JP4096984B2 - Refrigeration equipment - Google Patents
Refrigeration equipment Download PDFInfo
- Publication number
- JP4096984B2 JP4096984B2 JP2006182145A JP2006182145A JP4096984B2 JP 4096984 B2 JP4096984 B2 JP 4096984B2 JP 2006182145 A JP2006182145 A JP 2006182145A JP 2006182145 A JP2006182145 A JP 2006182145A JP 4096984 B2 JP4096984 B2 JP 4096984B2
- Authority
- JP
- Japan
- Prior art keywords
- pressure
- refrigerant
- compressor
- capacity
- circuit
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B7/00—Compression machines, plants or systems, with cascade operation, i.e. with two or more circuits, the heat from the condenser of one circuit being absorbed by the evaporator of the next circuit
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2600/00—Control issues
- F25B2600/02—Compressor control
- F25B2600/025—Compressor control by controlling speed
- F25B2600/0253—Compressor control by controlling speed with variable speed
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2700/00—Sensing or detecting of parameters; Sensors therefor
- F25B2700/19—Pressures
- F25B2700/193—Pressures of the compressor
- F25B2700/1931—Discharge pressures
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2700/00—Sensing or detecting of parameters; Sensors therefor
- F25B2700/19—Pressures
- F25B2700/193—Pressures of the compressor
- F25B2700/1933—Suction pressures
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2700/00—Sensing or detecting of parameters; Sensors therefor
- F25B2700/21—Temperatures
- F25B2700/2104—Temperatures of an indoor room or compartment
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2700/00—Sensing or detecting of parameters; Sensors therefor
- F25B2700/21—Temperatures
- F25B2700/2106—Temperatures of fresh outdoor air
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2700/00—Sensing or detecting of parameters; Sensors therefor
- F25B2700/21—Temperatures
- F25B2700/2116—Temperatures of a condenser
- F25B2700/21163—Temperatures of a condenser of the refrigerant at the outlet of the condenser
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2700/00—Sensing or detecting of parameters; Sensors therefor
- F25B2700/21—Temperatures
- F25B2700/2117—Temperatures of an evaporator
- F25B2700/21174—Temperatures of an evaporator of the refrigerant at the inlet of the evaporator
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02B—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
- Y02B30/00—Energy efficient heating, ventilation or air conditioning [HVAC]
- Y02B30/70—Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Mechanical Engineering (AREA)
- Thermal Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Compression-Type Refrigeration Machines With Reversible Cycles (AREA)
- Air Conditioning Control Device (AREA)
Description
本発明は、過冷却回路を備えた冷凍装置に関し、特に、過冷却回路の能力制御技術に関するものである。 The present invention relates to a refrigeration apparatus provided with a supercooling circuit, and more particularly to a technology for controlling the capacity of the supercooling circuit.
従来より、蒸気圧縮式冷凍サイクルを行う冷媒回路を備えた冷凍装置が知られている。この冷凍装置の中には、冷却対象空間を冷却するための主冷媒回路に、冷却能力を増大させるための過冷却熱交換器を備えた過冷却回路が付設されているものがある。 2. Description of the Related Art Conventionally, a refrigeration apparatus including a refrigerant circuit that performs a vapor compression refrigeration cycle is known. Among these refrigeration apparatuses, there is one in which a main cooling circuit for cooling a space to be cooled is provided with a supercooling circuit including a supercooling heat exchanger for increasing the cooling capacity.
具体的に、上記冷凍装置の主冷媒回路は、第1圧縮機と第1室外熱交換器と第1膨張弁と室内熱交換器とが順に冷媒配管で接続されている。一方、過冷却回路は、第2圧縮機と第2室外熱交換器と第2膨張弁と上記過冷却熱交換器とが順に冷媒配管で接続されている。そして、主冷媒回路に過冷却回路を付設する際には、上記過冷却回路の過冷却熱交換器を上記主冷媒回路の第1室外熱交換器と第1膨張弁との間に設けられた高圧液配管に配置する。上記過冷却熱交換器は冷媒同士を熱交換させる熱交換器で、上記主冷媒回路の冷媒が流れる第1流路と上記過冷却回路の冷媒が流れる第2流路とを備えている。これにより、上記過冷却熱交換器において、主冷媒回路の第1室外熱交換器で凝縮した高圧液冷媒と、過冷却回路の低圧冷媒とを熱交換させることで、上記高圧液冷媒を過冷却し、該高圧液冷媒の過冷却度を大きくすることができる。そして、この高圧液冷媒の過冷却度を大きくすることで、該上記主冷媒回路の冷却能力を増大させることができる。このような上記過冷却回路を備えた冷凍装置において、該過冷却回路を制御するための従来技術として、特許文献1が挙げられる。 Specifically, in the main refrigerant circuit of the refrigeration apparatus, a first compressor, a first outdoor heat exchanger, a first expansion valve, and an indoor heat exchanger are sequentially connected by a refrigerant pipe. On the other hand, in the supercooling circuit, the second compressor, the second outdoor heat exchanger, the second expansion valve, and the supercooling heat exchanger are sequentially connected by refrigerant piping. When the supercooling circuit is attached to the main refrigerant circuit, the supercooling heat exchanger of the supercooling circuit is provided between the first outdoor heat exchanger of the main refrigerant circuit and the first expansion valve. Place in high pressure liquid piping. The supercooling heat exchanger is a heat exchanger that exchanges heat between refrigerants, and includes a first flow path through which the refrigerant in the main refrigerant circuit flows and a second flow path through which the refrigerant in the supercooling circuit flows. Thus, in the supercooling heat exchanger, the high-pressure liquid refrigerant condensed in the first outdoor heat exchanger of the main refrigerant circuit and the low-pressure refrigerant of the supercooling circuit are heat-exchanged to supercool the high-pressure liquid refrigerant. In addition, the degree of supercooling of the high-pressure liquid refrigerant can be increased. And the cooling capacity of the main refrigerant circuit can be increased by increasing the degree of supercooling of the high-pressure liquid refrigerant. Patent document 1 is mentioned as a prior art for controlling this supercooling circuit in the refrigeration apparatus provided with such a supercooling circuit.
この特許文献1の冷凍装置では、該主冷媒回路の第1圧縮機が容量可変型圧縮機で構成されており、該第1圧縮機の運転容量及び主冷媒回路の低圧冷媒圧力に基づいて、上記過冷却回路の第2圧縮機の発停制御を行う。具体的には、上記容量可変型圧縮機の容量が第1所定値以上でありかつ上記低圧冷媒圧力が所定値以上の場合、つまり主冷媒回路が冷却過負荷状態にある場合に、上記過冷却回路の第2圧縮機が起動する。一方、上記容量可変型圧縮機の容量が第1所定値より低い第2所定値以下となった場合に、上記過冷却回路の第2圧縮機が停止する。 In the refrigeration apparatus of Patent Document 1, the first compressor of the main refrigerant circuit is configured with a variable capacity compressor, and based on the operating capacity of the first compressor and the low-pressure refrigerant pressure of the main refrigerant circuit, The start / stop control of the second compressor of the supercooling circuit is performed. Specifically, when the capacity of the variable capacity compressor is greater than or equal to a first predetermined value and the low-pressure refrigerant pressure is greater than or equal to a predetermined value, that is, when the main refrigerant circuit is in a cooling overload state, The second compressor of the circuit is activated. On the other hand, when the capacity of the variable capacity compressor becomes equal to or lower than a second predetermined value lower than the first predetermined value, the second compressor of the supercooling circuit stops.
つまり、上記発停制御は、主冷媒回路が冷却過負荷状態となった場合に過冷却回路の第2圧縮機が起動し、冷却過負荷状態とならない場合には第2圧縮機が停止するように構成されている。
しかしながら、特許文献1の冷凍装置では、上記過冷却回路を利用して上記主冷媒回路の過負荷状態は回避することができるものの、主冷媒回路が過負荷状態とならなければ過冷却回路は起動しない。つまり、上記過冷却回路は、該主冷媒回路の冷却能力不足を補うためだけの補助的なユニットとして構成されているに過ぎない。例えば、上記冷凍装置の運転が、外気温度の上昇により該主冷媒回路が通常より高い高圧冷媒圧力であって、主冷媒回路の容量可変型圧縮機への入力が過大となり成績係数が低下している運転であっても、上記主冷媒回路の低圧冷媒圧力が維持されている場合には、特許文献1における冷凍装置の過冷却回路の第2圧縮機は起動しない。 However, in the refrigeration apparatus of Patent Document 1, although the overload state of the main refrigerant circuit can be avoided by using the supercooling circuit, the supercooling circuit is activated if the main refrigerant circuit is not overloaded. do not do. In other words, the supercooling circuit is merely configured as an auxiliary unit only to compensate for the lack of cooling capacity of the main refrigerant circuit. For example, when the operation of the refrigeration system is such that the main refrigerant circuit is at a higher pressure than the normal pressure due to an increase in the outside air temperature, the input to the variable capacity compressor of the main refrigerant circuit becomes excessive, and the coefficient of performance decreases. Even in the operation, the second compressor of the supercooling circuit of the refrigeration apparatus in Patent Document 1 does not start when the low-pressure refrigerant pressure of the main refrigerant circuit is maintained.
本発明は、かかる点に鑑みてなされたものであり、その目的は、冷却能力を増加させるための過冷却回路を備えた冷凍装置において、冷凍装置が過負荷状態でなくても、上記過冷却回路の圧縮機を積極的に運転させることにより、冷凍装置の成績係数を向上させることである。 The present invention has been made in view of such points, and an object of the present invention is to provide a refrigeration apparatus having a supercooling circuit for increasing the cooling capacity, even if the refrigeration apparatus is not in an overload state. By actively operating the compressor of the circuit, the coefficient of performance of the refrigeration apparatus is improved.
第1の発明は、
可変容量の第1圧縮機(2)と第1凝縮器(6)と過冷却熱交換器(8)と第1膨張機構(10)と第1蒸発器(12)とが順に接続されて冷凍サイクルを行う主冷媒回路(1b)と、第2圧縮機(20)と第2凝縮器(24)と第2膨張機構(26)と上記過冷却熱交換器(8)とが順に接続されて冷凍サイクルを行う過冷却回路(1a)と、上記第1圧縮機(2)の容量を調整可能な第1容量調整手段とを備えた冷凍装置を前提としている。
The first invention is
A variable capacity first compressor (2), a first condenser (6), a supercooling heat exchanger (8), a first expansion mechanism (10), and a first evaporator (12) are connected in order and refrigerated. The main refrigerant circuit (1b) that performs the cycle, the second compressor (20), the second condenser (24), the second expansion mechanism (26), and the supercooling heat exchanger (8) are connected in order. A refrigeration apparatus including a supercooling circuit (1a) for performing a refrigeration cycle and first capacity adjusting means capable of adjusting the capacity of the first compressor (2) is assumed.
そして、上記第2圧縮機(20)が可変容量圧縮機(20)で構成され、上記主冷媒回路(1b)の高圧冷媒圧力を検知する第1高圧冷媒圧力検知手段(5)と、上記過冷却回路(1a)の高圧冷媒圧力を検知する第2高圧冷媒圧力検知手段(23)と、上記第2圧縮機(20)の容量を調整可能な第2容量調整手段とを備え、上記第1容量調整手段と上記第2容量調整手段とを制御して、上記主冷媒回路(1b)の高圧冷媒圧力値と、上記過冷却回路(1a)の高圧冷媒圧力値とを制御する高圧等価制御手段(32)を備えている。 The second compressor (20) is a variable capacity compressor (20), and includes a first high-pressure refrigerant pressure detection means (5) for detecting a high-pressure refrigerant pressure in the main refrigerant circuit (1b), and the excess compressor. A second high pressure refrigerant pressure detecting means (23) for detecting the high pressure refrigerant pressure of the cooling circuit (1a); and a second capacity adjusting means capable of adjusting a capacity of the second compressor (20), High pressure equivalent control means for controlling the high pressure refrigerant pressure value of the main refrigerant circuit (1b) and the high pressure refrigerant pressure value of the supercooling circuit (1a) by controlling the capacity adjusting means and the second capacity adjusting means. (32) .
また、第1の発明の冷凍装置は、上記過冷却熱交換器(8)の主冷媒回路(1b)側の冷媒出口液温度を検知する出口液温度検知手段(9)を備え、上記高圧等価制御手段(32)は、上記冷媒出口液温度が所定値より高ければ、上記第2容量調整手段を制御して上記第2圧縮機(20)の容量を増加させ、所定値より低ければ、上記第2容量調整手段を制御して上記第2圧縮機(20)の容量を減少させる第1制御部を備えていることを特徴としている。The refrigeration apparatus of the first invention further comprises outlet liquid temperature detecting means (9) for detecting the refrigerant outlet liquid temperature on the main refrigerant circuit (1b) side of the supercooling heat exchanger (8), and the high pressure equivalent The control means (32) controls the second capacity adjusting means to increase the capacity of the second compressor (20) if the refrigerant outlet liquid temperature is higher than a predetermined value, and if lower than the predetermined value, the control means (32) A first control unit that controls the second capacity adjusting means to reduce the capacity of the second compressor (20) is provided.
第1の発明では、例えば、上記過冷却回路(1a)の高圧冷媒圧力を目標値として、上記高圧等価制御手段(32)が第1圧縮機(2)の容量を減少させることができる一方、上記主冷媒回路(1b)の高圧冷媒圧力を目標値として、上記高圧等価制御手段(32)が第2圧縮機(20)の容量を増加させることができる。これにより、上記主冷媒回路(1b)と上記過冷却回路(1a)との高圧冷媒圧力値を近づけることができる。In the first invention, for example, the high pressure equivalent control means (32) can reduce the capacity of the first compressor (2) with the high pressure refrigerant pressure of the supercooling circuit (1a) as a target value. Using the high-pressure refrigerant pressure of the main refrigerant circuit (1b) as a target value, the high-pressure equivalent control means (32) can increase the capacity of the second compressor (20). Thereby, the high-pressure refrigerant pressure values of the main refrigerant circuit (1b) and the supercooling circuit (1a) can be made closer.
ここで、両方の上記高圧冷媒圧力値が近づく際の主冷媒回路(1b)の冷却能力については、上記第1圧縮機(2)の容量が減少することにより、上記主冷媒回路(1b)の第1蒸発器(12)に流入する冷媒量は減少して、該主冷媒回路(1b)の冷却能力は減少する。一方、上記第2圧縮機(20)の容量が増加することにより、上記主冷媒回路(1b)の過冷却熱交換器(8)における過冷却能力は増加して、該主冷媒回路(1b)を流れる冷媒の過冷却度は大きくなる。この過冷却度の拡大により、主冷媒回路(1b)の冷却能力は増加する。Here, regarding the cooling capacity of the main refrigerant circuit (1b) when both of the high-pressure refrigerant pressure values approach, the capacity of the first compressor (2) decreases, so that the main refrigerant circuit (1b) The amount of refrigerant flowing into the first evaporator (12) decreases, and the cooling capacity of the main refrigerant circuit (1b) decreases. On the other hand, as the capacity of the second compressor (20) increases, the supercooling capacity of the main refrigerant circuit (1b) in the supercooling heat exchanger (8) increases, and the main refrigerant circuit (1b) The degree of supercooling of the refrigerant flowing through the refrigerant increases. The expansion of the degree of supercooling increases the cooling capacity of the main refrigerant circuit (1b).
また、第1の発明では、上記主冷媒回路(1b)の高圧冷媒圧力値だけでなく、上記主冷媒回路(1b)の冷媒出口液温度における設定値を目標値として、上記高圧等価制御手段(32)の第1制御部が上記第2圧縮機(20)の容量を制御することができる。 In the first invention, not only the high-pressure refrigerant pressure value of the main refrigerant circuit (1b) but also the set value at the refrigerant outlet liquid temperature of the main refrigerant circuit (1b) is set as a target value, and the high-pressure equivalent control means ( The first control unit 32) can control the capacity of the second compressor (20).
第2の発明は、第1の発明において、上記第2圧縮機(20)の吸入冷媒圧力を検知する吸入冷媒圧力検出手段(28)を備え、上記高圧等価制御手段(32)は、上記吸入冷媒圧力が所定値より高ければ、上記第2容量調整手段を制御して上記第2圧縮機(20)の容量を増加させ、所定値より低ければ、上記第2容量調整手段を制御して上記第2圧縮機(20)の容量を減少させる第2制御部を備えていること特徴としている。 According to a second aspect of the present invention, in the first aspect of the invention, there is provided an intake refrigerant pressure detecting means (28) for detecting an intake refrigerant pressure of the second compressor (20), wherein the high pressure equivalent control means (32) If the refrigerant pressure is higher than a predetermined value, the second capacity adjusting means is controlled to increase the capacity of the second compressor (20). If the refrigerant pressure is lower than the predetermined value, the second capacity adjusting means is controlled to control the second capacity adjusting means. A second control unit for reducing the capacity of the second compressor (20) is provided.
第2の発明では、上記主冷媒回路(1b)の高圧冷媒圧力値や上記主冷媒回路(1b)の冷媒出口液温度の設定値だけでなく、上記第2圧縮機(20)の吸入冷媒圧力における設定値を目標値として、上記高圧等価制御手段(32)の第2制御部が上記第2圧縮機(20)の容量を制御することができる。 In the second invention, not only the high pressure refrigerant pressure value of the main refrigerant circuit (1b) and the set value of the refrigerant outlet liquid temperature of the main refrigerant circuit (1b), but also the suction refrigerant pressure of the second compressor (20). The second control unit of the high-pressure equivalent control means (32) can control the capacity of the second compressor (20) with the set value at as a target value.
第3の発明は、第1または第2の発明において、上記主冷媒回路(1b)の蒸発温度を検知する蒸発温度検知手段(11)を備え、上記高圧等価制御手段(32)は、上記蒸発温度が所定値より低ければ、上記第1容量調整手段を制御して上記第1圧縮機(2)の容量を減少させ、所定値より高ければ、上記第1容量調整手段を制御して上記第1圧縮機(2)の容量を増加させる第3制御部を備えていること特徴としている。 According to a third invention, in the first or second invention, there is provided an evaporation temperature detecting means (11) for detecting an evaporation temperature of the main refrigerant circuit (1b), and the high pressure equivalent control means (32) If the temperature is lower than a predetermined value, the first capacity adjusting means is controlled to reduce the capacity of the first compressor (2). If the temperature is higher than the predetermined value, the first capacity adjusting means is controlled to control the first capacity adjusting means. It is characterized by having a third control unit that increases the capacity of one compressor (2).
第3の発明では、上記過冷却回路(1a)の高圧冷媒圧力値だけでなく、上記主冷媒回路(1b)の蒸発温度における設定値を目標値として、上記高圧等価制御手段(32)の第3制御部が上記第1圧縮機(2)の容量を制御することができる。 In the third aspect of the invention, not only the high-pressure refrigerant pressure value of the supercooling circuit (1a) but also the set value at the evaporation temperature of the main refrigerant circuit (1b) is set as the target value, and the high-pressure equivalent control means (32) The three control units can control the capacity of the first compressor (2).
本発明によれば、上記高圧等価制御を行うことにより、上記過冷却回路(1a)の高圧冷媒圧力が上記主冷媒回路(1b)の高圧冷媒圧力に近づくまで、上記過冷却回路(1a)の第2圧縮機(20)を運転することができる。これにより、上記主冷媒回路(1b)が過負荷状態でなくても上記過冷却回路(1a)の第2圧縮機(20)を稼働することができ、結果として、上記冷凍装置の冷却負荷を主冷媒回路(1b)と過冷却回路(1a)とで分担させることが可能となる。ここで、この冷却負荷の分担に関しては、上記第1圧縮機(2)の容量減少による主冷媒回路(1b)の冷却能力の減少を、上記第2圧縮機(20)の容量増加による冷却能力の増加で補う構成となる。 According to the present invention, by performing the high-pressure equivalent control, until the high-pressure refrigerant pressure of the supercooling circuit (1a) approaches the high-pressure refrigerant pressure of the main refrigerant circuit (1b), the supercooling circuit (1a) The second compressor (20) can be operated. Thereby, even if the main refrigerant circuit (1b) is not in an overload state, the second compressor (20) of the supercooling circuit (1a) can be operated. As a result, the cooling load of the refrigeration apparatus can be reduced. The main refrigerant circuit (1b) and the supercooling circuit (1a) can be shared. Here, regarding the sharing of the cooling load, the decrease in the cooling capacity of the main refrigerant circuit (1b) due to the decrease in the capacity of the first compressor (2) is the same as the cooling capacity due to the increase in the capacity of the second compressor (20). It becomes the composition which compensates with increase of.
又、上記第2圧縮機(20)の容量増加による電気入力の増加量は、主冷媒回路(1b)の冷却能力の減少に伴う第1圧縮機(2)の電気入力の減少量より小さい。これは、過冷却回路(1a)の成績係数が主冷媒回路(1b)の成績係数より大きいからである。ここで、主冷媒回路(1b)より過冷却回路(1a)の成績係数が大きい理由は、例えば、冷却対象空間の設定温度が−30℃の場合は、主冷媒回路(1b)の蒸発飽和温度が−40℃付近、過冷却回路(1a)の蒸発飽和温度が0℃付近となり、該過冷却回路(1a)の低圧冷媒圧力が高い。この低圧状態を維持しながら高圧等価制御を行えば、両者の高圧冷媒圧力が同値となった場合、高低圧差の小さい過冷却回路(1a)の成績係数の方が主冷媒回路(1b)に比べて大きくなるからである。 Further, the increase amount of the electric input due to the increase in the capacity of the second compressor (20) is smaller than the decrease amount of the electric input of the first compressor (2) due to the decrease in the cooling capacity of the main refrigerant circuit (1b). This is because the coefficient of performance of the supercooling circuit (1a) is larger than the coefficient of performance of the main refrigerant circuit (1b). Here, the reason why the coefficient of performance of the supercooling circuit (1a) is larger than that of the main refrigerant circuit (1b) is, for example, when the set temperature of the space to be cooled is −30 ° C., the evaporation saturation temperature of the main refrigerant circuit (1b) However, the evaporation saturation temperature of the supercooling circuit (1a) is around 0 ° C, and the low-pressure refrigerant pressure of the supercooling circuit (1a) is high. If high-pressure equivalent control is performed while maintaining this low-pressure state, when both high-pressure refrigerant pressures have the same value, the coefficient of performance of the supercooling circuit (1a) with a small high-low pressure difference is smaller than that of the main refrigerant circuit (1b) Because it becomes bigger.
以上により、成績係数の小さい主冷媒回路(1b)のみで冷却運転を行うのではなく、該主冷媒回路(1b)と成績係数の大きい過冷却回路(1a)とで分担して冷却運転を行うことにより、上記冷凍装置のトータルの成績係数を向上させることができる。 As described above, the cooling operation is not performed only by the main refrigerant circuit (1b) having a small coefficient of performance, but the cooling operation is shared by the main refrigerant circuit (1b) and the supercooling circuit (1a) having a large coefficient of performance. As a result, the total coefficient of performance of the refrigeration apparatus can be improved.
また、上記第1の発明によれば、上記高圧等価制御中において、上記高圧等価制御の第1制御部が上記第2圧縮機(20)における容量の増加を制限することができる。ここで、上記第2圧縮機(20)の容量増加を制限する理由は、上記第2圧縮機(20)の容量を増加させると、上記過冷却回路(1a)の高圧冷媒圧力が上がると同時に、上記過冷却熱交換器(8)の過冷却能力を増加させて主冷媒回路(1b)の過冷却熱交換器(8)の冷媒出口液温度も下がってしまうからである。つまり、上記高圧等価手段が上記主冷媒回路(1b)の高圧冷媒圧力だけを目標値として上記第2圧縮機(20)の容量を増加させた場合、条件によっては上記冷媒出口液温度が必要以上に下がり過ぎることが考えられる。そこで、この冷媒出口液温度の下がりすぎを防止するために、上記1制御部が上記第2圧縮機(20)における容量の増加を制限する。 Further, according to the first aspect , during the high pressure equivalent control, the first control unit of the high pressure equivalent control can limit an increase in capacity in the second compressor (20). Here, the reason for limiting the increase in the capacity of the second compressor (20) is that when the capacity of the second compressor (20) is increased, the high-pressure refrigerant pressure of the supercooling circuit (1a) increases. This is because the supercooling capability of the supercooling heat exchanger (8) is increased and the refrigerant outlet liquid temperature of the supercooling heat exchanger (8) of the main refrigerant circuit (1b) is also lowered. That is, if the upper Symbol pressure equivalent means increased capacity of the high pressure refrigerant pressure by the second compressor as a target value (20) of the main refrigerant circuit (1b), the refrigerant outlet fluid temperature by conditions It is possible that it falls too much than necessary. Therefore, in order to prevent the refrigerant outlet liquid temperature from dropping too much, the one control unit limits the increase in capacity of the second compressor (20).
また、上記第2の発明によれば、上記高圧等価制御中において、上記高圧等価制御の第2制御部が上記第2圧縮機(20)における容量の増加を制限することができる。ここで、上記第2圧縮機(20)の容量増加を制限する理由は、上記第2圧縮機(20)の容量を増加させると、上記過冷却回路(1a)の高圧冷媒圧力が上がると同時に、上記第2圧縮機(20)の吸入冷媒圧力も下がってしまうからである。つまり、第1の発明のように、上記高圧等価手段が上記主冷媒回路(1b)の高圧冷媒圧力だけを目標値として上記第2圧縮機(20)の容量を増加させた場合、条件によっては上記吸入冷媒圧力が必要以上に下がり過ぎることが考えられる。そこで、この吸入冷媒圧力の下がりすぎを防止するために、上記2制御部が上記第2圧縮機(20)における容量の増加を制限する。 Further, according to the second invention, during the high pressure equivalent control, the second controller of the high pressure equivalent control can limit an increase in capacity in the second compressor (20). Here, the reason for limiting the increase in the capacity of the second compressor (20) is that when the capacity of the second compressor (20) is increased, the high-pressure refrigerant pressure of the supercooling circuit (1a) increases. This is because the suction refrigerant pressure of the second compressor (20) also decreases. That is, when the high-pressure equivalent means increases the capacity of the second compressor (20) with only the high-pressure refrigerant pressure of the main refrigerant circuit (1b) as a target value, as in the first invention, It is conceivable that the suction refrigerant pressure is too low. Therefore, in order to prevent the suction refrigerant pressure from dropping excessively, the two control units limit the increase in capacity of the second compressor (20).
また、上記第3の発明によれば、上記高圧等価制御中において、上記高圧等価制御の第3制御部が、上記蒸発温度に基いて上記第1圧縮機(2)における容量の減少を制限することができる。ここで、上記第1圧縮機(2)の容量減少を制限する理由は、上記第1圧縮機(2)の容量を減少させると、主冷媒回路(1b)の冷却能力が減少して上記冷却対象空間の冷却不足が起こってしまうからである。つまり、第1の発明のように、上記高圧等価手段が上記過冷却回路(1a)の高圧冷媒圧力だけを目標値として上記第1圧縮機(2)の容量を減少させた場合、条件によっては上記蒸発温度が必要以上に上がり過ぎることが考えられる。そこで、この吸入冷媒圧力の上がりすぎを防止するために、上記3制御部が上記第1圧縮機(2)における容量の減少を制限する。これにより、上記高圧等価制御手段(32)が、主冷媒回路(1b)の冷却能力を保ちつつ、高圧等価制御を行うことができる。 According to the third aspect of the present invention, during the high pressure equivalent control, the third control unit of the high pressure equivalent control restricts a decrease in capacity in the first compressor (2) based on the evaporation temperature. be able to. Here, the reason for limiting the capacity reduction of the first compressor (2) is that when the capacity of the first compressor (2) is decreased, the cooling capacity of the main refrigerant circuit (1b) is reduced and the cooling capacity is reduced. This is because the target space is insufficiently cooled. That is, when the high pressure equivalent means reduces the capacity of the first compressor (2) by using only the high pressure refrigerant pressure of the supercooling circuit (1a) as a target value, as in the first invention, It is conceivable that the evaporation temperature rises more than necessary. Therefore, in order to prevent the intake refrigerant pressure from rising excessively, the three control units limit the decrease in the capacity of the first compressor (2). Thereby, the high-pressure equivalent control means (32) can perform high-pressure equivalent control while maintaining the cooling capacity of the main refrigerant circuit (1b).
以下、本発明の実施形態を図面に基づいて詳細に説明する。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
−冷凍装置の構成−
図1は、この実施形態に係る冷凍装置の冷媒回路図である。この冷凍装置は、冷却対象空間(例えば、冷凍室)を冷却するためのものである。上記冷凍装置は、冷却対象空間を冷却するための主冷媒回路(1b)と、該主冷媒回路(1b)を流れる冷媒(高圧液冷媒)を冷却するための過冷却熱交換器(8)を有する過冷却回路(1a)とを備えている。又、上記冷凍装置には、上記主冷媒回路(1b)及び過冷却回路(1a)の運転を制御するためコントローラ(高圧等価制御手段)(32)が設置されている。
-Configuration of refrigeration equipment-
FIG. 1 is a refrigerant circuit diagram of a refrigeration apparatus according to this embodiment. This refrigeration apparatus is for cooling a space to be cooled (for example, a freezer compartment). The refrigeration apparatus includes a main refrigerant circuit (1b) for cooling the space to be cooled, and a supercooling heat exchanger (8) for cooling the refrigerant (high-pressure liquid refrigerant) flowing through the main refrigerant circuit (1b). And a supercooling circuit (1a). The refrigeration apparatus is provided with a controller (high pressure equivalent control means) (32) for controlling the operation of the main refrigerant circuit (1b) and the supercooling circuit (1a).
〈主冷媒回路〉
上記主冷媒回路(1b)は、第1可変容量型圧縮機(第1圧縮機)(2)と第1室外熱交換器(第1凝縮器)(6)と上記過冷却熱交換器(8)と第1膨張弁(第1膨張機構)(10)と室内熱交換器(第1蒸発器)(12)とが順に冷媒配管で接続されて、蒸気圧縮式冷凍サイクルを行うように構成されている。
<Main refrigerant circuit>
The main refrigerant circuit (1b) includes a first variable capacity compressor (first compressor) (2), a first outdoor heat exchanger (first condenser) (6), and the supercooling heat exchanger (8 ), A first expansion valve (first expansion mechanism) (10), and an indoor heat exchanger (first evaporator) (12) are sequentially connected by a refrigerant pipe to perform a vapor compression refrigeration cycle. ing.
上記第1可変容量型圧縮機(2)には、図示しないインバータが接続されている。上記インバータは、上記第1可変容量型圧縮機(2)に電流を供給するとともに、その電流の周波数を変化することが可能に構成されている。つまり、上記第1可変容量型圧縮機(2)の容量は、上記インバータにより、ある範囲内で自在に変更することが可能となっている。一方、上記第1可変容量型圧縮機(2)の吸入側には第1吸入冷媒配管(15)が、吐出側には第1吐出冷媒配管(3)がそれぞれ接続されている。上記第1吸入冷媒配管(15)には第1吸入温度センサ(17)と第1低圧冷媒圧力センサ(16)とが設けられている。又、上記第1吐出冷媒配管(3)には、第1吐出温度センサ(4)と第1高圧冷媒圧力センサ(第1高圧冷媒圧力検知手段)(5)とが設けられている。そして、該第1吐出冷媒配管(3)は上記第1可変容量型圧縮機(2)と第1室外熱交換器(6)とを接続している。 An inverter (not shown) is connected to the first variable capacity compressor (2). The inverter is configured to supply a current to the first variable displacement compressor (2) and to change the frequency of the current. That is, the capacity of the first variable capacity compressor (2) can be freely changed within a certain range by the inverter. On the other hand, a first suction refrigerant pipe (15) is connected to the suction side of the first variable displacement compressor (2), and a first discharge refrigerant pipe (3) is connected to the discharge side. The first suction refrigerant pipe (15) is provided with a first suction temperature sensor (17) and a first low-pressure refrigerant pressure sensor (16). The first discharge refrigerant pipe (3) is provided with a first discharge temperature sensor (4) and a first high-pressure refrigerant pressure sensor (first high-pressure refrigerant pressure detection means) (5). The first discharge refrigerant pipe (3) connects the first variable capacity compressor (2) and the first outdoor heat exchanger (6).
上記第1室外熱交換器(6)は、クロスフィン式のフィン・アンド・チューブ型熱交換器で構成されており、該第1室外熱交換器(6)の近傍には、第1送風ファン(6a)と第1外気温度センサ(6b)とが設けられている。又、示していないが、上記第1室外熱交換器(6)は、伝熱管が複数パスに配列されており、該伝熱管と直交して多数のアルミフィンが設置されている。そして、上記第1室外熱交換器(6)と第1膨張弁(10)とを接続する第1高圧液冷媒配管(7)には、上記過冷却熱交換器(8)が設けられている。 The first outdoor heat exchanger (6) is a cross-fin type fin-and-tube heat exchanger, and a first blower fan is located in the vicinity of the first outdoor heat exchanger (6). (6a) and a first outside air temperature sensor (6b) are provided. Although not shown, in the first outdoor heat exchanger (6), the heat transfer tubes are arranged in a plurality of paths, and a large number of aluminum fins are installed perpendicular to the heat transfer tubes. The first high pressure liquid refrigerant pipe (7) connecting the first outdoor heat exchanger (6) and the first expansion valve (10) is provided with the supercooling heat exchanger (8). .
上記過冷却熱交換器(8)は、プレートフィン型熱交換器で構成されており、該プレートフィン型熱交換器内には第1、第2流路(8a,8b)が形成されている。上記第1流路(8a)には上記主冷媒回路(1b)を循環する冷媒が流れ、上記第2流路(8b)には過冷却回路(1a)を循環する冷媒が流れている。そして、この冷媒同士が熱交換を行うことにより、上記主冷媒回路(1b)側を流れる冷媒は冷却される。又、上記主冷媒回路(1b)側を流れる冷媒の過冷却熱交換器(8)の出口側の温度を測定するための冷媒出口液温度センサ(9)(出口液温度検知手段)が、上記主冷媒回路(1b)の過冷却熱交換器(8)と第1膨張弁(10)とを接続する冷媒配管に設けられている。 The said supercooling heat exchanger (8) is comprised with the plate fin type heat exchanger, and the 1st, 2nd flow path (8a, 8b) is formed in this plate fin type heat exchanger. . The refrigerant circulating through the main refrigerant circuit (1b) flows through the first flow path (8a), and the refrigerant circulating through the supercooling circuit (1a) flows through the second flow path (8b). And the refrigerant | coolant which flows through the said main refrigerant circuit (1b) side is cooled by this refrigerant | coolant exchanging heat. The refrigerant outlet liquid temperature sensor (9) (outlet liquid temperature detecting means) for measuring the temperature of the outlet side of the supercooling heat exchanger (8) of the refrigerant flowing through the main refrigerant circuit (1b) side includes: The refrigerant pipe is connected to the supercooling heat exchanger (8) of the main refrigerant circuit (1b) and the first expansion valve (10).
上記第1膨張弁(10)は、開度が調節可能な電動膨張弁であり、その開度は適宜、電気信号によって変更可能に構成されている。 The first expansion valve (10) is an electric expansion valve whose opening degree can be adjusted, and the opening degree can be appropriately changed by an electric signal.
上記室内熱交換器(12)は、上記第1室外熱交換器(6)と同様に、クロスフィン式のフィン・アンド・チューブ型熱交換器で構成されている。図示していないが、伝熱管が複数パスに配列されており、該伝熱管と直交して多数のアルミフィンが設置されている。又、上記室内熱交換器(12)の入口側には蒸発温度センサ(蒸発温度検知手段)(11)が設けられ、該室内熱交換器(12)の近傍には、第3送風ファン(12a)と室内温度センサ(12b)とが設けられている。そして、上記室内熱交換器(12)と上記第1可変容量型圧縮機(2)とは上記第1吸入冷媒配管(15)で接続されている。 Similar to the first outdoor heat exchanger (6), the indoor heat exchanger (12) is a cross-fin fin-and-tube heat exchanger. Although not shown, the heat transfer tubes are arranged in a plurality of paths, and a large number of aluminum fins are installed orthogonal to the heat transfer tubes. An evaporation temperature sensor (evaporation temperature detecting means) (11) is provided on the inlet side of the indoor heat exchanger (12), and a third blower fan (12a) is provided in the vicinity of the indoor heat exchanger (12). ) And an indoor temperature sensor (12b). The indoor heat exchanger (12) and the first variable capacity compressor (2) are connected by the first suction refrigerant pipe (15).
上記主冷媒回路(1b)には、液インジェクション配管(18)が設けられており、該液インジェクション配管(18)の一端は、上記第1室外熱交換器(6)と上記過冷却熱交換器(8)との間の第1高圧液冷媒配管(7)に接続され、他端は、上記室内熱交換器(12)と上記第1可変容量型圧縮機(2)との間の上記第1吸入冷媒配管(15)に接続されている。そして、上記液インジェクション配管(18)には、該液インジェクション配管(18)を流れる冷媒を減圧するための減圧弁(19)が設置されている。 The main refrigerant circuit (1b) is provided with a liquid injection pipe (18), and one end of the liquid injection pipe (18) is connected to the first outdoor heat exchanger (6) and the supercooling heat exchanger. The other end is connected to the first high-pressure liquid refrigerant pipe (7) between the indoor heat exchanger (12) and the first variable capacity compressor (2). 1 It is connected to the suction refrigerant pipe (15). The liquid injection pipe (18) is provided with a pressure reducing valve (19) for reducing the pressure of the refrigerant flowing through the liquid injection pipe (18).
〈過冷却回路〉
上記過冷却回路(1a)は、第2可変容量型圧縮機(20)と第2室外熱交換器(第2凝縮器)(24)と第2膨張弁(第2膨張機構)(26)と上記過冷却熱交換器(8)とが順に冷媒配管で接続されて、蒸気圧縮式冷凍サイクルを行うように構成されている。
<Supercooling circuit>
The supercooling circuit (1a) includes a second variable capacity compressor (20), a second outdoor heat exchanger (second condenser) (24), a second expansion valve (second expansion mechanism) (26), The supercooling heat exchanger (8) is connected to the refrigerant pipe in order to perform a vapor compression refrigeration cycle.
上記第2可変容量型圧縮機(20)は、上記主冷媒回路(1b)の第1可変容量型圧縮機(2)と同様に、図示しないインバータが接続され、該インバータにより、上記第2可変容量型圧縮機(20)の容量はある範囲内で自在に変更することが可能となっている。一方、上記第2可変容量型圧縮機(20)の吸入側には第2吸入冷媒配管(30)が、吐出側には第2吐出冷媒配管(21)がそれぞれ接続されている。上記第2吸入冷媒配管(30)には第2吸入温度センサ(29)と第2低圧冷媒圧力センサ(吸入冷媒圧力検出手段)(28)とが設けられている。又、上記第2吐出冷媒配管(21)には、第2吐出温度センサ(22)と第2高圧冷媒圧力センサ(第2高圧冷媒圧力検知手段)(23)とが設けられている。そして、該第2吐出冷媒配管(21)は上記第2可変容量型圧縮機(20)と第2室外熱交換器(24)とを接続している。 Similarly to the first variable capacity compressor (2) of the main refrigerant circuit (1b), the second variable capacity compressor (20) is connected to an inverter (not shown). The capacity of the capacity type compressor (20) can be freely changed within a certain range. On the other hand, a second suction refrigerant pipe (30) is connected to the suction side of the second variable capacity compressor (20), and a second discharge refrigerant pipe (21) is connected to the discharge side. The second suction refrigerant pipe (30) is provided with a second suction temperature sensor (29) and a second low-pressure refrigerant pressure sensor (suction refrigerant pressure detection means) (28). The second discharge refrigerant pipe (21) is provided with a second discharge temperature sensor (22) and a second high-pressure refrigerant pressure sensor (second high-pressure refrigerant pressure detection means) (23). The second discharge refrigerant pipe (21) connects the second variable capacity compressor (20) and the second outdoor heat exchanger (24).
上記第2室外熱交換器(24)は、上記主冷媒回路(1b)の第1室外熱交換器(6)と同様に、クロスフィン式のフィン・アンド・チューブ型熱交換器で構成されており、該第2室外熱交換器(24)の近傍には、第2送風ファン(24a)と第2外気温度センサ(24b)とが設けられている。又、示していないが、上記第2室外熱交換器(24)は、伝熱管が複数パスに配列されており、該伝熱管と直交して多数のアルミフィンが設置されている。そして、上記第2室外熱交換器(24)と第2膨張弁(26)とは第2高圧液冷媒配管(25)により接続されている。 The second outdoor heat exchanger (24) is constituted by a cross fin type fin-and-tube heat exchanger, similarly to the first outdoor heat exchanger (6) of the main refrigerant circuit (1b). A second blower fan (24a) and a second outside air temperature sensor (24b) are provided in the vicinity of the second outdoor heat exchanger (24). Although not shown, in the second outdoor heat exchanger (24), the heat transfer tubes are arranged in a plurality of paths, and a large number of aluminum fins are installed orthogonal to the heat transfer tubes. The second outdoor heat exchanger (24) and the second expansion valve (26) are connected by a second high-pressure liquid refrigerant pipe (25).
上記第2膨張弁(26)は、開度が調節可能な電動膨張弁であり、その開度は適宜、電気信号によって変更可能に構成されている。そして、上記第2膨張弁(26)と上記過冷却熱交換器(8)とは第2低圧冷媒配管(27)により接続されている。 The second expansion valve (26) is an electric expansion valve whose opening degree can be adjusted, and the opening degree can be appropriately changed by an electric signal. The second expansion valve (26) and the supercooling heat exchanger (8) are connected by a second low-pressure refrigerant pipe (27).
上記過冷却熱交換器(8)は、上述のように、プレートフィン型熱交換器で構成されており、該プレートフィン型熱交換器内の第2流路(8b)には第2低圧冷媒配管(27)が接続されている。 The supercooling heat exchanger (8) is constituted by a plate fin type heat exchanger as described above, and the second low-pressure refrigerant is provided in the second flow path (8b) in the plate fin type heat exchanger. Pipe (27) is connected.
〈コントローラ〉
上記コントローラ(32)は、上記冷凍装置に設けられた冷媒出口液温度センサ(9)と蒸発温度センサ(11)と第1高圧冷媒圧力センサ(5)と第2高圧冷媒圧力センサ(23)と第2低圧冷媒圧力センサ(28)からの検出信号に応じて、第1可変容量型圧縮機(2)及び第2可変容量型圧縮機(20)の高圧等価制御運転を行うように構成されている。
<controller>
The controller (32) includes a refrigerant outlet liquid temperature sensor (9), an evaporation temperature sensor (11), a first high-pressure refrigerant pressure sensor (5), and a second high-pressure refrigerant pressure sensor (23) provided in the refrigeration apparatus. The high pressure equivalent control operation of the first variable capacity compressor (2) and the second variable capacity compressor (20) is performed in accordance with a detection signal from the second low pressure refrigerant pressure sensor (28). Yes.
−冷凍装置の運転動作−
本実施形態の冷凍装置の運転動作について説明する。先ず上記主冷媒回路(1b)及び上記過冷却回路(1a)の冷却運転について説明し、次に上記主冷媒回路(1b)と上記過冷却回路(1a)とにおける高圧等価制御運転について説明する。
-Operation of refrigeration equipment-
The operation of the refrigeration apparatus of this embodiment will be described. First, the cooling operation of the main refrigerant circuit (1b) and the supercooling circuit (1a) will be described, and then the high-pressure equivalent control operation in the main refrigerant circuit (1b) and the supercooling circuit (1a) will be described.
〈主冷媒回路の冷却運転〉
この主冷媒回路(1b)の冷却運転では、第1室外熱交換器(6)を凝縮器、室内熱交換器(12)を蒸発器として回路内を冷媒が循環する一方、適宜、第1膨張弁(10)の開度が調整されて蒸気圧縮式冷凍サイクルが行われる。又、運転状態により、上記液インジェクション配管(18)の減圧弁(19)の開度が調整される。
<Cooling operation of main refrigerant circuit>
In the cooling operation of the main refrigerant circuit (1b), the refrigerant circulates in the circuit using the first outdoor heat exchanger (6) as a condenser and the indoor heat exchanger (12) as an evaporator. The opening degree of the valve (10) is adjusted to perform the vapor compression refrigeration cycle. Further, the opening degree of the pressure reducing valve (19) of the liquid injection pipe (18) is adjusted according to the operating state.
上記第1可変容量型圧縮機(2)が起動すると、該第1可変容量型圧縮機(2)の吐出側から第1吐出冷媒配管(3)を通って高圧ガス冷媒が吐出される。吐出された高圧ガス冷媒は、第1室外熱交換器(6)へ流入するともに、該第1室外熱交換器(6)内で、外気に放熱し、凝縮して高圧液冷媒となる。上記高圧液冷媒となった冷媒は第1室外熱交換器(6)を流出して、上記過冷却熱交換器(8)の第1流路(8a)を通過する際に、過冷却されて該過冷却熱交換器(8)を流出する。 When the first variable capacity compressor (2) is started, high-pressure gas refrigerant is discharged from the discharge side of the first variable capacity compressor (2) through the first discharge refrigerant pipe (3). The discharged high-pressure gas refrigerant flows into the first outdoor heat exchanger (6), radiates heat to the outside air in the first outdoor heat exchanger (6), and condenses to become a high-pressure liquid refrigerant. The refrigerant that has become the high-pressure liquid refrigerant flows out of the first outdoor heat exchanger (6) and is supercooled when passing through the first flow path (8a) of the supercooling heat exchanger (8). The supercooling heat exchanger (8) flows out.
過冷却された高圧液冷媒は、上記第1膨張弁(10)に流入する。該第1膨張弁(10)に流入した高圧液冷媒は、該第1膨張弁(10)を通過する際に減圧されて低圧液冷媒となり、室内熱交換器(12)に流入する。該室内熱交換器(12)に流入した低圧液冷媒は、該室内熱交換器(12)を通過する際に冷却対象空間内の空気から吸熱する。冷却対象空間内の空気から吸熱した低圧液冷媒は、蒸発して低圧ガス冷媒となって、室内熱交換器(12)を流出する。該室内熱交換器(12)を流出した低圧ガス冷媒は、第1吸入冷媒配管(15)を通過して、第1可変容量型圧縮機(2)へ流入する。第1可変容量型圧縮機(2)に流入した低圧ガス冷媒は、圧縮されて高圧ガス冷媒となって再び第1可変容量型圧縮機(2)から吐出される。 The supercooled high-pressure liquid refrigerant flows into the first expansion valve (10). The high-pressure liquid refrigerant flowing into the first expansion valve (10) is reduced in pressure when passing through the first expansion valve (10) to become a low-pressure liquid refrigerant, and flows into the indoor heat exchanger (12). The low-pressure liquid refrigerant flowing into the indoor heat exchanger (12) absorbs heat from the air in the cooling target space when passing through the indoor heat exchanger (12). The low-pressure liquid refrigerant that has absorbed heat from the air in the space to be cooled evaporates to become a low-pressure gas refrigerant and flows out of the indoor heat exchanger (12). The low-pressure gas refrigerant that has flowed out of the indoor heat exchanger (12) passes through the first suction refrigerant pipe (15) and flows into the first variable capacity compressor (2). The low-pressure gas refrigerant that has flowed into the first variable capacity compressor (2) is compressed to become high-pressure gas refrigerant and is discharged from the first variable capacity compressor (2) again.
以上のように、冷媒が主冷媒回路(1b)内を循環して冷却対象空間内が冷却される。 As described above, the refrigerant circulates in the main refrigerant circuit (1b) to cool the space to be cooled.
〈過冷却回路の冷却運転〉
この過冷却回路(1a)の冷却運転では、第2室外熱交換器(24)を凝縮器、過冷却熱交換器(8)を蒸発器として回路内を冷媒が循環する一方、適宜、第2膨張弁(26)の開度が調整されて蒸気圧縮式冷凍サイクルが行われる。
<Cooling operation of supercooling circuit>
In the cooling operation of the supercooling circuit (1a), the refrigerant circulates in the circuit using the second outdoor heat exchanger (24) as a condenser and the supercooling heat exchanger (8) as an evaporator. The opening degree of the expansion valve (26) is adjusted to perform the vapor compression refrigeration cycle.
上記第2可変容量型圧縮機(20)が起動すると、該第2可変容量型圧縮機(20)の吐出側から第2吐出冷媒配管(21)を通って高圧ガス冷媒が吐出される。吐出された高圧ガス冷媒は、第2室外熱交換器(24)へ流入するともに該第2室外熱交換器(24)内で外気に放熱し、凝縮して高圧液冷媒となる。 When the second variable capacity compressor (20) is started, high pressure gas refrigerant is discharged from the discharge side of the second variable capacity compressor (20) through the second discharge refrigerant pipe (21). The discharged high-pressure gas refrigerant flows into the second outdoor heat exchanger (24) and radiates heat to the outside air in the second outdoor heat exchanger (24), and condenses to become a high-pressure liquid refrigerant.
上記高圧液冷媒は、第2室外熱交換器(24)を流出して上記第2膨張弁(26)に流入する。該第2膨張弁(26)に流入した高圧液冷媒は、該第2膨張弁(26)を通過する際に減圧されて低圧液冷媒となり、上記過冷却熱交換器(8)の第2流路に流入する。該過冷却熱交換器(8)の第2流路に流入した低圧液冷媒は、該過冷却熱交換器(8)の第2流路を通過する際に、上記第1流路内を流れる主冷媒回路(1b)の高圧液冷媒から吸熱する。上記第1流路の高圧液冷媒から吸熱した上記第2流路の低圧液冷媒は、蒸発して低圧ガス冷媒となって、過冷却熱交換器(8)を流出する。該過冷却熱交換器(8)を流出した低圧ガス冷媒は、第2吸入冷媒配管(30)を通過して、第2可変容量型圧縮機(20)へ流入する。第2可変容量型圧縮機(20)に流入した低圧ガス冷媒は、圧縮されて高圧ガス冷媒となって再び第2可変容量型圧縮機(20)から吐出される。 The high-pressure liquid refrigerant flows out of the second outdoor heat exchanger (24) and flows into the second expansion valve (26). The high-pressure liquid refrigerant flowing into the second expansion valve (26) is reduced in pressure when passing through the second expansion valve (26) to become a low-pressure liquid refrigerant, and the second flow of the supercooling heat exchanger (8). Flows into the road. The low-pressure liquid refrigerant flowing into the second flow path of the supercooling heat exchanger (8) flows through the first flow path when passing through the second flow path of the supercooling heat exchanger (8). Heat is absorbed from the high-pressure liquid refrigerant in the main refrigerant circuit (1b). The low-pressure liquid refrigerant in the second flow path that has absorbed heat from the high-pressure liquid refrigerant in the first flow path evaporates to become a low-pressure gas refrigerant and flows out of the supercooling heat exchanger (8). The low-pressure gas refrigerant that has flowed out of the supercooling heat exchanger (8) passes through the second suction refrigerant pipe (30) and flows into the second variable capacity compressor (20). The low pressure gas refrigerant that has flowed into the second variable capacity compressor (20) is compressed to become a high pressure gas refrigerant, and is discharged from the second variable capacity compressor (20) again.
以上のように、冷媒が過冷却回路(1a)内を循環して主冷媒回路(1b)の高圧液冷媒が冷却される。 As described above, the refrigerant circulates in the supercooling circuit (1a) and the high-pressure liquid refrigerant in the main refrigerant circuit (1b) is cooled.
〈高圧等価制御運転〉
次に、上記主冷媒回路(1b)と上記過冷却回路(1a)とにおける高圧等価制御の動作について、図2の制御フローに基づき説明する。ここで、上記高圧等価制御とは、第1及び第2可変容量型圧縮機(2,20)の運転周波数を増減させて容量制御を行うことにより、主冷媒回路(1b)と過冷却回路(1a)との高圧冷媒圧力を調整して、両者の高圧冷媒圧力を等価させる制御のことである。
<High pressure equivalent control operation>
Next, the operation of high-pressure equivalent control in the main refrigerant circuit (1b) and the supercooling circuit (1a) will be described based on the control flow of FIG. Here, the high-pressure equivalent control means that the main refrigerant circuit (1b) and the subcooling circuit ((2)) are controlled by increasing / decreasing the operating frequency of the first and second variable capacity compressors (2, 20). This is a control that adjusts the high-pressure refrigerant pressure with 1a) and equalizes both high-pressure refrigerant pressures.
冷凍装置の冷却運転が開始されると、ステップST1では、上記第1外気温度センサ(6b)で検出される外気温度Taが所定値X1(例えば、X1=20℃)より大きく且つ上記第1可変容量型圧縮機(2)の周波数が上記第1可変容量型圧縮機(2)の最高周波数の50%以上の場合、若しくは、第1可変容量型圧縮機(2)の周波数が該第1可変容量型圧縮機(2)の最高周波数の90%以上の場合に、上記主冷媒回路(1b)の第1高圧冷媒圧力センサ(5)より検出される高圧冷媒圧力P1が上記過冷却回路(1a)の第2高圧冷媒圧力センサ(23)より検出される高圧冷媒圧力P2より大きいか否かを判定する。上記高圧冷媒圧力P1が上記高圧冷媒圧力P2以下の場合にはステップST8の通常制御に移り、高圧等価制御を行うことなく再びステップ1に戻る。一方、上記高圧冷媒圧力P1が上記高圧冷媒圧力P2より大きい場合には、ステップST2に移る。 When the cooling operation of the refrigeration apparatus is started, in step ST1, the outside air temperature Ta detected by the first outside air temperature sensor (6b) is larger than a predetermined value X1 (for example, X1 = 20 ° C.) and the first variable. When the frequency of the capacity type compressor (2) is 50% or more of the maximum frequency of the first variable capacity type compressor (2), or the frequency of the first variable capacity type compressor (2) is the first variable The high-pressure refrigerant pressure P1 detected by the first high-pressure refrigerant pressure sensor (5) of the main refrigerant circuit (1b) when the maximum frequency of the capacity type compressor (2) is 90% or more is the supercooling circuit (1a). ) Of the high pressure refrigerant pressure P2 detected by the second high pressure refrigerant pressure sensor (23). When the high-pressure refrigerant pressure P1 is equal to or lower than the high-pressure refrigerant pressure P2, the process proceeds to the normal control in step ST8 and returns to step 1 again without performing the high-pressure equivalent control. On the other hand, when the high-pressure refrigerant pressure P1 is higher than the high-pressure refrigerant pressure P2, the process proceeds to step ST2.
ステップST2では、上記主冷媒回路(1b)の冷媒出口液温度センサ(9)で検知される冷媒出口液温度T1が所定値X2(例えば、X2=0℃)より高いか、或いは上記過冷却回路(1a)の第2低圧冷媒圧力センサ(28)で検知される吸入冷媒圧力PSが所定値X3(例えば、X3=0.15MPa)より高いか否かを判定する。ここでは、上記過冷却熱交換器(8)の過冷却能力が大きくなり過ぎて、該過冷却熱交換器(8)や上記第2可変容量型圧縮機(20)に不具合が起きないようにしている。つまり、上記冷媒出口液温度T1が所定値X2=0℃以下、或いは上記低圧冷媒圧力値PSが所定値X3=0.15MPa以下の時には、前者において上記過冷却熱交換器(8)が凍結パンクを起こす場合があり、後者において上記第2可変容量型圧縮機(20)の圧縮比が上昇して吐出冷媒温度が過上昇する場合があると判断してステップST3に移る。一方、上記冷媒出口液温度T1が所定値X2=0℃より高い、或いは上記低圧冷媒圧力値P3が所定値X3=0.15MPaより高い時には、上記過冷却熱交換器(8)が凍結パンク又は上記第2可変容量型圧縮機(20)の吐出冷媒温度が過上昇するおそれはないと判断してステップST4に移る。 In step ST2, the refrigerant outlet liquid temperature T1 detected by the refrigerant outlet liquid temperature sensor (9) of the main refrigerant circuit (1b) is higher than a predetermined value X2 (for example, X2 = 0 ° C.), or the supercooling circuit. It is determined whether or not the suction refrigerant pressure PS detected by the second low-pressure refrigerant pressure sensor (28) of (1a) is higher than a predetermined value X3 (for example, X3 = 0.15 MPa). Here, the supercooling capacity of the supercooling heat exchanger (8) becomes too large so that the supercooling heat exchanger (8) and the second variable capacity compressor (20) do not malfunction. ing. That is, when the refrigerant outlet liquid temperature T1 is equal to or lower than the predetermined value X2 = 0 ° C. or the low-pressure refrigerant pressure value PS is equal to or lower than the predetermined value X3 = 0.15 MPa, the supercooling heat exchanger (8) is frozen punctured in the former. In the latter case, it is determined that the compression ratio of the second variable capacity compressor (20) may increase and the discharged refrigerant temperature may excessively increase, and the process proceeds to step ST3. On the other hand, when the refrigerant outlet liquid temperature T1 is higher than the predetermined value X2 = 0 ° C. or the low-pressure refrigerant pressure value P3 is higher than the predetermined value X3 = 0.15 MPa, the supercooling heat exchanger (8) It is determined that there is no risk that the refrigerant temperature discharged from the second variable capacity compressor (20) will rise excessively, and the routine goes to Step ST4.
ステップST3では、上記第2可変容量型圧縮機(20)の周波数が減少する。これにより、上記過冷却熱交換器(8)の過冷却能力が減少するので、上記冷媒出口液温度T1及び上記低圧冷媒圧力P3が上昇し、該過冷却熱交換器(8)の凍結パンクや上記第2可変容量型圧縮機(20)の吐出冷媒温度の過上昇が回避される一方、上記過冷却回路(1a)の高圧冷媒圧力PSは低くなりながら、ステップST5に移る。 In step ST3, the frequency of the second variable capacity compressor (20) decreases. As a result, the supercooling capacity of the supercooling heat exchanger (8) decreases, so that the refrigerant outlet liquid temperature T1 and the low pressure refrigerant pressure P3 rise, and the supercooling heat exchanger (8) While an excessive increase in the refrigerant temperature discharged from the second variable capacity compressor (20) is avoided, the high-pressure refrigerant pressure PS in the supercooling circuit (1a) is lowered, and the process proceeds to step ST5.
ステップST4では、上記第2可変容量型圧縮機(20)の周波数が増加する。これにより、上記過冷却熱交換器(8)の過冷却能力が増加するので、上記冷媒出口液温度T1及び上記低圧冷媒圧力P3が降下する一方、上記過冷却回路(1a)の高圧冷媒圧力PSは高くなりながら、ステップST5に移る。 In step ST4, the frequency of the second variable capacity compressor (20) is increased. As a result, the supercooling capacity of the supercooling heat exchanger (8) increases, so that the refrigerant outlet liquid temperature T1 and the low-pressure refrigerant pressure P3 drop, while the high-pressure refrigerant pressure PS of the supercooling circuit (1a) decreases. While increasing, the process proceeds to step ST5.
ステップST5では、上記主冷媒回路(1b)に設けられた蒸発温度センサ(11)で検出される蒸発温度Teが冷却対象空間における冷却設定温度X4にα(例えばα=10)を減じた値より低いか否かを判定する。つまり、上記蒸発温度Teが上記冷却対象空間を冷却設定温度X4まで冷却可能な温度であるか否かを判定する。具体的には、上記蒸発温度Teが上記冷却設定温度X4にαを減じた値より低い場合にはステップST7に移り、低くない場合には、ステップST6へ移る。 In step ST5, the evaporation temperature Te detected by the evaporation temperature sensor (11) provided in the main refrigerant circuit (1b) is less than the value obtained by subtracting α (for example, α = 10) from the cooling set temperature X4 in the cooling target space. Determine whether it is low. That is, it is determined whether or not the evaporation temperature Te is a temperature at which the space to be cooled can be cooled to the cooling set temperature X4. Specifically, if the evaporation temperature Te is lower than the value obtained by subtracting α from the cooling set temperature X4, the process proceeds to step ST7, and if not lower, the process proceeds to step ST6.
ステップST6では、上記第1可変容量型圧縮機(2)の周波数が増加する。これにより、上記室内熱交換器(12)の冷却能力が増加するので、上記蒸発温度Teは低くなる一方、上記主冷媒回路(1b)の高圧冷媒圧力P1は高くなりながら、再びステップST1に戻る。 In step ST6, the frequency of the first variable capacity compressor (2) is increased. As a result, the cooling capacity of the indoor heat exchanger (12) increases, so that the evaporation temperature Te is lowered, while the high-pressure refrigerant pressure P1 of the main refrigerant circuit (1b) is increased, and the process returns to step ST1 again. .
ステップST7では、上記第1可変容量型圧縮機(2)の周波数が減少する。これにより、上記室内熱交換器(12)の冷却能力が減少するので、上記蒸発温度Teは高くなる一方、上記主冷媒回路(1b)の高圧冷媒圧力P1は低くなりながら、再びステップST1に戻る。 In step ST7, the frequency of the first variable capacity compressor (2) decreases. As a result, the cooling capacity of the indoor heat exchanger (12) decreases, so that the evaporation temperature Te increases, while the high-pressure refrigerant pressure P1 of the main refrigerant circuit (1b) decreases, and the process returns to step ST1 again. .
以上の動作を繰り返して、高圧等価制御運転が行われる。 The high pressure equivalent control operation is performed by repeating the above operation.
−実施形態の効果−
本実施形態によれば、上記冷凍装置が上記高圧等価制御運転を行うことにより、上記過冷却回路(1a)の高圧冷媒圧力が上記主冷媒回路(1b)の高圧冷媒圧力に近づくまで、上記過冷却回路(1a)の第2圧縮機(20)を積極的に運転することができる。これにより、上記主冷媒回路(1b)が過負荷状態でなくても上記過冷却回路(1a)の第2圧縮機(20)を稼働することができ、結果として、上記冷凍装置の冷却負荷を主冷媒回路(1b)と過冷却回路(1a)とで分担することができる。
-Effect of the embodiment-
According to this embodiment, the refrigeration apparatus performs the high-pressure equivalent control operation, so that the high-pressure refrigerant pressure in the supercooling circuit (1a) approaches the high-pressure refrigerant pressure in the main refrigerant circuit (1b). The second compressor (20) of the cooling circuit (1a) can be actively operated. Thereby, even if the main refrigerant circuit (1b) is not in an overload state, the second compressor (20) of the supercooling circuit (1a) can be operated. As a result, the cooling load of the refrigeration apparatus can be reduced. The main refrigerant circuit (1b) and the supercooling circuit (1a) can be shared.
又、本実施形態では、上記冷凍装置の冷却負荷を主冷媒回路(1b)と過冷却回路(1a)とで分担させることにより、上記冷凍装置の成績係数を向上させることができる。ここで、この成績係数が向上する理由について、本実施形態の主冷媒回路(1b)及び過冷却回路(1a)の冷凍サイクルシミュレーション結果を示した図3に基づいて説明する。 In the present embodiment, the coefficient of performance of the refrigeration apparatus can be improved by sharing the cooling load of the refrigeration apparatus between the main refrigerant circuit (1b) and the subcooling circuit (1a). Here, the reason why the coefficient of performance is improved will be described based on FIG. 3 showing the refrigeration cycle simulation results of the main refrigerant circuit (1b) and the supercooling circuit (1a) of the present embodiment.
上記冷凍サイクルシミュレーションは、上記主冷媒回路(1b)の室内熱交換器(12)における蒸発温度を−40℃、上記過冷却回路(1a)の過冷却熱交換器(8)における蒸発温度を0℃、及び上記冷凍装置の冷却能力を25.2Kwで一定条件とし、主冷媒回路(1b)及び過冷却回路(1a)の凝縮温度を変化させて行い、上記凝縮温度の変化による成績係数の影響について調べた。 In the refrigeration cycle simulation, the evaporation temperature in the indoor heat exchanger (12) of the main refrigerant circuit (1b) is −40 ° C., and the evaporation temperature in the supercooling heat exchanger (8) of the supercooling circuit (1a) is 0. ℃ and the cooling capacity of the above refrigeration equipment is fixed at 25.2Kw, changing the condensation temperature of the main refrigerant circuit (1b) and subcooling circuit (1a), and the effect of coefficient of performance due to the change of the condensation temperature Investigated about.
図3におけるAは冷凍装置の冷却運転を主冷媒回路(1b)のみで行った場合であり、B及びCは主冷媒回路(1b)と過冷却回路(1a)とで行った場合である。又、Aは主冷媒回路(1b)の凝縮温度が50℃、Bは主冷媒回路(1b)及び過冷却回路(1a)の凝縮温度がそれぞれ47℃及び42℃、Cは主冷媒回路(1b)及び過冷却回路(1a)の凝縮温度が45℃である。 A in FIG. 3 is the case where the cooling operation of the refrigeration apparatus is performed only by the main refrigerant circuit (1b), and B and C are the cases where the cooling operation is performed by the main refrigerant circuit (1b) and the supercooling circuit (1a). A is the condensation temperature of the main refrigerant circuit (1b) at 50 ° C., B is the condensation temperatures of the main refrigerant circuit (1b) and the subcooling circuit (1a) at 47 ° C. and 42 ° C., respectively, and C is the main refrigerant circuit (1b). ) And the condensation temperature of the supercooling circuit (1a) is 45 ° C.
A、B、Cのそれぞれについて冷凍装置の成績係数を比較した場合、Aに比べてB及びCの方が成績係数が大きい。これは、上記主冷媒回路(1b)のみで冷却運転を行うより、主冷媒回路(1b)と過冷却回路(1a)とで冷却運転を行うほうが成績係数が大きいことを示している。又、B及びCについて比較した場合、Cの方が成績係数が大きい。これは、主冷媒回路(1b)及び過冷却回路(1a)の凝縮温度を同じ値にしたほうが成績係数が大きいことを示している。さらに、A、B、Cのそれぞれについて主冷媒回路(1b)と過冷却回路(1a)との成績係数を比較した場合、全てにおいて過冷却回路(1a)の成績係数が上回っている。 When comparing the coefficient of performance of the refrigeration system for each of A, B, and C, B and C have a larger coefficient of performance than A. This indicates that the coefficient of performance is larger in the cooling operation in the main refrigerant circuit (1b) and the subcooling circuit (1a) than in the cooling operation only in the main refrigerant circuit (1b). When comparing B and C, C has a higher coefficient of performance. This indicates that the coefficient of performance is larger when the condensation temperatures of the main refrigerant circuit (1b) and the subcooling circuit (1a) are set to the same value. Furthermore, when the coefficient of performance of the main refrigerant circuit (1b) and the supercooling circuit (1a) is compared for each of A, B, and C, the coefficient of performance of the supercooling circuit (1a) is higher in all cases.
以上から、成績係数の小さい主冷媒回路(1b)のみで冷却運転を行うのではなく、該主冷媒回路(1b)と成績係数の大きい過冷却回路(1a)とで高圧等価制御運転を行うほうが、上記冷凍装置の成績係数を向上させることができる。 From the above, it is better to perform the high-pressure equivalent control operation with the main refrigerant circuit (1b) and the supercooling circuit (1a) with a large coefficient of performance rather than performing the cooling operation only with the main refrigerant circuit (1b) with a small coefficient of performance. The coefficient of performance of the refrigeration apparatus can be improved.
《その他の実施形態》
上記実施形態については、以下のような構成としてもよい。
<< Other Embodiments >>
About the said embodiment, it is good also as the following structures.
例えば、主冷媒回路(1b)は二段圧縮式冷凍サイクルを行う冷媒回路であってもよいし、上記室内熱交換器(12)が並列に複数台設置されていてもよい。 For example, the main refrigerant circuit (1b) may be a refrigerant circuit that performs a two-stage compression refrigeration cycle, or a plurality of the indoor heat exchangers (12) may be installed in parallel.
又、上記過冷却熱交換器(8)はプレート式熱交換器で構成される必要はなく、二重管式やシェルアンドチューブ型熱交換器で構成されてもよい。 Further, the supercooling heat exchanger (8) does not have to be constituted by a plate heat exchanger, and may be constituted by a double pipe type or a shell and tube type heat exchanger.
なお、以上の実施形態は、本質的に好ましい例示であって、本発明、その適用物、あるいはその用途の範囲を制限することを意図するものではない。 In addition, the above embodiment is an essentially preferable illustration, Comprising: It does not intend restrict | limiting the range of this invention, its application thing, or its use.
以上説明したように、本発明は、過冷却回路を備えた冷凍装置に関し、特に、過冷却回路の能力制御技術について有用である。 As described above, the present invention relates to a refrigeration apparatus including a supercooling circuit, and is particularly useful for a capacity control technique for the supercooling circuit.
1 冷凍装置
1a 過冷却回路
1b 主冷媒回路
2 第1可変容量型圧縮機(第1圧縮機)
5 第1高圧冷媒圧力センサ(第1高圧冷媒圧力検知手段)
6 室外熱交換器(第1凝縮器)
8 過冷却熱交換器
9 冷媒出口液温度センサ(出口液温度検知手段)
10 第1膨張弁(第1膨張機構)
11 蒸発温度センサ(蒸発温度検知手段)
12 室内熱交換器(第1蒸発器)
20 第2可変容量型圧縮機(第2圧縮機)
23 第2高圧冷媒圧力センサ(第2高圧冷媒圧力検知手段)
24 第2室外熱交換器(第2凝縮器)
26 第2膨張弁(第2膨張機構)
28 第2低圧冷媒圧力センサ(吸入冷媒圧力検知手段)
32 コントローラ(高圧等価制御手段)
1 Refrigeration equipment
1a Supercooling circuit
1b Main refrigerant circuit
2 First variable capacity compressor (first compressor)
5 First high-pressure refrigerant pressure sensor (first high-pressure refrigerant pressure detection means)
6 Outdoor heat exchanger (first condenser)
8 Supercooling heat exchanger
9 Refrigerant outlet liquid temperature sensor (outlet liquid temperature detection means)
10 First expansion valve (first expansion mechanism)
11 Evaporation temperature sensor (evaporation temperature detection means)
12 Indoor heat exchanger (first evaporator)
20 Second variable capacity compressor (second compressor)
23 Second high-pressure refrigerant pressure sensor (second high-pressure refrigerant pressure detection means)
24 Second outdoor heat exchanger (second condenser)
26 Second expansion valve (second expansion mechanism)
28 Second low-pressure refrigerant pressure sensor (intake refrigerant pressure detection means)
32 Controller (High-pressure equivalent control means)
Claims (3)
上記第2圧縮機(20)が可変容量圧縮機(20)で構成され、
上記主冷媒回路(1b)の高圧冷媒圧力を検知する第1高圧冷媒圧力検知手段(5)と、上記過冷却回路(1a)の高圧冷媒圧力を検知する第2高圧冷媒圧力検知手段(23)と、上記第2圧縮機(20)の容量を調整可能な第2容量調整手段とを備え、
上記第1容量調整手段と上記第2容量調整手段とを制御して、上記主冷媒回路(1b)の高圧冷媒圧力値と、上記過冷却回路(1a)の高圧冷媒圧力値とを制御する高圧等価制御手段(32)を備え、
上記過冷却熱交換器(8)の主冷媒回路(1b)側の冷媒出口液温度を検知する出口液温度検知手段(9)を備え、
上記高圧等価制御手段(32)は、上記冷媒出口液温度が所定値より高ければ、上記第2容量調整手段を制御して上記第2圧縮機(20)の容量を増加させ、所定値より低ければ、上記第2容量調整手段を制御して上記第2圧縮機(20)の容量を減少させる第1制御部を備えていることを特徴とする冷凍装置。 A variable capacity first compressor (2), a first condenser (6), a supercooling heat exchanger (8), a first expansion mechanism (10), and a first evaporator (12) are connected in order and refrigerated. The main refrigerant circuit (1b) that performs the cycle, the second compressor (20), the second condenser (24), the second expansion mechanism (26), and the supercooling heat exchanger (8) are connected in order. A refrigeration apparatus comprising a supercooling circuit (1a) for performing a refrigeration cycle, and first capacity adjusting means capable of adjusting the capacity of the first compressor (2),
The second compressor (20) is composed of a variable capacity compressor (20),
First high pressure refrigerant pressure detecting means (5) for detecting the high pressure refrigerant pressure of the main refrigerant circuit (1b), and second high pressure refrigerant pressure detecting means (23) for detecting the high pressure refrigerant pressure of the supercooling circuit (1a). And second capacity adjusting means capable of adjusting the capacity of the second compressor (20),
A high pressure for controlling the high pressure refrigerant pressure value of the main refrigerant circuit (1b) and the high pressure refrigerant pressure value of the supercooling circuit (1a) by controlling the first capacity adjusting means and the second capacity adjusting means. with an equivalent control means (32),
An outlet liquid temperature detecting means (9) for detecting a refrigerant outlet liquid temperature on the main refrigerant circuit (1b) side of the supercooling heat exchanger (8),
If the refrigerant outlet liquid temperature is higher than a predetermined value, the high-pressure equivalent control means (32) controls the second capacity adjusting means to increase the capacity of the second compressor (20), and lowers it below the predetermined value. For example, a refrigeration apparatus comprising a first control unit that controls the second capacity adjusting means to reduce the capacity of the second compressor (20) .
上記第2圧縮機(20)の吸入冷媒圧力を検知する吸入冷媒圧力検出手段(28)を備え、
上記高圧等価制御手段(32)は、上記吸入冷媒圧力が所定値より高ければ、上記第2容量調整手段を制御して上記第2圧縮機(20)の容量を増加させ、所定値より低ければ、上記第2容量調整手段を制御して上記第2圧縮機(20)の容量を減少させる第2制御部を備えていることを特徴とする冷凍装置。 In claim 1,
An intake refrigerant pressure detecting means (28) for detecting an intake refrigerant pressure of the second compressor (20);
The high-pressure equivalent control means (32) controls the second capacity adjusting means to increase the capacity of the second compressor (20) if the suction refrigerant pressure is higher than a predetermined value, and if lower than the predetermined value. A refrigeration apparatus comprising a second control unit that controls the second capacity adjusting means to reduce the capacity of the second compressor (20) .
上記主冷媒回路(1b)の蒸発温度を検知する蒸発温度検知手段(11)を備え、
上記高圧等価制御手段(32)は、上記蒸発温度が所定値より低ければ、上記第1容量調整手段を制御して上記第1圧縮機(2)の容量を減少させ、所定値より高ければ、上記第1容量調整手段を制御して上記第1圧縮機(2)の容量を増加させる第3制御部を備えていることを特徴とする冷凍装置。 In claim 1 or 2,
Evaporation temperature detection means (11) for detecting the evaporation temperature of the main refrigerant circuit (1b),
The high-pressure equivalent control means (32) controls the first capacity adjusting means to reduce the capacity of the first compressor (2) if the evaporation temperature is lower than a predetermined value, and if higher than the predetermined value, A refrigeration apparatus comprising a third control unit for controlling the first capacity adjusting means to increase the capacity of the first compressor (2) .
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006182145A JP4096984B2 (en) | 2006-06-30 | 2006-06-30 | Refrigeration equipment |
PCT/JP2007/062442 WO2008001667A1 (en) | 2006-06-30 | 2007-06-20 | Refrigeration device |
TW096123169A TW200817643A (en) | 2006-06-30 | 2007-06-27 | Refrigeration device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006182145A JP4096984B2 (en) | 2006-06-30 | 2006-06-30 | Refrigeration equipment |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2008008593A JP2008008593A (en) | 2008-01-17 |
JP4096984B2 true JP4096984B2 (en) | 2008-06-04 |
Family
ID=38845434
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2006182145A Expired - Fee Related JP4096984B2 (en) | 2006-06-30 | 2006-06-30 | Refrigeration equipment |
Country Status (3)
Country | Link |
---|---|
JP (1) | JP4096984B2 (en) |
TW (1) | TW200817643A (en) |
WO (1) | WO2008001667A1 (en) |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5228661B2 (en) * | 2008-07-17 | 2013-07-03 | ダイキン工業株式会社 | Refrigeration equipment |
JP5585003B2 (en) * | 2009-05-27 | 2014-09-10 | 三洋電機株式会社 | Refrigeration equipment |
US8011191B2 (en) * | 2009-09-30 | 2011-09-06 | Thermo Fisher Scientific (Asheville) Llc | Refrigeration system having a variable speed compressor |
CN101832691B (en) * | 2010-04-12 | 2012-08-22 | 大连三洋压缩机有限公司 | Air-cooled immersion type refrigerating plant and control method of refrigerating plant |
US9239174B2 (en) * | 2011-02-17 | 2016-01-19 | Rocky Research | Cascade floating intermediate temperature heat pump system |
TWI568984B (en) * | 2011-09-09 | 2017-02-01 | Topre Corp | Gas - liquid heat exchange type refrigeration device |
JP7193706B2 (en) | 2018-10-02 | 2022-12-21 | ダイキン工業株式会社 | refrigeration cycle equipment |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS58148572U (en) * | 1982-03-30 | 1983-10-05 | 三菱電機株式会社 | Refrigeration equipment |
JPH11182953A (en) * | 1997-12-22 | 1999-07-06 | Daikin Ind Ltd | Refrigerator |
JP4809076B2 (en) * | 2006-02-28 | 2011-11-02 | 三菱電機株式会社 | Refrigeration system and method of operating refrigeration system |
-
2006
- 2006-06-30 JP JP2006182145A patent/JP4096984B2/en not_active Expired - Fee Related
-
2007
- 2007-06-20 WO PCT/JP2007/062442 patent/WO2008001667A1/en active Application Filing
- 2007-06-27 TW TW096123169A patent/TW200817643A/en unknown
Also Published As
Publication number | Publication date |
---|---|
TW200817643A (en) | 2008-04-16 |
JP2008008593A (en) | 2008-01-17 |
WO2008001667A1 (en) | 2008-01-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10563872B2 (en) | Regenerative air conditioner | |
JP5241872B2 (en) | Refrigeration cycle equipment | |
JP5847366B1 (en) | Air conditioner | |
JP4096984B2 (en) | Refrigeration equipment | |
JP2011052884A (en) | Refrigerating air conditioner | |
JPWO2013144994A1 (en) | Air conditioner | |
KR20070102621A (en) | Hvac system with powered subcooler | |
JP2011208860A (en) | Air conditioner | |
JP2007240025A (en) | Refrigerating device | |
JP6038382B2 (en) | Air conditioner | |
JP5180680B2 (en) | Refrigeration cycle | |
JP2008134031A (en) | Refrigerating device using zeotropic refrigerant mixture | |
WO2016208042A1 (en) | Air-conditioning device | |
US11112151B2 (en) | Heat source unit for refrigeration apparatus including a heat-source-side heat exchanger having a heat exchange region of variable size | |
JP2007232265A (en) | Refrigeration unit | |
WO2019225237A1 (en) | Refrigeration device for transportation | |
JP2008039233A (en) | Refrigerating device | |
JP6758506B2 (en) | Air conditioner | |
JP5496161B2 (en) | Refrigeration cycle system | |
JP4902585B2 (en) | Air conditioner | |
JP2013124843A (en) | Refrigeration cycle system | |
WO2022195727A1 (en) | Heat source machine for refrigeration apparatus and refrigeration apparatus equipped with same | |
JP2009293887A (en) | Refrigerating device | |
JP2010038408A (en) | Outdoor heat exchanger and refrigerating cycle device mounted with the same | |
KR20050043089A (en) | Heat pump |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20071122 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20080219 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20080303 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110321 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110321 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120321 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120321 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130321 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140321 Year of fee payment: 6 |
|
LAPS | Cancellation because of no payment of annual fees |