JP2611351B2 - Refrigeration cycle - Google Patents

Refrigeration cycle

Info

Publication number
JP2611351B2
JP2611351B2 JP17859788A JP17859788A JP2611351B2 JP 2611351 B2 JP2611351 B2 JP 2611351B2 JP 17859788 A JP17859788 A JP 17859788A JP 17859788 A JP17859788 A JP 17859788A JP 2611351 B2 JP2611351 B2 JP 2611351B2
Authority
JP
Japan
Prior art keywords
refrigerant
gas
liquid
liquid separator
extracted
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP17859788A
Other languages
Japanese (ja)
Other versions
JPH0229549A (en
Inventor
正 中坊
喜夫 宮田
健 松永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP17859788A priority Critical patent/JP2611351B2/en
Publication of JPH0229549A publication Critical patent/JPH0229549A/en
Application granted granted Critical
Publication of JP2611351B2 publication Critical patent/JP2611351B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Separation By Low-Temperature Treatments (AREA)
  • Air-Conditioning For Vehicles (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、カーエアコンやルームエアコンなどの冷房
装置あるいは冷凍装置に使用される冷凍サイクルに関す
る。
Description: TECHNICAL FIELD The present invention relates to a refrigerating cycle used for a cooling device or a refrigerating device such as a car air conditioner or a room air conditioner.

[従来の技術] 従来より、冷凍サイクルに使用される熱交換器の性能
を向上させるため、二重管構造の気液分離器を備えた熱
交換器が考案されている。
[Prior Art] Conventionally, in order to improve the performance of a heat exchanger used in a refrigeration cycle, a heat exchanger including a gas-liquid separator having a double pipe structure has been devised.

この気液分離器は、熱交換器の熱交換途中で冷媒の流
れが環状流となることから、この環状流部分を二重管構
造として内側の通路を流れるガス冷媒と外側の通路を流
れる液冷媒とを分離するものである。
In this gas-liquid separator, since the flow of the refrigerant becomes an annular flow during the heat exchange of the heat exchanger, the annular flow portion is formed into a double pipe structure, and the gas refrigerant flowing through the inner passage and the liquid flowing through the outer passage are formed. It separates from the refrigerant.

従って、気液分離器を冷媒凝縮器に備えた場合には、
冷媒凝縮器の熱交換途中で凝縮液化した液冷媒を気液分
離器によって抽出し、冷媒凝縮器内を凝縮前のガス冷媒
のみとすることにより冷媒凝縮器の熱交換効率を向上さ
せることができる。
Therefore, when the gas-liquid separator is provided in the refrigerant condenser,
The liquid refrigerant condensed and liquefied during the heat exchange of the refrigerant condenser is extracted by the gas-liquid separator, and the heat exchange efficiency of the refrigerant condenser can be improved by using only the gas refrigerant before condensation in the refrigerant condenser. .

なお、気液分離器により抽出された液冷媒は、冷媒凝
縮器で凝縮液化された液冷媒とともにレシーバに導かれ
る。
The liquid refrigerant extracted by the gas-liquid separator is guided to the receiver together with the liquid refrigerant condensed and liquefied by the refrigerant condenser.

また、気液分離器を冷媒蒸発器に備えた場合には、冷
媒蒸発器の熱交換途中で蒸発したガス冷媒を気液分離器
によって抽出し、冷媒蒸発器内を蒸発前の液冷媒のみと
することにより冷媒蒸発器の熱交換効率を向上させるこ
とができる。
Further, when the gas-liquid separator is provided in the refrigerant evaporator, the gas refrigerant evaporated during the heat exchange of the refrigerant evaporator is extracted by the gas-liquid separator, and the inside of the refrigerant evaporator is combined with only the liquid refrigerant before evaporation. By doing so, the heat exchange efficiency of the refrigerant evaporator can be improved.

なお、気液分離器により抽出されたガス冷媒は、冷媒
蒸発器で蒸発されたガス冷媒とともに冷媒圧縮機に吸引
される。
The gas refrigerant extracted by the gas-liquid separator is sucked into the refrigerant compressor together with the gas refrigerant evaporated by the refrigerant evaporator.

このように、熱交換器の熱交換途中に気液分離器を備
えることにより熱交換器の性能を向上させることができ
る。この結果、熱交換器の小型化、あるいは同じ大きさ
であれば熱交換器の能力を増大させることができる。
Thus, the performance of the heat exchanger can be improved by providing the gas-liquid separator during the heat exchange of the heat exchanger. As a result, it is possible to reduce the size of the heat exchanger or to increase the capacity of the heat exchanger if the size is the same.

[発明が解決しようとする課題] しかるに、上述のような気液分離器では、気液分離器
の構造上ガス冷媒と液冷媒とを完全に分離するのは困難
である。このため、冷媒凝縮器側では気液分離器により
抽出された液冷媒に過熱ガスが混在してレシーバに導か
れ、レシーバ内の液冷媒を再蒸発させてしまう。
[Problems to be Solved by the Invention] However, in the gas-liquid separator as described above, it is difficult to completely separate the gas refrigerant and the liquid refrigerant due to the structure of the gas-liquid separator. Therefore, on the refrigerant condenser side, the superheated gas is mixed with the liquid refrigerant extracted by the gas-liquid separator and guided to the receiver, and the liquid refrigerant in the receiver is re-evaporated.

また、冷媒蒸発器側では気液分離器より抽出されたガ
ス冷媒に液冷媒が混在して冷媒圧縮機に吸引され、冷媒
圧縮機が液圧縮により破損する可能性があると同時に、
サイクル効率が低下する課題を有していた。
Also, on the refrigerant evaporator side, the liquid refrigerant is mixed with the gas refrigerant extracted from the gas-liquid separator and is sucked into the refrigerant compressor, and the refrigerant compressor may be damaged by liquid compression, and at the same time,
There was a problem that the cycle efficiency was reduced.

本発明は、上記事情に鑑みてなされたもので、その目
的は、気液分離器により抽出した液冷媒およびガス冷媒
を完全に液化およびガス化してサイクル効率を向上させ
た冷凍サイクルを提供することにある。
The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a refrigeration cycle in which liquid refrigerant and gas refrigerant extracted by a gas-liquid separator are completely liquefied and gasified to improve cycle efficiency. It is in.

[課題を解決するための手段] 本発明は上記目的を達成するために、以下の技術的手
段を採用する。
[Means for Solving the Problems] In order to achieve the above object, the present invention employs the following technical means.

吸入したガス冷媒を圧縮して吐出する冷媒圧縮機と、
前記冷媒圧縮機より吐出された高圧の冷媒を凝縮液化さ
せる冷媒凝縮器と、前記冷媒凝縮器より供給された冷媒
を断熱膨張する減圧装置と、前記減圧装置によって断熱
膨張された冷媒を蒸発させる冷媒蒸発器と、前記冷媒凝
縮器の熱交換途中に設けられ、凝縮前のガス冷媒と凝縮
後の液冷媒とを分離して、その分離した液冷媒を抽出し
て前記減圧装置に供給し、分離したガス冷媒を前記冷媒
凝縮器の下流側部位へ流入させる第1気液分離器と、前
記冷媒蒸発器の熱交換途中に設けられ、蒸発前の液冷媒
と蒸発後のガス冷媒と分離して、その分離したガス冷媒
を抽出して前記冷媒圧縮機に供給し、分離した液冷媒を
前記冷媒蒸発器の下流側部位へ流入させる第2気液分離
器と、前記第1気液分離器により抽出されて前記減圧装
置に導かれる液冷媒と前記第2気液分離器により抽出さ
れて前記冷媒圧縮機に導かれるガス冷媒とを熱交換させ
る冷媒熱交換器とを具備することを特徴とする。
A refrigerant compressor that compresses and discharges the sucked gas refrigerant;
A refrigerant condenser for condensing and liquefying the high-pressure refrigerant discharged from the refrigerant compressor, a decompression device for adiabatically expanding the refrigerant supplied from the refrigerant condenser, and a refrigerant for evaporating the refrigerant adiabatically expanded by the decompression device An evaporator, which is provided in the middle of heat exchange between the refrigerant condenser, separates a gas refrigerant before condensation and a liquid refrigerant after condensation, extracts the separated liquid refrigerant, supplies the separated liquid refrigerant to the decompression device, and separates the liquid refrigerant. A first gas-liquid separator that allows the discharged gas refrigerant to flow into a downstream portion of the refrigerant condenser, and is provided in the middle of heat exchange between the refrigerant evaporator and separates the liquid refrigerant before evaporation from the gas refrigerant after evaporation. A second gas-liquid separator that extracts the separated gas refrigerant and supplies it to the refrigerant compressor, and allows the separated liquid refrigerant to flow into a downstream portion of the refrigerant evaporator; and the first gas-liquid separator. Liquid cooling which is extracted and led to the decompression device Characterized by comprising the said second gas-liquid separator refrigerant heat exchanger for heat exchange between the gas refrigerant is extracted guided to the refrigerant compressor through.

[作用] 第1気液分離器によって分離された液冷媒は第1気液
分離器から減圧装置に供給され、分離されたガス冷媒は
第1気液分離器から冷媒凝縮器の下流側部位へ流入す
る。一方、第2気液分離器によって分離されたガス冷媒
は第2気液分離器から冷媒圧縮機に供給され、分離され
た液冷媒は第2気液分離器から冷媒蒸発器の下流側部位
へ流入する。
[Operation] The liquid refrigerant separated by the first gas-liquid separator is supplied from the first gas-liquid separator to the pressure reducing device, and the separated gas refrigerant is transferred from the first gas-liquid separator to a downstream portion of the refrigerant condenser. Inflow. On the other hand, the gas refrigerant separated by the second gas-liquid separator is supplied from the second gas-liquid separator to the refrigerant compressor, and the separated liquid refrigerant is transferred from the second gas-liquid separator to a downstream portion of the refrigerant evaporator. Inflow.

第1気液分離器から減圧装置に導かれる液冷媒と第2
気液分離器から冷媒圧縮機に導かれるガス冷媒は冷媒熱
交換器で熱交換される。ここで、第1気液分離器によっ
て抽出された液冷媒には液化されていない過熱ガスが含
まれ、第2気液分離器によって抽出されたガス冷媒には
未蒸発の液冷媒が含まれており、且つ第1気液分離器に
よって抽出された液冷媒の方が第2気液分離器によって
抽出されたガス冷媒より温度が高い。このため、第1気
液分離器により抽出された液冷媒と第2気液分離器によ
り抽出されたガス冷媒とが冷媒熱交換器で熱交換される
ことにより、液冷媒に含まれる過熱ガスは凝縮して液化
され、ガス冷媒に含まれる未蒸発の液冷媒は蒸発してガ
ス化される。
The liquid refrigerant introduced from the first gas-liquid separator to the pressure reducing device and the second refrigerant
The gas refrigerant guided from the gas-liquid separator to the refrigerant compressor undergoes heat exchange in the refrigerant heat exchanger. Here, the liquid refrigerant extracted by the first gas-liquid separator includes a superheated gas that is not liquefied, and the gas refrigerant extracted by the second gas-liquid separator includes an unevaporated liquid refrigerant. In addition, the temperature of the liquid refrigerant extracted by the first gas-liquid separator is higher than that of the gas refrigerant extracted by the second gas-liquid separator. Therefore, the liquid refrigerant extracted by the first gas-liquid separator and the gas refrigerant extracted by the second gas-liquid separator undergo heat exchange in the refrigerant heat exchanger, so that the superheated gas contained in the liquid refrigerant becomes The liquid refrigerant which is condensed and liquefied, and which is not evaporated, contained in the gas refrigerant evaporates and is gasified.

これにより、第1気液分離器によって冷媒凝縮器より
抽出された過熱ガスを含む液冷媒は完全に液化されて減
圧装置に供給され、第2気液分離器によって冷媒蒸発器
より抽出された未蒸発の液冷媒を含むガス冷媒は完全に
ガス化されて冷媒圧縮機に吸引される。
As a result, the liquid refrigerant containing the superheated gas extracted from the refrigerant condenser by the first gas-liquid separator is completely liquefied and supplied to the decompression device, and is not extracted from the refrigerant evaporator by the second gas-liquid separator. The gas refrigerant including the liquid refrigerant for evaporation is completely gasified and sucked into the refrigerant compressor.

一方、第1気液分離器で分離されたガス冷媒は、第1
気液分離器より下流側の冷媒凝縮器内を流れて凝縮液化
された後、減圧装置に供給され、第2気液分離器で分離
された液冷媒は、第2気液分離器より下流側の冷媒蒸発
器内を流れて蒸発した後、冷媒圧縮機に吸引される。
On the other hand, the gas refrigerant separated by the first gas-liquid separator is
After flowing in the refrigerant condenser downstream of the gas-liquid separator and being condensed and liquefied, the liquid refrigerant supplied to the decompression device and separated by the second gas-liquid separator is downstream of the second gas-liquid separator. After flowing through the refrigerant evaporator and evaporating, the refrigerant is sucked into the refrigerant compressor.

[発明の効果] 本発明によれば、第1気液分離器で抽出した過熱ガス
を含む液冷媒と、第2気液分離器で抽出した未蒸発の液
冷媒を含むガス冷媒とを冷媒熱交換器で熱交換させるこ
とにより、過熱ガスを含む液冷媒を完全に液化できると
ともに、未蒸発の液冷媒を含むガス冷媒を完全にガス化
できる。これにより、過熱ガスがレシーバ内に流入する
のを防止して、レシーバ内の液冷媒を再蒸発させるのを
防ぐことができるとともに、液冷媒が冷媒圧縮機に吸引
されるのを防止して、液圧縮による冷媒圧縮機の破損を
防止できる。
[Effects of the Invention] According to the present invention, the liquid refrigerant containing the superheated gas extracted by the first gas-liquid separator and the gas refrigerant containing the unevaporated liquid refrigerant extracted by the second gas-liquid separator are cooled by the refrigerant heat. By performing heat exchange in the exchanger, the liquid refrigerant containing the superheated gas can be completely liquefied, and the gas refrigerant containing the unevaporated liquid refrigerant can be completely gasified. Thereby, it is possible to prevent the superheated gas from flowing into the receiver, to prevent the liquid refrigerant in the receiver from being re-evaporated, and to prevent the liquid refrigerant from being sucked into the refrigerant compressor, Damage to the refrigerant compressor due to liquid compression can be prevented.

また、第1気液分離器によって冷媒凝縮器より抽出し
た液冷媒、及び第2気液分離器によって冷媒蒸発器より
抽出したガス冷媒を完全に液化及びガス化できることに
より、冷凍サイクルの効率低下を防ぐことができる。
Further, the liquid refrigerant extracted from the refrigerant condenser by the first gas-liquid separator and the gas refrigerant extracted from the refrigerant evaporator by the second gas-liquid separator can be completely liquefied and gasified, thereby reducing the efficiency of the refrigeration cycle. Can be prevented.

[実施例] 次に、車両用空気調和装置に適用した本発明の冷凍サ
イクルを図面に示す一実施例に基づき説明する。
Embodiment Next, a refrigeration cycle of the present invention applied to an air conditioner for a vehicle will be described based on an embodiment shown in the drawings.

第1図は冷凍サイクルの冷媒回路図を示す。 FIG. 1 shows a refrigerant circuit diagram of a refrigeration cycle.

本実施例の冷凍サイクル1は、冷媒圧縮機2、冷媒凝
縮器3、レシーバ4、本発明の減圧装置である膨張弁
5、および冷媒蒸発器6の各機能部品と、冷媒凝縮器3
の熱交換途中より液冷媒を抽出する第1気液分離器7お
よび冷媒蒸発器6の熱交換途中よりガス冷媒を抽出する
第2気液分離器8と、冷媒凝縮器3から抽出した液冷媒
と冷媒蒸発器6から抽出したガス冷媒とを熱交換させる
冷媒熱交換器9とから構成され、それぞれ冷媒配管10に
より接続されている。
The refrigeration cycle 1 of the present embodiment includes a refrigerant compressor 2, a refrigerant condenser 3, a receiver 4, an expansion valve 5, which is a decompression device of the present invention, and a refrigerant evaporator 6;
A first gas-liquid separator 7 for extracting a liquid refrigerant during the heat exchange of the second and a second gas-liquid separator 8 for extracting a gas refrigerant during the heat exchange of the refrigerant evaporator 6, and a liquid refrigerant extracted from the refrigerant condenser 3. And a refrigerant heat exchanger 9 for exchanging heat with the gas refrigerant extracted from the refrigerant evaporator 6, and each is connected by a refrigerant pipe 10.

冷媒圧縮機2は、電磁クラッチ11を介して車両の走行
用エンジン12によって駆動され、吸入したガス冷媒を高
温・高圧に圧縮して吐出する。
The refrigerant compressor 2 is driven by a traveling engine 12 of the vehicle via an electromagnetic clutch 11, compresses the drawn gas refrigerant to a high temperature and a high pressure, and discharges it.

冷媒凝縮器3は、冷媒圧縮機2から吐出された冷媒を
空気と熱交換させて凝縮液化させる。
The refrigerant condenser 3 condenses and liquefies the refrigerant discharged from the refrigerant compressor 2 by exchanging heat with air.

レシーバ4は、冷媒凝縮器3より導かれた冷媒を一時
蓄えるとともに、負荷に応じて膨張弁5に吐出する。
The receiver 4 temporarily stores the refrigerant guided from the refrigerant condenser 3 and discharges the refrigerant to the expansion valve 5 according to the load.

膨張弁5は、レシーバ4から供給された冷媒を断熱膨
張して冷媒蒸発器6に吐出する。
The expansion valve 5 adiabatically expands the refrigerant supplied from the receiver 4 and discharges the refrigerant to the refrigerant evaporator 6.

冷媒蒸発器6は、供給された液冷媒を空気と熱交換さ
せて蒸発させるとともに空気を冷却する。蒸発したガス
冷媒は冷媒圧縮機2に吸引される。
The refrigerant evaporator 6 evaporates the supplied liquid refrigerant by exchanging heat with the air and cools the air. The evaporated gas refrigerant is sucked into the refrigerant compressor 2.

第1気液分離器7は、冷媒凝縮器3の熱交換途中の冷
媒通路13に介設されており、凝縮液化された液冷媒と凝
縮前のガス冷媒とを分離して液冷媒を抽出するものであ
る。
The first gas-liquid separator 7 is provided in the refrigerant passage 13 during the heat exchange of the refrigerant condenser 3, and separates the condensed and liquefied liquid refrigerant from the gas refrigerant before condensation to extract the liquid refrigerant. Things.

第2気液分離器8は、冷媒蒸発器6の熱交換途中の冷
媒通路14に介設されており、蒸発したガス冷媒と未蒸発
の液冷媒とを分離してガス冷媒を抽出するものである。
The second gas-liquid separator 8 is provided in the refrigerant passage 14 during the heat exchange of the refrigerant evaporator 6, and separates the evaporated gas refrigerant and the unevaporated liquid refrigerant to extract the gas refrigerant. is there.

第1気液分離器7は、第2図に示すように大径の外周
チューブ15と小径の内周チューブ16とから構成されて二
重管構造を呈し、外周チューブ15の一端15aが内周チュ
ーブ16の外周部にかしめられている。
As shown in FIG. 2, the first gas-liquid separator 7 is composed of a large-diameter outer tube 15 and a small-diameter inner tube 16, and has a double-tube structure. It is crimped on the outer periphery of the tube 16.

この第1気液分離器7は、冷媒の入口となる外周チュ
ーブ15の他端15bが冷媒凝縮器3の上流側冷媒通路13aの
下端に接続され、分離したガス冷媒の抽出出口となる内
周チューブ16の一端16aが冷媒凝縮器3の下流側冷媒通
路13b(本発明の冷媒凝縮器の下流側部位)の上端に接
続されている。なお、内周チューブ16の他端16bは、外
周チューブ15内の中央で冷媒の流れ方向に向かって開口
している。
In the first gas-liquid separator 7, the other end 15b of the outer peripheral tube 15 serving as the refrigerant inlet is connected to the lower end of the upstream refrigerant passage 13a of the refrigerant condenser 3, and the inner periphery serving as the extraction outlet of the separated gas refrigerant is provided. One end 16a of the tube 16 is connected to the upper end of a downstream refrigerant passage 13b (a downstream portion of the refrigerant condenser of the present invention) of the refrigerant condenser 3. The other end 16b of the inner peripheral tube 16 is open at the center of the outer peripheral tube 15 in the flow direction of the refrigerant.

また、外周チューブ15の一端側には、分離した液冷媒
を抽出するための抽出出口15cが設けられ、冷媒配管10a
を介してレシーバ4に接続されている。
An extraction outlet 15c for extracting the separated liquid refrigerant is provided at one end of the outer peripheral tube 15, and a refrigerant pipe 10a
Is connected to the receiver 4 via the.

一方、第3図に示す第2気液分離器8は、第1気液分
離器7と同様に大径の外周チューブ17と小径の内周チュ
ーブ18とから構成されて二重管構造を呈し、外周チュー
ブ17の一端17aが内周チューブ18の外周部にかしめられ
ている。
On the other hand, the second gas-liquid separator 8 shown in FIG. 3 is composed of a large-diameter outer tube 17 and a small-diameter inner tube 18 like the first gas-liquid separator 7, and has a double tube structure. One end 17a of the outer peripheral tube 17 is caulked to the outer peripheral portion of the inner peripheral tube 18.

この第2気液分離器8は、冷媒の入口となる外周チュ
ーブ17の他端17bが冷媒蒸発器6の上流側冷媒通路14aの
下端に接続され、分離したガス冷媒の抽出出口となる内
周チューブ18の一端18aが冷媒配管10bを介して冷媒圧縮
機2に接続されている。なお、内周チューブ18の他端18
bは、外周チューブ17内の中央で冷媒の流れ方向に向か
って開口している。
In the second gas-liquid separator 8, the other end 17b of the outer peripheral tube 17 serving as the inlet of the refrigerant is connected to the lower end of the upstream refrigerant passage 14a of the refrigerant evaporator 6, and the inner periphery serving as the extraction outlet of the separated gas refrigerant is provided. One end 18a of the tube 18 is connected to the refrigerant compressor 2 via the refrigerant pipe 10b. The other end 18 of the inner peripheral tube 18
“b” is open toward the flow direction of the refrigerant at the center in the outer peripheral tube 17.

また、外周チューブ17の一端側には、分離した液冷媒
を抽出するための抽出出口17cが設けられ、冷媒蒸発器
6の下流側冷媒通路14b(本発明の冷媒蒸発器の下流側
部位)の上端に接続されている。
An extraction outlet 17c for extracting the separated liquid refrigerant is provided on one end side of the outer peripheral tube 17, and is provided in a downstream refrigerant passage 14b of the refrigerant evaporator 6 (a downstream portion of the refrigerant evaporator of the present invention). Connected to the upper end.

上述の第1気液分離器7および第2気液分離器8は、
冷媒通路13および14を流れる気液二相の冷媒が環状流と
なる所(冷媒通路13および14の上流と下流とのほぼ中央
位置)に設けられている。
The first gas-liquid separator 7 and the second gas-liquid separator 8 described above include:
The gas-liquid two-phase refrigerant flowing through the refrigerant passages 13 and 14 is provided at a location where the refrigerant flows into an annular flow (substantially at the center between the upstream and downstream of the refrigerant passages 13 and 14).

従って、第1気液分離器7に導かれた冷媒は、外周チ
ューブ15内の外周寄りを液冷媒が流れて、中央部をガス
冷媒が流れるため、外周チューブ15の一端側に設けた抽
出出口15cより液冷媒が抽出され、内周チューブ16を通
ってガス冷媒が抽出される。抽出出口15cより抽出され
た液冷媒は、抽出出口15cに接続される冷媒配管10aを通
ってレシーバ4に供給され、内周チューブ16を通って抽
出されたガス冷媒は、内周チューブ16に接続される冷媒
凝縮器3の下流側冷媒通路13bに流入する。
Therefore, the refrigerant guided to the first gas-liquid separator 7 is such that the liquid refrigerant flows near the outer periphery in the outer tube 15 and the gas refrigerant flows in the central portion. Liquid refrigerant is extracted from 15c, and gas refrigerant is extracted through the inner peripheral tube 16. The liquid refrigerant extracted from the extraction outlet 15c is supplied to the receiver 4 through the refrigerant pipe 10a connected to the extraction outlet 15c, and the gas refrigerant extracted through the inner peripheral tube 16 is connected to the inner peripheral tube 16. Into the downstream refrigerant passage 13b of the refrigerant condenser 3 to be cooled.

また、第2気液分離器8に導かれた冷媒は、外周チュ
ーブ17内の外周寄りを液冷媒が流れて、中央部をガス冷
媒が流れるため、外周チューブ17の一端側に設けた抽出
出口17cより液冷媒が抽出され、内周チューブ18を通っ
てガス冷媒が抽出される。内周チューブ18を通って抽出
されたガス冷媒は、内周チューブ18に接続される冷媒配
管10bを通って冷媒圧縮機2に吸引され、抽出出口17cよ
り抽出された液冷媒は、抽出出口17cに接続される冷媒
蒸発器6の下流側冷媒通路14bに流入する。
Further, the refrigerant guided to the second gas-liquid separator 8 is such that the liquid refrigerant flows near the outer periphery in the outer tube 17 and the gas refrigerant flows in the central portion, so that the extraction outlet provided at one end of the outer tube 17 is provided. Liquid refrigerant is extracted from 17c, and gas refrigerant is extracted through the inner peripheral tube 18. The gas refrigerant extracted through the inner peripheral tube 18 is sucked into the refrigerant compressor 2 through the refrigerant pipe 10b connected to the inner peripheral tube 18, and the liquid refrigerant extracted from the extraction outlet 17c is extracted by the extraction outlet 17c. Flows into the downstream side refrigerant passage 14b of the refrigerant evaporator 6 connected to the refrigerant evaporator 6.

冷媒熱交換器9は、第1気液分離器7により抽出され
てレシーバ4に導かれる液冷媒と第2気液分離器8によ
り抽出されて冷媒圧縮機2に導かれるガス冷媒とを熱交
換させるもので、例えば、第1図に示すように冷媒配管
10aの外周を冷媒配管10bが螺旋状に旋回して構成されて
いる。
The refrigerant heat exchanger 9 exchanges heat between the liquid refrigerant extracted by the first gas-liquid separator 7 and guided to the receiver 4 and the gas refrigerant extracted by the second gas-liquid separator 8 and guided to the refrigerant compressor 2. For example, as shown in FIG.
The refrigerant pipe 10b is configured to spirally turn around the outer circumference of 10a.

この冷媒熱交換器9は、本実施例の第1気液分離器7
および第2気液分離器8では完全に液冷媒とガス冷媒と
を分離することができないため、冷媒凝縮器3より抽出
された液冷媒と冷媒蒸発器6より抽出されたガス冷媒と
を熱交換させ、冷媒凝縮器3より抽出した過熱ガスを含
む液冷媒を完全に液化するとともに、冷媒蒸発器6より
抽出した未蒸発の液冷媒を含むガス冷媒を完全にガス化
するものである。
This refrigerant heat exchanger 9 is the first gas-liquid separator 7 of the present embodiment.
In addition, since the second gas-liquid separator 8 cannot completely separate the liquid refrigerant and the gas refrigerant, heat exchange is performed between the liquid refrigerant extracted from the refrigerant condenser 3 and the gas refrigerant extracted from the refrigerant evaporator 6. Thus, the liquid refrigerant containing the superheated gas extracted from the refrigerant condenser 3 is completely liquefied, and the gas refrigerant containing the unevaporated liquid refrigerant extracted from the refrigerant evaporator 6 is completely gasified.

次に、上記冷凍サイクル1の作動を説明する。 Next, the operation of the refrigeration cycle 1 will be described.

電磁クラッチ11の通電によりエンジン12の動力を受け
て冷媒圧縮機2が駆動される。
The refrigerant compressor 2 is driven by receiving the power of the engine 12 when the electromagnetic clutch 11 is energized.

冷媒圧縮機2は、吸入したガス冷媒を高温・高圧に圧
縮して吐出し、冷媒凝縮器3に供給する。
The refrigerant compressor 2 compresses the sucked gas refrigerant to a high temperature and a high pressure, discharges the compressed gas refrigerant, and supplies the refrigerant to the refrigerant condenser 3.

冷媒凝縮器3では、供給されたガス冷媒が冷媒通路13
を流れる際に車室外の空気と熱交換されて凝縮液化す
る。
In the refrigerant condenser 3, the supplied gas refrigerant is supplied to the refrigerant passage 13.
When it flows through it, it exchanges heat with the air outside the cabin and condenses and liquefies.

このとき、液化されながら冷媒通路13を流れる気液二
相の冷媒が第1気液分離器7まで達した際に、冷媒の流
れが環状流であることから、冷媒通路13の外周寄りを流
れる液冷媒が第1気液分離器7の外周チューブ15に設け
た抽出出口15cより冷媒配管10aを通って抽出され、冷媒
熱交換器9で冷媒蒸発器6より抽出されたガス冷媒と熱
交換された後、レシーバ4に導かれる。
At this time, when the gas-liquid two-phase refrigerant flowing through the refrigerant passage 13 while being liquefied reaches the first gas-liquid separator 7, the refrigerant flows in an annular flow, since the refrigerant flows in an annular flow. The liquid refrigerant is extracted through the refrigerant pipe 10a from the extraction outlet 15c provided in the outer peripheral tube 15 of the first gas-liquid separator 7, and heat-exchanges with the gas refrigerant extracted from the refrigerant evaporator 6 in the refrigerant heat exchanger 9. After that, it is guided to the receiver 4.

一方、冷媒通路13の中央部を流れるガス冷媒は、第1
気液分離器7の内周チューブ16を流れて内周チューブ16
の一端16aより冷媒凝縮器3の下流側冷媒通路13bに供給
される。
On the other hand, the gas refrigerant flowing in the center of the refrigerant passage 13 is the first refrigerant.
Flow through the inner tube 16 of the gas-liquid separator 7
Of the refrigerant condenser 3 from the one end 16a.

これにより、第1気液分離器7より下流では、液冷媒
が取り除かれてガス冷媒のみとなるため、冷媒凝縮器3
の下流側での熱交換効率が向上する。
As a result, the liquid refrigerant is removed downstream of the first gas-liquid separator 7 and becomes only the gas refrigerant.
The heat exchange efficiency on the downstream side is improved.

冷媒凝縮器3で凝縮液化された冷媒は、レシーバ4に
導かれた後、負荷に応じて膨張弁5に供給される。
The refrigerant condensed and liquefied in the refrigerant condenser 3 is guided to the receiver 4 and then supplied to the expansion valve 5 according to the load.

膨張弁5に供給された冷媒は、断熱膨張されて冷媒蒸
発器6に吐出される。
The refrigerant supplied to the expansion valve 5 is adiabatically expanded and discharged to the refrigerant evaporator 6.

冷媒蒸発器6では、冷媒通路14を流れる液冷媒が車室
内へ吹き出される空気から潜熱を奪って蒸発し、ガス冷
媒となって冷媒圧縮機2に吸引される。
In the refrigerant evaporator 6, the liquid refrigerant flowing through the refrigerant passage 14 evaporates by taking latent heat from the air blown into the vehicle interior, and is sucked into the refrigerant compressor 2 as a gas refrigerant.

このとき、ガス化されながら冷媒通路14を流れる気液
二相の冷媒が第2気液分離器8まで達した際に、冷媒の
流れが環状流であることから、冷媒通路14の外周寄りを
流れる霧状冷媒が第2気液分離器8の外周チューブ17に
設けた抽出出口17cより冷媒蒸発器6の下流側冷媒通路1
4bに供給される。
At this time, when the gas-liquid two-phase refrigerant flowing through the refrigerant passage 14 while being gasified reaches the second gas-liquid separator 8, the flow of the refrigerant is an annular flow. The flowing mist refrigerant passes through an extraction outlet 17 c provided in the outer peripheral tube 17 of the second gas-liquid separator 8 and is connected to the refrigerant passage 1 on the downstream side of the refrigerant evaporator 6.
Supplied to 4b.

一方、冷媒通路14の中央部を流れるガス冷媒は、第2
気液分離器8の内周チューブ18を流れて内周チューブ18
の一端18aより冷媒配管10bを通って抽出され、冷媒熱交
換器9で冷媒凝縮器3より抽出された液冷媒と熱交換さ
れた後、冷媒圧縮機2に吸引される。
On the other hand, the gas refrigerant flowing in the central portion of the refrigerant passage 14 is the second refrigerant.
Flow through the inner tube 18 of the gas-liquid separator 8
The refrigerant is extracted from one end 18a through the refrigerant pipe 10b, exchanges heat with the liquid refrigerant extracted from the refrigerant condenser 3 in the refrigerant heat exchanger 9, and is then sucked into the refrigerant compressor 2.

これにより、第2気液分離器8より下流では、ガス冷
媒が取り除かれて霧状冷媒のみとなるため、冷媒蒸発器
6の下流側での熱交換効率が向上する。
As a result, the gas refrigerant is removed downstream of the second gas-liquid separator 8 so that only the atomized refrigerant is present, so that the heat exchange efficiency downstream of the refrigerant evaporator 6 is improved.

また、上記冷凍サイクル1の作動において、冷媒熱交
換器9で冷媒凝縮器3より抽出した液冷媒と冷媒蒸発器
6より抽出したガス冷媒とを熱交換させることにより、
液冷媒に含まれる過熱ガスは凝縮して液化され、ガス冷
媒に含まれる未蒸発の液冷媒は蒸発してガス化される。
Further, in the operation of the refrigeration cycle 1, the refrigerant heat exchanger 9 causes heat exchange between the liquid refrigerant extracted from the refrigerant condenser 3 and the gas refrigerant extracted from the refrigerant evaporator 6.
The superheated gas contained in the liquid refrigerant is condensed and liquefied, and the unevaporated liquid refrigerant contained in the gas refrigerant is vaporized and gasified.

この結果、第1気液分離器7によって冷媒凝縮器3よ
り抽出された過熱ガスを含む液冷媒は完全に液化されて
レシーバ4に導かれ、第2気液分離器8によって冷媒蒸
発器6より抽出された未蒸発の液冷媒を含むガス冷媒は
完全にガス化されて冷媒圧縮機2に導かれる。
As a result, the liquid refrigerant containing the superheated gas extracted from the refrigerant condenser 3 by the first gas-liquid separator 7 is completely liquefied and guided to the receiver 4, and the second gas-liquid separator 8 outputs the liquid refrigerant from the refrigerant evaporator 6. The extracted gas refrigerant including the unevaporated liquid refrigerant is completely gasified and guided to the refrigerant compressor 2.

従って、過熱ガスがレシーバ4内に流入してレシーバ
4内に液冷媒を再蒸発させるのを防ぐことができるとと
もに、液冷媒が冷媒圧縮機2に吸引されて液圧縮による
冷媒圧縮機2の破損を防止することができる。
Therefore, it is possible to prevent the superheated gas from flowing into the receiver 4 and re-evaporating the liquid refrigerant into the receiver 4, and the liquid refrigerant is sucked into the refrigerant compressor 2 to damage the refrigerant compressor 2 due to the liquid compression. Can be prevented.

また、冷媒凝縮器3より抽出した液冷媒および冷媒蒸
発器6より抽出したガス冷媒を完全に液化およびガス化
することができるため、冷凍サイクル1の効率低下を防
ぐことができる。
Further, since the liquid refrigerant extracted from the refrigerant condenser 3 and the gas refrigerant extracted from the refrigerant evaporator 6 can be completely liquefied and gasified, a decrease in the efficiency of the refrigeration cycle 1 can be prevented.

第4図に本発明の第2実施例を示す。 FIG. 4 shows a second embodiment of the present invention.

本実施例では、本発明の冷凍サイクル1にアキューム
レータサイクルを採用したものである。
In the present embodiment, the refrigeration cycle 1 of the present invention employs an accumulator cycle.

従って、本実施例の冷凍サイクル1は、第1実施例で
示した冷媒圧縮機2、冷媒凝縮器3、冷媒蒸発器6、第
1気液分離器7、第2気液分離器8、および冷媒熱交換
器9の他に、冷媒蒸発器6の上流に本発明の減圧装置で
あるキャピラリチューブ19が設けられるとともに、冷媒
圧縮機2の上流にアキュームレータ20が配設されてい
る。
Accordingly, the refrigeration cycle 1 of the present embodiment includes the refrigerant compressor 2, the refrigerant condenser 3, the refrigerant evaporator 6, the first gas-liquid separator 7, the second gas-liquid separator 8, and the refrigerant compressor 2 shown in the first embodiment. In addition to the refrigerant heat exchanger 9, a capillary tube 19, which is a decompression device of the present invention, is provided upstream of the refrigerant evaporator 6, and an accumulator 20 is provided upstream of the refrigerant compressor 2.

第5図に本発明の第3実施例を示す。 FIG. 5 shows a third embodiment of the present invention.

本実施例では、冷媒熱交換器9を冷媒圧縮機2の上流
に配置し、第2気液分離器8により冷媒蒸発器6より抽
出した冷媒を、冷媒蒸発器6で蒸発したガス冷媒と合流
させた後に冷媒熱交換器9に導くものである。
In the present embodiment, the refrigerant heat exchanger 9 is arranged upstream of the refrigerant compressor 2, and the refrigerant extracted from the refrigerant evaporator 6 by the second gas-liquid separator 8 joins with the gas refrigerant evaporated by the refrigerant evaporator 6. After that, it is guided to the refrigerant heat exchanger 9.

(変形例) 本発明の冷凍サイクル1を車両用空気調和装置に適用
した場合を例示したが、家庭用、商業用、工業用空気調
和装置や、鉄道、船舶などの空気調和装置、冷蔵装置、
冷凍装置などに適用しても良い。
(Modifications) The case where the refrigeration cycle 1 of the present invention is applied to an air conditioner for a vehicle has been exemplified. However, air conditioners for home use, commercial use, industrial use, air conditioners for railways and ships, refrigeration units,
It may be applied to a refrigerating device or the like.

また、冷媒熱交換器9として、冷媒配管10aの外周を
冷媒配管10bが螺旋状に旋回して構成されたものを例示
したが、冷媒配管10bの外周を冷媒配管10aが螺旋状に旋
回して構成したものでも良く、あるいは大径の熱交換通
路の内部に小径の熱交換通路を配設して構成される二重
管構造の冷媒熱交換器でも良い。
In addition, as the refrigerant heat exchanger 9, the refrigerant heat exchanger 9 is configured such that the refrigerant pipe 10b spirally turns around the outer circumference of the refrigerant pipe 10a, but the refrigerant pipe 10a turns spirally around the outer circumference of the refrigerant pipe 10b. The refrigerant heat exchanger may have a double-tube structure, in which a small-diameter heat exchange passage is provided inside a large-diameter heat exchange passage.

【図面の簡単な説明】[Brief description of the drawings]

第1図ないし第3図は本発明の第1実施例を示すもの
で、第1図は本発明の冷凍サイクルの冷媒回路図、第2
図は第1気液分離器の断面図、第3図は第2気液分離器
の断面図であり、第4図は本発明の第2実施例を示す冷
凍サイクルの冷媒回路図、第5図は本発明の第3実施例
を示す冷凍サイクルの冷媒回路図である。 図中 1……冷凍サイクル、2……冷媒圧縮機 3……冷媒凝縮器、5……膨張弁(減圧装置) 6……冷媒蒸発器、7……第1気液分離器 8……第2気液分離器 13b……下流側冷媒通路(冷媒凝縮器の下流側部位) 14b……下流側冷媒通路(冷媒蒸発器の下流側部位) 19……キュピラリチューブ(減圧装置)
FIGS. 1 to 3 show a first embodiment of the present invention. FIG. 1 is a refrigerant circuit diagram of a refrigeration cycle of the present invention.
FIG. 3 is a sectional view of a first gas-liquid separator, FIG. 3 is a sectional view of a second gas-liquid separator, FIG. 4 is a refrigerant circuit diagram of a refrigeration cycle showing a second embodiment of the present invention, and FIG. FIG. 7 is a refrigerant circuit diagram of a refrigeration cycle showing a third embodiment of the present invention. In the drawing, 1 ... refrigeration cycle, 2 ... refrigerant compressor 3 ... refrigerant condenser, 5 ... expansion valve (decompression device) 6 ... refrigerant evaporator, 7 ... first gas-liquid separator 8 ... 2b gas-liquid separator 13b ... downstream refrigerant passage (downstream part of refrigerant condenser) 14b ... downstream refrigerant passage (downstream part of refrigerant evaporator) 19 ... capillary tube (pressure reducing device)

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】(a)吸入したガス冷媒を圧縮して吐出す
る冷媒圧縮機と、 (b)前記冷媒圧縮機より吐出された高圧の冷媒を凝縮
液化させる冷媒凝縮器と、 (c)前記冷媒凝縮器より供給された冷媒を断熱膨張す
る減圧装置と、 (d)前記減圧装置によって断熱膨張された冷媒を蒸発
させる冷媒蒸発器と、 (e)前記冷媒凝縮器の熱交換途中に設けられ、凝縮前
のガス冷媒と凝縮後の液冷媒と分離して、その分離した
液冷媒を抽出して前記減圧装置に供給し、分離したガス
冷媒を前記冷媒凝縮器の下流側部位へ流入させる第1気
液分離器と、 (f)前記冷媒蒸発器の熱交換途中に設けられ、蒸発前
の液冷媒と蒸発後のガス冷媒とを分離して、その分離し
たガス冷媒を抽出して前記冷媒圧縮機に供給し、分離し
た液冷媒を前記冷媒蒸発器の下流側部位へ流入させる第
2気液分離器と、 (g)前記第1気液分離器により抽出されて前記減圧装
置に導かれる液冷媒と前記第2気液分離器により抽出さ
れて前記冷媒圧縮機に導かれるガス冷媒とを熱交換させ
る冷媒熱交換器と を具備する冷凍サイクル。
(A) a refrigerant compressor for compressing and discharging a sucked gas refrigerant; (b) a refrigerant condenser for condensing and liquefying a high-pressure refrigerant discharged from the refrigerant compressor; A decompression device for adiabatically expanding the refrigerant supplied from the refrigerant condenser; (d) a refrigerant evaporator for evaporating the refrigerant adiabatically expanded by the decompression device; and (e) a heat exchanger provided between the refrigerant condensers. Separating the gas refrigerant before condensation and the liquid refrigerant after condensation, extracting the separated liquid refrigerant, supplying the separated liquid refrigerant to the pressure reducing device, and allowing the separated gas refrigerant to flow into a downstream portion of the refrigerant condenser. (F) a gas-liquid separator provided between heat exchangers of the refrigerant evaporator, for separating liquid refrigerant before evaporation and gas refrigerant after evaporation, extracting the separated gas refrigerant, The liquid refrigerant supplied to the compressor and separated is supplied to the refrigerant evaporator. (G) a liquid refrigerant extracted by the first gas-liquid separator and guided to the pressure reducing device, and a refrigerant extracted by the second gas-liquid separator and extracted by the second gas-liquid separator. A refrigerant heat exchanger for exchanging heat with a gas refrigerant guided to the compressor.
JP17859788A 1988-07-18 1988-07-18 Refrigeration cycle Expired - Fee Related JP2611351B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17859788A JP2611351B2 (en) 1988-07-18 1988-07-18 Refrigeration cycle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17859788A JP2611351B2 (en) 1988-07-18 1988-07-18 Refrigeration cycle

Publications (2)

Publication Number Publication Date
JPH0229549A JPH0229549A (en) 1990-01-31
JP2611351B2 true JP2611351B2 (en) 1997-05-21

Family

ID=16051238

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17859788A Expired - Fee Related JP2611351B2 (en) 1988-07-18 1988-07-18 Refrigeration cycle

Country Status (1)

Country Link
JP (1) JP2611351B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100813052B1 (en) * 2006-11-13 2008-03-14 엘지전자 주식회사 Airconditioner
KR101440238B1 (en) * 2013-06-27 2014-09-12 한국교통대학교산학협력단 Outdoor unit with internal heatexchanger and air conditioner using the outdoor unit

Also Published As

Publication number Publication date
JPH0229549A (en) 1990-01-31

Similar Documents

Publication Publication Date Title
JP4604909B2 (en) Ejector type cycle
US6250086B1 (en) High efficiency refrigeration system
JP2007162988A (en) Vapor compression refrigerating cycle
KR20020029597A (en) Multistage compression refrigerating machine for supplying refrigerant from intercooler to cool rotating machine and lubricating oil
CN111114244B (en) Device for climate control system of motor vehicle and method for operating the device
JPH0331981B2 (en)
JP2007057156A (en) Refrigeration cycle
JP4971877B2 (en) Refrigeration cycle
JP2003130477A (en) Refrigeration device
JPH02290475A (en) Heat pump type air conditioner
JPH04320762A (en) Freezing cycle
JP2611351B2 (en) Refrigeration cycle
JPH06272998A (en) Refrigerator
JPH0953864A (en) Engine type cooling device
WO2001067011A1 (en) High efficiency refrigeration system
KR101667627B1 (en) Air-conditioning system for vehicles using condensed water
JPH01277175A (en) Refrigerating cycle
KR0159238B1 (en) Two-step expanding apparatus using accumulator of an airconditioner
JPH05296586A (en) Refrigeration cycle
JPH062970A (en) Air conditioner for vehicle
JP2000320908A (en) Refrigerating cycle circuit
JPH0247673B2 (en) SHOENERUGIITAGEN REITOSOCHI
JP2000234818A (en) Refrigerant supercooling mechanism of air conditioner
KR100213503B1 (en) The over cooling type air conditioner in an automobile
JPS6255583B2 (en)

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees