JPS5888562A - Cooling device - Google Patents

Cooling device

Info

Publication number
JPS5888562A
JPS5888562A JP56186447A JP18644781A JPS5888562A JP S5888562 A JPS5888562 A JP S5888562A JP 56186447 A JP56186447 A JP 56186447A JP 18644781 A JP18644781 A JP 18644781A JP S5888562 A JPS5888562 A JP S5888562A
Authority
JP
Japan
Prior art keywords
refrigerant
temperature
evaporator
valve
cooling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP56186447A
Other languages
Japanese (ja)
Other versions
JPS6350628B2 (en
Inventor
山崎 起助
和弘 丸山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP56186447A priority Critical patent/JPS5888562A/en
Publication of JPS5888562A publication Critical patent/JPS5888562A/en
Publication of JPS6350628B2 publication Critical patent/JPS6350628B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2511Evaporator distribution valves

Landscapes

  • Devices That Are Associated With Refrigeration Equipment (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明は複数の温度の異なる保冷室をもつ冷蔵庫などの
冷却装置に関し、その目的とするところは圧縮機の成績
係数を向上させ、冷却装置の運転効率の向上を図る点に
ある。
[Detailed Description of the Invention] The present invention relates to a cooling device such as a refrigerator having a plurality of cold storage chambers with different temperatures, and its purpose is to improve the coefficient of performance of a compressor and improve the operating efficiency of the cooling device. At the point.

従来温度の異なる複数の保冷室を1台の冷凍ユニットで
冷却する形態の代表的なものに家庭用冷凍冷蔵庫の冷却
システムがあシ、基本的には第1図に示すような冷却シ
ステムを採用している。
Conventionally, a typical cooling system for cooling multiple cold storage compartments with different temperatures using a single refrigeration unit is the cooling system of a household refrigerator-freezer, which basically uses a cooling system as shown in Figure 1. are doing.

第1図におりて、(1)は圧縮機で、この圧縮機(りか
ら吐出され、凝縮器(21で液化された冷媒液は、第1
毛細管(31で減圧され、冷蔵室(4)内に配設された
冷蔵用蒸発器(6)で一部分が蒸発し、その際に上記冷
蔵室(41内の冷却作用を行なう。上記冷蔵用蒸発器停
)を出た気液2相冷媒は、第2毛細管(6)で再び減圧
され、冷凍室(7)内に配設された冷凍用蒸発器(81
で残夛が蒸発し、その際に冷凍室(7)を冷却する。上
記冷凍用蒸発器(81を出た冷媒ガスはアキュムレータ
(9)を介して上記圧縮機(11に吸い込まれる。各庫
内の温度管理は。
In Fig. 1, (1) is a compressor, and the refrigerant liquid discharged from this compressor (21) and liquefied in a condenser (21) is
The pressure is reduced in the capillary tube (31), and a portion is evaporated in the refrigerating evaporator (6) disposed in the refrigerating compartment (4), at which time a cooling effect in the refrigerating compartment (41) is performed. The gas-liquid two-phase refrigerant that exits the refrigerant is depressurized again in the second capillary tube (6), and then transferred to the freezing evaporator (81) disposed in the freezing chamber (7).
The residue evaporates, and at that time the freezer compartment (7) is cooled. The refrigerant gas exiting the freezing evaporator (81) is sucked into the compressor (11) via the accumulator (9).The temperature inside each refrigerator is controlled.

冷蔵室(41か冷凍室(γ)のどちらかた配設された温
度調節器(図示せず)Kよシ、上記圧縮機(1)を発停
させることによシ行なう。
This is done by starting and stopping the compressor (1) using a temperature controller (not shown) K disposed in either the refrigerator compartment (41) or the freezer compartment (γ).

以上のような構成の冷凍冷蔵庫においては。In the refrigerator-freezer configured as above.

圧縮機(11の吸入圧力は非常に低圧な冷凍用蒸発器(
81の蒸発圧力で決定してしまうため、冷蔵用蒸発器(
51の蒸発圧力がいかに高くても、圧縮機(11の成績
係数は非常に悪いものとなシ、冷却システムとしても効
率の悪−運転を余儀なくされていた。また上述のように
庫内温度調整がどちらか一方の庫内温度によらざるを得
ないため。
The compressor (11 suction pressure is a very low pressure refrigeration evaporator (
Since it is determined by the evaporation pressure of 81, the refrigerating evaporator (
No matter how high the evaporation pressure of the compressor (11) was, the coefficient of performance of the compressor (11) was very poor, and the cooling system was forced to operate inefficiently. Because it has to depend on the internal temperature of one or the other.

他方の庫内温度は成り行きとなってしまう欠点がありt
o −万各庫内温度の独立コントロールを可能とするために
、冷凍室a)内に1台の蒸発器(8)を配設し、それに
よって冷蔵室(4)はダンパー制御によって室内温度を
コントロールし、冷凍室(7)の温t+は圧縮機(11
の発停によって行なうという冷却システムも近年一般的
となっている。この方式は画室内温度の独立コントロー
ルは可能であるが、蒸発器(8)の蒸発温度はやけり冷
凍室(7)の温度に依存してしまりた゛め、圧縮機(1
1の吸入圧力が低く冷却システムの効率が非常に悪いこ
とは変らない。またこの方式を用tfh7)場合、冷蔵
室(4)はダンパーl介して冷凍室・(7)と連通して
いるため、冷蔵室(4)内の乾燥過多の問題が生じ。
There is a drawback that the temperature inside the other refrigerator will vary.
o - In order to enable independent control of the internal temperature in each case, one evaporator (8) is installed in the freezer compartment a), so that the refrigerator compartment (4) can control the internal temperature by damper control. The temperature t+ of the freezer compartment (7) is controlled by the compressor (11
Cooling systems that operate by turning on and off have become common in recent years. Although this method allows independent control of the temperature inside the compartment, the evaporation temperature of the evaporator (8) is dependent on the temperature of the freezing compartment (7), so the compressor (1)
The fact remains that the suction pressure of No. 1 is low and the efficiency of the cooling system is very poor. Furthermore, when using this method, the refrigerator compartment (4) is communicated with the freezer compartment (7) via the damper l, which causes the problem of excessive dryness in the refrigerator compartment (4).

さらに蒸発器(8)上への着露量が大きくなり頻繁な除
霜が必11!になるなどの欠点があう六〇本発明は王妃
従来装置の諸欠点を改良するtめなされたもので保冷温
度の異なる複数の冷却室に、それぞれこの冷却室を冷却
する蒸発器を配設し、この各蒸発器を並列接続するとと
もに各蒸発器に冷媒を流す時刻を別々にして同時に流す
ことない構成にして圧縮機の成績係数を向上させ、かつ
低温側蒸発器で蒸発しきれない冷媒液を高温側蒸発器で
完全に蒸発させタシ、低温側蒸発器からの冷媒ガスの過
熱を高温側蒸発器で行す低温蒸発器を通過した冷媒の熱
回収を行い冷却装置全体の運転効率を高めるものである
Furthermore, the amount of dew on the evaporator (8) increases, making frequent defrosting necessary! 60 The present invention has been designed to improve the various drawbacks of the conventional Queen's system, and includes a plurality of cooling chambers with different cooling temperatures, each of which is provided with an evaporator to cool the respective cooling chambers. By connecting these evaporators in parallel and setting the time for flowing refrigerant to each evaporator separately so that they do not flow at the same time, the coefficient of performance of the compressor is improved, and the refrigerant liquid that is not fully evaporated in the low-temperature side evaporator is improved. The refrigerant gas is completely evaporated in the high-temperature side evaporator, and the refrigerant gas from the low-temperature side evaporator is superheated in the high-temperature side evaporator.The heat of the refrigerant that has passed through the low-temperature evaporator is recovered, increasing the operating efficiency of the entire cooling system. It is something.

