JPH08121889A - Refrigerating cycle - Google Patents

Refrigerating cycle

Info

Publication number
JPH08121889A
JPH08121889A JP6260133A JP26013394A JPH08121889A JP H08121889 A JPH08121889 A JP H08121889A JP 6260133 A JP6260133 A JP 6260133A JP 26013394 A JP26013394 A JP 26013394A JP H08121889 A JPH08121889 A JP H08121889A
Authority
JP
Japan
Prior art keywords
refrigerant
expansion valve
low
pressure side
refrigeration cycle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6260133A
Other languages
Japanese (ja)
Other versions
JP3435848B2 (en
Inventor
Yukikatsu Ozaki
幸克 尾崎
Naoki Kawai
直樹 川井
Mitsuo Inagaki
稲垣  光夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Soken Inc
Original Assignee
Nippon Soken Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Soken Inc filed Critical Nippon Soken Inc
Priority to JP26013394A priority Critical patent/JP3435848B2/en
Publication of JPH08121889A publication Critical patent/JPH08121889A/en
Application granted granted Critical
Publication of JP3435848B2 publication Critical patent/JP3435848B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/13Economisers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/23Separators

Landscapes

  • Air-Conditioning For Vehicles (AREA)

Abstract

PURPOSE: To prevent the deterioration in the refrigerant flow rate controllability of an expansion valve by introducing the flash gas of refrigerant to a low pressure side expansion valve in a refrigerating cycle for expanding by two stages according to high and low pressure side expansion valves. CONSTITUTION: A heat exchanger 6 for overcooling a saturated liquid refrigerant output from a vapor-liquid separator 4 is provided at a refrigerant tube 130 between the separator 4 provided at the outlet side of a high pressure side expansion valve 32 and a low pressure side expansion valve 31, and the overcooled refrigerant passed through the exchanger 6 is fed to the valve 31.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は蒸気圧縮式の冷凍サイク
ルに関し、例えば電気自動車用の冷暖房装置や冷凍装置
として好適なものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a vapor compression refrigeration cycle, and is suitable as a cooling / heating device or a refrigeration device for an electric vehicle, for example.

【0002】[0002]

【従来の技術】従来、圧縮機、凝縮器、膨張弁、蒸発器
からなる蒸気圧縮式冷凍サイクルにおいて、冬季に電気
自動車の暖房装置として使用されるヒートポンプや、冷
凍庫のように非常に温度の低い物体を冷却するときには
蒸発器における冷媒の蒸発温度が低くなるため、冷凍効
果が小さく、また圧縮比が大きくなるため圧縮仕事量が
増大することから成績係数(COP)が小さくなってし
まう。
2. Description of the Related Art Conventionally, in a vapor compression refrigeration cycle consisting of a compressor, a condenser, an expansion valve, and an evaporator, it has a very low temperature such as a heat pump used as a heating device for an electric vehicle in winter and a freezer. When the object is cooled, the evaporation temperature of the refrigerant in the evaporator becomes low, the refrigerating effect is small, and the compression ratio is large, so that the work of compression is increased, so that the coefficient of performance (COP) becomes small.

【0003】そのため、従来では上記COPを向上させ
る方法として図7、8に示す2段圧縮・2段膨張式の冷
凍サイクルや、図9、10に示すエコノマイザサイクル
が用いられている。前者の2段圧縮・2段膨張式の冷凍
サイクルは低段側(低圧側)と高段側(高圧側)の2台
の圧縮機11、12を配し、高段側圧縮機12から吐出
された冷媒は凝縮器22で放熱、液化し、高段側(高圧
側)膨張弁32を通して中間圧力まで減圧し、気液分離
器4に送られる。
Therefore, as a conventional method for improving the COP, the two-stage compression / two-stage expansion refrigeration cycle shown in FIGS. 7 and 8 and the economizer cycle shown in FIGS. 9 and 10 have been used. In the former two-stage compression / two-stage expansion refrigeration cycle, two compressors 11, 12 on the low-stage side (low-pressure side) and the high-stage side (high-pressure side) are arranged and discharged from the high-stage side compressor 12. The thus-refrigerated refrigerant releases heat and liquefies in the condenser 22, is depressurized to an intermediate pressure through the high-stage (high pressure side) expansion valve 32, and is sent to the gas-liquid separator 4.

【0004】そして、この気液分離器4においては、低
段側(低圧側)圧縮機11の吐出ガスが流入して混合す
る。このとき、気液分離器4内の一部の液が蒸発して低
段側圧縮機11の吐出ガスを飽和温度まで冷却する。気
液分離器4では冷媒が飽和蒸気と飽和液に分かれ、この
飽和液は低段側膨張弁31を通して中間圧力から蒸発圧
力まで減圧され、蒸発器21に送られる。また、気液分
離器4内の飽和蒸気は高段側圧縮機12に吸入され高圧
まで圧縮される。
In the gas-liquid separator 4, the discharge gas from the low-stage side (low-pressure side) compressor 11 flows in and mixes. At this time, a part of the liquid in the gas-liquid separator 4 is evaporated and the discharge gas of the low-stage compressor 11 is cooled to the saturation temperature. In the gas-liquid separator 4, the refrigerant is divided into saturated vapor and saturated liquid, and this saturated liquid is depressurized from the intermediate pressure to the evaporation pressure through the low-stage expansion valve 31 and sent to the evaporator 21. Further, the saturated vapor in the gas-liquid separator 4 is sucked into the high-pressure stage compressor 12 and compressed to a high pressure.

【0005】この2段圧縮・2段膨張式の冷凍サイクル
は図8に示すような冷媒の状態変化が生じ、蒸発器21
でのエンタルピー差を大きくとることができるので、1
段圧縮サイクルに比べCOPを大きくすることができ
る。一方、後者のエコノマイザサイクルは図9に示すよ
うに凝縮器22、蒸発器21、高段および低段側膨張弁
31、32の配置は2段圧縮2段膨張サイクルと同じで
あるが、低段側圧縮機11の吐出口111と高段側圧縮
機の吸入口122を配管123により連通させるととも
に、この配管123の途中に気液分離器4との連通口1
24を設けている。
In this two-stage compression / two-stage expansion refrigeration cycle, the state of the refrigerant changes as shown in FIG.
Since the enthalpy difference in
The COP can be increased as compared with the stage compression cycle. On the other hand, in the latter economizer cycle, as shown in FIG. 9, the arrangement of the condenser 22, the evaporator 21, and the high-stage and low-stage expansion valves 31, 32 is the same as that of the two-stage compression two-stage expansion cycle, but The discharge port 111 of the side compressor 11 and the suction port 122 of the high-stage compressor are communicated with each other by a pipe 123, and a communication port 1 with the gas-liquid separator 4 is provided in the middle of the pipe 123.
24 are provided.

【0006】従って、低段側圧縮機11からの吐出冷媒
ガスと気液分離器4からの飽和蒸気との混合気を高段側
圧縮機12に吸入し圧縮する構成となっており、2段圧
縮2段膨張サイクルと同様、COPを1段圧縮に比べて
大きくすることができる。
Therefore, the mixture of the refrigerant gas discharged from the low-stage side compressor 11 and the saturated vapor from the gas-liquid separator 4 is sucked into the high-stage side compressor 12 and compressed. Similar to the compression two-stage expansion cycle, the COP can be increased compared to the one-stage compression.

【0007】[0007]

【発明が解決しようとする課題】ところで、前記の2段
圧縮・2段膨張式の冷凍サイクルやエコノマイザサイク
ルにおいては、気液分離器4で飽和した液冷媒を低段側
膨張弁31により中間圧力から蒸発圧力まで減圧させる
のであるが、気液分離器4から低段側膨張弁31に至る
間の冷媒配管130の圧力損失により冷媒圧力が低下す
るため、飽和液冷媒中にフラッシュ蒸気が生じることが
ある。
By the way, in the above-mentioned two-stage compression / two-stage expansion refrigeration cycle and economizer cycle, the liquid refrigerant saturated in the gas-liquid separator 4 is brought to an intermediate pressure by the low-stage expansion valve 31. However, since the refrigerant pressure decreases due to the pressure loss of the refrigerant pipe 130 between the gas-liquid separator 4 and the low-stage expansion valve 31, flash vapor is generated in the saturated liquid refrigerant. There is.

【0008】そして、このフラッシュ蒸気が低段側膨張
弁31の絞り通路に断続的に不安定に流入し、ガスと液
とではその流通抵抗が大幅に変化するので、膨張弁31
の冷媒流量の制御性が悪化する。具体的には、膨張弁3
1のハンチング等の不具合が生じる。本発明はかかる課
題を解決するためのもので、低圧側膨張弁に流入する冷
媒を予め過冷却しておくことにより、フラッシュ蒸気の
発生を抑制し、低圧側膨張弁の冷媒流量制御性を向上で
きる冷凍サイクルを提供することを目的とする。
The flash steam intermittently and unstablely flows into the throttle passage of the low-stage expansion valve 31, and the flow resistance between the gas and the liquid changes significantly, so that the expansion valve 31
The controllability of the refrigerant flow rate deteriorates. Specifically, the expansion valve 3
1 causes a problem such as hunting. The present invention is to solve such a problem, and suppresses the generation of flash vapor by precooling the refrigerant flowing into the low pressure side expansion valve in advance, and improves the refrigerant flow rate controllability of the low pressure side expansion valve. The object is to provide a refrigeration cycle that can be performed.

【0009】[0009]

【課題を解決するための手段】本発明は上記目的を達成
するため、前記した2段圧縮・2段膨張式の冷凍サイク
ルやエコノマイザサイクルといった2段膨張過程を有す
る冷凍サイクルにおいて、気液分離器(4)から低圧側
膨張弁(31)に至る間の冷媒配管(130)に冷媒冷
却用の熱交換器(6)を設けたことを特徴としている。
In order to achieve the above object, the present invention provides a gas-liquid separator in a refrigeration cycle having a two-stage expansion process such as the above-mentioned two-stage compression / two-stage expansion refrigeration cycle or economizer cycle. The refrigerant pipe (130) between (4) and the low pressure side expansion valve (31) is provided with a heat exchanger (6) for cooling the refrigerant.

【0010】すなわち、請求項1記載の発明では、圧縮
機(11、12)、凝縮器(22)、膨張手段(32、
31)、蒸発器(21)からなる蒸気圧縮式冷凍サイク
ルのうち、膨張過程を高圧側膨張手段(32)と低圧側
膨張弁(31)により、2段階に分けて行うとともに、
前記高圧側膨張手段(32)と低圧側膨張弁(31)の
間に冷媒の飽和蒸気と飽和液とを分離する気液分離器
(4)を設けた冷凍サイクルであって、前記気液分離器
(4)と前記低圧側膨張弁(31)との間の冷媒配管
(130)に冷媒を冷却する熱交換器(6)を設けた冷
凍サイクルを特徴としている。
That is, according to the first aspect of the invention, the compressor (11, 12), the condenser (22), the expansion means (32,
31), in the vapor compression refrigeration cycle including the evaporator (21), the expansion process is performed in two stages by the high pressure side expansion means (32) and the low pressure side expansion valve (31),
A refrigeration cycle in which a gas-liquid separator (4) for separating a saturated vapor and a saturated liquid of a refrigerant is provided between the high-pressure side expansion means (32) and the low-pressure side expansion valve (31). The refrigeration cycle is characterized in that the heat exchanger (6) for cooling the refrigerant is provided in the refrigerant pipe (130) between the device (4) and the low pressure side expansion valve (31).

【0011】請求項2記載の発明では、請求項1に記載
の冷凍サイクルにおいて、前記熱交換器(6)は、前記
冷媒配管(130)に接合され、外気により冷却される
フィン部材(42)により構成されていることを特徴と
する。請求項3記載の発明では、請求項1に記載の冷凍
サイクルにおいて、前記熱交換器(6)は、前記冷媒配
管(130)の一部に前記蒸発器(21)と接触または
接合した部位(57)を設けることにより構成されてい
ることを特徴とする。
According to a second aspect of the invention, in the refrigeration cycle of the first aspect, the heat exchanger (6) is joined to the refrigerant pipe (130) and is cooled by the outside air. It is characterized by being constituted by. According to a third aspect of the present invention, in the refrigeration cycle according to the first aspect, the heat exchanger (6) is a part of the refrigerant pipe (130) that is in contact with or joined to the evaporator (21) ( 57) is provided.

【0012】請求項4記載の発明では、請求項1に記載
の冷凍サイクルが自動車用空調装置に使用され、前記熱
交換器(6)が自動車用空調装置の外気導入ダクト(6
6)内に設置されている冷凍サイクルを特徴とする。な
お、上記各手段の括弧内の符号は、後述する実施例記載
の具体的手段との対応関係を示すものである。
According to a fourth aspect of the present invention, the refrigerating cycle according to the first aspect is used in an automobile air conditioner, and the heat exchanger (6) is an outside air introducing duct (6) of the automobile air conditioner.
6) It is characterized by a refrigeration cycle installed inside. The reference numerals in parentheses of the above means indicate the corresponding relationship with the specific means described in the embodiments described later.

【0013】[0013]

【発明の作用効果】請求項1〜4記載の発明によれば、
上記技術的手段を有しているため、気液分離器から低圧
側膨張弁へ至る冷媒は気液分離器と低圧側膨張弁の間の
冷媒配管に配した熱交換器により冷却されるので、エン
タルピーは図3(b)のδHだけ減少する。一方、上記
冷媒配管の圧力損失により気液分離器から低圧側膨張弁
の間では冷媒圧力が図3(b)のδPだけ減少するが、
冷媒を上記熱交換器によりδHだけ過冷却しているの
で、低圧側膨張弁に至る冷媒は液状態のままであり、フ
ラッシュ蒸気の発生を抑制できる。
According to the inventions of claims 1 to 4,
Since it has the above technical means, the refrigerant from the gas-liquid separator to the low-pressure side expansion valve is cooled by the heat exchanger arranged in the refrigerant pipe between the gas-liquid separator and the low-pressure side expansion valve, The enthalpy decreases by δH in FIG. 3 (b). On the other hand, due to the pressure loss in the refrigerant pipe, the refrigerant pressure between the gas-liquid separator and the low-pressure side expansion valve decreases by δP in FIG.
Since the refrigerant is supercooled by δH by the heat exchanger, the refrigerant reaching the low pressure side expansion valve remains in a liquid state, and the generation of flash vapor can be suppressed.

【0014】その結果、フラッシュ蒸気の流入による低
圧側膨張弁のハンチング等の不具合を防止でき、膨張弁
の冷媒流量制御性を向上させることができる。
As a result, problems such as hunting of the low pressure side expansion valve due to the inflow of flash vapor can be prevented, and the refrigerant flow rate controllability of the expansion valve can be improved.

【0015】[0015]

【実施例】以下、本発明を図に示す実施例について説明
する。 (第1実施例)図1は、本発明の第1実施例を示してお
り、冷凍サイクルは低段側圧縮機11、高段側圧縮機1
2、凝縮器22、蒸発器21、高段側(高圧側)膨張弁
32、低段側(低圧側)膨張弁31、気液分離器4、お
よびこの気液分離器4と低段側膨張弁31の間の冷媒配
管130に配した冷媒冷却用熱交換器6から構成されて
いる。なお、上記低段側膨張弁31は蒸発器21出口の
冷媒過熱度を所定値に制御する温度作動式膨張弁であっ
て、外均式、内均式のいずれでもよい。また、低段側膨
張弁31として、その弁開度を電気的に制御する電気式
膨張弁を使用することもできる。
Embodiments of the present invention will be described below with reference to the drawings. (First Embodiment) FIG. 1 shows a first embodiment of the present invention in which the refrigeration cycle has a low-stage compressor 11 and a high-stage compressor 1.
2, condenser 22, evaporator 21, high-stage side (high-pressure side) expansion valve 32, low-stage side (low-pressure side) expansion valve 31, gas-liquid separator 4, and this gas-liquid separator 4 and low-stage expansion The heat exchanger 6 for cooling the refrigerant is arranged in the refrigerant pipe 130 between the valves 31. The low-stage expansion valve 31 is a temperature-operated expansion valve that controls the refrigerant superheat degree at the outlet of the evaporator 21 to a predetermined value, and may be either an external equalization type or an internal equalization type. Further, as the low-stage side expansion valve 31, it is possible to use an electric expansion valve that electrically controls the valve opening degree.

【0016】上記熱交換器6は、図2に示すように熱伝
導の良い銅またはアルミニウムからなる複数枚の板状の
フィン42を同種の金属からなる冷媒配管130にろう
付けまたは溶接等の接合手段で接合して形成している。
この熱交換器6の設置場所としては、外気により板状フ
ィン42が冷却されやすい場所が好ましい。自動車用冷
凍サイクル装置であれば、自動車の走行によるラム圧
で、空気が送風される場所に、熱交換器6を設置して、
熱交換器6の冷却効果を高めるようにするのがよい。
In the heat exchanger 6, as shown in FIG. 2, a plurality of plate-like fins 42 made of copper or aluminum having good heat conduction are joined to the refrigerant pipe 130 made of the same kind of metal by brazing or welding. It is formed by joining by means.
As a place to install the heat exchanger 6, a place where the plate fin 42 is easily cooled by the outside air is preferable. In the case of a refrigeration cycle device for automobiles, the heat exchanger 6 is installed at a place where air is blown by the ram pressure generated by traveling of the automobile.
It is preferable to enhance the cooling effect of the heat exchanger 6.

【0017】上記構成において作動を説明すると、気液
分離器4中の飽和ガス冷媒は低段側圧縮機11から吐出
されたガス冷媒と混合したのち、高段側圧縮機12によ
り吸入、圧縮され凝縮器22で放熱、液化する。その
後、液化冷媒は高段側膨張弁32を経て気液分離器4へ
至り、ここで飽和液冷媒と飽和ガス冷媒とに分離され
る。
The operation of the above structure will be described. The saturated gas refrigerant in the gas-liquid separator 4 is mixed with the gas refrigerant discharged from the low-stage compressor 11 and then sucked and compressed by the high-stage compressor 12. The condenser 22 radiates heat and liquefies. After that, the liquefied refrigerant reaches the gas-liquid separator 4 through the high-stage expansion valve 32, and is separated into a saturated liquid refrigerant and a saturated gas refrigerant there.

【0018】そして、気液分離器4中の液冷媒は配管1
30を経て熱交換器6を通るときに冷却され、エンタル
ピーが図3(b)に示すδH分減少したのち、低段側膨
張弁31により減圧され、蒸発器21で気化した後、低
段側圧縮機11に吸入される。図3は本第1実施例のモ
リエル線図で、(b)は(a)のx部の拡大図である。
熱交換器6が無い場合は冷媒配管130の圧力損失δP
だけ圧力が低下するので、低段側膨張弁31にはA点の
冷媒、つまり気液共存状態の冷媒が流入する。しかし、
熱交換器6で冷媒を冷却してエンタルピーをδH減少さ
せると、B点の過冷却冷媒が流入することになり、冷媒
のフラッシュ蒸気の発生を抑制することができる。
The liquid refrigerant in the gas-liquid separator 4 is pipe 1
After passing through the heat exchanger 6 through 30, the enthalpy is reduced by δH as shown in FIG. 3 (b), and then the pressure is reduced by the low stage expansion valve 31 and vaporized by the evaporator 21, and then the low stage side. It is sucked into the compressor 11. FIG. 3 is a Mollier diagram of the first embodiment, and FIG. 3B is an enlarged view of the x portion of FIG.
If there is no heat exchanger 6, the pressure loss δP of the refrigerant pipe 130
Since the pressure decreases only, the refrigerant at the point A, that is, the refrigerant in the gas-liquid coexisting state flows into the low-stage expansion valve 31. But,
When the heat exchanger 6 cools the refrigerant to reduce the enthalpy by δH, the supercooled refrigerant at the point B flows in, and the generation of flash vapor of the refrigerant can be suppressed.

【0019】例えば、気液分離器4における中間圧力が
5kgf/cm2 の場合において、熱交換器6で冷媒の
エンタルピーをδH=0.42kcal/Kg減少させ
た場合、冷媒配管130の圧力損失δPが0.2kgf
/cm2 以下であれば、低段側膨張弁31の入口におい
てフラッシュ蒸気は発生しない。従って、このフラッシ
ュ蒸気による低段側膨張弁31のハンチングが発生せ
ず、冷媒流量の制御性は良好な状態に保たれる。 (第2実施例)図4は本発明熱交換器6の第2実施例を
示しており、気液分離器4から低段側膨張弁31へ至る
冷媒配管130の一部に蒸発器21の配管またはフィン
と接触または接合した部位57を設け、冷媒配管130
中を通る冷媒を、それより低温である蒸発器21で冷却
することによりエンタルピーを減少させ、フラッシュ蒸
気の発生を抑制する。
For example, when the enthalpy of the refrigerant is reduced by δH = 0.42 kcal / Kg in the heat exchanger 6 when the intermediate pressure in the gas-liquid separator 4 is 5 kgf / cm 2 , the pressure loss δP in the refrigerant pipe 130. Is 0.2 kgf
If it is / cm 2 or less, flash steam is not generated at the inlet of the low-stage expansion valve 31. Therefore, hunting of the low-stage expansion valve 31 due to the flash steam does not occur, and the controllability of the refrigerant flow rate is maintained in a good state. (Second Embodiment) FIG. 4 shows a second embodiment of the heat exchanger 6 of the present invention, in which a part of the refrigerant pipe 130 extending from the gas-liquid separator 4 to the low-stage expansion valve 31 is provided with an evaporator 21. The portion 57 that is in contact with or joined to the pipe or fin is provided, and the refrigerant pipe 130
By cooling the refrigerant passing through it by the evaporator 21, which has a lower temperature, the enthalpy is reduced and the generation of flash vapor is suppressed.

【0020】本例によれば、熱交換器6での熱交換は冷
媒配管130の部位57と蒸発器21の間で行われるた
め、冷凍サイクルの成績係数は変化せず、また蒸発器2
1の性能に影響を及ぼすことはない。 (第3実施例)図5は第3実施例を示しており、電気自
動車用空調装置のヒートポンプの例を示している。冬季
に車室内の暖房をする場合、車室内空気を循環する内気
循環モードでは、乗員の人体から発生する水蒸気のため
車室内湿度が上昇し、ガラス窓の内面に結露するため視
界が悪くなり、自動車の運転上、非常に危険である。
According to this example, since the heat exchange in the heat exchanger 6 is performed between the portion 57 of the refrigerant pipe 130 and the evaporator 21, the coefficient of performance of the refrigeration cycle does not change and the evaporator 2 does not change.
It does not affect the performance of 1. (Third Embodiment) FIG. 5 shows a third embodiment, which is an example of a heat pump of an air conditioner for an electric vehicle. When heating the passenger compartment in the winter, in the inside air circulation mode in which the passenger compartment air is circulated, the humidity inside the passenger compartment increases due to water vapor generated from the human body of the occupant, and the visibility deteriorates because of condensation on the inner surface of the glass window. It is very dangerous when driving a car.

【0021】これを防止するため、空調装置の導入空気
として、内気の中に一部外気を導入して湿度の上昇を抑
制する装置が提案されている。そこで、本第3実施例は
このような構成の空調装置において、外気導入ダクト6
6の吸入口またはダクト内部に、気液分離器4と低段側
膨張弁31の間に配した熱交換器6を設けている。熱交
換器6を通過する冷媒は外気導入用ファン63により車
室内64に導入される外気により強制冷却されるため、
エンタルピーが減少して過冷却状態となり、フラッシュ
蒸気の発生を抑制できる。
In order to prevent this, a device has been proposed which suppresses an increase in humidity by introducing a part of outside air into the inside air as the introduction air of the air conditioner. Therefore, in the third embodiment, in the air conditioner having such a configuration, the outside air introduction duct 6
A heat exchanger 6 disposed between the gas-liquid separator 4 and the low stage side expansion valve 31 is provided inside the suction port or the duct of 6. Since the refrigerant passing through the heat exchanger 6 is forcibly cooled by the outside air introduced into the vehicle interior 64 by the outside air introduction fan 63,
The enthalpy is reduced and it becomes a supercooled state, and the generation of flash vapor can be suppressed.

【0022】図5において、62は内気循環用ファン、
64は車室、65は内気循環通路である。第3実施例の
モリエル線図を図6に示す。気液分離器4から低段側膨
張弁31に至る間で冷媒は熱交換器6によりエンタルピ
ーδHの分だけ過冷却される。このとき、熱交換器6に
より車室内に導入される外気は加熱されるため、車室内
の暖房効果が向上する。一方、圧縮仕事は熱交換器6の
有無とは関係がないので圧縮仕事は変化しない。
In FIG. 5, reference numeral 62 designates an internal air circulation fan,
Reference numeral 64 is a vehicle compartment, and 65 is an inside air circulation passage. A Mollier diagram of the third embodiment is shown in FIG. Between the gas-liquid separator 4 and the low-stage expansion valve 31, the refrigerant is supercooled by the heat exchanger 6 by the amount of enthalpy δH. At this time, since the outside air introduced into the vehicle compartment is heated by the heat exchanger 6, the heating effect in the vehicle compartment is improved. On the other hand, since the compression work has nothing to do with the presence or absence of the heat exchanger 6, the compression work does not change.

【0023】以上のことから、本第3実施例では低段側
膨張弁31でのフラッシュ蒸気発生の抑制効果だけでな
く、暖房効果/圧縮仕事で計算されるCOPの向上効果
も期待できる。なお、冷凍サイクルは2台の圧縮機で構
成する必要はなく、1台で多段圧縮可能なコンパウンド
圧縮機や、圧縮機の圧縮過程において圧縮室にガスを導
入させ、2段圧縮と同様の効果を得る圧縮機を用いても
良い。
From the above, in the third embodiment, not only the effect of suppressing flash vapor generation in the low stage expansion valve 31 but also the effect of improving the COP calculated by the heating effect / compression work can be expected. It should be noted that the refrigeration cycle does not have to be composed of two compressors, and a compound compressor capable of performing multi-stage compression with one compressor, or introducing gas into the compression chamber during the compression process of the compressor has the same effect as the two-stage compression. You may use the compressor which obtains.

【0024】また、高圧側膨張手段は膨張弁32に限定
されるものではなく、キャピラリチューブ、オリフィス
といった固定絞りを使用することも可能である。また、
熱交換器6を蒸発器21で発生する低温凝縮水を利用し
て冷媒を冷却する構成とすることもできる。
Further, the high-pressure side expansion means is not limited to the expansion valve 32, and it is also possible to use a fixed throttle such as a capillary tube or an orifice. Also,
The heat exchanger 6 may be configured to cool the refrigerant by using the low temperature condensed water generated in the evaporator 21.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1実施例の構成を示す冷凍サイクル
図である。
FIG. 1 is a refrigeration cycle diagram showing a configuration of a first embodiment of the present invention.

【図2】本発明の第1実施例の熱交換器の構成を示す斜
視図である。
FIG. 2 is a perspective view showing the configuration of the heat exchanger according to the first embodiment of the present invention.

【図3】(a)は本発明の第1実施例のモリエル線図、
(b)は(a)のx部拡大図である。
FIG. 3A is a Mollier diagram of the first embodiment of the present invention,
(B) is an enlarged view of part x of (a).

【図4】本発明の第2実施例の熱交換器の構成を示す模
式図である。
FIG. 4 is a schematic diagram showing a configuration of a heat exchanger according to a second embodiment of the present invention.

【図5】本発明の第3実施例を示す模式的構成図であ
る。
FIG. 5 is a schematic configuration diagram showing a third embodiment of the present invention.

【図6】本発明の第3実施例のモリエル線図である。FIG. 6 is a Mollier diagram of the third embodiment of the present invention.

【図7】従来の2段圧縮2段膨張サイクルの構成を示す
冷凍サイクル図である。
FIG. 7 is a refrigeration cycle diagram showing a configuration of a conventional two-stage compression two-stage expansion cycle.

【図8】図7のサイクルのモリエル線図である。8 is a Mollier diagram for the cycle of FIG. 7.

【図9】従来のエコノマイザサイクルの構成を示す冷凍
サイクル図である。
FIG. 9 is a refrigeration cycle diagram showing a configuration of a conventional economizer cycle.

【図10】図9のサイクルのモリエル線図である。10 is a Mollier diagram for the cycle of FIG.

【符号の説明】[Explanation of symbols]

11……低段側圧縮機、12……高段側圧縮機、21…
…蒸発器、22……凝縮機、31……低圧側膨張弁、3
2……高圧側膨張弁、130……冷媒配管、4……気液
分離機、6……熱交換器。
11 ... Low-stage compressor, 12 ... High-stage compressor, 21 ...
… Evaporator, 22 …… Condenser, 31 …… Low pressure side expansion valve, 3
2 ... High-pressure side expansion valve, 130 ... Refrigerant piping, 4 ... Gas-liquid separator, 6 ... Heat exchanger.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 圧縮機、凝縮器、膨張手段、蒸発器から
なる蒸気圧縮式冷凍サイクルのうち、膨張過程を高圧側
膨張手段と低圧側膨張弁により、2段階に分けて行うと
ともに、前記高圧側膨張手段と低圧側膨張弁の間に冷媒
の飽和蒸気と飽和液とを分離する気液分離器を設けた冷
凍サイクルであって、 前記気液分離器と前記低圧側膨張弁との間の冷媒配管に
冷媒を冷却する熱交換器を設けたことを特徴とする冷凍
サイクル。
1. A vapor compression refrigeration cycle comprising a compressor, a condenser, an expansion means and an evaporator, wherein the expansion process is performed in two stages by a high pressure side expansion means and a low pressure side expansion valve, and the high pressure A refrigeration cycle provided with a gas-liquid separator for separating a saturated vapor and a saturated liquid of a refrigerant between the side expansion means and the low-pressure side expansion valve, wherein the gas-liquid separator and the low-pressure side expansion valve A refrigeration cycle characterized in that a heat exchanger for cooling the refrigerant is provided in the refrigerant pipe.
【請求項2】 前記熱交換器は、前記冷媒配管に接合さ
れ、外気により冷却されるフィン部材により構成されて
いることを特徴とする請求項1に記載の冷凍サイクル。
2. The refrigeration cycle according to claim 1, wherein the heat exchanger is constituted by a fin member joined to the refrigerant pipe and cooled by outside air.
【請求項3】 前記熱交換器は、前記冷媒配管の一部に
前記蒸発器と接触または接合した部位を設けることによ
り構成されていることを特徴とする請求項1に記載の冷
凍サイクル。
3. The refrigeration cycle according to claim 1, wherein the heat exchanger is configured by providing a part of the refrigerant pipe which is in contact with or joined to the evaporator.
【請求項4】 請求項1に記載の冷凍サイクルが自動車
用空調装置に使用され、前記熱交換器が自動車用空調装
置の外気導入ダクト内に設置されていることを特徴とす
る冷凍サイクル。
4. A refrigeration cycle according to claim 1, wherein the refrigeration cycle is used in an automobile air conditioner, and the heat exchanger is installed in an outside air introduction duct of the automobile air conditioner.
JP26013394A 1994-10-25 1994-10-25 Refrigeration cycle Expired - Fee Related JP3435848B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26013394A JP3435848B2 (en) 1994-10-25 1994-10-25 Refrigeration cycle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26013394A JP3435848B2 (en) 1994-10-25 1994-10-25 Refrigeration cycle

Publications (2)

Publication Number Publication Date
JPH08121889A true JPH08121889A (en) 1996-05-17
JP3435848B2 JP3435848B2 (en) 2003-08-11

Family

ID=17343768

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26013394A Expired - Fee Related JP3435848B2 (en) 1994-10-25 1994-10-25 Refrigeration cycle

Country Status (1)

Country Link
JP (1) JP3435848B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001056156A (en) * 1999-06-11 2001-02-27 Daikin Ind Ltd Air conditioning apparatus
KR100324542B1 (en) * 2000-03-28 2002-02-16 손재익 High efficient & simultaneous cold and hot heat source making system
WO2002064389A1 (en) * 2001-02-13 2002-08-22 Sanyo Electric Co., Ltd. On-vehicle air conditioner
KR100767683B1 (en) * 2006-01-06 2007-10-17 엘지전자 주식회사 Air conditioner
JP2008002742A (en) * 2006-06-21 2008-01-10 Daikin Ind Ltd Refrigerating device
JP2014035136A (en) * 2012-08-09 2014-02-24 Mitsubishi Electric Corp Showcase
CN109442783A (en) * 2018-11-06 2019-03-08 中建五局第三建设有限公司 Ultrahigh energy efficiency cold and heat cogeneration region energy supply method and system

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60111474U (en) * 1983-12-30 1985-07-29 株式会社日立製作所 chiller unit
JPS6339825B2 (en) * 1982-09-16 1988-08-08 Matsushita Electric Ind Co Ltd
JPH0256711U (en) * 1988-10-20 1990-04-24
JPH0420749A (en) * 1990-05-15 1992-01-24 Mitsubishi Electric Corp Air conditioner
JPH0453161U (en) * 1990-09-06 1992-05-07
JPH04371759A (en) * 1991-06-21 1992-12-24 Hitachi Ltd Freezing cycle of two-stage compression and two-stage expansion
JPH05296620A (en) * 1992-02-20 1993-11-09 Nippondenso Co Ltd Freezing cycle
JPH06213169A (en) * 1993-01-14 1994-08-02 Nissin Kogyo Kk Capacity control method for two-stage compression refrigerating device and device therefor

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6339825B2 (en) * 1982-09-16 1988-08-08 Matsushita Electric Ind Co Ltd
JPS60111474U (en) * 1983-12-30 1985-07-29 株式会社日立製作所 chiller unit
JPH0256711U (en) * 1988-10-20 1990-04-24
JPH0420749A (en) * 1990-05-15 1992-01-24 Mitsubishi Electric Corp Air conditioner
JPH0453161U (en) * 1990-09-06 1992-05-07
JPH04371759A (en) * 1991-06-21 1992-12-24 Hitachi Ltd Freezing cycle of two-stage compression and two-stage expansion
JPH05296620A (en) * 1992-02-20 1993-11-09 Nippondenso Co Ltd Freezing cycle
JPH06213169A (en) * 1993-01-14 1994-08-02 Nissin Kogyo Kk Capacity control method for two-stage compression refrigerating device and device therefor

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001056156A (en) * 1999-06-11 2001-02-27 Daikin Ind Ltd Air conditioning apparatus
KR100324542B1 (en) * 2000-03-28 2002-02-16 손재익 High efficient & simultaneous cold and hot heat source making system
WO2002064389A1 (en) * 2001-02-13 2002-08-22 Sanyo Electric Co., Ltd. On-vehicle air conditioner
EP1273468A1 (en) * 2001-02-13 2003-01-08 Sanyo Electric Co., Ltd. On-vehicle air conditioner
EP1273468A4 (en) * 2001-02-13 2004-10-06 Sanyo Electric Co On-vehicle air conditioner
US6889512B2 (en) 2001-02-13 2005-05-10 Sanyo Electric Co., Ltd. On-vehicle air conditioner
KR100767683B1 (en) * 2006-01-06 2007-10-17 엘지전자 주식회사 Air conditioner
JP2008002742A (en) * 2006-06-21 2008-01-10 Daikin Ind Ltd Refrigerating device
US8166771B2 (en) 2006-06-21 2012-05-01 Daikin Industries, Ltd. Refrigeration system
JP2014035136A (en) * 2012-08-09 2014-02-24 Mitsubishi Electric Corp Showcase
CN109442783A (en) * 2018-11-06 2019-03-08 中建五局第三建设有限公司 Ultrahigh energy efficiency cold and heat cogeneration region energy supply method and system

Also Published As

Publication number Publication date
JP3435848B2 (en) 2003-08-11

Similar Documents

Publication Publication Date Title
JP4463466B2 (en) Ejector cycle
JP4259478B2 (en) Evaporator structure and ejector cycle
JP4626531B2 (en) Ejector refrigeration cycle
KR101797176B1 (en) Dual pipe structure for internal heat exchanger
JP4400522B2 (en) Ejector refrigeration cycle
US20110308270A1 (en) Dual air conditioner for vehicle
JP2007051833A (en) Ejector type refrigeration cycle
JPH11142007A (en) Refrigerating cycle
JP4415835B2 (en) Refrigeration cycle equipment for vehicles
JP4952830B2 (en) Ejector refrigeration cycle
JP3435848B2 (en) Refrigeration cycle
JP2001001754A (en) Air conditioner for vehicle
JPH0526522A (en) Freezing cycle
JPH06272998A (en) Refrigerator
JP4725449B2 (en) Ejector refrigeration cycle
JP3474648B2 (en) Air conditioner
JP2007057177A (en) Vapor compression type refrigerating cycle device
JPH10329532A (en) Vehicular air conditioner
EP1728662A1 (en) Refrigeration system for an air conditioner
KR101544878B1 (en) Cooling system of air conditioner for vehicle
JP4835296B2 (en) Ejector refrigeration cycle
JPH0534168B2 (en)
JPH05296586A (en) Refrigeration cycle
JP2003106688A (en) Refrigerating cycle
KR100213503B1 (en) The over cooling type air conditioner in an automobile

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20030506

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090606

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100606

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100606

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110606

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees