JPWO2019021364A1 - Refrigeration apparatus and method of operating refrigeration apparatus - Google Patents

Refrigeration apparatus and method of operating refrigeration apparatus Download PDF

Info

Publication number
JPWO2019021364A1
JPWO2019021364A1 JP2019532244A JP2019532244A JPWO2019021364A1 JP WO2019021364 A1 JPWO2019021364 A1 JP WO2019021364A1 JP 2019532244 A JP2019532244 A JP 2019532244A JP 2019532244 A JP2019532244 A JP 2019532244A JP WO2019021364 A1 JPWO2019021364 A1 JP WO2019021364A1
Authority
JP
Japan
Prior art keywords
refrigerant
evaporator
refrigeration apparatus
pressure
inlet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019532244A
Other languages
Japanese (ja)
Other versions
JP6765538B2 (en
Inventor
久登 森田
久登 森田
田中 学
学 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Publication of JPWO2019021364A1 publication Critical patent/JPWO2019021364A1/en
Application granted granted Critical
Publication of JP6765538B2 publication Critical patent/JP6765538B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • F25B39/02Evaporators

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)
  • Devices That Are Associated With Refrigeration Equipment (AREA)
  • Defrosting Systems (AREA)

Abstract

温度勾配を有する非共沸混合冷媒を使用した冷凍装置において、偏着霜を防止することで、冷凍装置のCOP、及び冷凍装置の冷凍能力の低下を防ぐことを目的とする。圧縮機と、凝縮器と、減圧装置と、蒸発器とを冷媒配管により接続し、内部で冷媒が循環する冷凍サイクルを備え、冷媒は、複数種類を混合した非共沸混合冷媒であり、蒸発器は、非共沸混合冷媒の温度勾配に合わせ、蒸発過程における管路内圧力を冷媒の流れる方向に沿って低下させることを特徴とする。In a refrigeration system using a non-azeotropic mixed refrigerant having a temperature gradient, it is an object to prevent a decrease in the COP of the refrigeration system and a decrease in the refrigeration capacity of the refrigeration system by preventing eccentric frost. A compressor, a condenser, a decompression device, and an evaporator are connected by a refrigerant pipe, and a refrigeration cycle in which the refrigerant circulates is provided.The refrigerant is a non-azeotropic mixed refrigerant in which a plurality of types are mixed. The apparatus is characterized in that the pressure in the pipeline during the evaporation process is reduced along the flowing direction of the refrigerant in accordance with the temperature gradient of the non-azeotropic mixed refrigerant.

Description

本発明は、冷凍装置に関し、特に非共沸混合冷媒を適用する冷凍装置及び冷凍装置の運転方法に関するものである。   The present invention relates to a refrigeration apparatus, and more particularly to a refrigeration apparatus to which a non-azeotropic mixed refrigerant is applied and an operation method of the refrigeration apparatus.

従来、蒸発器と圧縮機と凝縮器と減圧装置とが冷媒が循環する管路によってそれぞれ接続され、冷媒を循環させる冷凍サイクルを有する冷凍装置が知られている。   2. Description of the Related Art Conventionally, a refrigerating apparatus having a refrigerating cycle in which an evaporator, a compressor, a condenser, and a decompression device are respectively connected by pipes through which a refrigerant circulates, and circulates the refrigerant is known.

また、空気調和機や冷凍機等の冷凍装置では、蒸発器として作用する熱交換器について、熱交換空気の流れる方向と冷媒の流れる方向とを互いに逆にして対向させ、熱交換空気と冷媒とを対向流化し、熱交換損失を低減して性能向上を図ったものが知られている(例えば、特許文献1参照)。   In a refrigerating device such as an air conditioner or a refrigerator, a heat exchanger acting as an evaporator is opposed to a heat exchange air flowing direction and a refrigerant flowing direction in opposite directions, and the heat exchange air and the refrigerant are opposed to each other. Is known in which the flow rate is reduced to reduce the heat exchange loss to improve the performance (for example, see Patent Document 1).

一方で、冷凍装置に使用される冷媒には複数種類の冷媒を混合した非共沸混合冷媒が用いられることがある(例えば、特許文献2参照)。非共沸混合冷媒を用いた冷凍装置の蒸発器についても対向流化を図ることができる。特に、非共沸混合冷媒は同圧力下において相変化で冷媒温度が変化する。すなわち、非共沸混合冷媒は、蒸発過程において温度勾配を有するため、例えば蒸発器であれば、蒸発過程において上流側が下流側より温度が低くなる。よって、冷媒と空気又は水等の熱源媒体との温度差をより小さくでき、成績係数(COP)が向上する。   On the other hand, a non-azeotropic mixed refrigerant in which a plurality of types of refrigerant are mixed may be used as a refrigerant used in a refrigeration apparatus (for example, see Patent Document 2). Counterflow can also be achieved for an evaporator of a refrigeration system using a non-azeotropic mixed refrigerant. In particular, the temperature of the non-azeotropic refrigerant mixture changes due to a phase change under the same pressure. That is, since the non-azeotropic mixed refrigerant has a temperature gradient in the evaporation process, for example, in the case of an evaporator, the temperature of the upstream side is lower than that of the downstream side in the evaporation process. Therefore, the temperature difference between the refrigerant and the heat source medium such as air or water can be reduced, and the coefficient of performance (COP) is improved.

特開2015−141009号公報JP-A-2015-14109 特開平7−208822号公報JP-A-7-208822

しかしながら、飽和温度が氷点下未満の低温機器では、蒸発器に着霜が発生する。着霜が発生する低温機器の蒸発過程において、非共沸混合冷媒を用いると、蒸発器の着霜に偏りが生じる。つまり、上述のような同圧力下において相変化で冷媒温度が変化するような温度勾配を有する非共沸混合冷媒の温度が低い蒸発器の入口側では空気の冷却が促進されて着霜量が多くなり、冷媒の温度が高い蒸発器の出口側では空気の冷却が進まず着霜量は少なくなる。このように、蒸発器に着霜に偏りが生じた場合は、着霜が均等な場合に比べて全体の着霜量が同じとしても、早期に蒸発器の入口側のフィンの間の空間が霜によって目詰まりし、熱交換率が低下する。従って、冷媒と熱源媒体との対向流化による熱交換率の向上よりも偏着霜による熱交換率の悪化の影響が大きくなり、蒸発器における蒸発圧力が低下し、冷凍装置のCOP及び冷凍装置の冷凍能力が低下するという課題があった。   However, in low-temperature equipment whose saturation temperature is below the freezing point, frost is formed on the evaporator. When a non-azeotropic refrigerant mixture is used in the evaporation process of a low-temperature device in which frost is generated, frost formation in the evaporator is biased. In other words, at the inlet side of the evaporator having a low temperature of the non-azeotropic refrigerant mixture having a temperature gradient such that the refrigerant temperature changes by the phase change under the same pressure as described above, the cooling of the air is promoted, and the frost amount is reduced. At the outlet side of the evaporator where the temperature of the refrigerant is high, cooling of the air does not proceed and the amount of frost is reduced. As described above, when the frost is unevenly formed in the evaporator, the space between the fins on the inlet side of the evaporator is quickly formed even if the entire amount of frost is the same as compared to the case where the frost is uniform. Clogging due to frost reduces the heat exchange rate. Therefore, the influence of the deterioration of the heat exchange rate due to deviated frost is greater than the improvement of the heat exchange rate due to the counterflow of the refrigerant and the heat source medium, the evaporation pressure in the evaporator is reduced, and the COP of the refrigerating device and the refrigerating device are reduced. However, there was a problem that the refrigerating capacity of the steel was reduced.

本発明は、温度勾配を有する非共沸混合冷媒を使用した冷凍装置において、偏着霜を防止することで、冷凍装置のCOP、及び冷凍装置の冷凍能力の低下を防ぐ冷凍装置及び冷凍装置の運転方法を提供することを目的とするものである。   The present invention relates to a refrigeration system using a non-azeotropic mixed refrigerant having a temperature gradient, by preventing localized frost, thereby preventing a reduction in the COP of the refrigeration system and the refrigeration capacity of the refrigeration system. It is intended to provide a driving method.

本発明に係る冷凍装置は、圧縮機と、凝縮器と、減圧装置と、蒸発器とを冷媒配管により接続し、内部で冷媒が循環する冷凍サイクルを備え、前記冷媒は、複数種類を混合した非共沸混合冷媒であり、前記蒸発器は、前記非共沸混合冷媒の温度勾配に合わせ、蒸発過程における管路内圧力を前記冷媒の流れる方向に沿って低下させることを特徴とする。   The refrigeration apparatus according to the present invention includes a refrigeration cycle in which a compressor, a condenser, a decompression device, and an evaporator are connected by a refrigerant pipe and a refrigerant circulates therein, and the refrigerant is a mixture of a plurality of types. The refrigerant is a non-azeotropic mixed refrigerant, and the evaporator reduces a pressure in a pipe in an evaporation process along a flowing direction of the refrigerant in accordance with a temperature gradient of the non-azeotropic mixed refrigerant.

本発明によれば、上記の構成により、温度勾配を有する非共沸混合冷媒を使用した冷凍装置において、蒸発器内の冷媒温度をほぼ均一にすることができ、蒸発器の着霜の偏りを抑制し、冷凍装置のCOP及び冷凍能力の低下を抑制した冷凍装置を得ることを目的とするものである。   According to the present invention, with the configuration described above, in a refrigeration apparatus using a non-azeotropic mixed refrigerant having a temperature gradient, the refrigerant temperature in the evaporator can be made substantially uniform, and the frost formation of the evaporator can be biased. It is an object of the present invention to obtain a refrigeration apparatus that suppresses a decrease in COP and refrigeration capacity of the refrigeration apparatus.

本発明の実施の形態1に係る冷凍装置の全体の構成を表す概略図である。1 is a schematic diagram illustrating an entire configuration of a refrigeration apparatus according to Embodiment 1 of the present invention. 本発明の実施の形態1に係る冷凍装置の蒸発器の構成を表す概略図である。FIG. 2 is a schematic diagram illustrating a configuration of an evaporator of the refrigeration apparatus according to Embodiment 1 of the present invention. 本発明の実施の形態1に係る冷凍装置に用いられる非共沸混合冷媒のモリエル線図を示している。FIG. 2 shows a Mollier diagram of a non-azeotropic refrigerant mixture used in the refrigeration apparatus according to Embodiment 1 of the present invention. 本発明の実施の形態1に掛かる冷凍装置の制御フロー図である。FIG. 2 is a control flow chart of the refrigeration apparatus according to Embodiment 1 of the present invention. 本発明の実施の形態2に係る冷凍装置に用いられる非共沸混合冷媒のモリエル線図を示している。FIG. 7 shows a Mollier diagram of a non-azeotropic refrigerant mixture used in a refrigeration apparatus according to Embodiment 2 of the present invention. 本発明の実施の形態2に係る冷凍装置の蒸発器の構成を表す概略図である。FIG. 6 is a schematic diagram illustrating a configuration of an evaporator of a refrigeration apparatus according to Embodiment 2 of the present invention.