以下家庭用冷凍冷蔵庫を例に本発明の詳細について説明
する。
The details of the present invention will be explained below using a household refrigerator-freezer as an example.

第2図は本発明の一実施例を示す冷却システム図であり
、(1)け圧縮機、(21は凝縮器、(4:は冷蔵室、
(5Hjこの冷蔵室(4)内に配設された冷蔵用蒸発器
、(7)は冷凍室、(81けこの冷凍室(7)内に配設
された冷凍用蒸発器、(91はアキュムレータである。
FIG. 2 is a cooling system diagram showing an embodiment of the present invention, in which (1) a compressor, (21 a condenser, (4 a refrigerator compartment,
(5Hj Refrigerating evaporator installed in this refrigerator compartment (4), (7) is a freezing compartment, (81 is a freezing evaporator installed in this freezing compartment (7), (91 is an accumulator) It is.

(31は上記冷蔵用蒸発器(5)の冷媒通路上流側に配
設された第1の減圧器としての第1毛細管、(6)は上
記冷凍用蒸発器(8)の冷媒通路上流側に配設された第
2の減圧器としての第2毛細管。
(31 is a first capillary tube as a first pressure reducer disposed upstream of the refrigerant passage of the refrigeration evaporator (5), and (6) is disposed upstream of the refrigerant passage of the refrigeration evaporator (8). A second capillary tube as a second pressure reducer is provided.

aoけ第1毛細管(8)の冷媒通路上amに配設された
第1の開閉弁、αDは冷凍用蒸発器(8)の下流側に設
けられた冷媒制御弁としての三方弁でtb、a。
ao is a first on-off valve disposed on the refrigerant passage am of the first capillary tube (8), αD is a three-way valve as a refrigerant control valve provided downstream of the freezing evaporator (8); a.

この三方弁anの一方は上記圧縮機(1)の冷媒吸込流
路と連通しく第2図a−4bで示す)、他方は逆止弁Q
2を介して冷蔵用蒸発器(5)の上流側と連通(第2図
中a−40で示す)されている。
One of the three-way valves an communicates with the refrigerant suction passage of the compressor (1) (as shown in FIG. 2 a-4b), and the other is the check valve Q.
2 (indicated by a-40 in FIG. 2) with the upstream side of the refrigeration evaporator (5).

そして第1の開閉弁(++1.第1毛細管C31,冷蔵
用蒸発器(5)の直列冷媒回路と第2毛細管(6)、冷
凍用蒸発器(8)、三方弁(111の直列冷媒回路とけ
並列接続されて上記凝縮器伐:と上記アキュムレータ(
9)との間に接続されている。
The first on-off valve (++1. First capillary tube C31, the series refrigerant circuit of the refrigeration evaporator (5) and the second capillary tube (6), the refrigeration evaporator (8), the three-way valve (111 series refrigerant circuit) The above condenser is connected in parallel: and the above accumulator (
9).

第2図に示す実施例は2通常の蒸発器を並列接続した冷
却システムに似ているが基本的には全く異ったものであ
る。
The embodiment shown in FIG. 2 resembles a conventional refrigeration system with two evaporators connected in parallel, but is fundamentally different.

まず異る温度レベルにある蒸発器の蒸発圧力を同一の吸
入圧力に整合させる大め従来装置では高温側蒸発器の後
にあった圧力調整部が本発明では不要となる。つまシ本
発明の特徴的動作は両蒸発器(5) 、 (81K i
t同時に冷媒を流さない点にある。さらに詳しくは第2
毛細管(61,冷凍用蒸発器C8)、三方弁圓とで構成
される低温側、即ち冷凍用冷媒回路と、第1の開閉弁a
t1...第1...(3)、冷蔵用蒸発器(5)とで
構成される高温側。
First, the present invention eliminates the need for a pressure adjustment section that was located after the high-temperature side evaporator in larger conventional devices that match the evaporation pressures of evaporators at different temperature levels to the same suction pressure. The characteristic operation of the present invention is that both evaporators (5) and (81K i
The point is that the refrigerant does not flow at the same time. For more details, please refer to the second
The low temperature side, that is, the refrigeration refrigerant circuit, consisting of a capillary tube (61, refrigeration evaporator C8) and a three-way valve circle, and the first on-off valve a
t1. .. .. 1st. .. .. (3) and a refrigeration evaporator (5).

即ち冷凍用冷媒回路とに凝縮器(21を出大冷媒液を両
室的温度変化状況に応じて時系列的に分配し、冷蔵室(
4)を冷却する際の冷蔵用蒸発器(5)の蒸発圧力を高
く維持することによって圧縮機(1)の成績係数を向上
させ、また冷凍用蒸発器(8)内で蒸発しきれない冷媒
液を冷蔵用蒸発器(6)内で完全に蒸発させfc、り、
冷凍用蒸発器(8)から出て′〈る冷媒ガスの過熱を冷
蔵用蒸発器(5)で行うことによって冷凍用蒸発器(8
)を通過した冷媒の熱回収を冷蔵用蒸発器(5iで行い
、前者と併せて冷却装置全体の運転効率を高めるもので
ある。
That is, the refrigerant liquid from the condenser (21) is distributed to the freezing refrigerant circuit and the refrigerator compartment (21) in chronological order according to the temperature changes in both compartments.
By maintaining the evaporation pressure of the refrigeration evaporator (5) high when cooling the refrigerant (4), the coefficient of performance of the compressor (1) is improved, and the refrigerant that is not fully evaporated in the refrigeration evaporator (8) is improved. Completely evaporate the liquid in the refrigerating evaporator (6), fc,
By superheating the refrigerant gas coming out of the refrigeration evaporator (8) in the refrigeration evaporator (5),
) is used to recover heat from the refrigerant that has passed through the refrigerant evaporator (5i), which together with the former improves the operating efficiency of the entire cooling system.

第3図は第2図に示す家庭用冷凍冷蔵庫の運転制御ブロ
ック図でa3は冷蔵室(41内に配設された温度検出セ
ンサー、αaは冷凍室(])内に配設された温度検出セ
ンサー、a5は冷蔵室用温度制御器で温度検出センサー
0からの検出値が冷蔵室(4)の所定上限値以上の時は
ON信号を、所定下限値以下の時は第1のOFF信号を
、またこの所定下限値より少し高い温度値、即ち第2の
所定下限値で第2のOFF信号を出力する。aSけ冷凍
室用温度制御器で温度検出センサーα−からの検出値が
冷凍室(7)の所定上限値以上の時はON信号を、所定
下限値以下の時はOFF信号を出力する。(2)はと9
温度制御器αeのON信号と、上記温度検出器−の第1
のOFF信号とKよ沙oN信号を出力するANDゲート
などの論理積回路、ashこのANDゲート−のON信
号と上記温度制御器−のON信号の何れかによシQN信
号を出力するORゲー)、(11けこのORゲートas
のON信号で駆動される圧縮機、鱒は上記温度制御器α
りのON信号で開、第2のOFF信号で閉する第1の開
閉弁、α11は上記ANDゲート(2)のON信号で流
路をa→bにそれ以外の時はa −+ c k切替る三
方弁である。
Figure 3 is an operation control block diagram of the domestic refrigerator-freezer shown in Figure 2, where a3 is a temperature detection sensor installed in the refrigerator compartment (41), and αa is a temperature detection sensor installed in the freezer compartment (]). Sensor a5 is a temperature controller for the refrigerator compartment, and when the detected value from temperature detection sensor 0 is above a predetermined upper limit value of the refrigerator compartment (4), it outputs an ON signal, and when it is below a predetermined lower limit value, it outputs a first OFF signal. , and outputs a second OFF signal at a temperature value slightly higher than this predetermined lower limit value, that is, a second predetermined lower limit value. (7) When the predetermined upper limit value is exceeded, an ON signal is output, and when it is below the predetermined lower limit value, an OFF signal is output. (2) Pito 9
The ON signal of the temperature controller αe and the first
An AND circuit such as an AND gate that outputs an OFF signal and a KYON signal, and an OR gate that outputs a QN signal depending on either the ON signal of this AND gate or the ON signal of the temperature controller. ), (11 Keko's OR gate as
The compressor is driven by the ON signal of
The first on-off valve opens with the ON signal of the above AND gate (2) and closes with the second OFF signal, α11 changes the flow path from a to b with the ON signal of the AND gate (2), otherwise a - + c k It is a three-way switching valve.

以上のように構成されtもOにおいて、冷蔵室(4)の
温度が所定上限温度よシ高いと温度検出センサー(至)
からの信号によシ温度制御器(至)からはON信号が出
るので第1の開閉弁軸を開および三方弁をa 4 c 
K L、かりORゲート鱒を介して圧縮機(1+を駆動
する。従って冷媒は第1毛を管(31を通シ、冷蔵用蒸
発器(5)のみ通過し冷蔵室(4)内を冷却する。冷蔵
室(41が冷却され所定上限温度よシ低くな夛、下限温
度よシ少し高いとき、即ち第2の所定下限値以下にあシ
、冷凍室(7)が所定上限温度よシ高いときは温度検出
センサーQlからの検出値によシ温度制御器(至)から
の°信号で三方弁匝はそのま\流路をa−40K L 
With the above configuration, when t is O, if the temperature of the refrigerator compartment (4) is higher than the predetermined upper limit temperature, the temperature detection sensor (to)
In response to the signal from the temperature controller, an ON signal is output from the temperature controller, so open the first on-off valve shaft and turn the three-way valve a
The compressor (1+) is driven through the KL and OR gates. Therefore, the refrigerant passes through the first capillary through the tube (31), passes only through the refrigerating evaporator (5), and cools the inside of the refrigerating compartment (4). When the refrigerator compartment (41) is cooled and the temperature is lower than the predetermined upper limit temperature, and when the temperature is slightly higher than the lower limit temperature, that is, the temperature is lower than the second predetermined lower limit value, the temperature of the freezer compartment (7) is higher than the predetermined upper limit temperature. When the detection value from the temperature detection sensor Ql is detected, the three-way valve holder moves the flow path to a-40K L according to the ° signal from the temperature controller (to).
.

第1の開閉弁軸を閉にする。すると冷媒が第2毛細管(
61,冷蔵用蒸発器(8)を通シ、冷凍庫(7)内を冷
却する。さらに三方弁anのa→C及び逆止弁αりを通
過して冷蔵用蒸発器(5)に入シ、低温冷媒の熱回収が
行われると同時に低温で蒸発した冷媒がスーパーヒート
され冷蔵室(4)が多少冷却される。このとき冷蔵室(
41内が所定下限温度以下に冷却され、まだ冷凍室(7
)が所定下限温度以上のときは温度検出センサー(2)
からの信号によシ温度制御器(2)からの信号でAND
ゲート■を介して三方弁Ql ta −+ bに切替え
冷蔵用蒸発器(館内に冷媒が流れないようにする。
Close the first on-off valve shaft. Then, the refrigerant flows into the second capillary (
61. Pass through the refrigerator evaporator (8) to cool the inside of the freezer (7). Furthermore, it passes through the three-way valve an from a to C and the check valve α, and enters the refrigeration evaporator (5), where the heat of the low-temperature refrigerant is recovered, and at the same time, the refrigerant that evaporated at low temperature is superheated to the refrigerator compartment. (4) is slightly cooled. At this time, the refrigerator room (
The inside of the freezer compartment (7
) is higher than the predetermined lower limit temperature, the temperature detection sensor (2)
AND with the signal from the temperature controller (2)
Switch to the three-way valve Ql ta - + b through the gate 2 to the refrigerating evaporator (to prevent refrigerant from flowing into the building).

両冷却室(41,(7)が所定下限温度以下のときけ温
度検出センサーQ3.Q−からの信号で温度制御器(2
)、aeニジの信号によりANDゲート面。
When both cooling chambers (41, (7) are below the predetermined lower limit temperature, the temperature controller (2) is activated by the signal from the temperature detection sensor Q3.Q-.
), AND gate surface by the ae rainbow signal.

ORゲート舖を介して圧縮機(11の運転を停止する。The operation of the compressor (11) is stopped via the OR gate.

第4図は本発明に−よる他の実施例を示す冷却シレテム
図であシ、(11は第2図における三方弁Iの代りに逆
止弁C121への冷媒分岐路の下流に設置された第2の
開閉弁である。この第2の開閉弁(至)は第2図におけ
る三方弁αυの流通路がa→bKなっているときは開、
a−+e[なっているときは閉と桑るが第1の開閉弁軸
が開のときは閉、第1の開閉弁6Iが閉のときけ冷蔵室
(4:内の温度状況によって開閉する。この工うに構成
しても同様の機能を有し同等の効果を有する。
FIG. 4 is a cooling system diagram showing another embodiment according to the present invention (11 is installed downstream of the refrigerant branch path to the check valve C121 instead of the three-way valve I in FIG. 2). This is a second on-off valve.This second on-off valve (to) is open when the flow path of the three-way valve αυ in FIG. 2 is from a to bK.
When the first on-off valve is open, it is closed, and when the first on-off valve 6I is closed, it is closed depending on the temperature inside the refrigerator compartment (4). Even if configured in this manner, it has the same function and the same effect.

また上記実施例では減圧器として毛細管を使用した場合
について述べたが膨張弁などを用いてもよいことは勿論
であり、負荷側が2系統以上の多系統の場合についても
それぞれ温度レベルに適合した減圧器を各系統に設定し
、冷媒制御弁を多系統に設定することによって本発明を
多系統に適合させるこ、とができる。
In the above embodiment, a capillary tube is used as a pressure reducer, but it goes without saying that an expansion valve or the like may also be used, and even in the case of multiple systems with two or more load sides, the pressure reduction device is adapted to each temperature level. The present invention can be applied to multiple systems by setting a refrigerant control valve for each system and setting refrigerant control valves for multiple systems.

本発明は以上述べてきたように、冷媒を蒸発圧力の異々
る蒸発器に時系列的に分配する仁とによシ圧縮機および
冷却装置全体の運転効率を向上させることができ、加え
て各冷却室内温度の独立制御が可能なこと、−1大高温
側保冷室の冷却が適正な高い蒸発温度で行なわれるため
As described above, the present invention can improve the operating efficiency of the entire compressor and cooling system that distributes refrigerant to evaporators with different evaporation pressures in time series, and also It is possible to independently control the temperature of each cooling chamber, and cooling of the -1 large high temperature side cold storage chamber is performed at an appropriately high evaporation temperature.

高温側保冷室の乾燥などの問題も生じないものである。Problems such as drying of the cold storage compartment on the high temperature side do not occur.

さらに従来の蒸発器を並列接続した冷凍システムは冷媒
を同時に両蒸発器に流しているので両蒸発器の蒸発後圧
力を同一の吸入圧力に整合させるための圧力調整部が高
温側蒸発器(8)の後に必要であったが本発明ではこれ
が不要とカシ。
Furthermore, in conventional refrigeration systems in which evaporators are connected in parallel, refrigerant flows through both evaporators at the same time, so a pressure adjustment section is required to match the post-evaporation pressures of both evaporators to the same suction pressure. ), but this is not necessary in the present invention.

しかも低温側冷却運転時、EE縮機に吸す込まれる冷媒
のスーパーヒートが充分性なわれこの面からも効率向上
が図れるものである。
Furthermore, during the cooling operation on the low temperature side, the refrigerant sucked into the EE compressor is sufficiently superheated, and efficiency can be improved from this aspect as well.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の家庭用冷凍冷蔵庫の冷却シス妄ム図、第
2図は本発−〇−実施例を示す家庭用冷凍冷蔵庫の冷却
システム図、第3図はその運転制御ブロック図、第4図
は本発明の他の実施例を示す冷却システム図である。 図中同一符号は同一または相当部分を示し。 (1)は圧縮機、(21は凝縮器、(3)は第1毛細管
、(4)は冷蔵室、(5)Fi冷蔵用蒸発器、(6)は
第2毛細管。 (7)は冷凍室、(81は冷凍用蒸発器、0・は第1の
開閉弁、αIll Fi亘方弁、α2け逆止弁、αm、
04Fi温度検出セ゛温度検出セタンオーけ温度制御器
、(2)はANDゲート、舖1ltORゲートである。 代理人 葛 野 信 − 111!l8 j12図 第3区 第41!i
Figure 1 is a cooling system diagram of a conventional household refrigerator-freezer, Figure 2 is a diagram of a cooling system of a household refrigerator-refrigerator showing an embodiment of this invention, and Figure 3 is its operation control block diagram. FIG. 4 is a cooling system diagram showing another embodiment of the present invention. The same reference numerals in the figures indicate the same or corresponding parts. (1) is the compressor, (21 is the condenser, (3) is the first capillary, (4) is the refrigerator compartment, (5) is the Fi refrigeration evaporator, (6) is the second capillary. (7) is the refrigeration chamber, (81 is the refrigeration evaporator, 0 is the first on-off valve, αIll Fi crossing valve, α2 check valve, αm,
04Fi Temperature Detector Temperature Detector Temperature Controller (2) is an AND gate, or an OR gate. Agent Shin Kuzuno - 111! l8 j12 Figure 3rd Ward No. 41! i

Claims (2)

【特許請求の範囲】[Claims] (1) 保冷温度の異る複数の冷却室、この各冷却室を
個別に冷却する冷媒流方向に順次直列接続された開閉弁
と減圧器と蒸発器の冷媒回路。 この各冷媒回路が並列接続されて1台の圧縮機と凝縮器
に直列接続されてなシ、上記各冷却室の温度を検出し、
上記各冷媒回路の開閉弁を制御して上記各冷媒回路の何
れか一つに選択的に冷媒を流す温度制御器と、上記蒸発
器を出た冷媒がよシ高温側冷却室が所定温度範囲内のと
うけその高温側蒸発器流入口へ逆止弁を介して流す冷媒
制御弁とを備えてなることを特徴とする冷却装置。
(1) A refrigerant circuit including a plurality of cooling chambers with different cold storage temperatures, an on-off valve, a pressure reducer, and an evaporator connected in series in the direction of refrigerant flow to individually cool each cooling chamber. These refrigerant circuits are connected in parallel and connected in series to one compressor and condenser, and the temperature of each cooling chamber is detected,
A temperature controller that controls the opening/closing valves of each of the refrigerant circuits to selectively flow the refrigerant into any one of the refrigerant circuits, and a cooling chamber on the high temperature side where the refrigerant exiting the evaporator is kept within a predetermined temperature range. 1. A cooling device comprising: a refrigerant control valve that allows a refrigerant to flow through a check valve to an inlet of a high-temperature side evaporator.
(2) 冷却室が2室からなるとき減圧器を毛細管で構
成することによシ低温側冷媒回路の開閉弁を省いたこと
を特徴とする特許請求の範囲第1項記載の冷却装置。 (31冷媒制御弁を三方弁としたことを特徴とする特許
請求の範囲第1項または第2項記載の冷却装置。
(2) The cooling device according to claim 1, characterized in that when the cooling chamber consists of two chambers, the pressure reducer is constructed of a capillary tube, thereby omitting an on-off valve for the low-temperature side refrigerant circuit. (31) The cooling device according to claim 1 or 2, wherein the refrigerant control valve is a three-way valve.
JP56186447A 1981-11-20 1981-11-20 Cooling device Granted JPS5888562A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56186447A JPS5888562A (en) 1981-11-20 1981-11-20 Cooling device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56186447A JPS5888562A (en) 1981-11-20 1981-11-20 Cooling device

Publications (2)

Publication Number Publication Date
JPS5888562A true JPS5888562A (en) 1983-05-26
JPS6350628B2 JPS6350628B2 (en) 1988-10-11

Family

ID=16188608

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56186447A Granted JPS5888562A (en) 1981-11-20 1981-11-20 Cooling device

Country Status (1)

Country Link
JP (1) JPS5888562A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61197974A (en) * 1985-02-26 1986-09-02 株式会社デンソー Cold accumulation type refrigerator for car
JPS63213753A (en) * 1987-02-27 1988-09-06 株式会社東芝 Refrigeration cycle
JP2001349659A (en) * 2000-06-09 2001-12-21 Matsushita Refrig Co Ltd Refrigerator
KR100404193B1 (en) * 2001-04-04 2003-11-03 엘지전자 주식회사 Refrigerating cycle of refrigerator
KR100785118B1 (en) 2006-08-07 2007-12-11 엘지전자 주식회사 Refrigerator
WO2008056913A2 (en) 2006-11-09 2008-05-15 Lg Electronics Inc. Apparatus for refrigeration cycle and refrigerator
EP2115366A4 (en) * 2006-12-26 2015-05-20 Lg Electronics Inc Refrigerator and control method for the same
CN111059786A (en) * 2019-04-19 2020-04-24 青岛海尔电冰箱有限公司 Parallel refrigeration system for refrigerator and refrigerator

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61197974A (en) * 1985-02-26 1986-09-02 株式会社デンソー Cold accumulation type refrigerator for car
JPS63213753A (en) * 1987-02-27 1988-09-06 株式会社東芝 Refrigeration cycle
JP2001349659A (en) * 2000-06-09 2001-12-21 Matsushita Refrig Co Ltd Refrigerator
KR100404193B1 (en) * 2001-04-04 2003-11-03 엘지전자 주식회사 Refrigerating cycle of refrigerator
KR100785118B1 (en) 2006-08-07 2007-12-11 엘지전자 주식회사 Refrigerator
WO2008056913A2 (en) 2006-11-09 2008-05-15 Lg Electronics Inc. Apparatus for refrigeration cycle and refrigerator
EP2079971A2 (en) * 2006-11-09 2009-07-22 LG Electronics Inc. Apparatus for refrigeration cycle and refrigerator
EP2079971A4 (en) * 2006-11-09 2015-01-21 Lg Electronics Inc Apparatus for refrigeration cycle and refrigerator
EP2115366A4 (en) * 2006-12-26 2015-05-20 Lg Electronics Inc Refrigerator and control method for the same
CN111059786A (en) * 2019-04-19 2020-04-24 青岛海尔电冰箱有限公司 Parallel refrigeration system for refrigerator and refrigerator

Also Published As

Publication number Publication date
JPS6350628B2 (en) 1988-10-11

Similar Documents

Publication Publication Date Title
JPS5888562A (en) Cooling device
JPS6350629B2 (en)
JPS6222396B2 (en)
CN216814666U (en) Refrigerating system and refrigerating equipment
JPS58104470A (en) Cooling device
JP2001280768A (en) Refrigerator
JPH0222615Y2 (en)
JPH0593548A (en) Refrigerator
JPS58210454A (en) Cooling device
JPS58198668A (en) Cooling device
JPS58198667A (en) Cooling device
JPS5952175A (en) Cooling device
JPS5941749A (en) Cooling device
JPS58108364A (en) Cooling device
JPS5941753A (en) Cooling device
JPS5895161A (en) Cooling device
JPS6326829B2 (en)
JPS5941754A (en) Cooling device
JPS5896971A (en) Freezing refrigerator
JPS5952171A (en) Cooling device
JPS6257905B2 (en)
JPS5941751A (en) Cooling device
JPS58210450A (en) Cooling device
JPS5941750A (en) Cooling device
JPS6229704B2 (en)