JPH047491Y2 - - Google Patents

Info

Publication number
JPH047491Y2
JPH047491Y2 JP7754886U JP7754886U JPH047491Y2 JP H047491 Y2 JPH047491 Y2 JP H047491Y2 JP 7754886 U JP7754886 U JP 7754886U JP 7754886 U JP7754886 U JP 7754886U JP H047491 Y2 JPH047491 Y2 JP H047491Y2
Authority
JP
Japan
Prior art keywords
refrigerant
outlet
gas
cascade condenser
evaporator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP7754886U
Other languages
Japanese (ja)
Other versions
JPS62189563U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP7754886U priority Critical patent/JPH047491Y2/ja
Publication of JPS62189563U publication Critical patent/JPS62189563U/ja
Application granted granted Critical
Publication of JPH047491Y2 publication Critical patent/JPH047491Y2/ja
Expired legal-status Critical Current

Links

Description

【考案の詳細な説明】 (産業上の利用分野) 本考案は、超低温を発生する混合冷媒サイクル
に係り、特に急速冷凍に好適な冷凍装置に関す
る。
[Detailed Description of the Invention] (Industrial Application Field) The present invention relates to a mixed refrigerant cycle that generates extremely low temperatures, and particularly to a refrigeration device suitable for rapid freezing.

(従来の技術) 超低温を発生させる混合冷媒冷凍サイクルにつ
いて、第2図に示す3段気液分離型混合冷媒サイ
クルを用いて説明する。冷媒には沸点の異なる冷
媒を混合した混合冷媒を用いる。圧縮機1で圧縮
されたガス冷媒は、凝縮器2で冷却され、一部凝
縮する。次に生じた液冷媒を第1の気液分離器3
でガス冷媒を分離する。分離された液冷媒は、キ
ヤピラリチユーブ等の第1膨張手段4で減圧膨張
され、第1のカスケードコンデンサ5に入り上記
分離されたガス冷媒を冷却し、さらに一部を凝縮
させる。ここで生じた気液混合冷媒は、第2気液
分離器6で分離し、液冷媒は第2の膨張手段7で
減圧膨張させ、第2カスケードコンデンサ8でガ
ス冷媒を冷却し、さらに一部を凝縮させる。ここ
で生じた気液混合冷媒は、第3の気液分離器9
で、ガス冷媒と液冷媒とに分離し、第3のカスケ
ードコンデンサ11で、分離した液冷媒で、上記
分離したガス冷媒を完全に凝縮し液冷媒とする。
そしてこれを膨張手段12で減圧膨張させ、蒸発
器13で蒸発させることによつて超低温を発生さ
せる。しかしながら、ここで用いられる混合冷媒
は、同じ蒸発圧力であつても、蒸発にともなつて
その蒸発温度が上がるという性質を持つている。
そこで実際には第3図に示すように、圧縮機1入
口と凝縮器2の出口の冷媒の熱交換及び蒸発器1
3出口とカスケードコンデンサ11出口の冷媒と
の熱交換、さらに蒸発側の第1カスケードコンデ
ンサ5入口と第2カスケードコンデンサ8出口同
じく第2カスケードコンデンサ8入口と第3カス
ケードコンデンサ11出口、同じく第3カスケー
ドコンデンサ11入口と蒸発器13出口とを結ぶ
ことによる各冷媒の熱回収を十分行なうことによ
り、非常に効率のよい運転ができるようにしてい
る。しかし、上記蒸発器13出口と第3カスケー
ドコンデンサ11の凝縮側出口との熱交換をする
補助コンデンサ14は、サイクルの安定時には蒸
発器出口の低温の冷媒で第4膨張手段12の前の
冷媒を、さらに過冷却し冷却能力を増すはたらき
があるが、起動当初は、蒸発器13が熱容量を有
するので、蒸発器13出口の冷媒の温度が高く逆
に膨張手段12前の液冷媒を加熱し、冷却能力を
減じる。これにより、蒸発器13の冷却が遅れ、
サイクルの安定までの時間が非常に長くなるとい
う欠点があつた。このような傾向は、蒸発器の熱
容量の多いフリーザ等に大きい。
(Prior Art) A mixed refrigerant refrigeration cycle that generates extremely low temperatures will be explained using a three-stage gas-liquid separation type mixed refrigerant cycle shown in FIG. A mixed refrigerant, which is a mixture of refrigerants with different boiling points, is used as the refrigerant. The gas refrigerant compressed by the compressor 1 is cooled by the condenser 2 and is partially condensed. Next, the generated liquid refrigerant is transferred to the first gas-liquid separator 3
to separate the gas refrigerant. The separated liquid refrigerant is depressurized and expanded by a first expansion means 4 such as a capillary tube, enters a first cascade condenser 5, cools the separated gas refrigerant, and further condenses a portion. The gas-liquid mixed refrigerant generated here is separated in a second gas-liquid separator 6, the liquid refrigerant is expanded under reduced pressure in a second expansion means 7, the gas refrigerant is cooled in a second cascade condenser 8, and a portion of the refrigerant is to condense. The gas-liquid mixed refrigerant generated here is transferred to the third gas-liquid separator 9
Then, the separated gas refrigerant is separated into a gas refrigerant and a liquid refrigerant, and in the third cascade condenser 11, the separated gas refrigerant is completely condensed into a liquid refrigerant.
This is then expanded under reduced pressure by the expansion means 12 and evaporated by the evaporator 13 to generate an extremely low temperature. However, the mixed refrigerant used here has a property that its evaporation temperature increases as it evaporates even if the evaporation pressure is the same.
Therefore, in reality, as shown in Figure 3, heat exchange between the refrigerant at the inlet of the compressor 1 and the outlet of the condenser 2, and the
3 outlet and the refrigerant at the cascade condenser 11 outlet, and the evaporation side first cascade condenser 5 inlet and second cascade condenser 8 outlet. By connecting the inlet of the condenser 11 and the outlet of the evaporator 13 to sufficiently recover heat from each refrigerant, very efficient operation can be achieved. However, when the cycle is stable, the auxiliary condenser 14, which exchanges heat between the evaporator 13 outlet and the condensing side outlet of the third cascade condenser 11, uses the low-temperature refrigerant at the evaporator outlet to replace the refrigerant before the fourth expansion means 12. , has the function of further supercooling and increasing the cooling capacity, but at the beginning of startup, since the evaporator 13 has a heat capacity, the temperature of the refrigerant at the outlet of the evaporator 13 is high, and conversely heats the liquid refrigerant in front of the expansion means 12, Reduce cooling capacity. As a result, cooling of the evaporator 13 is delayed,
The drawback was that it took a very long time to stabilize the cycle. This tendency is more pronounced in freezers and the like whose evaporators have a large heat capacity.

