JPH06272998A - Refrigerator - Google Patents
RefrigeratorInfo
- Publication number
- JPH06272998A JPH06272998A JP5816093A JP5816093A JPH06272998A JP H06272998 A JPH06272998 A JP H06272998A JP 5816093 A JP5816093 A JP 5816093A JP 5816093 A JP5816093 A JP 5816093A JP H06272998 A JPH06272998 A JP H06272998A
- Authority
- JP
- Japan
- Prior art keywords
- refrigerant
- evaporator
- tube
- temperature
- flowing
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Compression-Type Refrigeration Machines With Reversible Cycles (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】この発明は、冷媒に非共沸混合冷
媒を用いた冷凍装置に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a refrigeration system using a non-azeotropic mixed refrigerant as a refrigerant.
【0002】[0002]
【従来の技術】一般に、冷凍装置にあっては、例えば、
図6に示すように圧縮機101と、凝縮器103と、減
圧装置105と、蒸発器107とにより構成される。2. Description of the Related Art Generally, in a refrigeration system, for example,
As shown in FIG. 6, it comprises a compressor 101, a condenser 103, a decompression device 105, and an evaporator 107.
【0003】冷却運転時には、冷媒は、圧縮機101→
凝縮器103→減圧装置105→蒸発器107を通り、
仕事を終えた冷媒は再び圧縮機101に戻る冷凍サイク
ルを繰返す。During the cooling operation, the refrigerant flows from the compressor 101
Passing through the condenser 103, the pressure reducing device 105, and the evaporator 107,
The refrigerant that has finished its work returns to the compressor 101 again and repeats the refrigeration cycle.
【0004】[0004]
【発明が解決しようとする課題】前記した如く、冷凍装
置は、冷媒が冷凍サイクルを繰返すことで、冷凍モード
が得られるようになる。この場合、単一冷媒となるR2
2の代替冷媒として例えば、R32とR134aから成
る非共沸混合冷媒を使用する場合には、図7に示すよう
に一定圧力で蒸発させていくと、気液相変化に伴ない蒸
発に従って液冷媒の組成が変化し、これにともない入口
側と出口側との蒸発温度、即ち、温度勾配が大きく上昇
する。As described above, in the refrigerating apparatus, the refrigerating mode can be obtained by repeating the refrigerating cycle of the refrigerant. In this case, R2 becomes a single refrigerant
For example, when a non-azeotropic mixed refrigerant composed of R32 and R134a is used as the alternative refrigerant of No. 2, when the liquid is evaporated at a constant pressure as shown in FIG. 7, the liquid refrigerant follows the evaporation accompanying the gas-liquid phase change. The composition of the above changes, and the evaporation temperature between the inlet side and the outlet side, that is, the temperature gradient greatly rises accordingly.
【0005】この温度差(T2−T1)は、冷媒の組成
・混合比などの条件によって変化するが、例えば、蒸発
器入口側でマイナス温度、出口側でプラス温度となり、
場合によっては蒸発器入口付近で霜付きが発生したり、
凍結する虞れがある等、大きな温度変化の影響で性能が
著しく低下する問題があった。This temperature difference (T2-T1) changes depending on conditions such as the composition and mixing ratio of the refrigerant, but for example, it becomes a negative temperature on the inlet side of the evaporator and a positive temperature on the outlet side.
In some cases, frost may occur near the inlet of the evaporator,
There is a problem that the performance is significantly deteriorated due to the influence of a large temperature change, such as the possibility of freezing.
【0006】そこで、この発明にあっては、非共沸混合
冷媒による大きな温度変化を抑えて冷凍能力の向上が図
れるようにした冷凍装置を提供することを目的としてい
る。Therefore, it is an object of the present invention to provide a refrigerating apparatus capable of improving a refrigerating capacity by suppressing a large temperature change due to a non-azeotropic mixed refrigerant.
【0007】[0007]
【課題を解決するための手段】前記目的を達成するため
に、この発明は、圧縮機と凝縮器と減圧装置と蒸発器と
により構成された冷媒回路に非共沸混合冷媒を用いた冷
凍装置において、前記蒸発器を、冷媒が流れるチューブ
と冷却用のフィンとで形成すると共にチューブを流れる
冷媒流量の断面積が冷媒の流れ方向に沿って順次小さく
なる形状としてある。In order to achieve the above object, the present invention relates to a refrigerating apparatus using a non-azeotropic mixed refrigerant in a refrigerant circuit composed of a compressor, a condenser, a pressure reducing device and an evaporator. In the above, the evaporator is formed of a tube through which a refrigerant flows and fins for cooling, and has a shape in which the cross-sectional area of the flow rate of the refrigerant flowing through the tube is gradually reduced along the flow direction of the refrigerant.
【0008】[0008]
【作用】かかる冷凍装置において、冷却運転に入ると、
圧縮機で冷媒ガスを吸入・圧縮し、高温高圧にして送り
出す。この高温高圧ガスは凝縮器に入る。この時、冷媒
ガスはフィンを通過する空気に凝縮の潜熱を奪われて液
化される。In this refrigeration system, when the cooling operation is started,
The compressor inhales and compresses the refrigerant gas to generate high temperature and high pressure, and sends it out. This hot high pressure gas enters the condenser. At this time, the refrigerant gas is liquefied by depriving the latent heat of condensation by the air passing through the fins.
【0009】液化した冷媒は、減圧装置へ流れ、ここで
高圧の冷媒は急激に膨脹して、低温低圧の霧状となる。
霧状になった冷媒は蒸発器に流れ、フィンを通過する空
気に蒸発の潜熱を奪われて霧状からガス状となった後、
再び圧縮機に流れる。この冷凍サイクルの繰返しで冷凍
が行われる。The liquefied refrigerant flows to the decompression device, where the high-pressure refrigerant rapidly expands and becomes a low-temperature low-pressure mist.
The atomized refrigerant flows to the evaporator, where the air passing through the fins deprives the latent heat of vaporization and changes from atomized to gaseous,
It flows to the compressor again. Freezing is performed by repeating this refrigeration cycle.
【0010】この冷凍サイクル時の蒸発器において、入
口側から出口側へ向け順次小さくなる断面積によって、
冷媒の流速が速くなるため、熱交換量が増加する。一
方、断面積の影響で圧力損失が増加するため、混合冷媒
の相変化時の温度勾配と蒸発温度はほぼ一定に保つこと
が可能となる。したがって温度変化を小さく抑えること
ができるため、氷結等の問題は起きなくなり、冷凍能力
が向上する。In the evaporator during this refrigeration cycle, the cross-sectional area that gradually decreases from the inlet side to the outlet side
Since the flow velocity of the refrigerant becomes faster, the heat exchange amount increases. On the other hand, since the pressure loss increases due to the influence of the cross-sectional area, the temperature gradient and the evaporation temperature during the phase change of the mixed refrigerant can be kept substantially constant. Therefore, since the temperature change can be suppressed to a small level, problems such as freezing do not occur and the refrigerating capacity is improved.
【0011】[0011]
【実施例】以下、図1乃至図4の図面を参照しながらこ
の発明の一実施例を詳細に説明する。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below in detail with reference to the drawings of FIGS.
【0012】図2は、非共沸混合冷媒が封入された冷凍
装置であって、1はサクションカップ3を有する圧縮
機、5は凝縮器、7は減圧装置、9は蒸発器をそれぞれ
示しており、冷媒パイプ11を介して接続連通し、冷凍
サイクルを構成している。FIG. 2 shows a refrigerating apparatus in which a non-azeotropic mixed refrigerant is enclosed, wherein 1 is a compressor having a suction cup 3, 5 is a condenser, 7 is a decompressor, and 9 is an evaporator. And is connected and communicated via the refrigerant pipe 11 to form a refrigeration cycle.
【0013】圧縮機1は、サクションカップ3からのガ
ス状の非共沸冷媒を高温、高圧の冷媒ガスとして吐出す
るよう機能する。The compressor 1 functions to discharge the gaseous non-azeotropic refrigerant from the suction cup 3 as a high temperature, high pressure refrigerant gas.
【0014】凝縮器5は、冷媒パイプ11と接続したチ
ューブとフィン(いずれも図示していない)とから成
り、圧縮機1から高温高圧のガス状となって送り込まれ
る冷媒ガスは、ファン13によってフィンを通過する空
気に凝縮の潜熱を奪われて霧状になる。The condenser 5 is composed of tubes and fins (neither of which is shown) connected to the refrigerant pipe 11, and the refrigerant gas fed from the compressor 1 in the form of high temperature and high pressure gas is fed by the fan 13. The air passing through the fins deprives the latent heat of condensation into a mist.
【0015】減圧装置7は、冷媒を低温、低圧の霧状に
すると共に冷媒温度検知部(図示していない)からの指
令信号によって熱負荷等の運転条件に対応した冷媒流量
とするよう機能する。The decompression device 7 functions to atomize the refrigerant at a low temperature and a low pressure and to make the refrigerant flow rate corresponding to an operating condition such as a heat load according to a command signal from a refrigerant temperature detecting portion (not shown). .
【0016】蒸発器9は、冷媒パイプ11と接続された
チューブ15とフィン17とから成り、蒸発器9におい
てチューブ15を通過する冷媒は、ファン14によって
フィン17を通過する空気に蒸発の潜熱を奪われてガス
状になる。The evaporator 9 is composed of tubes 15 and fins 17 connected to the refrigerant pipe 11, and the refrigerant passing through the tubes 15 in the evaporator 9 gives latent heat of evaporation to the air passing through the fins 17 by the fan 14. It will be deprived of gas.
【0017】蒸発器9のチューブ15は、図1に示すよ
うに入口側15aから出口側15bへ向かって冷媒流量
の断面積が順次小さくなるよう設定されている。As shown in FIG. 1, the tube 15 of the evaporator 9 is set so that the cross-sectional area of the flow rate of the refrigerant gradually decreases from the inlet side 15a to the outlet side 15b.
【0018】チューブ15の内径は、入口側15aから
出口側15bへ向けて冷媒流速が速くなる一方、図4に
示す如く圧力損失を順次増加させることで、蒸発工程a
の蒸発温度が温度勾配bとほぼ同一となるよう入口側1
5aの断面積が大きく、以下出口側15bへ向けて順次
小さくなる内径となっている。With respect to the inner diameter of the tube 15, the refrigerant flow velocity increases from the inlet side 15a to the outlet side 15b, while the pressure loss is gradually increased as shown in FIG.
Of the inlet side 1 so that the evaporation temperature of is almost the same as the temperature gradient b.
The cross-sectional area of 5a is large, and the inner diameter becomes smaller toward the outlet side 15b.
【0019】この場合、図3に示すように同一の断面積
に形成されたチューブ15を、入口側15aから出口側
15bへ向けて3本、2本、1本となるようパス数を順
次減らしていくチューブ形状とすることも可能である。In this case, as shown in FIG. 3, the tubes 15 formed in the same cross-sectional area are sequentially reduced from the inlet side 15a to the outlet side 15b so that the number of passes is three, two, and one. It is also possible to make it into a tube shape.
【0020】かかる冷凍装置によれば、圧縮機1で冷媒
ガスを吸入・圧縮し、高温高圧にして送り出す。この高
温高圧ガスは凝縮器5に入る。この時、冷媒ガスはフィ
ンを通過する空気に凝縮の潜熱を奪われて液化される。According to such a refrigerating apparatus, the refrigerant gas is sucked and compressed by the compressor 1 and is sent out at high temperature and high pressure. This high-temperature high-pressure gas enters the condenser 5. At this time, the refrigerant gas is liquefied by depriving the latent heat of condensation by the air passing through the fins.
【0021】液化した冷媒は、減圧装置7へ流れ、ここ
で冷媒は急激に膨脹して、低温低圧の霧状となる。次に
蒸発器9に流れ、フィン17を通過する空気に蒸発の潜
熱を奪われて霧状からガス状となった後、再び圧縮器1
に流れる冷凍サイクルを繰返すようになる。The liquefied refrigerant flows to the decompression device 7, where the refrigerant rapidly expands into a low-temperature, low-pressure mist. Next, after flowing into the evaporator 9 and the air passing through the fins 17 deprives the latent heat of evaporation into a mist form and becomes a gas form, the compressor 1 is again formed.
The refrigerating cycle that flows through is repeated.
【0022】この冷凍サイクル時の蒸発器9において、
チューブ15内を流れる冷媒の流速は出口側15bへ向
かって順次速くなるため、熱交換量が増加するようにな
る。一方、圧力損失の増加にともない蒸発工程aにおい
て、混合冷媒の相変化時の温度勾配と蒸発温度はほぼ同
一に保持され、蒸発器9の入口と出口側の温度差を小さ
く抑えられるようになる。In the evaporator 9 during this refrigeration cycle,
Since the flow velocity of the refrigerant flowing through the tube 15 gradually increases toward the outlet side 15b, the heat exchange amount increases. On the other hand, as the pressure loss increases, in the evaporation step a, the temperature gradient and the evaporation temperature during the phase change of the mixed refrigerant are kept substantially the same, and the temperature difference between the inlet side and the outlet side of the evaporator 9 can be suppressed to be small. .
【0023】したがって、霜付き、氷結は起こらず効率
よい冷凍運転が行なえるようになる。Therefore, frosting and freezing do not occur, and efficient freezing operation can be performed.
【0024】この場合、図5に示すように、チューブ1
5内に冷媒の流れ方向に沿って圧力損失が順次大きくな
る伝熱促進手段19を設けるようにすることでも同様の
効果が期待できる。In this case, as shown in FIG. 5, the tube 1
The same effect can be expected by providing the heat transfer promoting means 19 in which the pressure loss gradually increases along the flow direction of the refrigerant.
【0025】即ち、内径が同一のチューブ15の内側
に、伝熱促進手段19となる抵抗体21を設けるもので
ある。That is, the resistor 21 serving as the heat transfer promoting means 19 is provided inside the tube 15 having the same inner diameter.
【0026】抵抗体21は、中心へ向け突出し、圧力損
失が出口側へ向けて順次増加するように抵抗体21の数
を入口側15aで少なく、出口側15bへ向かって順次
多くなるよう設定している。The resistance bodies 21 project toward the center, and the number of resistance bodies 21 is set to be small on the inlet side 15a and gradually increase on the outlet side 15b so that the pressure loss gradually increases toward the outlet side. ing.
【0027】したがって、チューブ15内で流れる冷媒
は、抵抗体21によって抵抗面積が大きく拡大し、熱交
換量が増加する。また、図4に示す如く混合冷媒の相変
化時の温度勾配bと蒸発温度aはほぼ同一に保持され、
蒸発器9の入口と出口側の温度差を小さく抑えられるた
めに霜付き、氷結は起こらず効率のよい冷媒運転が行な
えるようになる。Therefore, the resistance area of the refrigerant flowing in the tube 15 is greatly expanded by the resistor 21, and the heat exchange amount is increased. Further, as shown in FIG. 4, the temperature gradient b and the evaporation temperature a during the phase change of the mixed refrigerant are kept substantially the same,
Since the temperature difference between the inlet side and the outlet side of the evaporator 9 can be suppressed to be small, frosting and freezing do not occur, and efficient refrigerant operation can be performed.
【0028】なお、この実施例では冷凍装置について説
明したが、冷房専用の空気調和装置に適用することも可
能である。Although the refrigerating apparatus has been described in this embodiment, it may be applied to an air conditioner dedicated to cooling.
【0029】[0029]
【発明の効果】以上、説明したように非共沸混合冷媒を
用いた本発明の冷凍装置によれば、蒸発器の蒸発温度
を、混合冷媒の相変化時の温度勾配に近づけることがで
きるため入口側と出口側とで大きな温度差がなくなる結
果、温度差による霜付きや氷結は起こらず、しかも、冷
媒の流れが速くなることで熱交換量が増加するため、冷
凍能力の向上が図れるようになる。As described above, according to the refrigerating apparatus of the present invention using the non-azeotropic mixed refrigerant, the evaporation temperature of the evaporator can be brought close to the temperature gradient at the phase change of the mixed refrigerant. As a result of eliminating the large temperature difference between the inlet side and the outlet side, frost and freezing due to the temperature difference do not occur, and moreover, the flow rate of the refrigerant increases and the heat exchange amount increases, so that the refrigerating capacity can be improved. become.
【図1】蒸発器のチューブとフィンを示した説明図。FIG. 1 is an explanatory view showing tubes and fins of an evaporator.
【図2】この発明にかかる冷凍装置全体の配管図。FIG. 2 is a piping diagram of the entire refrigeration system according to the present invention.
【図3】蒸発器のチューブの変形例を示した図1と同様
の説明図。FIG. 3 is an explanatory view similar to FIG. 1, showing a modified example of the tube of the evaporator.
【図4】この発明にかかるモリエル線図。FIG. 4 is a Mollier diagram according to the present invention.
【図5】蒸発器のチューブの変形例を示した図1と同様
の説明図。FIG. 5 is an explanatory view similar to FIG. 1, showing a modified example of the tube of the evaporator.
【図6】従来例を示した図2と同様の配管図。FIG. 6 is a piping diagram similar to FIG. 2 showing a conventional example.
【図7】従来例のモリエル線図。FIG. 7 is a Mollier diagram of a conventional example.
1 圧縮器 5 凝縮器 7 減圧装置 9 蒸発器 15 チューブ 17 フィン 1 Compressor 5 Condenser 7 Decompressor 9 Evaporator 15 Tube 17 Fin
───────────────────────────────────────────────────── フロントページの続き (72)発明者 山本 敏浩 神奈川県横浜市磯子区新杉田町8番地 株 式会社東芝住空間システム技術研究所内 (72)発明者 伊藤 芳浩 神奈川県横浜市磯子区新杉田町8番地 株 式会社東芝住空間システム技術研究所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Toshihiro Yamamoto 8 Shinsita-cho, Isogo-ku, Yokohama-shi, Kanagawa Incorporated, Toshiba Living Space Systems Engineering Laboratory (72) Inventor Yoshihiro Ito 8 Shinsugita-cho, Isogo-ku, Yokohama, Kanagawa Banchi Co., Ltd. Toshiba Living Space Systems Engineering Laboratory
Claims (2)
より構成された冷媒回路に非共沸混合冷媒を用いた冷凍
装置において、前記蒸発器を、冷媒が流れるチューブと
冷却用のフィンとで形成すると共にチューブを流れる冷
媒流量の断面積が冷媒の流れ方向に沿って順次小さくな
る形状としたことを特徴とする空気調和装置。1. A refrigerating apparatus using a non-azeotropic mixed refrigerant in a refrigerant circuit constituted by a compressor, a condenser, a pressure reducing device and an evaporator, wherein the evaporator is provided with tubes through which the refrigerant flows and fins for cooling. And an air conditioner having a shape in which the cross-sectional area of the flow rate of the refrigerant flowing through the tube gradually decreases along the flow direction of the refrigerant.
に沿って圧力損失が順次大きくなる伝熱促進手段を有し
ていることを特徴とする請求項1記載の冷凍装置。2. The refrigerating apparatus according to claim 1, wherein the evaporator has a heat transfer promoting means in the tube in which the pressure loss is gradually increased along the flow direction of the refrigerant.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5816093A JPH06272998A (en) | 1993-03-18 | 1993-03-18 | Refrigerator |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5816093A JPH06272998A (en) | 1993-03-18 | 1993-03-18 | Refrigerator |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH06272998A true JPH06272998A (en) | 1994-09-27 |
Family
ID=13076246
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP5816093A Pending JPH06272998A (en) | 1993-03-18 | 1993-03-18 | Refrigerator |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH06272998A (en) |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08200857A (en) * | 1995-01-20 | 1996-08-06 | Sanden Corp | Refrigerator |
US5765393A (en) * | 1997-05-28 | 1998-06-16 | White Consolidated Industries, Inc. | Capillary tube incorporated into last pass of condenser |
US5881565A (en) * | 1994-04-21 | 1999-03-16 | Emerald Enterprises Pty Ltd. | Refrigeration system |
JP2010038429A (en) * | 2008-08-04 | 2010-02-18 | Panasonic Corp | Heat exchanger |
JP2010078241A (en) * | 2008-09-26 | 2010-04-08 | Panasonic Corp | Heat exchanger |
WO2017149642A1 (en) * | 2016-03-01 | 2017-09-08 | 三菱電機株式会社 | Refrigeration cycle device |
WO2019021364A1 (en) * | 2017-07-25 | 2019-01-31 | 三菱電機株式会社 | Refrigeration device and refrigeration device operation method |
JP2021042871A (en) * | 2019-09-06 | 2021-03-18 | 東芝キヤリア株式会社 | Fin-and-tube type heat exchanger and refrigeration cycle device |
JPWO2021214832A1 (en) * | 2020-04-20 | 2021-10-28 | ||
CN114251861A (en) * | 2020-09-24 | 2022-03-29 | 北京市京科伦工程设计研究院有限公司 | Single-stage carbon dioxide central air conditioner for high-rise building |
-
1993
- 1993-03-18 JP JP5816093A patent/JPH06272998A/en active Pending
Cited By (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5881565A (en) * | 1994-04-21 | 1999-03-16 | Emerald Enterprises Pty Ltd. | Refrigeration system |
JPH08200857A (en) * | 1995-01-20 | 1996-08-06 | Sanden Corp | Refrigerator |
US5765393A (en) * | 1997-05-28 | 1998-06-16 | White Consolidated Industries, Inc. | Capillary tube incorporated into last pass of condenser |
JP2010038429A (en) * | 2008-08-04 | 2010-02-18 | Panasonic Corp | Heat exchanger |
JP2010078241A (en) * | 2008-09-26 | 2010-04-08 | Panasonic Corp | Heat exchanger |
CN108700340B (en) * | 2016-03-01 | 2020-06-30 | 三菱电机株式会社 | Refrigeration cycle device |
WO2017149642A1 (en) * | 2016-03-01 | 2017-09-08 | 三菱電機株式会社 | Refrigeration cycle device |
JPWO2017149642A1 (en) * | 2016-03-01 | 2018-09-20 | 三菱電機株式会社 | Refrigeration cycle equipment |
CN108700340A (en) * | 2016-03-01 | 2018-10-23 | 三菱电机株式会社 | Refrigerating circulatory device |
WO2019021364A1 (en) * | 2017-07-25 | 2019-01-31 | 三菱電機株式会社 | Refrigeration device and refrigeration device operation method |
CN110914608A (en) * | 2017-07-25 | 2020-03-24 | 三菱电机株式会社 | Refrigeration device and method for operating refrigeration device |
JPWO2019021364A1 (en) * | 2017-07-25 | 2020-02-27 | 三菱電機株式会社 | Refrigeration apparatus and method of operating refrigeration apparatus |
JP2021042871A (en) * | 2019-09-06 | 2021-03-18 | 東芝キヤリア株式会社 | Fin-and-tube type heat exchanger and refrigeration cycle device |
JPWO2021214832A1 (en) * | 2020-04-20 | 2021-10-28 | ||
WO2021214832A1 (en) * | 2020-04-20 | 2021-10-28 | 三菱電機株式会社 | Refrigeration cycle device |
EP4141348A4 (en) * | 2020-04-20 | 2023-08-09 | Mitsubishi Electric Corporation | Refrigeration cycle device |
CN114251861A (en) * | 2020-09-24 | 2022-03-29 | 北京市京科伦工程设计研究院有限公司 | Single-stage carbon dioxide central air conditioner for high-rise building |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3331604B2 (en) | Refrigeration cycle device | |
JP2001221517A (en) | Supercritical refrigeration cycle | |
JP2007078340A (en) | Ejector type refrigerating cycle | |
JP2007051833A (en) | Ejector type refrigeration cycle | |
JP2000055488A (en) | Refrigerating device | |
JPH06272998A (en) | Refrigerator | |
JP2007024412A (en) | Ejector type refrigeration cycle | |
JPH1019418A (en) | Refrigerator with deep freezer | |
US6401470B1 (en) | Expansion device for vapor compression system | |
JP2009222255A (en) | Vapor compression refrigerating cycle | |
JP2002349977A (en) | Heat pump cycle | |
US20020029577A1 (en) | Expansion device for vapor compression system | |
JPH04320762A (en) | Freezing cycle | |
JP2000304380A (en) | Heat exchanger | |
JP3155645B2 (en) | Air conditioner | |
JPH08121889A (en) | Refrigerating cycle | |
US20200200451A1 (en) | Refrigeration cycle apparatus and refrigerator including the same | |
JP4200780B2 (en) | Vapor compression refrigerator | |
JP2003279197A (en) | Heat exchanger for condensation of freezer-refrigerator system | |
JPH07198215A (en) | Freezer | |
EP0374688A2 (en) | Refrigerator system with dual evaporators for household refrigerators | |
JPH06272985A (en) | Air conditioner | |
JP2611351B2 (en) | Refrigeration cycle | |
JP2002323264A (en) | Ejector cycle | |
JPH07208836A (en) | Refrigerator |