実施の形態1.
図1は、本発明の実施の形態1に係る冷凍装置100の全体の構成を表す概略図である。なお、各図において同じ部分又は相当する部分には同じ符号を付している。実施の形態1の冷凍装置100は、図1に示すように圧縮機1と、凝縮器2と、減圧装置3と、蒸発器4とが冷媒配管5で順次接続されている。冷凍装置100は、圧縮機1、凝縮器2、減圧装置3、蒸発器4、圧縮機1の順に冷媒が循環する冷凍サイクルが構成されている。制御部60は、冷凍装置100を構成する各装置を制御するものである。
Embodiment 1 FIG.
FIG. 1 is a schematic diagram illustrating an entire configuration of a refrigeration apparatus 100 according to Embodiment 1 of the present invention. In the drawings, the same or corresponding parts are denoted by the same reference numerals. In a refrigeration apparatus 100 according to the first embodiment, a compressor 1, a condenser 2, a decompression device 3, and an evaporator 4 are sequentially connected by a refrigerant pipe 5 as shown in FIG. The refrigeration apparatus 100 has a refrigeration cycle in which a refrigerant circulates in the order of the compressor 1, the condenser 2, the decompression device 3, the evaporator 4, and the compressor 1. The control unit 60 controls each device constituting the refrigeration device 100.

(圧縮機1)
圧縮機1は、冷媒を吸入し、圧縮して高温高圧のガス状態にして吐出する。圧縮機1は、例えばインバータ回路等によって回転数を制御され、回転数の制御によって冷媒の吐出量が調整できるもので構成するとよい。
(Compressor 1)
The compressor 1 sucks in a refrigerant, compresses it, and discharges it in a high-temperature and high-pressure gas state. The compressor 1 may be configured such that the number of revolutions is controlled by, for example, an inverter circuit, and the amount of refrigerant discharged can be adjusted by controlling the number of revolutions.

(凝縮器2)
凝縮器2は、圧縮機1で圧縮されて高温高圧のガス状態になった冷媒が流入し、冷媒と熱源との間で熱交換を行って、冷媒を低温高圧の液状態に冷却させる。熱源としては、空気、水、ブライン等が挙げられ、実施の形態1では凝縮器2の熱源は屋外の空気である外気である。凝縮器2は、外気と冷媒との間で熱交換を行う。さらに、実施の形態1では凝縮器2の熱交換を促すために、冷媒が冷凍装置100内を循環している際に凝縮器2へ外気を送風する凝縮器送風機6を有している。凝縮器送風機6は風量を調節できるもので構成するとよい。
(Condenser 2)
The refrigerant compressed into the high-pressure and high-pressure gas state by the compressor 1 flows into the condenser 2, and performs heat exchange between the refrigerant and the heat source to cool the refrigerant to a low-temperature and high-pressure liquid state. Examples of the heat source include air, water, and brine. In the first embodiment, the heat source of the condenser 2 is outside air, which is outdoor air. The condenser 2 performs heat exchange between the outside air and the refrigerant. Further, in the first embodiment, in order to promote heat exchange of the condenser 2, the condenser blower 6 that blows outside air to the condenser 2 when the refrigerant is circulating in the refrigeration apparatus 100 is provided. The condenser blower 6 may be configured to be capable of adjusting the air volume.

(減圧装置3)
減圧装置3は、凝縮器2で冷却された低温高圧の液状態の冷媒が流入し、冷媒を低温低圧の液状態に減圧膨張させる。減圧装置3は、例えば電子式膨張弁、感温式膨張弁等の冷媒流量制御手段、又は毛細管(キャピラリチューブ)などで構成される。
(Decompression device 3)
The decompression device 3 receives the low-temperature and high-pressure liquid refrigerant cooled by the condenser 2 and decompresses and expands the refrigerant to a low-temperature and low-pressure liquid state. The pressure reducing device 3 is configured by, for example, a refrigerant flow control unit such as an electronic expansion valve or a temperature-sensitive expansion valve, or a capillary tube (capillary tube).

(蒸発器4)
蒸発器4は、減圧装置3で減圧膨張された低温低圧の液状態の冷媒が流入し、冷媒と冷却対象との間で熱交換を行い、冷却対象の熱を冷媒に吸熱させて、冷却対象を冷却する。冷媒は、冷却対象を冷却する際に、蒸発し高温低圧のガス状態になる。実施の形態1では、冷却対象としては屋内の空気である。つまり、蒸発器4は、屋内の空気と冷媒との間で熱交換を行う。さらに、実施の形態1では蒸発器4での屋内の空気と冷媒との熱交換を促すため、冷媒が冷凍装置100内を循環している際に蒸発器4へ屋内の空気を送風する蒸発器送風機7を有している。蒸発器送風機7は風量を調節できるもので構成するとよい。
(Evaporator 4)
The evaporator 4 receives the refrigerant in a low-temperature and low-pressure liquid state that has been decompressed and expanded by the decompression device 3, performs heat exchange between the refrigerant and the object to be cooled, absorbs the heat of the object to be cooled by the refrigerant, and To cool. The refrigerant evaporates and becomes a high-temperature low-pressure gas state when cooling the object to be cooled. In the first embodiment, the object to be cooled is indoor air. That is, the evaporator 4 performs heat exchange between indoor air and the refrigerant. Furthermore, in the first embodiment, in order to promote heat exchange between the indoor air and the refrigerant in the evaporator 4, the evaporator blows the indoor air to the evaporator 4 when the refrigerant is circulating in the refrigeration apparatus 100. It has a blower 7. The evaporator blower 7 may be configured to be capable of adjusting the air volume.

蒸発器4の具体的な構成について、図2に基づき説明する。蒸発器4は、複数本の伝熱管41と、複数枚のフィン42と、冷媒分配器43と、ヘッダ44により構成されたプレートフィンチューブ熱交換器である。なお、図2では伝熱管41の本数を5本、フィン42の枚数を28枚としているが、これらの本数及び枚数は一例であり、本発明はこの本数及び枚数に限らない。   A specific configuration of the evaporator 4 will be described with reference to FIG. The evaporator 4 is a plate-fin tube heat exchanger composed of a plurality of heat transfer tubes 41, a plurality of fins 42, a refrigerant distributor 43, and a header 44. In FIG. 2, the number of the heat transfer tubes 41 is five and the number of the fins 42 is 28. However, the number and the number are only examples, and the present invention is not limited to this number and the number.

図2は、本発明の実施の形態1に係る冷凍装置100の蒸発器4の構成を表す概略図である。図2は、蒸発器4を模式的に表してある。ここで図2を用いて蒸発器4内の冷媒の流れについて説明を行う。まず、減圧装置3で減圧膨張された低温低圧の液状態の冷媒は、冷媒分配器43の流入口より流入する。冷媒分配器43の流入口より流入した冷媒は、冷媒分配器43の流出口において複数に分配され、冷媒分配器43のそれぞれの流出口より伝熱管41へと流れる。伝熱管41に流入した冷媒は、伝熱管41の軸方向に沿って流れる。伝熱管41及びフィン42の表面は、蒸発器4に備えられた送風機7によって送風された冷却対象である屋内の空気と接する。蒸発器4のフィン42に向かって送風された屋内の空気は、蒸発器4の内部を流れる冷媒の流れと対向方向に流れる。伝熱管41の内部を流れる冷媒は、伝熱管41及びフィン42と接する屋内の空気と熱交換を行い、屋内の空気の熱を吸熱する。伝熱管41にて屋内の空気と熱交換を行った冷媒は、ヘッダ44の流入口より流入し、ヘッダ44で合流してヘッダ44の流出口より圧縮機1へと流れる。   FIG. 2 is a schematic diagram illustrating a configuration of the evaporator 4 of the refrigeration apparatus 100 according to Embodiment 1 of the present invention. FIG. 2 schematically shows the evaporator 4. Here, the flow of the refrigerant in the evaporator 4 will be described with reference to FIG. First, the low-temperature and low-pressure liquid state refrigerant decompressed and expanded by the decompression device 3 flows in from the inlet of the refrigerant distributor 43. The refrigerant flowing from the inlet of the refrigerant distributor 43 is distributed to a plurality of outlets of the refrigerant distributor 43, and flows from the respective outlets of the refrigerant distributor 43 to the heat transfer tubes 41. The refrigerant flowing into the heat transfer tubes 41 flows along the axial direction of the heat transfer tubes 41. The surfaces of the heat transfer tubes 41 and the fins 42 come into contact with indoor air to be cooled, which is blown by the blower 7 provided in the evaporator 4. The indoor air blown toward the fins 42 of the evaporator 4 flows in a direction opposite to the flow of the refrigerant flowing inside the evaporator 4. The refrigerant flowing inside the heat transfer tube 41 exchanges heat with indoor air in contact with the heat transfer tube 41 and the fins 42 to absorb heat of the indoor air. The refrigerant that has exchanged heat with indoor air in the heat transfer tube 41 flows in from the inlet of the header 44, merges in the header 44, and flows from the outlet of the header 44 to the compressor 1.

図3は、本発明の実施の形態1に係る冷凍装置100に用いられる非共沸混合冷媒のモリエル線図を示している。非共沸混合冷媒は、沸点が互いに異なる2種以上の冷媒を混合してなるもので、気液二相の状態では一定圧力下でも乾き度に応じて冷媒の圧力飽和温度が変化する。つまり、図3の点線Aで示された圧力一定の線に沿って蒸発器4内の冷媒を蒸発させると、蒸発器4の入口の温度が低くなり、出口の温度が高くなる。そこで、図3の点線Bで示されるように、蒸発器4内部の圧力をある所定の勾配で連続的に下げることによって蒸発器4に流れる非共沸混合冷媒の温度を均一にすることができる。そして、蒸発器4の入口温度と出口温度を均一に保つことによって、蒸発器4に発生する着霜の偏りを抑制することができる。   FIG. 3 shows a Mollier diagram of the non-azeotropic mixed refrigerant used in refrigeration apparatus 100 according to Embodiment 1 of the present invention. The non-azeotropic mixed refrigerant is a mixture of two or more refrigerants having different boiling points, and in a gas-liquid two-phase state, the pressure saturation temperature of the refrigerant changes according to the degree of dryness even under a constant pressure. That is, when the refrigerant in the evaporator 4 is evaporated along the line with a constant pressure indicated by the dotted line A in FIG. 3, the temperature of the inlet of the evaporator 4 decreases and the temperature of the outlet increases. Therefore, as shown by the dotted line B in FIG. 3, the temperature of the non-azeotropic mixed refrigerant flowing through the evaporator 4 can be made uniform by continuously lowering the pressure inside the evaporator 4 at a predetermined gradient. . By keeping the inlet temperature and the outlet temperature of the evaporator 4 uniform, it is possible to suppress the uneven formation of frost generated in the evaporator 4.

蒸発器4内部の圧力を徐々に下げると、蒸発器4の入口と出口との間に圧力差が生じる。蒸発器4の内部を流れる冷媒の圧力と飽和温度との関係は、冷媒の組成に応じて一意に決まる。よって、蒸発器4の入口及び出口において温度を均一にした際の蒸発器4の入口と出口の圧力差は、冷媒の組成に応じて一意に決まる。このため、実際の冷凍装置100において蒸発器4の入口と出口との間の冷媒の圧力差を、蒸発器4に流れる冷媒の温度を均一にした際の蒸発器4の入口及び出口における冷媒の圧力差と同じにすることで、蒸発器4の着霜の偏りを抑制することができる。   When the pressure inside the evaporator 4 is gradually reduced, a pressure difference occurs between the inlet and the outlet of the evaporator 4. The relationship between the pressure of the refrigerant flowing inside the evaporator 4 and the saturation temperature is uniquely determined according to the composition of the refrigerant. Therefore, the pressure difference between the inlet and the outlet of the evaporator 4 when the temperature is made uniform at the inlet and the outlet of the evaporator 4 is uniquely determined according to the composition of the refrigerant. For this reason, in the actual refrigerating apparatus 100, the pressure difference of the refrigerant between the inlet and the outlet of the evaporator 4 is set to the value of the refrigerant at the inlet and the outlet of the evaporator 4 when the temperature of the refrigerant flowing through the evaporator 4 is made uniform. By making the same as the pressure difference, it is possible to suppress the uneven formation of frost on the evaporator 4.

蒸発器4内部の冷媒の圧力をある所定の勾配で連続的に下げる手段については、冷媒が通過する伝熱管41の内径を段階的に変更するという手段がある。蒸発器4を構成する伝熱管41は、通常内径が均一の管であるが、例えば蒸発器4の入口から出口に向かって伝熱管41の断面積を漸次減少させることにより、内部を流れる冷媒の圧力を減少させることができる。または、例えば蒸発器4の入口から出口に向かって伝熱管41の断面積を段階的に減少させてもよい。   As means for continuously lowering the pressure of the refrigerant inside the evaporator 4 at a predetermined gradient, there is a means for changing the inner diameter of the heat transfer tube 41 through which the refrigerant passes stepwise. The heat transfer tube 41 constituting the evaporator 4 is usually a tube having a uniform inner diameter. For example, the cross-sectional area of the heat transfer tube 41 is gradually reduced from the inlet to the outlet of the evaporator 4 so that the refrigerant flowing inside the tube is reduced. Pressure can be reduced. Alternatively, for example, the cross-sectional area of the heat transfer tube 41 may be reduced stepwise from the inlet to the outlet of the evaporator 4.

または、伝熱管41の管路内に抵抗を設け、管路抵抗により内部を流れる冷媒の圧力を減少させることもできる。例えば、伝熱管41の内壁面に凹凸を設けることにより管路抵抗を増加させ、伝熱管41の内部を流れる冷媒の圧力損失を増加させることもできる。   Alternatively, a resistance may be provided in the pipe of the heat transfer tube 41, and the pressure of the refrigerant flowing inside may be reduced by the pipe resistance. For example, by providing irregularities on the inner wall surface of the heat transfer tube 41, the pipe resistance can be increased, and the pressure loss of the refrigerant flowing inside the heat transfer tube 41 can be increased.

さらに、伝熱管41を長くし管路抵抗による圧力損失を大きくし、蒸発器4の入口と出口との圧力差を大きくするなどの手段をとることもできる。以上の手段は、適用する非共沸混合冷媒の温度勾配によって適宜選定すればよい。   Further, it is also possible to take measures such as lengthening the heat transfer tube 41 to increase the pressure loss due to the line resistance, and increasing the pressure difference between the inlet and the outlet of the evaporator 4. The above means may be appropriately selected according to the temperature gradient of the applied non-azeotropic refrigerant mixture.

また、蒸発器4の入口に流量調整弁を設ける、あるいは圧縮機1の運転回転数を制御するなど、蒸発器4内を通過する冷媒の流速を制御することにより、運転状態や適用する非共沸混合冷媒の種類に依らず、蒸発器4内部の圧力をある所定の勾配で連続的に下げることも可能である。   Further, by controlling the flow rate of the refrigerant passing through the evaporator 4 such as by providing a flow control valve at the inlet of the evaporator 4 or controlling the operation speed of the compressor 1, the operating state and the applied non- Regardless of the type of the boiling mixed refrigerant, the pressure inside the evaporator 4 can be continuously reduced at a predetermined gradient.

以上より、蒸発過程において温度勾配を有する冷媒を使用する場合において、蒸発器4内の配管圧損が冷媒の温度勾配とほぼ同一になるように構成することにより、蒸発器4内の冷媒温度をほぼ均一にすることができる。これにより、蒸発器4の冷媒が流入する入口側に偏って着霜することによる冷凍装置100の性能低下の防止が可能となる。   As described above, when a refrigerant having a temperature gradient is used in the evaporation process, the refrigerant pressure in the evaporator 4 is substantially reduced by configuring the pipe pressure loss in the evaporator 4 to be substantially the same as the temperature gradient of the refrigerant. It can be uniform. Accordingly, it is possible to prevent the performance of the refrigeration apparatus 100 from deteriorating due to the formation of frost on the inlet side of the evaporator 4 into which the refrigerant flows.

(冷凍装置100の制御)
図4は、本発明の実施の形態1に掛かる冷凍装置100の制御フロー図である。冷凍装置100は、例えばユニットクーラやショーケース等の複数の用途に用いられるものである。図1に示される破線部は、冷却器50であり、冷却器50がユニットクーラやショーケースに相当する。図1に示される破線部以外の部分は、いわゆる熱源機である。特に、冷却器50が制御部60により直接制御できない場合は、制御部60は、熱源機の各部の圧力、温度、及び運転条件を取得して、冷凍装置100の運転の制御を行う。
(Control of refrigeration system 100)
FIG. 4 is a control flowchart of the refrigeration apparatus 100 according to the first embodiment of the present invention. The refrigeration apparatus 100 is used for a plurality of applications such as a unit cooler and a showcase. 1 is a cooler 50, and the cooler 50 corresponds to a unit cooler or a showcase. Parts other than the broken line shown in FIG. 1 are so-called heat source units. In particular, when the cooler 50 cannot be directly controlled by the control unit 60, the control unit 60 controls the operation of the refrigeration apparatus 100 by acquiring the pressure, temperature, and operating conditions of each unit of the heat source unit.

(ステップi)
ステップiにおいては、冷凍装置100の内部を循環する冷媒循環量Grを算出する。まず、圧縮機1の吸入側の配管に設けられている圧力センサ20により圧縮機1の吸入圧力Psを検出する。また、圧縮機1の吸入側の配管に設けられている温度センサ30により圧縮機1の吸入温度Thを検出する。なお、冷媒循環量Grは以下の式により算出される。
Gr=F×Vst×ηv×ρs×3600×10−6
ここで、F[Hz]:圧縮機1の運転周波数、Vst[cc]:圧縮機1の押しのけ量、ηv:圧縮機1の体積効率、ρs[kg/m]:圧縮機1の吸入ガス密度、である。Fは、冷凍装置100の運転データから圧縮機の運転周波数として取得できる。Vst及びηvは、圧縮機1に固有の値であり、予め制御部60に記憶させておいても良い。ρsは、冷媒種毎に固有の値をとり、吸入圧力Psと吸入温度Thとから求めることができる。ステップiを冷媒循環量算出ステップと呼ぶ。
(Step i)
In step i, a refrigerant circulation amount Gr circulating in the refrigeration apparatus 100 is calculated. First, the suction pressure Ps of the compressor 1 is detected by a pressure sensor 20 provided in a pipe on the suction side of the compressor 1. Further, a suction temperature Th of the compressor 1 is detected by a temperature sensor 30 provided in a pipe on a suction side of the compressor 1. Note that the refrigerant circulation amount Gr is calculated by the following equation.
Gr = F × Vst × ηv × ρs × 3600 × 10 −6
Here, F [Hz]: operating frequency of the compressor 1, Vst [cc]: displacement of the compressor 1, ηv: volumetric efficiency of the compressor 1, ρs [kg / m 3 ]: suction gas of the compressor 1 Density. F can be obtained from the operation data of the refrigeration apparatus 100 as the operating frequency of the compressor. Vst and ηv are values unique to the compressor 1 and may be stored in the control unit 60 in advance. ρs takes a unique value for each refrigerant type, and can be obtained from the suction pressure Ps and the suction temperature Th. Step i is referred to as a refrigerant circulation amount calculation step.

(ステップii)
ステップiiにおいては、ステップiで求めた冷媒循環量Grから蒸発器4の入出口間の圧力損失ΔPを算出する。ΔPは以下の式により算出される。
ΔP=α×f×(l/d)×(ρu/2g)
ここで、l[m]:配管長、d[m]:配管径、ρ[kg/m]:液密度、u[m/s]:冷媒流速、f:摩擦損失係数、α:補正係数、である。なお、α、f、l、d、gは固定値である。式より冷媒流速uと冷媒密度ρとが大きくなると、圧力損失ΔPが大きくなることがわかる。冷媒流速uは、冷媒循環量Grから求められる。圧力損失ΔPは、冷媒密度ρと冷媒循環量Grとの関係から得られるΔPの値を予め制御部60に記憶させていても良い。圧力損失ΔP、冷媒密度ρ、及び冷媒循環量Grの関係を予めルックアップテーブルとして制御装置に記憶させても良い。ステップiiを蒸発器4の圧力損失検出ステップと呼ぶ。
(Step ii)
In step ii, the pressure loss ΔP between the inlet and the outlet of the evaporator 4 is calculated from the refrigerant circulation amount Gr obtained in step i. ΔP is calculated by the following equation.
ΔP = α × f × (l / d) × (ρu 2 / 2g)
Here, l [m]: pipe length, d [m]: pipe diameter, ρ [kg / m 3 ]: liquid density, u [m / s]: refrigerant flow rate, f: friction loss coefficient, α: correction coefficient ,. Note that α, f, l, d, and g are fixed values. It can be seen from the equation that as the refrigerant flow velocity u and the refrigerant density ρ increase, the pressure loss ΔP increases. The refrigerant flow velocity u is obtained from the refrigerant circulation amount Gr. As the pressure loss ΔP, the value of ΔP obtained from the relationship between the refrigerant density ρ and the refrigerant circulation amount Gr may be stored in the control unit 60 in advance. The relationship between the pressure loss ΔP, the refrigerant density ρ, and the refrigerant circulation amount Gr may be stored in the control device in advance as a look-up table. Step ii is called a pressure loss detection step of the evaporator 4.

(ステップiii)
蒸発器4の入口圧力Peinを算出する。入口圧力Peinは、Pein=Ps+ΔPより算出される。また、ステップi〜ステップiiiを合わせて、前記蒸発器の入口部及び前記蒸発器の出口部の管路内圧力を検出する検出ステップと呼ぶ。
(Step iii)
The inlet pressure Pein of the evaporator 4 is calculated. The inlet pressure Pein is calculated from Pein = Ps + ΔP. In addition, the steps i to iii are collectively referred to as a detection step of detecting a pressure in a pipe at an inlet of the evaporator and an outlet of the evaporator.

(ステップiv)
蒸発器4の入口の飽和温度TeinをPeinから換算する。また、蒸発器4の出口の飽和温度Teoutを吸入圧力Psから換算する。換算は、冷媒種に固有の飽和圧力換算表から求められる。ステップivを、蒸発器4の入口と蒸発器4の出口との温度勾配を求める、温度勾配検出ステップと呼ぶ。
(Step iv)
The saturation temperature Tein at the inlet of the evaporator 4 is converted from Pein. Further, the saturation temperature Teout at the outlet of the evaporator 4 is converted from the suction pressure Ps. The conversion is obtained from a saturation pressure conversion table specific to the type of refrigerant. Step iv is referred to as a temperature gradient detection step of finding a temperature gradient between the inlet of the evaporator 4 and the outlet of the evaporator 4.

(ステップv)
蒸発器入口の飽和温度と蒸発器出口の飽和温度との差ΔTe=Teout―Teinが0になるように圧縮機運転周波数Fを制御し、冷媒循環量Grを変更する。例えばΔTe>0の場合は圧縮機運転周波数Fを増加させ、ΔTe≦0の場合、圧縮機運転周波数Fを減少させる。ΔTeが0に近づくことにより、圧力損失が温度勾配と平行になる。ステップvを、圧縮機1の運転周波数Fを変更し、冷凍サイクルを流れる冷媒の流速uを変更する、流速変更ステップと呼ぶ。また、ステップiv及びステップvを合わせて、圧力調整ステップと呼ぶ。なお、ステップvにおいて、圧縮機1の運転周波数Fを変更する代わりに蒸発器4の入口側に設置された流量調整弁の開度を変更して冷凍サイクルを流れる冷媒の流速uを変更しても良い。流量調整弁は、減圧装置3であっても良い。この制御は、制御部60が冷却器50を制御できる場合に行われる。
(Step v)
The compressor operating frequency F is controlled so that the difference ΔTe = Teout−Tein between the saturation temperature at the evaporator inlet and the saturation temperature at the evaporator outlet becomes zero, and the refrigerant circulation amount Gr is changed. For example, when ΔTe> 0, the compressor operating frequency F is increased, and when ΔTe ≦ 0, the compressor operating frequency F is decreased. As ΔTe approaches zero, the pressure loss becomes parallel to the temperature gradient. Step v is called a flow rate changing step of changing the operating frequency F of the compressor 1 and changing the flow rate u of the refrigerant flowing through the refrigeration cycle. Step iv and step v are collectively referred to as a pressure adjustment step. In step v, instead of changing the operating frequency F of the compressor 1, the opening degree of the flow control valve provided on the inlet side of the evaporator 4 is changed to change the flow velocity u of the refrigerant flowing through the refrigeration cycle. Is also good. The flow regulating valve may be the pressure reducing device 3. This control is performed when the control unit 60 can control the cooler 50.

(1)実施の形態1に係る冷凍装置100によれば、圧縮機1と、凝縮器2と、減圧装置3と、蒸発器4とを冷媒配管5により接続し、内部で冷媒が循環する冷凍サイクルを備える。冷媒は、複数種類を混合した非共沸混合冷媒であり、蒸発器4は、非共沸混合冷媒の気液二相領域の等温線の温度勾配に合わせ、蒸発過程における管路内圧力を冷媒の流れる方向に沿って低下させることを特徴とする。
このように構成されることにより、冷凍装置100は、蒸発器4の入口側と出口側とにおいて、冷媒の温度差を抑制することができる。そのため、蒸発器4の入口側と出口側とにおいて着霜量が平均化するため、偏着霜による蒸発器4の熱交換性能の低下を防止することができる。
(1) According to the refrigeration apparatus 100 according to the first embodiment, the compressor 1, the condenser 2, the decompression device 3, and the evaporator 4 are connected by the refrigerant pipe 5, and the refrigeration in which the refrigerant circulates inside. Provide a cycle. The refrigerant is a non-azeotropic mixed refrigerant in which a plurality of types are mixed, and the evaporator 4 adjusts the pressure in the pipeline during the evaporation process to the refrigerant in accordance with the temperature gradient of the isotherm in the gas-liquid two-phase region of the non-azeotropic mixed refrigerant. Characterized in that it is lowered along the direction in which
With such a configuration, the refrigeration apparatus 100 can suppress the difference in the temperature of the refrigerant between the inlet side and the outlet side of the evaporator 4. Therefore, the amount of frost on the inlet side and the outlet side of the evaporator 4 is averaged, so that it is possible to prevent the heat exchange performance of the evaporator 4 from deteriorating due to uneven frost formation.

(2)実施の形態1に係る冷凍装置100によれば、蒸発器4の伝熱管41は、断面積が冷媒の流れる方向に沿って減少している。
(3)実施の形態1に係る冷凍装置100によれば、蒸発器4の伝熱管41は、管路内に冷媒の流れの抵抗となる抵抗手段を備える。
(4)実施の形態1に係る冷凍装置100によれば、蒸発器4を通過する冷媒の流速を制御することにより蒸発過程における管路内圧力を低下させる。
このように構成されることにより、冷凍装置100は、蒸発器4に非共沸混合冷媒を所定の流速で流すことにより、蒸発器4の入口と出口との温度差を抑えることができる。また、上記(2)〜(4)の手段を適宜組み合わせて冷凍装置100に用いられる冷媒に応じて、蒸発器4内を流れる冷媒に与える圧力損失を適宜制御することができる。
(2) According to the refrigeration apparatus 100 according to Embodiment 1, the heat transfer tube 41 of the evaporator 4 has a reduced cross-sectional area along the direction in which the refrigerant flows.
(3) According to the refrigeration apparatus 100 according to the first embodiment, the heat transfer tube 41 of the evaporator 4 includes a resistance unit serving as a resistance to the flow of the refrigerant in the pipe.
(4) According to the refrigeration apparatus 100 according to the first embodiment, the pressure in the pipeline in the evaporation process is reduced by controlling the flow rate of the refrigerant passing through the evaporator 4.
With such a configuration, the refrigeration apparatus 100 can suppress the temperature difference between the inlet and the outlet of the evaporator 4 by causing the non-azeotropic mixed refrigerant to flow through the evaporator 4 at a predetermined flow rate. In addition, by appropriately combining the above-described means (2) to (4), the pressure loss applied to the refrigerant flowing in the evaporator 4 can be appropriately controlled according to the refrigerant used in the refrigeration apparatus 100.

(5)実施の形態1に係る冷凍装置100の運転方法によれば、冷媒は、複数種類を混合した非共沸混合冷媒である、冷凍装置において、蒸発器4の入口部及び蒸発器4の出口部の管路内圧力を検出する検出ステップと、入口部と出口部との管路内圧力の差を、冷媒の温度勾配に合わせる圧力調整ステップと、を備える。
このように運転されることにより、冷凍装置100は、上記(1)に記載の効果を得ることができる。
(5) According to the operation method of the refrigeration apparatus 100 according to Embodiment 1, the refrigerant is a non-azeotropic mixed refrigerant in which a plurality of types are mixed. The method includes a detecting step of detecting an in-pipe pressure at the outlet, and a pressure adjusting step of adjusting a difference in the in-pipe pressure between the inlet and the outlet to a temperature gradient of the refrigerant.
By operating as described above, the refrigeration apparatus 100 can obtain the effect described in the above (1).

(6)実施の形態1に係る冷凍装置100の運転方法によれば、蒸発器4を流れる冷媒の流速を変更することにより入口部と出口部との管路内圧力の差を変更する流速変更ステップを有する。
(7)実施の形態1に係る冷凍装置100の運転方法によれば、流速変更ステップは、圧縮機1の回転数を変更することにより蒸発器4を流れる冷媒の流速を変更する。
(8)実施の形態1に係る冷凍装置100の運転方法によれば、流速変更ステップは、蒸発器の入口部に設置された流量調整弁の開度を変更して伝熱管41を流れる冷媒の流速を変更する。
このように構成されることにより、冷凍装置100は、冷凍サイクルを構成する圧縮機1や流量調整弁を用いて蒸発器24を流れる冷媒の流速を変更することができる。そのため、冷凍装置100に用いられる非共沸混合冷媒の物性に応じて、蒸発器4を流動する冷媒に与える圧力損失を適宜変更することができる。これにより、冷凍装置100は、上記(1)に記載の効果を得ることができる。
(6) According to the operation method of the refrigeration apparatus 100 according to the first embodiment, the flow rate change that changes the flow rate of the refrigerant flowing through the evaporator 4 to change the pressure difference in the pipe between the inlet and the outlet. With steps.
(7) According to the operation method of the refrigeration apparatus 100 according to Embodiment 1, the flow rate changing step changes the flow rate of the refrigerant flowing through the evaporator 4 by changing the rotation speed of the compressor 1.
(8) According to the operation method of the refrigeration apparatus 100 according to Embodiment 1, the flow rate changing step changes the opening degree of the flow control valve installed at the inlet of the evaporator to change the refrigerant flowing through the heat transfer tube 41. Change the flow rate.
With such a configuration, the refrigeration apparatus 100 can change the flow rate of the refrigerant flowing through the evaporator 24 using the compressor 1 and the flow rate adjustment valve that constitute the refrigeration cycle. Therefore, the pressure loss applied to the refrigerant flowing through the evaporator 4 can be appropriately changed according to the physical properties of the non-azeotropic mixed refrigerant used in the refrigeration apparatus 100. Thereby, the refrigeration apparatus 100 can obtain the effect described in the above (1).

実施の形態2.
実施の形態2に係る冷凍装置100は、実施の形態1に係る冷凍装置100と比べて、冷凍装置100内を循環する冷媒の組成を限定している点が異なる。実施の形態2においては、実施の形態1からの変更点を中心に説明する。
Embodiment 2 FIG.
Refrigeration apparatus 100 according to Embodiment 2 is different from refrigeration apparatus 100 according to Embodiment 1 in that the composition of the refrigerant circulating in refrigeration apparatus 100 is limited. In the second embodiment, the description will be focused on the changes from the first embodiment.

実施の形態2の冷凍装置100を循環する非共沸混合冷媒は、R32と、R125と、R134aと、R1234yfと、二酸化炭素の混合冷媒であり、R32の割合XR32が36wt%、R125の割合XR125が30wt%、R134aの割合XR134aが14wt%、R1234yfの割合XR1234yfが14wt%、二酸化炭素の割合Xco2が6wt%である。このような冷媒を使用することで以下に示すような効果を得ることができる。The non-azeotropic refrigerant mixture circulating through the refrigeration apparatus 100 according to Embodiment 2 is a refrigerant mixture of R32, R125, R134a, R1234yf, and carbon dioxide, and the ratio of R32 X R32 is 36 wt%, and the ratio of R125. X R125 is 30 wt%, the proportion X R134a is 14 wt% of R134a, ratio X R1234yf is 14 wt% of the R1234yf, the proportion X of co2 carbon dioxide is 6 wt%. By using such a refrigerant, the following effects can be obtained.

まず、各単一冷媒では長所または短所となる物性が備わっているが、複数冷媒を混合することで、短所を低減して長所を増長させることができる。R32の物性としては動作圧力が高いため、圧力損失による性能低下影響を低減でき、スーパーマーケットのショーケースなど低温の利用でも冷凍能力を向上することができる。R1234yfの物性としては、地球温暖化係数が0のため、環境影響を低減できる。R125、R134aの物性としては不燃性のため、R32とR1234yfの特性である燃焼性を低減し、安全性を高めることができる。二酸化炭素の物性としては、地球温暖化係数が0であり、かつ不燃性の自然冷媒であるため、環境影響の低減、安全性の向上の両方に寄与できる。よって、上述の非共沸混合冷媒により、地球環境に影響が少なく、かつ安全性と性能を同時に向上することができる。   First, each single refrigerant has physical properties that are advantages or disadvantages, but by mixing a plurality of refrigerants, the disadvantages can be reduced and the advantages can be increased. As a physical property of R32, since the operating pressure is high, the effect of performance deterioration due to pressure loss can be reduced, and the refrigerating capacity can be improved even at low temperatures such as a supermarket showcase. As a physical property of R1234yf, the global warming potential is 0, so that the environmental impact can be reduced. Since the physical properties of R125 and R134a are nonflammable, the flammability, which is the characteristic of R32 and R1234yf, can be reduced and safety can be improved. Regarding the physical properties of carbon dioxide, it has a global warming potential of 0 and is a nonflammable natural refrigerant, so it can contribute to both reduction of environmental impact and improvement of safety. Therefore, the above-mentioned non-azeotropic mixed refrigerant can reduce the influence on the global environment and can simultaneously improve safety and performance.

また、前記混合冷媒は非共沸混合冷媒であり、非共沸混合冷媒は同圧力下において相変化で温度が変化し、蒸発過程において下流側が上流側より温度が高くなる。そのため、冷凍装置100の冷媒に非共沸混合冷媒を用いると蒸発器4の出口側よりも蒸発器4の入口側の温度が低くなる。特に、R32を含む混合冷媒は低温の利用でも冷凍能力が向上するため、冷凍装置100がショーケースなどの飽和温度が氷点下未満の低温機器に用いられることが多い。そのため、R32を含む混合冷媒が飽和温度が氷点下未満の低温機器で用いられる場合には蒸発器4に着霜が発生する。   The mixed refrigerant is a non-azeotropic mixed refrigerant, and the temperature of the non-azeotropic mixed refrigerant changes due to a phase change under the same pressure, and the temperature of the downstream side becomes higher than that of the upstream side in the evaporation process. Therefore, when a non-azeotropic mixed refrigerant is used as the refrigerant of the refrigeration apparatus 100, the temperature of the inlet side of the evaporator 4 becomes lower than that of the outlet side of the evaporator 4. In particular, since the mixed refrigerant containing R32 has an improved refrigerating capacity even when used at a low temperature, the refrigerating apparatus 100 is often used for low-temperature equipment such as a showcase whose saturation temperature is below the freezing point. Therefore, when the mixed refrigerant containing R32 is used in a low-temperature device whose saturation temperature is below the freezing point, frost is formed on the evaporator 4.

図5は、本発明の実施の形態2に係る冷凍装置200に用いられる非共沸混合冷媒のモリエル線図を示している。実施の形態2における非共沸混合冷媒の場合、上記に示した組成になっており、図5に示されるように、低温域において一定の圧力下で非共沸混合冷媒を相変化させると、蒸発器4の入口と出口との非共沸混合冷媒の温度勾配は−5℃になる。つまり、低温域において、特に蒸発器4の内部を流れる冷媒に圧力損失を生じさせずに熱交換させると、蒸発器4の入口と出口との間の温度差はおよそ5℃である。例えば、蒸発器4の入口側の温度が−12℃、蒸発器4の出口側の温度が−7℃となり、蒸発器4の入口側の温度が大きく低下する。そのため、より冷媒の温度が低い蒸発器4の入口側においては、伝熱管41及びフィン42に触れた空気の冷却が促進され、空気に含まれた水分が凝固し、着霜し易く着霜量が蒸発器4の出口側よりも多くなる。よって、偏着霜により冷凍装置200の冷凍性能に及ぼす影響も大きくなる。   FIG. 5 shows a Mollier diagram of a non-azeotropic refrigerant mixture used in refrigeration apparatus 200 according to Embodiment 2 of the present invention. In the case of the non-azeotropic refrigerant mixture according to Embodiment 2, the composition is as described above, and as shown in FIG. 5, when the non-azeotropic refrigerant mixture undergoes a phase change under a constant pressure in a low temperature range, The temperature gradient of the non-azeotropic refrigerant mixture at the inlet and outlet of the evaporator 4 is -5C. That is, in a low-temperature region, when the refrigerant flowing inside the evaporator 4 is subjected to heat exchange without causing a pressure loss, the temperature difference between the inlet and the outlet of the evaporator 4 is about 5 ° C. For example, the temperature on the inlet side of the evaporator 4 becomes −12 ° C., the temperature on the outlet side of the evaporator 4 becomes −7 ° C., and the temperature on the inlet side of the evaporator 4 drops significantly. Therefore, on the inlet side of the evaporator 4 where the temperature of the refrigerant is lower, the cooling of the air that has touched the heat transfer tubes 41 and the fins 42 is promoted, and the moisture contained in the air is solidified, and frost is easily formed. Is larger than the outlet side of the evaporator 4. Therefore, the influence on the refrigerating performance of the refrigerating apparatus 200 due to the localized frost increases.

従って、実施の形態2においても、非共沸混合冷媒の物性から蒸発器4の入口と出口の冷媒飽和温度差を算出する。そして、冷凍装置200において蒸発器4の入口と出口との間の冷媒の圧力差を、蒸発器4に流れる冷媒の温度を均一にした際の蒸発器4の入口及び出口における冷媒の圧力差と同じにするように、蒸発器4を流れる冷媒に配管圧損を付与すればよい。   Therefore, also in Embodiment 2, the refrigerant saturation temperature difference between the inlet and the outlet of the evaporator 4 is calculated from the physical properties of the non-azeotropic mixed refrigerant. The refrigerant pressure difference between the inlet and the outlet of the evaporator 4 in the refrigeration apparatus 200 is compared with the pressure difference of the refrigerant at the inlet and the outlet of the evaporator 4 when the temperature of the refrigerant flowing through the evaporator 4 is made uniform. In the same manner, the refrigerant flowing through the evaporator 4 may be provided with a pipe pressure loss.

以上より、実施の形態2のように、冷凍装置200を循環する冷媒に、組成がR32が36wt%、R125が30wt%、R134aが14wt%、R1234yfが14wt%、二酸化炭素が6wt%である非共沸混合冷媒を用いた場合においても、蒸発器4内の配管圧損が冷媒の温度勾配とほぼ同一になるように構成することで、蒸発器4内の冷媒温度をほぼ均一にし、蒸発器4における偏着霜による熱交換性能低下の防止が可能となる。それと共に、実施の形態2に係る非共沸混合冷媒を利用することにより、冷凍装置200は、地球環境に影響が少なく、かつ安全性と冷凍性能を同時に向上させることができる。   As described above, as in the second embodiment, the refrigerant circulating in the refrigeration apparatus 200 contains 36 wt% of R32, 30 wt% of R125, 14 wt% of R134a, 14 wt% of R1234yf, and 6 wt% of carbon dioxide. Even when an azeotropic mixed refrigerant is used, the temperature of the refrigerant in the evaporator 4 is made substantially uniform by configuring the pipe so that the pipe pressure loss in the evaporator 4 becomes almost the same as the temperature gradient of the refrigerant. In this case, it is possible to prevent the heat exchange performance from deteriorating due to uneven frost. In addition, by using the non-azeotropic mixed refrigerant according to the second embodiment, the refrigeration apparatus 200 can reduce the influence on the global environment and can simultaneously improve safety and refrigeration performance.

なお、実施の形態2の非共沸混合冷媒を構成する各冷媒の組成は、±3wt%未満の範囲で各冷媒の組成割合が異なる冷媒であっても良い。つまり、R32の割合XR32(wt%)が33<XR32<39である条件と、R125の割合XR125(wt%)が27<XR125<33である条件と、R134aの割合XR134a(wt%)が11<XR134a<17である条件と、R1234yfの割合XR1234yf(wt%)11<XR1234yf<17である条件と、二酸化炭素の割合XCO2(wt%)が3<XR125<9である条件と、XR32とXR125とXR134aとXR1234yfとXco2との総和が100(wt%)である条件と、を全て満たす冷媒であればよい。In addition, the composition of each refrigerant constituting the non-azeotropic mixed refrigerant of Embodiment 2 may be a refrigerant having a composition ratio of each refrigerant which is different within a range of less than ± 3 wt%. That is, the condition that the ratio X R32 (wt%) of R32 is 33 <X R32 <39, the condition that the ratio X R125 (wt%) of R125 is 27 <X R125 <33, and the ratio X R134a ( and conditions are wt%) is 11 <X R134a <17, the proportion of R1234yf X R1234yf (wt%) 11 <X R1234yf < and conditions is 17, the proportion of carbon dioxide X CO2 (wt%) is 3 <X R125 <a condition which is 9, and conditions the sum of the X R32 and X R125 and X R134a and X R1234yf and X of co2 is 100 (wt%), may be any refrigerant that satisfies all.

なお、実施の形態2の冷凍装置200を循環する冷媒は、R448A、R449A、R407Fのいずれかであっても良い。R448A、R449A、R407Fは非共沸混合冷媒であり、いずれを用いた場合においても、蒸発器4内の冷媒に付与する配管圧損が冷媒の温度勾配とほぼ同一になるように構成することで、蒸発器4内の冷媒温度をほぼ均一にし、蒸発器4の偏着霜による熱交換性能低下の防止が可能となる。   Note that the refrigerant circulating in the refrigeration apparatus 200 of Embodiment 2 may be any one of R448A, R449A, and R407F. R448A, R449A, and R407F are non-azeotropic refrigerant mixtures, and in any case, the pipe pressure loss applied to the refrigerant in the evaporator 4 is configured to be substantially the same as the temperature gradient of the refrigerant. It is possible to make the temperature of the refrigerant in the evaporator 4 substantially uniform, and to prevent the heat exchange performance from being deteriorated due to the defrosting of the evaporator 4.

なお、実施の形態2に係る非共沸混合冷媒の物性は、R410Aの物性と近似しており、R410Aを実施の形態2に係る冷凍装置200内に投入しても問題なく運転することができる。ただし、R410Aは疑似共沸混合冷媒であり、温度勾配をほとんどもたない冷媒である。すなわち、図5において、蒸発器4内に示される疑似共沸混合冷媒の等温線のように、冷媒の等温線はほぼ水平になっている。そのため、実施の形態2に係る非共沸混合冷媒に合せて設計された蒸発器4を備えた冷凍装置200にR410Aを用いると、蒸発器4内を冷媒が流動した際の圧力損失により出口側の圧力が低下し、冷凍装置200の冷凍能力の低下が大きくなることが考えられる。   Note that the physical properties of the non-azeotropic mixed refrigerant according to Embodiment 2 are similar to those of R410A, and even if R410A is put into refrigeration apparatus 200 according to Embodiment 2, operation can be performed without any problem. . However, R410A is a pseudo-azeotropic mixed refrigerant and has almost no temperature gradient. That is, in FIG. 5, the isotherm of the refrigerant is substantially horizontal like the isotherm of the pseudo-azeotropic mixed refrigerant shown in the evaporator 4. Therefore, when R410A is used for the refrigeration apparatus 200 including the evaporator 4 designed for the non-azeotropic mixed refrigerant according to Embodiment 2, the outlet side due to pressure loss when the refrigerant flows in the evaporator 4 It is conceivable that the pressure of the refrigeration apparatus 200 decreases and the refrigeration capacity of the refrigeration apparatus 200 decreases.

そのため、冷凍装置200にR410Aを用いる場合、R410Aを用いた場合の性能低下が小さくなるようにするため、蒸発器4は、伝熱管41の配管圧損が少なくなるように構成する必要がある。例えば、実施の形態2に係る非共沸混合冷媒を用いる場合は、低温域における蒸発器4の入口と出口との冷媒飽和温度差がおよそ5℃であるので、蒸発器4は5℃に相当する圧力損失を冷媒に付与するように構成されている。しかし、R410Aを用いる場合は、蒸発器4における圧力損失が非共沸混合冷媒の温度勾配にして5℃未満相当の圧力損失となるようにする。   Therefore, when R410A is used for the refrigerating apparatus 200, the evaporator 4 needs to be configured so that the pipe pressure loss of the heat transfer tube 41 is reduced in order to reduce the performance degradation when the R410A is used. For example, when the non-azeotropic mixed refrigerant according to Embodiment 2 is used, since the difference in refrigerant saturation temperature between the inlet and the outlet of the evaporator 4 in the low temperature region is approximately 5 ° C., the evaporator 4 corresponds to 5 ° C. Pressure loss to the refrigerant. However, when R410A is used, the pressure loss in the evaporator 4 is set to a temperature gradient of the non-azeotropic refrigerant mixture, which is equivalent to a pressure loss of less than 5 ° C.

例えば、実施の形態2に係る蒸発器4の伝熱管41を通常の流速で管内を流れる冷媒に対しては圧力損失が少なくなるよう様に構成しておき、冷凍装置200は、R410Aを用いたときは通常の流速で冷媒が流れるように運転する。すると、蒸発器4内を流れる冷媒は、圧力損失が非共沸混合冷媒の温度勾配にして5℃未満になるように流れるため、図5に示される点線Cのようにほぼ等圧のまま蒸発器4から流出する。一方、実施の形態2に係る非共沸混合冷媒を用いたときは、通常より早い流速で冷媒を流し、早い流速の場合に管内の冷媒の圧力損失が大きくなる様に伝熱管41を構成すればよい。冷媒の流速を上げた場合は、蒸発器4内の冷媒の圧力損失が大きくなり、図5に示される実線Dのように、蒸発器4の入口よりも出口の圧力が低くなり、蒸発器4の入口と出口との冷媒の温度差が生じず、偏着霜も生じない。以上のような手段により、冷凍装置200は、非共沸混合冷媒及び疑似共沸混合冷媒の両方を冷凍能力を低下させることなく利用することができる。   For example, the heat transfer tube 41 of the evaporator 4 according to Embodiment 2 is configured so that the pressure loss is reduced with respect to the refrigerant flowing in the tube at a normal flow rate, and the refrigeration apparatus 200 uses R410A. At this time, the operation is performed such that the refrigerant flows at a normal flow rate. Then, since the refrigerant flowing in the evaporator 4 flows so that the pressure loss becomes less than 5 ° C. in the temperature gradient of the non-azeotropic refrigerant mixture, the refrigerant evaporates at almost the same pressure as indicated by the dotted line C in FIG. It flows out of the vessel 4. On the other hand, when the non-azeotropic mixed refrigerant according to the second embodiment is used, the heat transfer tube 41 is configured so that the refrigerant flows at a higher flow rate than usual and that the pressure loss of the refrigerant in the pipe increases at a high flow rate. I just need. When the flow velocity of the refrigerant is increased, the pressure loss of the refrigerant in the evaporator 4 increases, and as shown by a solid line D in FIG. There is no difference in temperature between the refrigerant at the inlet and the outlet and no frost. By the means as described above, the refrigeration apparatus 200 can use both the non-azeotropic mixed refrigerant and the pseudo-azeotropic mixed refrigerant without lowering the refrigeration capacity.

図6は、本発明の実施の形態2に係る冷凍装置200の蒸発器24の構成を表す概略図である。例えば、実施の形態2に係る蒸発器24の伝熱管41を管内を流れる冷媒に対して所定の圧力損失を与えるように構成しておく。そして、冷凍装置200は、R410Aを用いたときは、蒸発器24を流れる冷媒の流路の数、すなわちパス数が図2に示されるように5本になるように構成されている。一方、冷凍装置200は、実施の形態2に係る非共沸混合冷媒を用いたときは、蒸発器24を流れる冷媒の流路を切り替え、冷媒が図6に示されるように1本のパス数で蒸発器24を通過するように構成されている。図6に示される蒸発器24は、各伝熱管41が蒸発器24の端部でU字管45により接続され、冷媒が蒸発器24の両端で折り返して流れることにより流路が長くなっている。冷媒の流路が長いため、蒸発器24を通過する冷媒は伝熱管41の管路損失により圧力が低下する。以上のように構成されることにより、冷凍装置200にR410Aのような疑似共沸混合冷媒を用いる場合には、流路を短くすることにより冷媒の圧力損失が小さくなる。そして、冷凍装置200に非共沸混合冷媒を用いる場合には、流路を長くすることにより冷媒の圧力損失を大きくすることができる。以上の手段により、冷凍装置200は、疑似共沸混合冷媒及び非共沸混合冷媒の両方を冷凍能力を低下させることなく利用することができる。   FIG. 6 is a schematic diagram illustrating a configuration of an evaporator 24 of a refrigeration apparatus 200 according to Embodiment 2 of the present invention. For example, the heat transfer tube 41 of the evaporator 24 according to Embodiment 2 is configured to give a predetermined pressure loss to the refrigerant flowing in the tube. When the R410A is used, the refrigeration apparatus 200 is configured such that the number of refrigerant flow paths flowing through the evaporator 24, that is, the number of paths is five as shown in FIG. On the other hand, when the non-azeotropic mixed refrigerant according to Embodiment 2 is used, the refrigeration apparatus 200 switches the flow path of the refrigerant flowing through the evaporator 24, and the refrigerant has one pass number as shown in FIG. Through the evaporator 24. In the evaporator 24 shown in FIG. 6, each heat transfer tube 41 is connected by a U-shaped tube 45 at the end of the evaporator 24, and the flow path is elongated by the refrigerant flowing back at both ends of the evaporator 24. . Since the flow path of the refrigerant is long, the pressure of the refrigerant passing through the evaporator 24 is reduced due to the loss of the heat transfer tube 41. With the above configuration, when a pseudo-azeotropic mixed refrigerant such as R410A is used for the refrigeration apparatus 200, the pressure loss of the refrigerant is reduced by shortening the flow path. When a non-azeotropic mixed refrigerant is used for the refrigeration apparatus 200, the pressure loss of the refrigerant can be increased by lengthening the flow path. By the above means, the refrigeration apparatus 200 can use both the pseudo-azeotropic mixed refrigerant and the non-azeotropic mixed refrigerant without lowering the refrigeration capacity.

(9)実施の形態2に係る冷凍装置200によれば、冷媒は、R32と、R125と、R134aと、R1234yfと、二酸化炭素との混合冷媒であり、R32の割合XR32(wt%)が、33wt%<XR32<39wt%である条件と、R125の割合XR125(wt%)が、27wt%<XR125<33wt%である条件と、R134aの割合XR134a(wt%)が、11wt%<XR134a<17wt%である条件と、R1234yfの割合XR1234yf(wt%)が、11wt%<XR1234yf<17wt%である条件と、二酸化炭素の割合XCO2(wt%)が、3wt%<XCO2<9wt%である条件と、XR32、XR125、XR134a、XR1234yf、及びXCO2の総和Xtotalが、100wt%である条件と、を全て満たす。
このように構成されることにより、冷凍装置200は、地球環境に影響が少なく、かつ安全性と冷凍性能を同時に向上させることができる。
(9) According to the refrigeration apparatus 200 according to Embodiment 2, the refrigerant is a mixed refrigerant of R32, R125, R134a, R1234yf, and carbon dioxide, and the ratio XR32 (wt%) of R32 is , 33 wt% <X R32 <39 wt%, the condition that R125 ratio X R125 (wt%) is 27 wt% <X R125 <33 wt%, and the R134a ratio X R134a (wt%) is 11 wt % <X R134a <17 wt%, the condition that R1234yf's ratio X R1234yf (wt%) is 11 wt% <X R1234yf <17 wt%, and the ratio of carbon dioxide X CO2 (wt%) is 3 wt% <X CO2 <and conditions is 9wt%, X R32, X R125 , X R134a, X R1234yf, and X CO Sum X total of, all satisfied the conditions is 100 wt%, a.
With such a configuration, the refrigeration apparatus 200 has little effect on the global environment and can simultaneously improve safety and refrigeration performance.

(10)実施の形態2に係る冷凍装置200によれば、冷媒は、R448A、R449A、又はR407Fである。
(11)実施の形態2に係る冷凍装置200によれば、冷凍サイクルは、R32と、R125と、R134aと、R1234yfと、二酸化炭素との混合冷媒、R448A、R449A、及びR407Fのうち少なくとも1種類の前記冷媒と、R410Aとを共用できる。このように構成されることにより、冷凍装置200は、例えば低温機器、その他の様々な用途に用いることができる。
(10) According to the refrigeration apparatus 200 according to Embodiment 2, the refrigerant is R448A, R449A, or R407F.
(11) According to the refrigeration apparatus 200 according to Embodiment 2, the refrigeration cycle includes at least one of R32, R125, R134a, R1234yf, and a refrigerant mixture of carbon dioxide, R448A, R449A, and R407F. And R410A can be shared. With such a configuration, the refrigeration apparatus 200 can be used, for example, for low-temperature equipment and other various uses.

(12)実施の形態2に係る冷凍装置200の運転方法によれば、冷媒が通過する蒸発器24の伝熱管41の管路長を変更することにより入口部と出口部との管路内圧力の差を変更する管路長変更ステップを有する。
このように構成されることにより、冷凍装置200は、用いられる冷媒に応じて、蒸発器24を通過する冷媒に圧力損失を与えることができる。従って、冷凍装置200に複数種類の冷媒を用いることができるため、冷凍装置200は、様々な用途に用いることができる。
(12) According to the operation method of the refrigeration apparatus 200 according to Embodiment 2, the pressure in the pipe between the inlet and the outlet is changed by changing the length of the pipe of the heat transfer tube 41 of the evaporator 24 through which the refrigerant passes. And a pipeline length changing step of changing the difference between the two.
With such a configuration, the refrigeration apparatus 200 can apply a pressure loss to the refrigerant passing through the evaporator 24 according to the refrigerant used. Therefore, since a plurality of types of refrigerants can be used for the refrigeration apparatus 200, the refrigeration apparatus 200 can be used for various applications.

(13)実施の形態2に係る冷凍装置200の運転方法によれば、管路長変更ステップは、蒸発器24を通過する冷媒のパス数を変更し入口部と出口部との管路内圧力の差を変更する。
このように構成されることにより、冷凍装置200は、通常の伝熱管41により構成された蒸発器24においても、蒸発器24内を流れる冷媒に与える圧力損失を変更することができる。また、上記(6)〜(8)に記載した手段を併用することにより、蒸発器24内を流れる冷媒に与える圧力損失の幅が広がり、蒸発器24の入口と出口との冷媒の圧力差を適正に調整することも可能になる。
(13) According to the operating method of the refrigeration apparatus 200 according to the second embodiment, the pipeline length changing step changes the number of passes of the refrigerant passing through the evaporator 24 and changes the pressure in the pipeline between the inlet and the outlet. To change the difference.
With such a configuration, the refrigeration apparatus 200 can change the pressure loss applied to the refrigerant flowing in the evaporator 24 even in the evaporator 24 including the normal heat transfer tubes 41. Further, by using the means described in (6) to (8) together, the range of pressure loss applied to the refrigerant flowing in the evaporator 24 is widened, and the pressure difference between the inlet and the outlet of the evaporator 24 is reduced. It is also possible to make appropriate adjustments.

1 圧縮機、2 凝縮器、3 減圧装置、4 蒸発器、5 冷媒配管、6 凝縮器送風機、7 蒸発器送風機、20 圧力センサ、24 蒸発器、30 温度センサ、41 伝熱管、42 フィン、43 冷媒分配器、44 ヘッダ、45 U字管、50 冷却器、60 制御部、100 冷凍装置、200 冷凍装置、A 点線、B 点線、C 点線、D 実線。   REFERENCE SIGNS LIST 1 compressor, 2 condenser, 3 decompression device, 4 evaporator, 5 refrigerant pipe, 6 condenser blower, 7 evaporator blower, 20 pressure sensor, 24 evaporator, 30 temperature sensor, 41 heat transfer tube, 42 fin, 43 Refrigerant distributor, 44 header, 45 U-tube, 50 cooler, 60 control unit, 100 refrigeration unit, 200 refrigeration unit, dotted line A, dotted line B, dotted line C, solid line D.

本発明に係る冷凍装置は、圧縮機と、凝縮器と、減圧装置と、蒸発器とを冷媒配管により接続し、内部で冷媒が循環する冷凍サイクルを備え、前記冷媒は、R32の割合X R32 (wt%)が、33wt%<X R32 <39wt%である条件と、R125の割合X R125 (wt%)が、27wt%<X R125 <33wt%である条件と、R134aの割合X R134a (wt%)が、11wt%<X R134a <17wt%である条件と、R1234yfの割合X R1234yf (wt%)が、11wt%<X R1234yf <17wt%である条件と、二酸化炭素の割合X CO2 (wt%)が、3wt%<X CO2 <9wt%である条件と、X R32 、X R125 、X R134a 、X R1234yf 、及びX CO2 の総和X total が、100wt%である条件と、を全て満たす混合冷媒、又はR410Aであり、前記蒸発器は、共沸混合冷媒の気液二相領域の等温線の温度勾配に合わせ、蒸発過程における管路内圧力を前記冷媒の流れる方向に沿って低下させ、前記冷凍サイクルが前記混合冷媒及びR410Aの両方に対応するために、前記蒸発器を通過する前記冷媒のパス数を変更自在に構成され、前記冷媒が前記混合冷媒である場合には、前記冷媒がR410Aである場合よりも前記冷媒のパス数を減少させることを特徴とするThe refrigeration apparatus according to the present invention includes a refrigeration cycle in which a compressor, a condenser, a decompression device, and an evaporator are connected by a refrigerant pipe and a refrigerant circulates inside the refrigerant, and the refrigerant has a ratio of R32 X R32 (wt%) is, 33 wt% <and conditions are X R32 <39wt%, the proportion X R125 in R125 (wt%) is, 27wt% <X R125 <and conditions is 33 wt%, the percentage of R134a X R134a (wt percent), 11 wt% <and conditions are X R134a <17 wt%, the proportion of R1234yf X R1234yf (wt%) is, 11wt% <X R1234yf <and conditions is 17 wt%, the proportion of carbon dioxide X CO2 (wt% ) is a condition which is a 3wt% <X CO2 <9wt% , X R32, X R125, X R134a, X R1234yf, and X CO Total X total is a mixed refrigerant, or R410A which satisfies all the conditions is 100 wt%, and the evaporator is matched to the temperature gradient of the isotherm of the gas-liquid two phase region of the non-azeotropic mixed refrigerant, evaporated In the process, the pressure in the pipeline is reduced along the direction in which the refrigerant flows, and the number of passes of the refrigerant passing through the evaporator is freely changeable so that the refrigeration cycle supports both the mixed refrigerant and R410A. When the refrigerant is the mixed refrigerant, the number of passes of the refrigerant is reduced as compared with the case where the refrigerant is R410A .

Claims (13)

