. It is what.

また、本発明の請求項2による液体の冷却システムは、請求項1に記載の液体の冷却システムにおいて、液温T1が前記液体貯蔵槽の液体の上層部の液温であることを特徴とするものである。   The liquid cooling system according to claim 2 of the present invention is the liquid cooling system according to claim 1, wherein the liquid temperature T1 is the liquid temperature of the upper layer of the liquid in the liquid storage tank. Is.

また、本発明の請求項3による液体の冷却システムは、請求項1に記載の液体の冷却システムにおいて、液温T2が前記温度測定手段にて測定される前記液体貯蔵槽の液体の下層部の液温若しくは前記冷却流路に配設されている温度測定手段にて測定される前記液体貯蔵槽から流出した前記冷却流路の液体の液温であることを特徴とするものである。   A liquid cooling system according to a third aspect of the present invention is the liquid cooling system according to the first aspect, wherein the liquid temperature T2 is measured by the temperature measuring means in the lower layer portion of the liquid storage tank. It is a liquid temperature or a liquid temperature of the liquid in the cooling channel that has flowed out of the liquid storage tank, which is measured by a temperature measuring means disposed in the cooling channel.

また、本発明の請求項4による液体の冷却システムは、請求項1に記載の液体の冷却システムにおいて、液温T1が前記液体貯蔵槽の液体の上層部の液温であり、液温T2が前記液体貯蔵槽の下側に配設されている温度測定手段にて測定される液体の下層部の液温若しくは前記冷却流路に配設されている温度測定手段により測定される前記液体貯蔵槽から流出した前記冷却流路の液体の液温であることを特徴とするものである。   The liquid cooling system according to claim 4 of the present invention is the liquid cooling system according to claim 1, wherein the liquid temperature T1 is the liquid temperature of the upper layer of the liquid in the liquid storage tank, and the liquid temperature T2 is The liquid storage tank measured by the temperature measurement means disposed in the cooling channel or the liquid temperature of the lower layer of the liquid measured by the temperature measurement means disposed below the liquid storage tank It is the liquid temperature of the liquid in the cooling channel that has flowed out of the liquid.

また、本発明の請求項5による液体の冷却システムは、請求項1乃至4のいずれかに記載の液体の冷却システムにおいて、前記液体貯蔵槽に貯蔵される液体が次亜塩素酸ナトリウム若しくは重合ケイ酸と金属塩を主体とする水処理用凝集剤であることを特徴とするものである。   The liquid cooling system according to claim 5 of the present invention is the liquid cooling system according to any one of claims 1 to 4, wherein the liquid stored in the liquid storage tank is sodium hypochlorite or polymerized silica. It is a flocculant for water treatment mainly composed of an acid and a metal salt.

上記構成を備えた本発明の液体の冷却システムは、一の液体貯蔵槽の液体が液温T1に到達すると流出制御弁が開放されて液体の冷却が開始され、液温T2に到達すると流入制御弁が閉塞されて液体の冷却が停止されるので、液体貯蔵槽の液体を熱交換器で断続的に冷却することができる。従って、一の液体貯蔵槽の液体の冷却を停止している間に、他の液体貯蔵槽の液体を冷却することができ、複数の液体貯蔵槽の液体を混合させることなく1台の熱交換器で個別に冷却することができ、設備費の増加を抑制することができる。   In the liquid cooling system of the present invention having the above-described configuration, when the liquid in one liquid storage tank reaches the liquid temperature T1, the outflow control valve is opened to start cooling the liquid, and when the liquid temperature reaches the liquid temperature T2, the inflow control is performed. Since the valve is closed and the cooling of the liquid is stopped, the liquid in the liquid storage tank can be intermittently cooled by the heat exchanger. Accordingly, while the cooling of the liquid in one liquid storage tank is stopped, the liquid in the other liquid storage tank can be cooled, and one heat exchange can be performed without mixing the liquids in the plurality of liquid storage tanks. It can be individually cooled by a vessel, and an increase in equipment costs can be suppressed.

更に、断続的に冷却しても、冷却している一の液体貯蔵槽の液体が液温T2に到達する前に、他の液体貯蔵槽の液体が液温T1になると、他の液体貯蔵槽の液体を優先的に冷却するので、液体貯蔵槽の液体を常に液温T1以下に維持管理することができ、所定の一定温度で維持管理するのと同じ品質を確保することができる。   Furthermore, even if intermittently cooled, if the liquid in the other liquid storage tank reaches the liquid temperature T1 before the liquid in the one liquid storage tank being cooled reaches the liquid temperature T2, the other liquid storage tank Therefore, the liquid in the liquid storage tank can always be maintained at a temperature equal to or lower than the liquid temperature T1, and the same quality as that maintained at a predetermined constant temperature can be ensured.

また、液体貯蔵槽の液体の上層部の液温T1を監視して流出制御弁を制御すると、液体貯蔵槽の最も高い液温で冷却を開始することができ、液体貯蔵槽の液体の下層部の液温T2を監視して流入制御弁を制御すると、冷却開始後、液体貯蔵槽の最も高い液温で冷却を停止することができる。   In addition, when the liquid temperature T1 of the upper layer portion of the liquid storage tank is monitored and the outflow control valve is controlled, cooling can be started at the highest liquid temperature of the liquid storage tank, and the lower layer portion of the liquid storage tank When the liquid temperature T2 is monitored and the inflow control valve is controlled, the cooling can be stopped at the highest liquid temperature in the liquid storage tank after the cooling is started.

本発明の液体の冷却システムは、大きな容量を有する液体貯蔵槽に貯蔵されている水道水に使用される次亜塩素酸ナトリウム及び重合ケイ酸と金属塩を主体とする水処理用凝集剤を冷却し維持管理するのに好適である。   The liquid cooling system of the present invention cools the water treatment flocculant mainly composed of sodium hypochlorite and polymerized silicic acid and metal salts used in tap water stored in a liquid storage tank having a large capacity. It is suitable for maintenance.

以下に図面を参照して、この発明の好適な実施の形態を例示して説明する。ただし、この発明の範囲は、特に限定的記載がない限り、この実施の形態に記載されている内容に限定する趣旨のものではない。   Preferred embodiments of the present invention will be described below with reference to the drawings. However, the scope of the present invention is not intended to be limited to the contents described in this embodiment unless otherwise specified.

図1は、本発明に係る液体の冷却システムの説明図である。   FIG. 1 is an explanatory diagram of a liquid cooling system according to the present invention.

本発明に係る液体の冷却システムは、2台の液体貯蔵槽10と、熱交換器20と、冷却機30と、循環ポンプ40と、冷却液流路50とから構成されている。   The liquid cooling system according to the present invention includes two liquid storage tanks 10, a heat exchanger 20, a cooler 30, a circulation pump 40, and a coolant flow path 50.

液体貯蔵槽10は、2台(10A,10B)共に同じであり、各液体貯蔵槽(10A,10B)は、流出制御弁(11A,11B)と、流入制御弁(12A,12B)と、温度計(13A,13B)とを備えている。   The two liquid storage tanks 10 (10A, 10B) are the same, and each liquid storage tank (10A, 10B) has an outflow control valve (11A, 11B), an inflow control valve (12A, 12B), and a temperature. (13A, 13B).

温度計13は、液体貯蔵槽10に貯蔵されている液体の液温を測定できるものであって、レーザー式温度計、フロート式温度計、赤外線式温度計等が用いられる。   The thermometer 13 can measure the liquid temperature of the liquid stored in the liquid storage tank 10, and a laser thermometer, a float thermometer, an infrared thermometer, or the like is used.

流出制御弁11及び流入制御弁12は、温度制御と時間制御との両方で制御することが可能な制御弁で、各液体貯蔵槽10に各1個づつ配設されていて、2台の液体貯蔵槽(10A,10B)の液体が混合しないように、一の液体貯蔵槽10Aの流出制御弁11A及び流入制御弁12Aが開放される前に、他の液体貯蔵槽10Bの流出制御弁11B及び流入制御弁12Bが閉塞するようになっている。更に、流出制御弁11が閉塞したあと所定時間経過後に流入制御弁12が閉塞するようになっている。   Each of the outflow control valve 11 and the inflow control valve 12 is a control valve that can be controlled by both temperature control and time control. Before the outflow control valve 11A and the inflow control valve 12A of one liquid storage tank 10A are opened, the outflow control valves 11B of the other liquid storage tanks 10B and the storage tanks (10A, 10B) are not mixed. The inflow control valve 12B is closed. Further, the inflow control valve 12 is closed after a predetermined time has elapsed after the outflow control valve 11 is closed.

冷却液流路50には、流出制御弁11から熱交換器20までの間に、流出制御弁11から冷却液流路50に流出した液体を熱交換器20を経由し流入制御弁12から液体貯蔵槽10に還流させる循環ポンプ40と、液体貯蔵槽10の液体の下層部の液温を測定するために液体貯蔵槽10から流出した直後の液体の液温を測定する流路内温度計14が配設されている。   In the coolant channel 50, the liquid that has flowed from the outflow control valve 11 to the coolant channel 50 between the outflow control valve 11 and the heat exchanger 20 passes from the inflow control valve 12 through the heat exchanger 20. A circulation pump 40 that recirculates to the storage tank 10 and an in-channel thermometer 14 that measures the liquid temperature immediately after flowing out of the liquid storage tank 10 in order to measure the liquid temperature of the lower layer of the liquid in the liquid storage tank 10. Is arranged.

次に、上記構成の液体の冷却システムで、2台の液体貯蔵槽(10A,10B)に貯蔵されている液体を1台の熱交換器20で冷却する場合について説明する。液体貯蔵槽(10A,10B)毎に配設されている温度計(13A,13B)により測定された一の液体貯蔵槽10Aの液体の上層部の液温が設定値の液温T1に到達すると、一の液体貯蔵槽10Aの流出制御弁11A及び流入制御弁12Aが開放されるが、他の液体貯蔵槽10Bの流出制御弁11B及び流入制御弁12Bは閉塞されたままである。この状態で、循環ポンプ40が始動し、一の液体貯蔵槽10Aの流出制御弁11Aから冷却液流路50に流出した液体は、循環ポンプ40の圧力で冷却機30により冷却された熱交換器20に送られて冷却された後、流入制御弁12Aから一の液体貯蔵槽10Aに還流され、一の液体貯蔵槽10Aの液体の液温が設定値の液温T1より徐々に低下し、流路内温度計14で測定された一の液体貯蔵槽10Aの液体の下層部の液温が設定値の液温T2に到達したとき、若しくは他の液体貯蔵槽10Bに配設されている温度計13Bにより測定された他の液体貯蔵槽10Bの上層部の液体の液温が設定値の液温T1に到達したときのいずれか早いとき循環ポンプ40が停止し、次いで、一の液体貯蔵槽10Aの流入制御弁12A及び流出制御弁11Aが閉塞され、一の液体貯蔵槽10Aの液体の冷却が停止する。次いで同様に、他の液体貯蔵槽10Bに配設されている温度計13Bにより測定された他の液体貯蔵槽10Bの上層部の液体の液温が設定値の液温T1に到達すると、他の液体貯蔵槽10Bの流出制御弁11B及び流入制御弁12Bが開放されるが、一の液体貯蔵槽10Aの流出制御弁11A及び流入制御弁12Aは閉塞されたままである。この状態で、循環ポンプ40が始動し、他の液体貯蔵槽10Bから冷却液流路50に流出した液体は、循環ポンプ40の圧力で冷却機30により冷却された熱交換器20に送られて冷却された後、流入制御弁12Bから他の液体貯蔵槽10Bに還流され、他の液体貯蔵槽10Bの液体の液温が設定値の液温T1より徐々に低下し、流路内温度計14で測定された他の液体貯蔵槽10Bの液体の下層部の液温が設定値の液温T2に達したとき、若しくは一の液体貯蔵槽10Aの上層部の液体の液温が設定値の液温T1に達したときのいずれか早いときに循環ポンプ40が停止され、次いで、他の液体貯蔵槽10Bの流入制御弁12B及び流出制御弁11Bが閉塞され、他の液体貯蔵槽10Bの液体の冷却が停止する。次いで、また元に戻り、2台の液体貯蔵槽(10A,10B)の液体が、順次に冷却されることが繰り返される。   Next, the case where the liquid stored in the two liquid storage tanks (10A, 10B) is cooled by one heat exchanger 20 in the liquid cooling system having the above configuration will be described. When the liquid temperature of the upper layer of the liquid of one liquid storage tank 10A measured by the thermometer (13A, 13B) arranged for each liquid storage tank (10A, 10B) reaches the set liquid temperature T1. The outflow control valve 11A and the inflow control valve 12A of one liquid storage tank 10A are opened, but the outflow control valve 11B and the inflow control valve 12B of the other liquid storage tank 10B remain closed. In this state, the circulation pump 40 is started, and the liquid flowing out from the outflow control valve 11A of the one liquid storage tank 10A into the cooling liquid flow path 50 is cooled by the cooler 30 with the pressure of the circulation pump 40. After being sent to 20 and cooled, it is refluxed from the inflow control valve 12A to the one liquid storage tank 10A, and the liquid temperature of the liquid in the one liquid storage tank 10A is gradually lowered from the set temperature T1. When the liquid temperature of the lower layer portion of the liquid in one liquid storage tank 10A measured by the in-path thermometer 14 reaches the set liquid temperature T2, or a thermometer disposed in another liquid storage tank 10B The circulation pump 40 stops when the liquid temperature of the upper layer of the other liquid storage tank 10B measured by 13B reaches the set liquid temperature T1, whichever comes first, and then the one liquid storage tank 10A Inflow control valve 12A and outflow control valve 11 There is closed, the cooling liquid of the one liquid reservoir 10A is stopped. Similarly, when the liquid temperature of the liquid in the upper layer of the other liquid storage tank 10B measured by the thermometer 13B disposed in the other liquid storage tank 10B reaches the liquid temperature T1 of the set value, The outflow control valve 11B and the inflow control valve 12B of the liquid storage tank 10B are opened, but the outflow control valve 11A and the inflow control valve 12A of one liquid storage tank 10A remain closed. In this state, the circulation pump 40 is started, and the liquid flowing out from the other liquid storage tank 10B to the coolant channel 50 is sent to the heat exchanger 20 cooled by the cooler 30 with the pressure of the circulation pump 40. After cooling, the liquid is recirculated from the inflow control valve 12B to the other liquid storage tank 10B, the liquid temperature of the liquid in the other liquid storage tank 10B is gradually lowered from the set liquid temperature T1, and the in-channel thermometer 14 When the liquid temperature of the lower layer of the liquid of the other liquid storage tank 10B measured in step S2 reaches the set temperature T2, or the liquid temperature of the liquid of the upper layer of one liquid storage tank 10A is the set value. When the temperature T1 is reached, whichever is earlier, the circulation pump 40 is stopped, and then the inflow control valve 12B and the outflow control valve 11B of the other liquid storage tank 10B are closed, and the liquid in the other liquid storage tank 10B is blocked. Cooling stops. Next, returning to the original state, the liquids in the two liquid storage tanks (10A, 10B) are repeatedly cooled sequentially.

尚、上述の説明では、循環ポンプ40の停止、並びに流出制御弁11及び流入制御弁12を閉塞させる場合について、一の液体貯蔵槽10Aの液体の液温が設定値の液温T2に達したとき、若しくは他の液体貯蔵槽10Bの液体の液温が設定値の液温T1に達したときのいずれか早いときの場合について説明したが、一の液体貯蔵槽10Aの液体の冷却を開始してから一の液体貯蔵槽10Aの満杯時の液体を液温T1から液温T2まで冷却するのに要する時間相当の一定時間経過後、若しくは他の液体貯蔵槽10Bの液体の液温が設定値の液温T1に達したときのいずれか早いときとなるように、設定しても良い。   In the above description, when the circulation pump 40 is stopped and the outflow control valve 11 and the inflow control valve 12 are closed, the liquid temperature of the liquid in one liquid storage tank 10A has reached the set liquid temperature T2. Or when the liquid temperature of the other liquid storage tank 10B reaches the set liquid temperature T1, whichever is earlier, the cooling of the liquid in one liquid storage tank 10A is started. After a certain time corresponding to the time required to cool the liquid when one liquid storage tank 10A is full from the liquid temperature T1 to the liquid temperature T2, or the liquid temperature of the other liquid storage tank 10B is the set value. You may set so that it may become the earlier time when the liquid temperature T1 is reached.

また、循環ポンプ40の停止、並びに流出制御弁11及び流入制御弁12を閉塞させるときの液温T2について、液体貯蔵槽10から流出した直後の液体を冷却液流路50に配設されている流路内温度計14で測定した場合で説明したが、液体貯蔵槽10の下部に配設された温度計13で測定した液温としても良い。   In addition, the liquid immediately after flowing out of the liquid storage tank 10 is disposed in the coolant flow path 50 for the liquid temperature T2 when the circulation pump 40 is stopped and the outflow control valve 11 and the inflow control valve 12 are closed. Although explained in the case of measuring with the thermometer 14 in the flow path, the liquid temperature measured with the thermometer 13 disposed in the lower part of the liquid storage tank 10 may be used.

尚、空になった一の液体貯蔵槽10Aに液体を補充する場合、輸送中に液体の液温が上昇しているので補充後は直ちに冷却する必要があり、その為、補充前には他の液体貯蔵槽10Bに貯蔵されている液体を十分冷却しておくのが好ましい。   It should be noted that when refilling one emptied liquid storage tank 10A, the temperature of the liquid rises during transportation, so it is necessary to cool immediately after refilling. It is preferable to sufficiently cool the liquid stored in the liquid storage tank 10B.

また、上述の説明では、液体貯蔵槽が2台の場合について説明したが、3台の場合についても同様の方法により実施できることは言うまでもない。   In the above description, the case where there are two liquid storage tanks has been described.

尚、流出制御弁11を開放し液体貯蔵槽10の液体の冷却を開始するときの液温T1は、液体貯蔵槽の中で最も高い部位の液温がT1≦25℃となるように設定するのが良く、より好適にはT1≦22℃となるように設定するのが望ましい。また、流入制御弁12を閉塞し液体貯蔵槽10の液体の冷却を停止するときの液温T2は、液体貯蔵槽の中で最も高い部位の液温が液体貯蔵槽の液体が凍結しない程度の低い温度に設定するのが良く、電気代等の運転コストを考えるとT2≦20℃、より好適にはT2≦18℃となるように設定するのが望ましい。   The liquid temperature T1 when the outflow control valve 11 is opened and the liquid storage tank 10 starts cooling the liquid is set so that the liquid temperature at the highest part in the liquid storage tank satisfies T1 ≦ 25 ° C. It is desirable to set so that T1 ≦ 22 ° C. is more preferable. The liquid temperature T2 when the inflow control valve 12 is closed to stop the cooling of the liquid in the liquid storage tank 10 is such that the liquid temperature at the highest part of the liquid storage tank is such that the liquid in the liquid storage tank does not freeze. It is preferable to set the temperature to a low temperature, and it is desirable to set T2 ≦ 20 ° C., more preferably T2 ≦ 18 ° C. in consideration of operation costs such as electricity costs.

以上の通り、本発明に係る液体の冷却システムは、一の液体貯蔵槽10Aの液体が液温T1に到達すると流出制御弁11A及び流入制御弁12Aが開放されて液体の冷却が開始され、液温T2に到達すると流出制御弁11A及び流入制御弁12Aが閉塞されて液体の冷却が停止されるので、液体貯蔵槽10の液体を断続的に冷却することが可能となる。従って、一の液体貯蔵槽10Aの液体の冷却を停止している間に、他の液体貯蔵槽10Bの液体を冷却することができ、複数の液体貯蔵槽10の液体を混合させることなく1台の熱交換器20で個別に冷却することができ、熱交換器20の増設を抑制することが可能となる。   As described above, in the liquid cooling system according to the present invention, when the liquid in one liquid storage tank 10A reaches the liquid temperature T1, the outflow control valve 11A and the inflow control valve 12A are opened to start the liquid cooling. When the temperature T2 is reached, the outflow control valve 11A and the inflow control valve 12A are closed and the cooling of the liquid is stopped, so that the liquid in the liquid storage tank 10 can be intermittently cooled. Accordingly, while the cooling of the liquid in one liquid storage tank 10A is stopped, the liquid in the other liquid storage tank 10B can be cooled, and one liquid storage tank 10 without mixing the liquids. The heat exchanger 20 can be individually cooled, and the number of heat exchangers 20 can be suppressed.

更に、断続的に冷却しても、冷却している一の液体貯蔵槽10Aの液体が液温T2に到達する前に、他の液体貯蔵槽10Bの液体が液温T1になると、他の液体貯蔵槽10Bの液体を優先的に冷却するので、液体貯蔵槽10の液体を常に液温T1以下に維持管理することができ、次亜塩素酸ナトリウムに含まれる塩素酸の濃度の増加率を所定の一定温度で維持管理するのと同レベルで管理することが可能となる。   Furthermore, even if intermittently cooled, if the liquid in the other liquid storage tank 10B reaches the liquid temperature T1 before the liquid in the one liquid storage tank 10A being cooled reaches the liquid temperature T2, the other liquid Since the liquid in the storage tank 10B is preferentially cooled, the liquid in the liquid storage tank 10 can always be maintained at a temperature equal to or lower than the liquid temperature T1, and the rate of increase in the concentration of chloric acid contained in sodium hypochlorite is predetermined It is possible to manage at the same level as maintaining at a constant temperature.

また、液体貯蔵槽10の液体の上層部の液温T1を監視して流出制御弁11及び流入制御弁12を開放すると、液体貯蔵槽10の液体は放置されている間に上層部が最も高くなるので、液体貯蔵槽10の中で最も高い部位の液温が設定値の液温T1に到達したときに冷却を開始することが可能となり、次亜塩素酸ナトリウムに含まれる塩素酸の濃度の増加率を効果的に抑制することが可能となる。尚、循環ポンプ40の停止、並びに流出制御弁11及び流入制御弁12を閉塞させるときの液温T2を液体の上層部の液温とすると、流入制御弁12から流入した熱交換器20で冷却された冷却液流路50の液体の液温を測定したことになるので、妥当ではない。   Further, when the liquid temperature T1 of the upper layer portion of the liquid in the liquid storage tank 10 is monitored and the outflow control valve 11 and the inflow control valve 12 are opened, the liquid in the liquid storage tank 10 is highest in the upper layer portion while being left unattended. Therefore, it becomes possible to start cooling when the liquid temperature of the highest part in the liquid storage tank 10 reaches the set liquid temperature T1, and the concentration of chloric acid contained in sodium hypochlorite The increase rate can be effectively suppressed. If the liquid temperature T2 when the circulation pump 40 is stopped and the outflow control valve 11 and the inflow control valve 12 are closed is the liquid temperature of the upper layer of the liquid, it is cooled by the heat exchanger 20 flowing in from the inflow control valve 12. Since the liquid temperature of the liquid in the coolant channel 50 thus measured is measured, it is not appropriate.

また、液体貯蔵槽10の液体の下層部の液温T2を監視して流入制御弁12及び流出制御弁11を制御すると、冷却された液体は上層部より徐々に下層部に移行するので、液体貯蔵槽10の中で最も高い部位の液温が設定値の液温T2に到達したときに冷却を停止することが可能となる。尚、この場合に、循環ポンプ40の始動、並びに流出制御弁11及び流入制御弁12を開放させるときの液温T1について、液体貯蔵槽10の上層部の液温と下層部の液温との温度差を考慮し、下部に配設されている温度計13で測定された液温で制御しても良く、このようにすることで、温度計13を1台の液体貯蔵槽に2個配設するのを防止することが可能となる。   Moreover, when the liquid temperature T2 of the lower layer portion of the liquid in the liquid storage tank 10 is monitored and the inflow control valve 12 and the outflow control valve 11 are controlled, the cooled liquid gradually moves from the upper layer portion to the lower layer portion. Cooling can be stopped when the liquid temperature of the highest part in the storage tank 10 reaches the set liquid temperature T2. In this case, regarding the liquid temperature T1 when the circulation pump 40 is started and the outflow control valve 11 and the inflow control valve 12 are opened, the liquid temperature of the upper layer portion and the liquid temperature of the lower layer portion of the liquid storage tank 10 In consideration of the temperature difference, the temperature may be controlled by the liquid temperature measured by the thermometer 13 disposed in the lower part. By doing so, two thermometers 13 are arranged in one liquid storage tank. It is possible to prevent installation.

なお、流出制御弁11及び流入制御弁12は、2台の液体貯蔵槽(10A,10B)の液体が混合しないように、一の液体貯蔵槽10Aの流出制御弁11A及び流入制御弁12Aが開放される前に、他の液体貯蔵槽10Bの流出制御弁11B及び流入制御弁12Bが閉塞するよう制御するのが好ましいが、品質を確保できる範囲であれば、一の液体貯蔵槽10Aの流出制御弁11A及び流入制御弁12Aの開放と、他の液体貯蔵槽10Bの流出制御弁11B及び流入制御弁12Bの閉塞が同時でも良く、また、一の液体貯蔵槽10Aの流出制御弁11A及び流入制御弁12Aが開放された後に、他の液体貯蔵槽10Bの流出制御弁11B及び流入制御弁12Bが閉塞しても良い。更に、流出制御弁11が閉塞したあと所定時間経過後に流入制御弁12が閉塞するのが好ましいが、流出制御弁11の閉塞と流入制御弁12の閉塞は、同時でも良い。   The outflow control valve 11 and the inflow control valve 12 are opened so that the liquids in the two liquid storage tanks (10A, 10B) are not mixed with each other. It is preferable to control the outflow control valve 11B and the inflow control valve 12B of the other liquid storage tank 10B before being closed. However, if the quality can be ensured, the outflow control of one liquid storage tank 10A The opening of the valve 11A and the inflow control valve 12A and the closing of the outflow control valve 11B and the inflow control valve 12B of the other liquid storage tank 10B may be simultaneous, and the outflow control valve 11A and the inflow control of one liquid storage tank 10A. After the valve 12A is opened, the outflow control valve 11B and the inflow control valve 12B of the other liquid storage tank 10B may be closed. Furthermore, it is preferable that the inflow control valve 12 is closed after a lapse of a predetermined time after the outflow control valve 11 is closed. However, the outflow control valve 11 and the inflow control valve 12 may be closed at the same time.

以下、本発明について具体的実施例により説明する。   Hereinafter, the present invention will be described with reference to specific examples.

実施例1:
本発明の液体の冷却システムで水道用次亜塩素酸ナトリウムを冷却した場合について、従来の液体の冷却システムで冷却した場合と比較するための実験を行った。実験内容は、図2の通りである。
Example 1:
An experiment for comparing the case of cooling sodium hypochlorite for water supply with the liquid cooling system of the present invention with the case of cooling with the conventional liquid cooling system was conducted. The contents of the experiment are as shown in FIG.

その結果、図3に示す経過日数の増加と共に増加する塩素酸濃度の増加率については、液温を18〜22℃の範囲で管理した場合(実施例1)は、液温を20℃一定で管理した場合(比較例1)と同レベルであり、液温を15〜25℃の範囲で管理した場合(実施例2)は、20℃一定で管理した場合(比較例1)より、僅かに高いレベルであったが、25℃一定で管理した場合(比較例2)より低いレベルであった。また、図4に示す経過日数の増加と共に減少する有効塩素濃度の減少率については、液温を18〜22℃の範囲で管理した場合(実施例1)は、液温を20℃一定で管理した場合(比較例1)と同レベルであり、液温を15〜25℃の範囲で管理した場合(実施例2)は、20℃一定で管理した場合(比較例1)より、僅かに低いレベルであったが、25℃一定で管理した場合(比較例2)より高いレベルであった。   As a result, when the liquid temperature is controlled in the range of 18 to 22 ° C. (Example 1) with respect to the increase rate of the chloric acid concentration increasing with the increase of the elapsed days shown in FIG. When managed (Comparative Example 1), the level is the same, and when the liquid temperature is controlled in the range of 15 to 25 ° C. (Example 2), it is slightly higher than when managed at a constant 20 ° C. (Comparative Example 1). Although it was a high level, it was a level lower than the case where it was controlled at a constant 25 ° C. (Comparative Example 2). Moreover, about the decreasing rate of the effective chlorine density | concentration which decreases with the increase in the elapsed days shown in FIG. 4, when liquid temperature is managed in the range of 18-22 degreeC (Example 1), liquid temperature is managed by 20 degreeC constant. When the liquid temperature was controlled in the range of 15 to 25 ° C. (Example 2), it was slightly lower than the case where the liquid temperature was maintained constant at 20 ° C. (Comparative Example 1). Although it was a level, it was a level higher than the case where it was controlled at a constant 25 ° C. (Comparative Example 2).

実施例2:
本発明の液体の冷却システムで重合ケイ酸と金属塩を主体とする水処理用凝集剤を冷却した場合について、従来の液体の冷却システムで冷却した場合と比較するための実験を行った。
Example 2:
An experiment for comparing the case of cooling the water treatment flocculant mainly composed of polymerized silicic acid and metal salt in the liquid cooling system of the present invention with the case of cooling by the conventional liquid cooling system was conducted.

その結果、図5に示す通り、液温を18〜22℃の範囲で管理した場合(実施例1)は、液温を20℃一定で管理した場合(比較例1)とゲル化(凝固剤としての機能がなくなる状態)するまでの経過日数は同レベルであり、液温を15〜25℃の範囲で管理した場合(実施例2)は、液温を20℃一定で管理した場合(比較例1)とゲル化するまでの経過日数は、僅かに短いレベルであった。   As a result, as shown in FIG. 5, when the liquid temperature was controlled in the range of 18 to 22 ° C. (Example 1), the liquid temperature was controlled at a constant 20 ° C. (Comparative Example 1) and gelation (coagulant) The number of days elapsed until the function is lost) is the same level, and when the liquid temperature is controlled in the range of 15 to 25 ° C. (Example 2), the liquid temperature is controlled at a constant 20 ° C. (comparison) The number of days elapsed until gelation with Example 1) was slightly shorter.

本発明に係る液体の冷却システムの説明図である。It is explanatory drawing of the cooling system of the liquid which concerns on this invention. 本発明を確認するための実施例1の内容説明表である。It is a content explanatory table of Example 1 for confirming the present invention. 実施例1の実施例及び比較例における塩素酸濃度の経時変化のグラフである。It is a graph of the time-dependent change of the chloric acid density | concentration in the Example of Example 1, and a comparative example. 実施例1の実施例及び比較例における有効塩素濃度の経時変化のグラフである。It is a graph of the time-dependent change of the effective chlorine concentration in the Example of Example 1, and a comparative example. 実施例2の実施例及び比較例におけるゲル化の発生確認表である。It is the generation | occurrence | production confirmation table | surface of the gelation in the Example of Example 2, and a comparative example. 従来例1における液体の冷却システムの説明図である。It is explanatory drawing of the cooling system of the liquid in the prior art example 1. 従来例2における液体の冷却システムの説明図である。It is explanatory drawing of the cooling system of the liquid in the prior art example 2. 従来例3における液体の冷却システムの説明図である。It is explanatory drawing of the cooling system of the liquid in the prior art example 3. 従来例4における液体の冷却システムの説明図である。It is explanatory drawing of the cooling system of the liquid in the prior art example 4. 液体貯蔵槽の液体を滞留させた場合の測定位置における液温の経時変化のグラフである。It is a graph of the time-dependent change of the liquid temperature in the measurement position when the liquid of a liquid storage tank is made to stay.

符号の説明Explanation of symbols

1 液体の冷却システム
10 液体貯蔵槽
11 流出制御弁
12 流入制御弁
13 温度計(温度測定手段)
14 流路内温度計(流路内温度測定手段)
20 熱交換器
30 冷却機
40 循環ポンプ
50 冷却液流路
DESCRIPTION OF SYMBOLS 1 Liquid cooling system 10 Liquid storage tank 11 Outflow control valve 12 Inflow control valve 13 Thermometer (temperature measurement means)
14 Channel thermometer (channel temperature measuring means)
20 heat exchanger 30 cooler 40 circulation pump 50 coolant flow path

Claims (5)

水処理施設で使用される薬品等の液体が貯蔵される温度測定手段を備えた液体貯蔵槽から冷却液流路に流出した液体を熱交換器で冷却し前記液体貯蔵槽に還流させることで前記液体貯蔵槽の液体の液温を維持管理する液体の冷却システムにおいて、
1台の前記熱交換器に対し複数の前記液体貯蔵槽を配設し、
前記液体貯蔵槽は、前記熱交換器で冷却させるため前記冷却液流路に流出する液体を制御する流出制御弁と、前記熱交換器で冷却された前記冷却液流路の液体の流入を制御する流入制御弁とを各々備え、
前記流出制御弁が開放され液体の冷却を開始させるときの前記温度測定手段にて測定される前記液体貯蔵槽の液体の液温T1と、前記流入制御弁が閉塞され液体の冷却を停止させるときの前記液体貯蔵槽の液体の液温T2との関係を、
T1>T2,且つT1≦25℃
となるように設定し、
一の前記液体貯蔵槽の液体の液温が設定値の液温T1に到達したときに冷却を開始し、
一の前記液体貯蔵槽の液体の液温が設定値の液温T2に到達するか若しくは他の前記液体貯蔵槽の液体の液温が設定値の液温T1に到達したときのいずれか早いとき、または一の前記液体貯蔵槽の液体の液温が設定値の液温T1に到達し冷却を開始してから所定時間経過後若しくは他の前記液体貯蔵槽の液体の液温が設定値の液温T1に到達したときのいずれか早いとき、一の前記液体貯蔵槽の液体の冷却を停止することで前記液体貯蔵槽の液体を断続的に冷却し、1台の熱交換器で複数の前記液体貯蔵槽の液体の液温を維持管理することを特徴とする液体の冷却システム。
The liquid flowing out from the liquid storage tank provided with the temperature measuring means for storing the liquid such as chemicals used in the water treatment facility to the cooling liquid flow path is cooled by the heat exchanger and is returned to the liquid storage tank. In the liquid cooling system that maintains the liquid temperature of the liquid in the liquid storage tank,
A plurality of the liquid storage tanks are arranged for one heat exchanger,
The liquid storage tank controls an outflow control valve for controlling the liquid flowing out to the cooling liquid flow path to be cooled by the heat exchanger, and controls the inflow of liquid in the cooling liquid flow path cooled by the heat exchanger. Each with an inflow control valve
The liquid temperature T1 of the liquid storage tank measured by the temperature measuring means when the outflow control valve is opened and cooling of the liquid is started, and when the inflow control valve is closed and the cooling of the liquid is stopped The relationship with the liquid temperature T2 of the liquid in the liquid storage tank
T1> T2, and T1 ≦ 25 ° C.
Set to be
Cooling is started when the liquid temperature of the liquid storage tank reaches a set value liquid temperature T1,
When the liquid temperature of one of the liquid storage tanks reaches a set liquid temperature T2 or when the liquid temperature of another liquid storage tank reaches a set liquid temperature T1, whichever is earlier Or after a predetermined time has elapsed since the liquid temperature of one liquid storage tank reached the liquid temperature T1 of the set value and started cooling, or the liquid temperature of the liquid of the other liquid storage tank has the set value When the temperature T1 is reached, whichever is earlier, the liquid in the liquid storage tank is intermittently cooled by stopping the cooling of the liquid in the one liquid storage tank, and a plurality of the heat storage tanks are used. A liquid cooling system for maintaining and managing a liquid temperature of a liquid storage tank.
請求項1に記載の液体の冷却システムにおいて、
液温T1が前記液体貯蔵槽の液体の上層部の液温であることを特徴とする液体の冷却システム。
The liquid cooling system according to claim 1.
The liquid cooling system, wherein the liquid temperature T1 is the liquid temperature of the upper layer of the liquid in the liquid storage tank.
請求項1に記載の液体の冷却システムにおいて、
液温T2が前記温度測定手段にて測定される前記液体貯蔵槽の液体の下層部の液温若しくは前記冷却流路に配設されている温度測定手段にて測定される前記液体貯蔵槽から流出した前記冷却流路の液体の液温であることを特徴とする液体の冷却システム。
The liquid cooling system according to claim 1.
The liquid temperature T2 is measured by the temperature measuring means, and the liquid temperature of the lower layer of the liquid storage tank is measured. The liquid temperature T2 is measured by the temperature measuring means disposed in the cooling channel and flows out of the liquid storage tank. A liquid cooling system having a liquid temperature of the cooling channel.
請求項1に記載の液体の冷却システムにおいて、
液温T1が前記液体貯蔵槽の液体の上層部の液温であり、液温T2が前記液体貯蔵槽の下側に配設されている温度測定手段にて測定される液体の下層部の液温若しくは前記冷却流路に配設されている温度測定手段により測定される前記液体貯蔵槽から流出した前記冷却流路の液体の液温であることを特徴とする液体の冷却システム。
The liquid cooling system according to claim 1.
The liquid temperature T1 is the liquid temperature of the upper layer portion of the liquid in the liquid storage tank, and the liquid temperature T2 is the liquid in the lower layer portion of the liquid measured by the temperature measuring means disposed below the liquid storage tank. A liquid cooling system, characterized in that it is the temperature of the liquid in the cooling channel that has flowed out of the liquid storage tank as measured by the temperature or temperature measuring means disposed in the cooling channel.
請求項1乃至4のいずれかに記載の液体の冷却システムにおいて、
前記液体貯蔵槽に貯蔵される液体が次亜塩素酸ナトリウム若しくは重合ケイ酸と金属塩を主体とする水処理用凝集剤であることを特徴とする液体の冷却システム。




The liquid cooling system according to claim 1,
A liquid cooling system, wherein the liquid stored in the liquid storage tank is a flocculant for water treatment mainly composed of sodium hypochlorite or polymerized silicic acid and a metal salt.




JP2008079700A 2008-03-26 2008-03-26 Liquid cooling system Active JP4841583B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008079700A JP4841583B2 (en) 2008-03-26 2008-03-26 Liquid cooling system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008079700A JP4841583B2 (en) 2008-03-26 2008-03-26 Liquid cooling system

Publications (2)

Publication Number Publication Date
JP2009236343A true JP2009236343A (en) 2009-10-15
JP4841583B2 JP4841583B2 (en) 2011-12-21

Family

ID=41250521

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008079700A Active JP4841583B2 (en) 2008-03-26 2008-03-26 Liquid cooling system

Country Status (1)

Country Link
JP (1) JP4841583B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016099103A (en) * 2014-11-26 2016-05-30 株式会社イワキ Liquid cooling system

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101362188B1 (en) 2012-08-09 2014-02-21 주식회사 바이온텍 Ion warter an system

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5595889A (en) * 1978-07-07 1980-07-21 Matsushita Electric Works Ltd Coil frame of crystal movement
JPS60194269A (en) * 1984-03-14 1985-10-02 日立造船株式会社 Method of cooling low-temperature liquefied gas
JPS60228289A (en) * 1984-04-25 1985-11-13 渋谷工業株式会社 Method of regulating temperature of liquid in plurality of liquid tank
JPH0842956A (en) * 1994-07-29 1996-02-16 Miura Co Ltd Controlling method for circulating type water chiller and control system therefor
JPH08233417A (en) * 1995-02-23 1996-09-13 Miura Co Ltd Abnormality judging method for heat-exchanger in circulation type chiller
JPH11148761A (en) * 1997-11-17 1999-06-02 Toshiba Corp Refrigerator
JP2007216181A (en) * 2006-02-20 2007-08-30 Jfe Engineering Kk Ballast water treatment apparatus and method

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5595889A (en) * 1978-07-07 1980-07-21 Matsushita Electric Works Ltd Coil frame of crystal movement
JPS60194269A (en) * 1984-03-14 1985-10-02 日立造船株式会社 Method of cooling low-temperature liquefied gas
JPS60228289A (en) * 1984-04-25 1985-11-13 渋谷工業株式会社 Method of regulating temperature of liquid in plurality of liquid tank
JPH0842956A (en) * 1994-07-29 1996-02-16 Miura Co Ltd Controlling method for circulating type water chiller and control system therefor
JPH08233417A (en) * 1995-02-23 1996-09-13 Miura Co Ltd Abnormality judging method for heat-exchanger in circulation type chiller
JPH11148761A (en) * 1997-11-17 1999-06-02 Toshiba Corp Refrigerator
JP2007216181A (en) * 2006-02-20 2007-08-30 Jfe Engineering Kk Ballast water treatment apparatus and method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016099103A (en) * 2014-11-26 2016-05-30 株式会社イワキ Liquid cooling system

Also Published As

Publication number Publication date
JP4841583B2 (en) 2011-12-21

Similar Documents

Publication Publication Date Title
JP5234435B2 (en) Cold cooling source device, cooling system and cooling method for free cooling
JP5306708B2 (en) Refrigerant cooling device
JP4841583B2 (en) Liquid cooling system
CN101403868A (en) Constant temperature method and device for mask plate developing solution
JP5422913B2 (en) Blast furnace furnace cooling system
JP5821175B2 (en) Water supply system
JP2008235518A (en) Liquid resistor cooling device
JP5707881B2 (en) Water supply system
KR101079704B1 (en) Temperature Control Apparatus for controlling load heating having Two way valve
JPH11311454A (en) Latent heat storage type heat source system
KR20110123489A (en) Cooling apparatus for ship
KR100785313B1 (en) Refrigerating device
JP5019355B2 (en) Tube wall temperature control method for floating crystal manufacturing machine in heat storage system and cooling system using eutectic point of multicomponent mixed solution
KR101864192B1 (en) System for supplying Cooling fresh water
JP5740443B2 (en) Transmission system
JP2006159003A (en) Heating and cooling method and apparatus for ultrapure water
JP2009028630A (en) Regulation method of temperature of paint, and regulation device of temperature of paint used for the method
JP2006038243A (en) Water heater
JP2005321852A (en) Heat load prediction control system
JP3120121U (en) Source cooling system
CN107564834A (en) Fluid temperature adjusting means, base plate processing system and substrate processing method using same using it
JP2008241107A (en) Heat accumulator, and measuring method of accumulation amount of latent heat
JP6609332B2 (en) Ice making device for drinking water server
JP2018123877A (en) Liquefied gas supply method
JP6584363B2 (en) Purified water supply system and purified water supply device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100204

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110823

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110920

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111004

R150 Certificate of patent or registration of utility model

Ref document number: 4841583

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141014

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250