(解決しようとする問題点) 本考案は、前述の冷凍装置において、起動から
安定までの運転時間を短縮し、装置の運転効率を
向上しようとするものである。
(Problems to be Solved) The present invention aims to shorten the operating time from startup to stabilization in the above-mentioned refrigeration system, and improve the operating efficiency of the system.

(問題点を解決するための手段) 本考案は、前述の冷凍装置において、終段気液
分離器の液冷媒出口流路には切換弁を接続すると
ともに、この切換弁の一方の出口は前記終段膨張
手段に接続し、またもう一方の出口は前記蒸発器
に接続された膨張手段の入口に接続したものであ
る。
(Means for Solving Problems) The present invention provides that in the above-mentioned refrigeration system, a switching valve is connected to the liquid refrigerant outlet flow path of the final stage gas-liquid separator, and one outlet of this switching valve is connected to the The other outlet is connected to the inlet of the expansion means connected to the evaporator.

(作用) 起動時に切換弁を蒸発器側へ切換え、最終ガス
冷媒を凝縮させるための冷力として用いる液冷媒
を蒸発器へ供給し、蒸発器を予備冷却する。これ
により、起動当初における蒸発器の冷却を促進
し、サイクルの安定を早くする。
(Function) At startup, the switching valve is switched to the evaporator side, and the liquid refrigerant used as cooling power for condensing the final gas refrigerant is supplied to the evaporator to pre-cool the evaporator. This facilitates cooling of the evaporator at the beginning of startup, and speeds up the stabilization of the cycle.

(実施例) 本考案を、3段気液分離型混合冷媒冷凍サイク
ルに適用した例を第1図によつて説明する。
(Example) An example in which the present invention is applied to a three-stage gas-liquid separation type mixed refrigerant refrigeration cycle will be explained with reference to FIG.

この冷凍装置の圧縮機1の出口は凝縮器2の入
口に接続され、凝縮器2の出口は第1補助カスケ
ードコンデンサ15の一方の流路の入口に接続さ
れる。第1補助カスケードコンデンサ15は、初
段カスケードコンデンサとしての第1カスケード
コンデンサ5へ供給される冷媒を蒸発器13の出
口からの冷媒で予め冷却するもので、2重管構造
をなしており、凝縮器2出口は、その外管の一方
の入口へ配管接続される。以下の各カスケードコ
ンデンサも、これと同構造で同様に配管接続され
る。
The outlet of the compressor 1 of this refrigeration system is connected to the inlet of the condenser 2, and the outlet of the condenser 2 is connected to the inlet of one flow path of the first auxiliary cascade condenser 15. The first auxiliary cascade condenser 15 pre-cools the refrigerant supplied to the first cascade condenser 5 as the first stage cascade condenser with the refrigerant from the outlet of the evaporator 13, and has a double pipe structure. The two outlets are piped to one inlet of the outer tube. The following cascade capacitors have the same structure and are connected by piping in the same way.

第1補助カスケードコンデンサ15のこの流路
の出口は初段気液分離器としての第1気液分離器
3の入口へは配管接続され、第1気液分離器3の
ガス冷媒出口は、第1カスケードコンデンサ5の
外管の一方の口を入口として配管接続される。ま
た、液冷媒出口は初段膨張手段としての第1キヤ
ピラリチユーブ4の入口に配管接続され、第1キ
ヤピラリチユーブ4の出口は第1カスケードコン
デンサ5の内管の入口で外管の出口側にある方に
配管接続される。
The outlet of this flow path of the first auxiliary cascade condenser 15 is connected by piping to the inlet of the first gas-liquid separator 3 as the first-stage gas-liquid separator, and the gas refrigerant outlet of the first gas-liquid separator 3 is connected to the first gas-liquid separator 3. The cascade condenser 5 is connected to the cascade condenser 5 through piping, with one port of the outer tube serving as an inlet. In addition, the liquid refrigerant outlet is connected to the inlet of a first capillary tube 4 as an initial stage expansion means, and the outlet of the first capillary tube 4 is connected to the inlet of the inner tube of the first cascade condenser 5 and the outlet of the outer tube. Piping is connected to one side.

第2段、第3段とも順次同様に接続されるが、
終段カスケードコンデンサとしての第3カスケー
ドコンデンサ11の外管の出口は第2補助カスケ
ードコンデンサ14の外管の入口に配管接続され
る。また、終段気液分離器としての第1気液分離
器9の液冷媒出口は、切換弁16の入口へ接続さ
れ、切換弁16の一方の出口は終段膨張手段とし
ての第3キヤピラリチユーブ10を介して第3カ
スケードコンデンサ11の内管の入口で外管の出
口側にある方に配管接続される。
The second and third stages are connected in the same way,
The outlet of the outer tube of the third cascade condenser 11 serving as the final stage cascade condenser is connected to the inlet of the outer tube of the second auxiliary cascade condenser 14 . Further, a liquid refrigerant outlet of the first gas-liquid separator 9 as a final stage gas-liquid separator is connected to an inlet of a switching valve 16, and one outlet of the switching valve 16 is connected to a third capillary as a final stage expansion means. The inlet of the inner pipe of the third cascade condenser 11 is connected via the tube 10 to the outlet of the outer pipe.

第2補助カスケードコンデンサ14の外管の出
口と切換弁16の他の一方の出口は共に、蒸発器
13の入口に接続された膨張手段としてのキヤピ
ラリチユーブ12の入口に配管接続される。
The outlet of the outer pipe of the second auxiliary cascade condenser 14 and the other outlet of the switching valve 16 are both connected to the inlet of a capillary tube 12 as an expansion means connected to the inlet of the evaporator 13 .

蒸発器13の出口は、第2補助カスケードコン
デンサ14の外管の出口側にある内管の口を入口
として配管接続され、第2補助カスケードコンデ
ンサ14の内管の出口は、第3カスケードコンデ
ンサ11の、第3キヤピラリチユーブ14出口か
らの接続がある内管入口に配管接続される。
The outlet of the evaporator 13 is connected to the outlet of the inner tube on the outlet side of the outer tube of the second auxiliary cascade condenser 14 by piping, and the outlet of the inner tube of the second auxiliary cascade condenser 14 is connected to the outlet of the inner tube of the second auxiliary cascade condenser 14 . The third capillary tube 14 is connected to the inner pipe inlet with a connection from the third capillary tube 14 outlet.

以下、順次各段のカスケードコンデンサの内管
間の接続が同様に行われ、第1カスケードコンデ
ンサ5の内管出口は第1補助カスケードコンデン
サ15の、外管の出口側にある内管口を入口とし
て配管接続される。そして、第1補助カスケード
コンデンサ5の内管出口は圧縮器1の入口に配管
接続される。
Thereafter, connections between the inner tubes of the cascade capacitors in each stage are made in the same way, and the inner tube outlet of the first cascade condenser 5 is connected to the inner tube port on the outlet side of the outer tube of the first auxiliary cascade condenser 15. Connected by piping. The inner pipe outlet of the first auxiliary cascade condenser 5 is connected to the inlet of the compressor 1 by piping.

また、蒸発器13の出口側には温度センサ17
が設けられ、その出力は制御回路18に接続され
る。制御回路18は、温度センサ入力が所望の低
温以上であるとき、切換弁を起動位置側へ切換え
る電気信号を発生するもので、その出力は切換弁
に接続される。
Furthermore, a temperature sensor 17 is provided on the outlet side of the evaporator 13.
is provided, and its output is connected to the control circuit 18. The control circuit 18 generates an electric signal that switches the switching valve to the starting position when the temperature sensor input is above a desired low temperature, and its output is connected to the switching valve.

サイクルの動作は前述の通りであるが、切換弁
16を設けたので、サイクル起動時には冷媒が蒸
発器13入口へ流れるように切り換えられる。十
分蒸発器13が冷却されたことを蒸発器13出口
冷媒温度により検知すると、この冷媒を第3カス
ケードコンデンサ11蒸発側入口へ流れるように
切り換える。これによつて蒸発器13を常温より
所望の低温まで冷却するまでの間は、最終の液冷
媒を用いずその前の段階の液冷媒を用いるように
する。従つて、サイクルの起動時において、第2
補助コンデンサ14によつて逆に加熱されていた
最終のガス冷媒を用いず、直接3気液分離器で分
離した液冷媒を用いることで、各熱交換器で失な
う熱ロスをなくして効率よく蒸発器13を冷却で
き、安定までの時間を短縮できる。
The operation of the cycle is as described above, but since the switching valve 16 is provided, the refrigerant is switched to flow to the inlet of the evaporator 13 when the cycle is started. When it is detected by the refrigerant temperature at the outlet of the evaporator 13 that the evaporator 13 has been sufficiently cooled, the refrigerant is switched to flow to the evaporation side inlet of the third cascade condenser 11. As a result, until the evaporator 13 is cooled from room temperature to a desired low temperature, the liquid refrigerant at the previous stage is used instead of the final liquid refrigerant. Therefore, at the start of the cycle, the second
By using the liquid refrigerant directly separated by the three gas-liquid separators without using the final gas refrigerant that was heated inversely by the auxiliary condenser 14, efficiency is improved by eliminating heat loss lost in each heat exchanger. The evaporator 13 can be cooled well and the time required for stabilization can be shortened.

他の実施例として、第1補助カスケードコンデ
ンサは必ずしも必要なものではないが、使用した
方が効率的である。
In other embodiments, a first auxiliary cascade capacitor is not necessary, but it may be more efficient to use it.

膨張手段はキヤピラリチユーブに限るものでは
なく膨張手段などにすることができる。
The expansion means is not limited to a capillary tube, but may be an expansion means or the like.

各カスケードコンデンサは、凝縮器側からの冷
媒を外管に通し、蒸発器からの冷媒を内管に通す
ように配管接続するのに限るものではなく、これ
とは逆に接続することもできる。また、各カスケ
ードコンデンサは2重管構造の熱交換器に限るも
のではなく、一方の管の周囲に他方の管をコイル
状に巻付けた構造のものやその他の様式のものと
することもできる。
Each cascade condenser is not limited to being connected by piping so that the refrigerant from the condenser side is passed through the outer pipe and the refrigerant from the evaporator is passed through the inner pipe, but it is also possible to connect them in the opposite manner. Furthermore, each cascade condenser is not limited to a heat exchanger with a double-tube structure, but can also have a structure in which one tube is wound around the other tube in a coil shape, or other types. .

蒸発器出口側の冷媒温度は、目視可能な温度計
に表示させ、切換弁の操作を手動によつて行うこ
ともできる。
The refrigerant temperature on the evaporator outlet side can also be displayed on a visible thermometer and the switching valve can be operated manually.

(考案の効果) 本考案によれば、補助コンデンサ等による熱ロ
スをはぶき直接最終の気液分離器で分離した液冷
媒を用いることができるため、サイクルの冷却の
効率が高まり、サイクル安定、までの時間を従来
の約半分とすることができる。
(Effects of the invention) According to the invention, the heat loss caused by the auxiliary condenser etc. can be eliminated and the liquid refrigerant separated in the final gas-liquid separator can be directly used, which increases the cooling efficiency of the cycle and stabilizes the cycle. The time required can be reduced to approximately half of the conventional time.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本考案の一実施例を示す混合冷媒サイ
クル図であり、第2図、第3図は従来の混合冷媒
サイクル図である。 図面において、1は圧縮機、2は凝縮器、3は
第1(初段)気液分離器、4は第1キヤピラリチ
ユーブ(初段膨張手段)、5は第1(初段)カスケ
ードコンデンサ、6は第2(次段)気液分離器、
7は第2キヤピラリチユーブ(次段膨張手段)、
8は第2(次段)カスケードコンデンサ、9は第
3(終段)気液分離器、10は第3キヤピラリチ
ユーブ(終段膨張手段)、11は第3(終段)カス
ケードコンデンサ、12はキヤピラリチユーブ
(膨張手段)、13は蒸発器、14は第2補助コン
デンサ、15は第1補助コンデンサ、16は切換
弁、17は温度センサ、18は制御回路。
FIG. 1 is a mixed refrigerant cycle diagram showing an embodiment of the present invention, and FIGS. 2 and 3 are conventional mixed refrigerant cycle diagrams. In the drawings, 1 is a compressor, 2 is a condenser, 3 is a first (first stage) gas-liquid separator, 4 is a first capillary tube (first stage expansion means), 5 is a first (first stage) cascade condenser, and 6 is a first stage cascade condenser. Second (next stage) gas-liquid separator,
7 is a second capillary tube (next stage expansion means);
8 is a second (next stage) cascade condenser, 9 is a third (final stage) gas-liquid separator, 10 is a third capillary tube (final stage expansion means), 11 is a third (final stage) cascade condenser, 12 13 is a capillary tube (expansion means), 13 is an evaporator, 14 is a second auxiliary condenser, 15 is a first auxiliary condenser, 16 is a switching valve, 17 is a temperature sensor, and 18 is a control circuit.

Claims (1)

【実用新案登録請求の範囲】 (1) 多種の冷媒を混合してなる混合冷媒を圧縮
し、凝縮器で冷却、一部凝縮してなる気液混合
冷媒を、初段気液分離器でガス冷媒と液冷媒に
分け、このガス冷媒は初段カスケードコンデン
サの一方の流路を経て次段気液分離器に導き、
前記液冷媒は、初段膨張手段を経て次段カスケ
ードコンデンサの他の一方の流路からのガス冷
媒と共に初段カスケードコンデンサの他の一方
の流路を経て圧縮機に帰還させ、以下順次同様
に次段の気液分離器及びカスケードコンデンサ
に接続し、終段カスケードコンデンサで冷却さ
れた冷媒はさらに補助カスケードコンデンサの
一方の流路に導くとともに膨張手段を介して蒸
発器に導き、この蒸発器からのガス冷媒は前記
補助カスケードコンデンサの他の一方の流路に
導いてなる冷凍装置において、 前記終段気液分離器の液冷媒出口流路には切
換弁を接続するとともに、この切換弁の一方の
出口は前記終段膨張手段に接続し、またもう一
方の出口は前記蒸発器に接続された膨張手段の
入口に接続してなる、前記冷凍装置。 (2) 前記切換弁は電気信号によつて動作し、前記
蒸発器の出口側に設けた温度センサの出力を入
力する制御回路の出力を接続してなる実用新案
登録請求の範囲第1項記載の冷凍装置。
[Scope of claim for utility model registration] (1) A mixed refrigerant made by mixing various types of refrigerants is compressed, cooled in a condenser, and partially condensed. This gas refrigerant is led to the next stage gas-liquid separator through one flow path of the first stage cascade condenser.
The liquid refrigerant passes through the first-stage expansion means and returns to the compressor through the other flow path of the first-stage cascade condenser together with the gas refrigerant from the other flow path of the next-stage cascade condenser. The refrigerant cooled by the final stage cascade condenser is further guided to one flow path of the auxiliary cascade condenser, and is also guided to the evaporator via expansion means, where the gas from the evaporator is In a refrigeration system in which the refrigerant is guided to the other flow path of the auxiliary cascade condenser, a switching valve is connected to the liquid refrigerant outlet flow path of the final stage gas-liquid separator, and one outlet of the switching valve is connected to the liquid refrigerant outlet flow path of the final stage gas-liquid separator. is connected to the final stage expansion means, and the other outlet is connected to the inlet of the expansion means connected to the evaporator. (2) The switching valve is operated by an electric signal and is connected to the output of a control circuit that inputs the output of a temperature sensor provided on the outlet side of the evaporator. Refrigeration equipment.
JP7754886U 1986-05-21 1986-05-21 Expired JPH047491Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7754886U JPH047491Y2 (en) 1986-05-21 1986-05-21

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7754886U JPH047491Y2 (en) 1986-05-21 1986-05-21

Publications (2)

Publication Number Publication Date
JPS62189563U JPS62189563U (en) 1987-12-02
JPH047491Y2 true JPH047491Y2 (en) 1992-02-27

Family

ID=30925655

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7754886U Expired JPH047491Y2 (en) 1986-05-21 1986-05-21

Country Status (1)

Country Link
JP (1) JPH047491Y2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011112351A (en) * 2009-11-30 2011-06-09 Sanyo Electric Co Ltd Refrigerating device

Also Published As

Publication number Publication date
JPS62189563U (en) 1987-12-02

Similar Documents

Publication Publication Date Title
US4918942A (en) Refrigeration system with dual evaporators and suction line heating
US4809521A (en) Low pressure ratio high efficiency cooling system
JPH03125863A (en) Refrigerating cycle unit with two stage compression
CN113251681A (en) Refrigeration system with a plurality of heat absorption heat exchangers
JPH047491Y2 (en)
JP2698118B2 (en) Air conditioner
US4987751A (en) Process to expand the temperature glide of a non-azeotropic working fluid mixture in a vapor compression cycle
CN210951965U (en) Heat pump system for drying and dehumidifying
JP2003207220A (en) Cooling device
SU1134858A1 (en) Refrigerating plant
JP2626912B2 (en) Refrigeration equipment
JP2711879B2 (en) Low temperature refrigerator
KR100609168B1 (en) Cascade refrigerating cycle
JP2003279197A (en) Heat exchanger for condensation of freezer-refrigerator system
JP3256856B2 (en) Refrigeration system
JP2532754B2 (en) Refrigeration cycle equipment
KR0159238B1 (en) Two-step expanding apparatus using accumulator of an airconditioner
JP2611351B2 (en) Refrigeration cycle
JPH02225953A (en) Freezing system with double vaporizer for domestic refrigerator
JPH03158659A (en) Refrigerating plant
JPH07234041A (en) Cascade refrigerating equipment
JP2574545B2 (en) Refrigeration cycle device
JP4270802B2 (en) Ultra-low temperature refrigeration equipment
JPH0432663A (en) Refrigeration cycle arrangement
JPH0641097Y2 (en) Low temperature refrigerator