圧縮機と、凝縮器と、減圧装置と、蒸発器とを冷媒配管により接続し、内部で冷媒が循環する冷凍サイクルを備え、
前記冷媒は、
複数種類を混合した非共沸混合冷媒であり、
前記蒸発器は、
前記非共沸混合冷媒の気液二相領域の等温線の温度勾配に合わせ、蒸発過程における管路内圧力を前記冷媒の流れる方向に沿って低下させることを特徴とする、冷凍装置。
A compressor, a condenser, a decompression device, and an evaporator are connected by a refrigerant pipe, and a refrigeration cycle in which the refrigerant circulates is provided,
The refrigerant is
A non-azeotropic refrigerant mixture of multiple types,
The evaporator is
A refrigerating apparatus, wherein a pressure in a pipe in an evaporation process is reduced along a flowing direction of the refrigerant in accordance with a temperature gradient of an isotherm in a gas-liquid two-phase region of the non-azeotropic mixed refrigerant.
前記蒸発器の伝熱管は、
断面積が前記冷媒の流れる方向に沿って増加している、請求項1に記載の冷凍装置。
The heat transfer tube of the evaporator,
The refrigeration apparatus according to claim 1, wherein a cross-sectional area increases along a direction in which the refrigerant flows.
前記蒸発器の伝熱管は、
管路内に前記冷媒の流れの抵抗となる抵抗手段を備える、請求項1に記載の冷凍装置。
The heat transfer tube of the evaporator,
The refrigeration apparatus according to claim 1, further comprising a resistance unit that serves as a resistance to the flow of the refrigerant in a pipe.
前記蒸発器を通過する前記冷媒の流速を制御することにより前記蒸発過程における前記管路内圧力を低下させる、請求項1〜3の何れか1項に記載の冷凍装置。   The refrigeration apparatus according to any one of claims 1 to 3, wherein the pressure in the pipeline in the evaporation process is reduced by controlling a flow rate of the refrigerant passing through the evaporator. 前記冷媒は、
R32と、R125と、R134aと、R1234yfと、二酸化炭素との混合冷媒であり、
R32の割合XR32(wt%)が、
33wt%<XR32<39wt%である条件と、
R125の割合XR125(wt%)が、
27wt%<XR125<33wt%である条件と、
R134aの割合XR134a(wt%)が、
11wt%<XR134a<17wt%である条件と、
R1234yfの割合XR1234yf(wt%)が、
11wt%<XR1234yf<17wt%である条件と、
二酸化炭素の割合XCO2(wt%)が、
3wt%<XCO2<9wt%である条件と、
R32、XR125、XR134a、XR1234yf、及びXCO2の総和Xtotalが、
100wt%である条件と、を全て満たす、請求項1〜4のうち何れか1項に記載の冷凍装置。
The refrigerant is
R32, R125, R134a, R1234yf, and a mixed refrigerant of carbon dioxide,
The ratio X R32 (wt%) of R32 is
A condition that 33 wt% <X R32 <39 wt%;
The ratio X R125 (wt%) of R125 is
A condition that 27 wt% <X R125 <33 wt%;
The ratio X R134a (wt%) of R134a is
A condition that 11 wt% < XR134a <17 wt%;
The ratio X R1234yf (wt%) of R1234yf is
11 wt% <X R1234yf <17 wt%;
The ratio of carbon dioxide X CO2 (wt%)
3 wt% <X CO2 <9 wt%;
The total X total of X R32 , X R125 , X R134a , X R1234yf , and X CO2 is:
The refrigeration apparatus according to any one of claims 1 to 4, which satisfies all conditions of 100 wt%.
前記冷媒は、
R448A、R449A、又はR407Fである、請求項1〜4のうち何れか1項に記載の冷凍装置。
The refrigerant is
The refrigeration apparatus according to any one of claims 1 to 4, wherein the refrigeration apparatus is R448A, R449A, or R407F.
前記冷凍サイクルは、
R32と、R125と、R134aと、R1234yfと、二酸化炭素との混合冷媒、R448A、R449A、及びR407Fの少なくとも1種類の前記冷媒と、R410Aとの両方に対応するよう構成された、請求項5又は6に記載の冷凍装置。
The refrigeration cycle includes:
A mixed refrigerant of R32, R125, R134a, R1234yf, and carbon dioxide, at least one of R448A, R449A, and R407F, and both R410A and R410A. 7. The refrigeration apparatus according to 6.
圧縮機と、凝縮器と、減圧装置と、蒸発器とを冷媒配管により接続し、内部で冷媒が循環する冷凍サイクルを備え、
前記冷媒は、
複数種類を混合した非共沸混合冷媒である、冷凍装置において、
前記蒸発器の入口部及び前記蒸発器の出口部の管路内圧力を検出する検出ステップと、
前記入口部と前記出口部との前記管路内圧力の差を、前記冷媒の気液二相領域の等温線の温度勾配に合わせる圧力調整ステップと、を備える、冷凍装置の運転方法。
A compressor, a condenser, a decompression device, and an evaporator are connected by a refrigerant pipe, and a refrigeration cycle in which the refrigerant circulates is provided,
The refrigerant is
In a refrigeration apparatus, which is a non-azeotropic mixed refrigerant obtained by mixing a plurality of types,
A detection step of detecting an in-pipe pressure at an inlet of the evaporator and an outlet of the evaporator,
A pressure adjusting step of adjusting a difference between the pressures in the pipeline between the inlet portion and the outlet portion to a temperature gradient of an isotherm in a gas-liquid two-phase region of the refrigerant.
前記冷媒が通過する前記蒸発器の伝熱管の管路長を変更することにより前記入口部と前記出口部との前記管路内圧力の差を変更する管路長変更ステップを有する、請求項8に記載の冷凍装置の運転方法。   9. A pipe length changing step of changing a pipe pressure difference between the inlet and the outlet by changing a pipe length of a heat transfer tube of the evaporator through which the refrigerant passes. The method for operating a refrigeration apparatus according to claim 1. 前記圧力調整ステップは、
前記蒸発器を流れる前記冷媒の流速を変更することにより前記入口部と前記出口部との前記管路内圧力の差を変更する流速変更ステップを有する、請求項8又は9に記載の冷凍装置の運転方法。
The pressure adjusting step includes:
The refrigerating apparatus according to claim 8 or 9, further comprising a flow rate changing step of changing a flow rate of the refrigerant flowing through the evaporator to change a difference in pressure in the pipeline between the inlet and the outlet. how to drive.
前記流速変更ステップは、
前記圧縮機の運転周波数を変更することにより前記蒸発器を流れる前記冷媒の流速を変更する、請求項10に記載の冷凍装置の運転方法。
The flow rate changing step,
The operating method of the refrigeration apparatus according to claim 10, wherein the flow rate of the refrigerant flowing through the evaporator is changed by changing an operating frequency of the compressor.
前記流速変更ステップは、
前記蒸発器の前記入口部に設置された流量調整弁の開度を変更して前記蒸発器を流れる前記冷媒の流速を変更する、請求項10又は11に記載の冷凍装置の運転方法。
The flow rate changing step,
The method according to claim 10, wherein the flow rate of the refrigerant flowing through the evaporator is changed by changing an opening of a flow control valve provided at the inlet of the evaporator.
前記管路長変更ステップは、
前記蒸発器を通過する前記冷媒のパス数を変更し前記入口部と前記出口部との前記管路内圧力の差を変更する、請求項9に記載の冷凍装置の運転方法。
The pipe length changing step includes:
The operating method of the refrigeration apparatus according to claim 9, wherein the number of passes of the refrigerant passing through the evaporator is changed to change a difference in pressure in the pipeline between the inlet and the outlet.
JP2019532244A 2017-07-25 2017-07-25 Refrigeration equipment and operation method of refrigeration equipment Expired - Fee Related JP6765538B2 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/026803 WO2019021364A1 (en) 2017-07-25 2017-07-25 Refrigeration device and refrigeration device operation method

Publications (2)

Publication Number Publication Date
JPWO2019021364A1 true JPWO2019021364A1 (en) 2020-02-27
JP6765538B2 JP6765538B2 (en) 2020-10-07

Family

ID=65041127

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019532244A Expired - Fee Related JP6765538B2 (en) 2017-07-25 2017-07-25 Refrigeration equipment and operation method of refrigeration equipment

Country Status (3)

Country Link
JP (1) JP6765538B2 (en)
CN (1) CN110914608A (en)
WO (1) WO2019021364A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7278399B2 (en) * 2019-10-10 2023-05-19 三菱電機株式会社 refrigeration cycle equipment
WO2022168153A1 (en) * 2021-02-02 2022-08-11 三菱電機株式会社 Refrigeration cycle device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06272998A (en) * 1993-03-18 1994-09-27 Toshiba Corp Refrigerator
JPH08145490A (en) * 1994-11-17 1996-06-07 Matsushita Refrig Co Ltd Heat exchanger for heat pump air conditioner
JPH09105560A (en) * 1995-08-04 1997-04-22 Mitsubishi Electric Corp Freezer
JPH09133433A (en) * 1995-11-07 1997-05-20 Sanyo Electric Co Ltd Heat exchanger
JP2007536390A (en) * 2004-04-29 2007-12-13 ハネウェル・インターナショナル・インコーポレーテッド Composition comprising tetrafluoropropene and carbon dioxide
WO2017149642A1 (en) * 2016-03-01 2017-09-08 三菱電機株式会社 Refrigeration cycle device

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1253681C (en) * 2004-07-22 2006-04-26 春兰(集团)公司 Method for arranging refrigerant of heat pump air conditioner and air conditioner using said method thereof
CN102105761B (en) * 2008-06-10 2012-11-14 汉拏空调株式会社 Vehicle air-conditioning system employing tube-fin-type evaporator using HFO 1234yf material refrigerant
CN106634851A (en) * 2010-06-22 2017-05-10 阿科玛股份有限公司 Heat transfer compositions of hydrofluorocarbons and a hydrofluoroolefin

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06272998A (en) * 1993-03-18 1994-09-27 Toshiba Corp Refrigerator
JPH08145490A (en) * 1994-11-17 1996-06-07 Matsushita Refrig Co Ltd Heat exchanger for heat pump air conditioner
JPH09105560A (en) * 1995-08-04 1997-04-22 Mitsubishi Electric Corp Freezer
JPH09133433A (en) * 1995-11-07 1997-05-20 Sanyo Electric Co Ltd Heat exchanger
JP2007536390A (en) * 2004-04-29 2007-12-13 ハネウェル・インターナショナル・インコーポレーテッド Composition comprising tetrafluoropropene and carbon dioxide
WO2017149642A1 (en) * 2016-03-01 2017-09-08 三菱電機株式会社 Refrigeration cycle device

Also Published As

Publication number Publication date
JP6765538B2 (en) 2020-10-07
CN110914608A (en) 2020-03-24
WO2019021364A1 (en) 2019-01-31

Similar Documents

Publication Publication Date Title
GB2530915B (en) Air-conditioning apparatus
JP5423089B2 (en) Refrigeration equipment
JP6847299B2 (en) Refrigeration cycle equipment
JP5409715B2 (en) Air conditioner
WO2013093979A1 (en) Air conditioner
JP2008134031A (en) Refrigerating device using zeotropic refrigerant mixture
JP5908183B1 (en) Air conditioner
JP2002081766A (en) Refrigerating cycle device
JPWO2016059696A1 (en) Refrigeration cycle equipment
JP6239092B2 (en) Air conditioner
JP4096984B2 (en) Refrigeration equipment
JP6765538B2 (en) Refrigeration equipment and operation method of refrigeration equipment
JP5770157B2 (en) Refrigeration equipment
WO2019021464A1 (en) Air conditioning device
WO2018008129A1 (en) Refrigeration cycle device
WO2020188756A1 (en) Air conditioner
JP2009222357A (en) Refrigeration device
JP6715918B2 (en) Refrigeration cycle equipment
JP2012237518A (en) Air conditioner
US11371760B2 (en) Refrigeration cycle apparatus
JP5963669B2 (en) Refrigeration equipment
JPWO2016207992A1 (en) Air conditioner
JP3298225B2 (en) Air conditioner
WO2018216187A1 (en) Refrigeration cycle device
WO2022168153A1 (en) Refrigeration cycle device

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191001

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191001

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200818

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200915

R150 Certificate of patent or registration of utility model

Ref document number: 6765538

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees