WO2022195727A1 - Heat source machine for refrigeration apparatus and refrigeration apparatus equipped with same - Google Patents

Heat source machine for refrigeration apparatus and refrigeration apparatus equipped with same Download PDF

Info

Publication number
WO2022195727A1
WO2022195727A1 PCT/JP2021/010638 JP2021010638W WO2022195727A1 WO 2022195727 A1 WO2022195727 A1 WO 2022195727A1 JP 2021010638 W JP2021010638 W JP 2021010638W WO 2022195727 A1 WO2022195727 A1 WO 2022195727A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat exchanger
refrigerant
compressor
heat source
flow path
Prior art date
Application number
PCT/JP2021/010638
Other languages
French (fr)
Japanese (ja)
Inventor
崇憲 八代
寛也 石原
智隆 石川
拓未 西山
誠 江上
裕弥 井内
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2021/010638 priority Critical patent/WO2022195727A1/en
Priority to DE112021007291.9T priority patent/DE112021007291T5/en
Priority to JP2023506449A priority patent/JP7523667B2/en
Publication of WO2022195727A1 publication Critical patent/WO2022195727A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B47/00Arrangements for preventing or removing deposits or corrosion, not provided for in another subclass
    • F25B47/02Defrosting cycles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B25/00Machines, plants or systems, using a combination of modes of operation covered by two or more of the groups F25B1/00 - F25B23/00
    • F25B25/005Machines, plants or systems, using a combination of modes of operation covered by two or more of the groups F25B1/00 - F25B23/00 using primary and secondary systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/002Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant
    • F25B9/008Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant the refrigerant being carbon dioxide
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2347/00Details for preventing or removing deposits or corrosion
    • F25B2347/02Details of defrosting cycles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/19Pressures
    • F25B2700/195Pressures of the condenser
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2116Temperatures of a condenser

Definitions

  • the present disclosure relates to a heat source machine of a refrigeration system and a refrigeration system including the same.
  • carbon dioxide (refrigerant symbol: R744) has a GWP of 1, and compared to the currently popular Freon refrigerants such as R404A and R32, it has a significantly lower impact on global warming when a refrigerant leaks. . R744 is currently used in water heaters and condensing units.
  • R744 Compared to the commonly used Freon refrigerants such as R404A and R32, R744 has a very high pressure and is usually designed with a design pressure of about 12 to 14 MPa. Therefore, a refrigerant circuit using R744 needs to have a high pressure resistance and is difficult to construct.
  • a refrigeration system with a binary cycle system is used.
  • the binary cycle system when R744 is used for the low temperature side cycle, pressure rise in the low temperature side cycle can be prevented by operating the high temperature side cycle when the pressure in the low temperature side cycle rises.
  • the design pressure of the low-temperature side cycle can be lowered to a level equivalent to that of a chlorofluorocarbon refrigerant, and the degree of difficulty in circuit construction can be made the same as when chlorofluorocarbon is used.
  • the refrigeration system is equipped with a defrosting mode to melt the frost that adheres to the cooler.
  • a defrosting method for example, a reverse hot gas defrosting method is known, in which a four-way valve changes the circulation direction of the refrigerant so as to send high temperature gas from the compressor to a cooler that normally functions as an evaporator.
  • a typical refrigerating device includes a liquid receiver, in order to perform reverse hot gas defrosting operation using a four-way valve, for example, the refrigerating device described in International Publication No. 2020/161803 (Patent Document 1) Therefore, it is necessary to devise a method such as providing a dedicated bypass circuit.
  • Patent Document 1 when reverse hot gas defrosting operation is performed in the refrigeration apparatus described in International Publication No. 2020/161803 (Patent Document 1), the refrigerant does not pass through the liquid receiver during defrosting operation, so defrosting operation is started. Before defrosting operation, it is necessary to optimize the amount of refrigerant, such as transferring excess refrigerant unnecessary for the defrosting operation to the liquid receiver in advance.
  • the refrigerant cannot be condensed in the evaporator, so the condensation pressure rises.
  • the protection works before the equipment's design pressure is exceeded, so shutdown occurs and defrost failure may occur.
  • the present disclosure eliminates the need to adjust the amount of refrigerant during hot gas defrosting operation in a binary refrigerating device that performs hot gas defrosting operation using a four-way valve, and avoids an increase in condensation pressure at the end of defrosting operation.
  • An object of the present invention is to disclose a heat source machine and a refrigeration apparatus capable of
  • the present disclosure relates to a heat source machine that forms a refrigeration system together with a load device.
  • the refrigeration system has a cooling mode and a defrosting mode as operation modes.
  • the heat source device includes a first compressor, a first heat exchanger, a second heat exchanger, a liquid receiver, a four-way valve, and a channel switching device.
  • the first compressor, the first heat exchanger, the second heat exchanger, and the liquid receiver together with the load device constitute a first refrigeration cycle device in which the first refrigerant circulates.
  • the four-way valve switches connection destinations of the load device and the second heat exchanger between the cooling mode and the defrosting mode.
  • the flow path switching device is connected to an upstream portion of the flow path through which the first refrigerant flows to the liquid receiver through the first heat exchanger, a downstream portion of the flow path, a load device, and the second heat exchanger, Switching the flow of the first refrigerant.
  • the first compressor, the four-way valve, the second heat exchanger, the flow switching device, the first heat exchanger, the receiver, the flow switching device, the load device, the four-way valve in this order, and the first compression A first refrigerant is circulated back to the machine.
  • a first refrigerant is circulated back to the compressor.
  • the heat source device and the refrigeration system of the present disclosure it is possible to avoid complicating the control during the defrosting operation because it is unnecessary to adjust the amount of refrigerant while avoiding pressure rise.
  • FIG. 10 is a diagram showing the configuration of a refrigeration system according to Embodiment 2;
  • FIG. 10 is a diagram showing the configuration of a refrigeration system according to Embodiment 3;
  • 10 is a flow chart for explaining control for liquid return prevention executed in Embodiment 3.
  • FIG. 10 is a diagram showing the configuration of a refrigeration system according to Embodiment 5;
  • FIG. 12 is a diagram showing the configuration of a refrigeration system according to Embodiment 6;
  • FIG. 12 is a diagram showing the configuration of a refrigeration system according to Embodiment 7;
  • FIG. 10 is a diagram showing another example of the arrangement of expansion valves;
  • FIG. 1 is a diagram showing the configuration of a refrigeration system according to Embodiment 1.
  • FIG. 1 is a diagram showing the configuration of a refrigeration system according to Embodiment 1.
  • a refrigeration system 1000A shown in FIG. 1 includes a heat source device 10A and a load device 20A that utilizes heat or cold heat generated by the heat source device 10A.
  • the heat source device 10A includes a high temperature side circuit 101, a low temperature side circuit 102, and a control device 110.
  • the high temperature side circuit 101 includes a compressor 1a, a heat exchanger 2, an expansion valve 3a, a heat exchanger 7, which is a cascade heat exchanger, and piping connecting them.
  • the high temperature side circuit 101 constitutes a second refrigeration cycle device RC2 in which a second refrigerant circulates.
  • the expansion valve 3a is connected to the evaporation side inlet of the heat exchanger 7.
  • An evaporation-side outlet of the heat exchanger 7 is connected to the suction port of the compressor 1a.
  • the low-temperature side circuit 102 includes a compressor 1b, a four-way valve 4, a heat exchanger 5 acting as an intercooler, a flow path switching device 6 in which four check valves are bridge-connected, a heat exchanger 7, It includes a liquid receiver 8 , an expansion valve 9 , a gas-liquid separator 10 , piping connecting these, a pressure sensor 51 , and a temperature sensor 52 .
  • the low temperature side circuit 102 is connected to the load device 20A and constitutes a first refrigeration cycle device RC1 in which the first refrigerant circulates.
  • the second refrigerant used in the second refrigeration cycle device RC2 is HFC refrigerant, HFO refrigerant, natural refrigerant (CO 2 , propane), etc.
  • the first refrigerant used in the first refrigeration cycle device RC1 is CO 2 ( R744 refrigerant).
  • the flow path switching device 6 includes check valves 61-64.
  • the check valves 61-64 are arranged in a bridge shape as shown in FIG.
  • the cooling operation outlet of the heat exchanger 5, the condensation side inlet of the heat exchanger 7, the liquid receiver 8 outlet, and the expansion valve 9 outlet are connected as shown in FIG.
  • the load device 20A includes an expansion valve 3b, a load-side heat exchanger 11, and a fan 11F that are connected in series by piping. Note that the fan 11F is not essential.
  • the heat source device 10A and the load device 20A are connected by piping.
  • the control device 110 is a controller that appropriately operates each component of the heat source device 10A and the load device 20A.
  • the control device 110 includes a CPU (Central Processing Unit) 111, a memory 112, and a communication interface (not shown).
  • the CPU 111 controls each component of the heat source device 10A and the load device 20A according to the data stored in the memory 112 and the information obtained via the communication interface.
  • the memory 112 includes, for example, ROM (Read Only Memory), RAM (Random Access Memory), and flash memory.
  • the flash memory stores an operating system, application programs, and various data.
  • Control device 110 shown in FIG. 1 is implemented by CPU 111 executing an operating system and application programs stored in memory 112 .
  • Various data stored in the memory 112 are referenced when the application program is executed.
  • the second refrigerant is discharged as a compressed refrigerant gas from the compressor 1a, condensed in the heat exchanger 2 on the heat source side, expanded to a low temperature and low pressure state in the expansion valve 3a, and evaporated in the heat exchanger 7. and is sucked into the compressor 1a.
  • the refrigeration system 1000A has a cooling mode and a defrosting mode as operation modes.
  • the cooling mode the first refrigerant flows in the direction indicated by the solid line arrow in FIG. 1, and in the defrosting mode, the first refrigerant flows in the direction indicated by the broken line arrow.
  • the high-temperature, high-pressure gas (hot gas) of the first refrigerant discharged from the compressor 1b is introduced into the load-side heat exchanger 11 by the four-way valve 4 in the defrosting mode.
  • the first refrigerant discharged from the compressor 1b of the low temperature side circuit 102 passes through the four-way valve 4 in the cooling operation direction, is primarily cooled by the heat exchanger 5, passes through the flow path switching device 6, and heat exchanges. It is condensed in the vessel 7, passes through the liquid receiver 8, the expansion valve 9, the flow path switching device 6 again, and flows into the load device 20A from the outlet of the heat source device 10A.
  • the first refrigerant in a high-pressure liquid state that has flowed into the load device 20A from the heat source device 10A is expanded to a low-temperature, low-pressure state by the expansion valve 3b, evaporated in the load-side heat exchanger 11, and returned to the heat source device 10A in a low-pressure gas state. . Then, the first refrigerant returned from the load device 20A passes through the four-way valve 4 in the cooling operation direction and is sucked into the compressor 1b via the gas-liquid separator 10. As shown in FIG.
  • the first refrigerant in a high-pressure gas state discharged from the compressor 1b of the low-temperature side circuit 102 passes through the four-way valve 4 in the defrosting operation direction, flows out from the heat source device 10A, and flows through the pipe connected to the load device 20A. flow into
  • the first refrigerant in the high-pressure gas state that has entered the load device 20A is condensed while exchanging heat with frost in the load-side heat exchanger 11, passes through the expansion valve 3b, and returns to the heat source device 10A.
  • the high-pressure first refrigerant returned from the load device 20A to the heat source device 10A passes through the flow path switching device 6, is further condensed in the heat exchanger 7, passes through the liquid receiver 8, and reaches the expansion valve 9.
  • the first refrigerant is expanded to a low temperature and low pressure state by the expansion valve 9, passes through the flow switching device 6, evaporates in the heat exchanger 5, passes through the four-way valve 4 in the defrosting operation direction, and passes through the gas-liquid separator 10. and is sucked into the compressor 1b.
  • the operation method of the high temperature side circuit 101 of the heat source device 10A does not change whether the low temperature side circuit 102 is in cooling operation or defrosting operation. However, for example, when the low-temperature side circuit 102 is in low-capacity operation during cooling operation and the refrigerant can be condensed only in the heat exchanger 5, the high-temperature side circuit 101 can be stopped. Further, when the refrigerant can be condensed only by the load device 20A during the defrosting operation, the high temperature side circuit 101 can be stopped.
  • the heat exchanger 2 on the heat source side of the high temperature side circuit 101 includes types such as an air-cooled fin-coil heat exchanger and a water-cooled shell-and-tube heat exchanger, but is not particularly limited in this embodiment.
  • a plate heat exchanger is mainly used as the heat exchanger 7 .
  • As the heat exchanger 5 of the low temperature side circuit 102 an air-cooled fin coil type heat exchanger is mainly used. In this case, heat is exchanged between the refrigerant and the air by the fan motor and fan 5F, and control device 110 controls the rotational speed of the fan motor.
  • the expansion valve 9 of the low-temperature side circuit 102 is controlled so that the degree of opening is fully open so as not to expand the liquid refrigerant flowing out of the liquid receiver 8 as much as possible.
  • the expansion valve 9 is an electronic expansion valve
  • the values detected by a pressure sensor and a temperature sensor are input to the control device 110, and the control device 110 performs pulse control of the electronic expansion valve.
  • a circuit bypassing the expansion valve 9 may be provided to prevent flash gas from being generated in the liquid pipe.
  • a solenoid valve or the like is installed in the bypass circuit so that the refrigerant does not pass through the bypass circuit during the defrosting operation.
  • the expansion valve 9 of the low-temperature side circuit 102 keeps the degree of superheat of the refrigerant at the outlet of the heat exchanger 5 constant or the compressor suction pressure constant so that the refrigerant can evaporate in the heat exchanger 5.
  • the expansion valve 9 is an electronic expansion valve
  • the detected values of a pressure sensor and a temperature sensor are input to the control device 110, and the control device 110 performs pulse control of the electronic expansion valve.
  • the control target value of the expansion valve 9 is not limited to the value described above, and can be changed as appropriate in order to stabilize the refrigeration cycle.
  • the expansion valve 3b of the load device 20A expands the first refrigerant in the liquid state during the cooling operation, and is controlled to keep the degree of superheat of the refrigerant at the refrigerant outlet of the load-side heat exchanger 11 constant.
  • the expansion valve 3b is an electronic expansion valve
  • the detected values of a pressure sensor and a temperature sensor are input to the control device 110, and the control device 110 performs pulse control of the electronic expansion valve.
  • the expansion valve 3b of the load device 20A is controlled to be fully open during the defrosting operation so that the liquid refrigerant condensed in the load side heat exchanger 11 is not expanded as much as possible.
  • the expansion valve 3b is an electronic expansion valve
  • the detected values of a pressure sensor and a temperature sensor (not shown) are input to the control device 110, and the control device 110 performs pulse control of the electronic expansion valve. If pressure loss occurs even when the expansion valve is fully opened, a flow path bypassing the expansion valve 3b may be provided to prevent an increase in the discharge pressure of the compressor 1b.
  • an electromagnetic valve or the like is installed in the bypass channel so that the first refrigerant does not pass through the bypass channel during the cooling operation.
  • the load-side heat exchanger 11 of the load device 20A includes types such as an air-cooled fin-coil heat exchanger and a plate-type heat exchanger, but the type is not particularly limited in this embodiment.
  • An oil separator, a gas-liquid separator, a pressure sensor, a temperature sensor, a shutoff valve, etc. are not shown in the high temperature side circuit 101, but these may be installed as necessary.
  • an oil separator, pressure sensor, temperature sensor, shutoff valve, etc. are not shown, but these may be installed as necessary.
  • the gas-liquid separator 10 is shown in the drawing, the gas-liquid separator 10 may not be provided if it is judged unnecessary by appropriate control of the on-board equipment.
  • control device 110 is provided in the heat source device 10A, but only the equipment control portion of the load device 20A may be separated from the control device 110 and installed near the load device 20A.
  • the pressure sensor 51 of the low temperature side circuit 102 detects a pressure rise near the liquid receiver 8 .
  • the control device 110 operates the high temperature side circuit 101 when the detected value of the pressure sensor 51 exceeds a certain threshold, and condenses the R744 refrigerant in the heat exchanger 7 to suppress the pressure increase.
  • This threshold is set to a value with a margin for the design pressure.
  • FIG. 2 is a flow chart for explaining the control of the compressor of the high temperature side circuit.
  • control device 110 determines whether or not any one of the following three conditions (1) to (3) is satisfied.
  • thermo-ON is established when the temperature of the cooling target space of the refrigerator rises above a thermo-ON threshold determined based on the target temperature.
  • the value obtained by the pressure sensor 51 of the low temperature side circuit 102 is equal to or greater than the thermo ON threshold value (2) Satisfying the thermo ON determination (3)
  • the determination in step S1 is repeatedly executed.
  • control device 110 starts high temperature side circuit 101 in step S2. Specifically, the control device 110 starts the operation of the compressor 1a.
  • control device 110 determines whether or not one of the following two conditions (1) to (2) is satisfied.
  • thermo-OFF is established when the temperature of the cooling target space of the refrigerator falls below a thermo-OFF threshold that is determined based on the target temperature.
  • (1) Thermo OFF determination is satisfied
  • (2) There is a stop signal from the low temperature side circuit 102 If neither of the above two conditions is satisfied (NO in S3), the determination in step S3 is repeatedly executed.
  • control device 110 stops high temperature side circuit 101 in step S4. Specifically, the control device 110 stops the operation of the compressor 1a.
  • FIG. 3 is a flowchart for explaining fan control when the intercooler is air-cooled.
  • the control device 110 determines whether or not the operation mode is the cooling mode.
  • step S12 it is determined whether or not the outlet temperature of the heat exchanger 5 is higher than the determination value of "outside air temperature + ⁇ ". If the outlet temperature is high (YES in S12), the control device 110 rotates the fan 5F in step S13 so as to reduce heat radiation from the first refrigerant in order to prevent the evaporation load of the high-temperature side cycle from becoming too low. Decrease speed. On the other hand, if the outlet temperature is not higher than the determination value (NO in S12), control device 110 increases the rotational speed of fan 5F in step S14.
  • can be determined by desk design or experimentally so as to reflect the characteristics of the refrigeration system.
  • FIG. 4 is a flowchart for explaining the control when the defrosting mode ends.
  • the control device 110 In order to remove the frost generated in the heat exchanger 5 during the hot gas defrosting operation, the control device 110 forcibly operates the refrigerating device at the end of the defrosting mode regardless of whether the thermostat is ON or OFF.
  • step S21 the control device 110 determines whether or not the conditions for ending the defrost mode are satisfied.
  • Conditions for terminating the defrost mode are, for example, when a certain period of time has elapsed after shifting to the defrost mode, when the load side heat exchanger 11 is monitored to detect that defrosting has ended, and when the load side This is established when an increase in the temperature of the refrigerant passing through the heat exchanger 11 is detected.
  • step S21 if the conditions for ending the defrosting mode are not met (NO in S21), the control device 110 continues the determination in step S21. On the other hand, in step S21, if the condition for ending the defrosting mode is satisfied (YES in S21), control device 110 changes the operation mode to the cooling mode in step S22. In the cooling mode, switching of the four-way valve 4 changes the flow direction of the refrigerant as indicated by the broken line arrow in FIG. 1 and the solid line arrow.
  • control device 110 determines whether or not the following condition (1) or (2) is satisfied.
  • (1) The refrigerant temperature at the outlet of the heat exchanger 5 is higher than ⁇ °C.
  • (2) A certain period of time has elapsed since the start of the cooling operation mode.
  • the judgment value of the outlet refrigerant temperature of the heat exchanger 5 The value of ⁇ that can achieve frost removal can be determined by desk study or test. Also, the fixed time corresponding to the forced operation time can be similarly determined by desk study or test.
  • step S23 if the conditions (1) and (2) are not satisfied (NO in S23), the control device 110 continues the determination in step S23. On the other hand, if one of the conditions (1) and (2) is satisfied in step S23 (YES in S23), control device 110 determines in step S24 whether the result of thermo ON determination is thermo ON. determine whether or not If the result of the thermo ON determination is that the thermo is ON (YES at S24), the processing of the flowchart of FIG. 4 is terminated as it is. Control the refrigerator to the OFF state.
  • FIG. 4 shows an example of the forced operation method after the defrosting operation, and conditions not shown or cooperation with protective control can be implemented as appropriate.
  • FIG. 5 is a diagram showing the configuration of a refrigeration system according to Embodiment 2.
  • FIG. A refrigeration system 1000B shown in FIG. 5 includes a heat source device 10B and a load device 20A.
  • the heat source device 10B includes a high temperature side circuit 101, a low temperature side circuit 102B, and a control device 110.
  • Refrigeration system 1000B of the second embodiment shown in FIG. 5 differs from refrigeration system 1000A of the first embodiment shown in FIG. It is that the flow path 22 bypassing the expansion valve 9 and the flow path switching device 6 and the check valve 21 provided in the flow path 22 are added in the middle of the connected piping.
  • the direction of the check valve 21 is the direction in which the refrigerant flows from the liquid receiver 8 toward the load device 20A.
  • the configuration of other parts is the same as that of FIG. 1, so description thereof will not be repeated.
  • the check valve 21 supplies liquid refrigerant from the heat source device 10B without going through the expansion valve 9 when a pressure drop occurs even if the opening of the expansion valve 9 is fully opened while the low temperature side circuit 102B is performing cooling operation. to prevent the generation of flash gas in the liquid piping.
  • the flow path resistance of the expansion valve 9 becomes larger than the flow path resistance of the check valve 21, so the refrigerant flows to the check valve 21 side.
  • shutoff valve such as an electromagnetic valve before and after the check valve 21.
  • FIG. 6 is a diagram showing the configuration of a refrigeration system according to Embodiment 3.
  • FIG. A refrigerating device 1000C shown in FIG. 6 includes a heat source device 10C and a load device 20A.
  • the heat source device 10C includes a high temperature side circuit 101C, a low temperature side circuit 102, and a control device 110.
  • a refrigerating device 1000C according to the third embodiment shown in FIG. 6 differs from the refrigerating device 1000A according to the first embodiment shown in FIG.
  • a bypass flow path 32 that branches from the middle of the pipe connecting the expansion valve 3 a and the heat exchanger 7 and flows the second refrigerant toward the middle of the pipe connecting the expansion valve 3 a and the heat exchanger 7 .
  • the expansion valve 31 is added.
  • the configuration of other parts is the same as that of FIG. 1, so description thereof will not be repeated.
  • the detected values of the pressure sensor and temperature sensor are input to the control device 110, and the control device 110 performs pulse control of the electronic expansion valve.
  • the evaporation load on the heat exchanger 7 can be reduced. Therefore, when the condensation load of the low-temperature side circuit 102 is small, the high-temperature side circuit 101C can be operated at an appropriate degree of superheat, and the return (liquid return) of the second refrigerant in the liquid state to the compressor 1a can be prevented. It is possible to prevent excessive starting and stopping repetitions.
  • Embodiment 3 when a large amount of refrigerant is allowed to flow through the bypass passage 32, the condensation pressure in the heat exchanger 2 on the heat source side becomes low, so the refrigerant bypass amount to the bypass passage 32 becomes small.
  • the expansion valve 31 installed in the bypass flow path 32 is fully opened, if the evaporation capacity increases with respect to the evaporation load, liquid returns to the compressor 1a.
  • FIG. 7 is a flowchart for explaining control for liquid return prevention executed in the third embodiment. The processing of this flowchart is called and executed at regular time intervals from the main routine for controlling the second refrigeration cycle device RC2.
  • step S31 the control device 110 determines whether or not the liquid return determination condition is satisfied. If the conditions for liquid return determination are not satisfied (NO in S31), that is, if liquid return to the compressor 1a does not occur, the process returns to the main routine. If the conditions for liquid return determination are satisfied (YES in S31), the control device 110 determines in step S32 whether or not the degree of opening of the expansion valve 3a is minimum.
  • the controller 110 reduces the opening of the expansion valve 3a in step S33.
  • a predetermined fixed value can be used as the width of decrease in this case.
  • step S33 the controller 110 determines whether the opening degree of the expansion valve 31 provided in the bypass flow path 32 is maximum. to decide.
  • the controller 110 increases the degree of opening of the expansion valve 31 in step S35.
  • a predetermined fixed value can be used as the increase width in this case.
  • controller 110 increases the high temperature side target condensing temperature or decreases the high temperature side target evaporating temperature in step S36, or Do them at the same time.
  • the refrigerating capacity of the second refrigerating cycle device RC2 can be forcibly reduced, the amount of refrigerant passing through the bypass flow path 32 can be optimized, and liquid return to the compressor 1a can be prevented. be able to.
  • check valve 21 in the second embodiment is not provided in the third embodiment, the second embodiment and the third embodiment can be combined as needed.
  • Embodiment 4 When the heat source device 10A shown in FIG. 1 is an air-cooled type, it is common to select heat exchangers having the same structure for the high-temperature side cycle and the low-temperature side cycle.
  • the condenser on the heat source machine side of the refrigeration system is an air heat exchanger
  • the condenser described in International Publication No. 2020/161803 Patent Document 1 can be the same type of heat exchanger. It is common as However, when a defrosting operation is performed using hot gas, frosting occurs in the heat exchanger 5, and clogging or the like occurs when a high-efficiency PFC heat exchanger is used.
  • a plate-fin tube air heat exchanger is adopted as the heat exchanger 5 of the low temperature side circuit 102 in the heat source equipment 10A.
  • FIG. 8 is a diagram showing the configuration of a refrigeration system according to Embodiment 5.
  • a refrigerating device 1000D shown in FIG. 8 includes a heat source device 10D and a load device 20A.
  • the heat source device 10D includes a high temperature side circuit 101, a low temperature side circuit 102D, and a control device 110.
  • the low temperature side circuit 102D of the second embodiment shown in FIG. 8 differs from the low temperature side circuit 102 of the first embodiment shown in FIG. The only difference is that a vessel 12 and a decompression device 13 for injection are added.
  • the injection flow path 14 branches from the flow path connecting the fourth heat exchanger 12 and the expansion valve 3b, and returns the first refrigerant to the compression intermediate portion of the compressor 1b.
  • the decompression device 13 decompresses the first refrigerant flowing through the branched flow path.
  • the fourth heat exchanger 12 cools the first refrigerant flowing from the flow path switching device 6 to the expansion valve 3b with the first refrigerant whose temperature has been lowered by the pressure reduction device 13 in the injection flow path 14. do.
  • the rest of the configuration of the low temperature side circuit 102D is the same as the low temperature side circuit 102 described in FIG. 1, so the description will not be repeated here.
  • the flow rate of the refrigerant flowing through the injection flow path 14 is designed based on control target values (degree of superheat, compressor discharge temperature, or liquid temperature) obtained theoretically or experimentally.
  • control target values degree of superheat, compressor discharge temperature, or liquid temperature
  • an electronic expansion valve, a thermal expansion valve, a capillary tube, or the like is selected.
  • the fourth heat exchanger 12 is shown in FIG. 9, only the pressure reducing device 13 for injection may be arranged in the injection flow path 14 without providing the fourth heat exchanger 12 .
  • FIG. 9 is a diagram showing the configuration of a refrigeration system according to Embodiment 6.
  • FIG. A refrigeration system 1000E shown in FIG. 9 includes a heat source device 10E and a load device 20A.
  • the heat source device 10E includes a high temperature side circuit 101, a low temperature side circuit 102E, and a control device 110.
  • a low temperature side circuit 102E of Embodiment 2 shown in FIG. 8 differs from a low temperature side circuit 102D of Embodiment 5 shown in FIG. That is the point.
  • the injection flow path 14E branches from the flow path connecting the fourth heat exchanger 12 and the expansion valve 3b, and returns the first refrigerant to the suction port of the compressor 1b.
  • FIG. 9 Other parts of the configuration of the low temperature side circuit 102E are the same as those of the low temperature side circuit 102D described with reference to FIG. 8, so description thereof will not be repeated here.
  • the fourth heat exchanger 12 is shown in FIG. 9, the pressure reducing device 13 for injection may be arranged in the injection flow path 14E without providing the fourth heat exchanger 12.
  • Embodiment 7 shows an example in which the arrangement of the expansion valve 9 is changed.
  • FIG. 10 is a diagram showing the configuration of a refrigeration system according to Embodiment 7.
  • FIG. A refrigeration system 1000F shown in FIG. 10 includes a heat source device 10F and a load device 20A.
  • the heat source equipment 10F includes a high temperature side circuit 101, a low temperature side circuit 102F, and a control device 110.
  • a refrigeration system 1000F of Embodiment 7 shown in FIG. 10 differs from the refrigeration system 1000A of Embodiment 1 shown in FIG.
  • the expansion valve 9 ⁇ /b>F is arranged between the heat exchanger 5 and the flow switching device 6 . 10 is the same as that of FIG. 1, the description of other parts will not be repeated.
  • the expansion valve 9 may be anywhere in the flow path from the liquid receiver 8 to the heat exchanger 5 in the flow of refrigerant during defrosting operation. Therefore, the expansion valve 9 of FIG. 1 can be moved and arranged like the expansion valve 9F of FIG.
  • FIG. 11 is a diagram showing another example of the arrangement of expansion valves.
  • the expansion valve 9G is arranged in series with the check valve 62 in the flow path switching device 6.
  • the modification shown in FIG. 11 is a diagram showing another example of the arrangement of expansion valves.
  • the expansion valve 9G is arranged in series with the check valve 62 in the flow path switching device 6.
  • the expansion valve 3b of the load device 20A may not be installed. 10 and 11, the expansion valve 3b must be installed to perform decompression expansion during the cooling operation.
  • the present disclosure relates to a heat source device 10A that forms a refrigeration system 1000A together with a load device 20A.
  • the refrigeration system 1000A has a cooling mode and a defrosting mode as operation modes.
  • the heat source device 10A includes a first compressor (1b), a first heat exchanger (7), a second heat exchanger (5), and a liquid receiver 8.
  • the heat source device 10A further includes a four-way valve 4 and a channel switching device 6 .
  • the four-way valve 4 switches the connection destinations of the load device 20A and the second heat exchanger (5) between the cooling mode and the defrosting mode.
  • the flow path switching device 6 includes an upstream portion of a flow path through which the first refrigerant flows to the liquid receiver 8 via the first heat exchanger (7), a downstream portion of the flow path, a load device 20A, and a second heat exchanger. It is connected to the exchanger (5) and switches the flow of the first refrigerant.
  • the downstream part is located downstream of the flow path through which the first refrigerant flows to the liquid receiver 8 via the first heat exchanger (7).
  • the first refrigerant circulates through the load device 20A and the four-way valve 4 in order and returns to the first compressor (1b).
  • the first refrigerant circulates through the heat exchanger (5) and the four-way valve 4 in order and returns to the first compressor (1b).
  • the channel switching device 6 includes first to fourth check valves 61-64.
  • the first check valve 61 is arranged between the load device 20A and the first heat exchanger (7) in a direction in which the first refrigerant flows from the load device 20A to the first heat exchanger (7).
  • the second check valve 62 is positioned between the outlet of the liquid receiver 8 and the second heat exchanger (5) in the direction in which the first refrigerant flows from the outlet of the liquid receiver 8 to the second heat exchanger (5). placed in A third check valve 63 provides a first flow from the second heat exchanger (5) to the first heat exchanger (7) between the second heat exchanger (5) and the first heat exchanger (7). It is arranged in the direction in which the coolant flows.
  • the fourth check valve 64 is arranged between the outlet of the liquid receiver 8 and the load device 20A in the direction in which the first refrigerant flows from the outlet of the liquid receiver 8 to the load device 20A.
  • the heat source device 10A further includes an expansion valve 9 that adjusts the flow rate of the first refrigerant.
  • the expansion valve 9 is provided on a path through which the first refrigerant flows from the outlet of the liquid receiver 8 to the second heat exchanger (5) in the defrosting mode.
  • the heat source device 10B is branched from the pipe connecting the liquid receiver 8 and the expansion valve 9, bypasses the expansion valve 9 and the flow path switching device 6, and connects to the load device 20A. Further provided are a bypass flow path 22 through which the first refrigerant flows, and a fifth check valve 21 provided in the bypass flow path 22 and configured to flow the refrigerant from the liquid receiver 8 toward the load device 20A.
  • the heat source device 10A further includes a second compressor (1a), a third heat exchanger (2), and an expansion valve 3a.
  • the second compressor (1a), the third heat exchanger (2), and the expansion valve 3a together with the first heat exchanger (7) constitute a second refrigeration cycle device RC2 in which the second refrigerant sequentially circulates.
  • a first heat exchanger (7) is configured to exchange heat between a first refrigerant and a second refrigerant.
  • the second refrigeration cycle device RC2 may not necessarily be provided.
  • the first heat exchanger (7) may exchange heat between water or brine and the first refrigerant.
  • the heat source device 10C is branched from the middle of the pipe connecting the second compressor (1a) and the third heat exchanger (2).
  • a bypass passage 32 for flowing the second refrigerant through a pipe connecting the expansion valve 3a and the first heat exchanger (7), and an expansion valve 31 provided in the bypass passage 32 for adjusting the flow rate of the second refrigerant. further provide.
  • the third heat exchanger (2) is a parallel flow condenser heat exchanger
  • the second heat exchanger (5) is a plate fin tube air heat exchanger
  • the heat source device 10C further includes a control device 110 that controls the expansion valve 31.
  • the control device 110 is configured to increase the degree of opening of the expansion valve 31 when it is determined that liquid return occurs in which the first refrigerant in the liquid state is sucked into the second compressor (1a).
  • the controller 110 sets the target condensation temperature and the target evaporation temperature of the second refrigeration cycle device RC2. Configured to change temperature.
  • the heat source devices 10A to 10F are provided in one of the paths from the flow path switching device 6 to the liquid receiver 8 via the first heat exchanger (7) and detect the pressure of the first refrigerant.
  • a sensor 51 is further provided.
  • the second refrigeration cycle device RC2 is configured to start operation when the pressure sensor 51 detection value exceeds the judgment value.
  • the second heat exchanger (5) is a plate-fin tube heat exchanger that exchanges heat between air and the first refrigerant.
  • the heat source device 10A further includes a control device 110 that controls the first compressor (1b), the four-way valve 4, and the flow path switching device 6 to switch the operation mode.
  • the control device 110 forces the first compressor (1b) to operate continuously for a certain period of time.
  • the heat source device 10A further includes a control device 110 that controls the first compressor (1b), the four-way valve 4, and the flow path switching device 6 to switch the operation mode.
  • the control device 110 determines whether a certain period of time has elapsed or the refrigerant temperature at the refrigerant outlet of the second heat exchanger (5) has reached the judgment value.
  • the first compressor (1b) is forcibly operated continuously until it reaches.
  • the heat source device 10D includes an injection passage 14 for returning part of the second refrigerant discharged from the liquid receiver 8 to the first compressor (1b), and and a decompression device 13 arranged therein.
  • the heat source device 10D performs heat exchange between the first refrigerant discharged from the liquid receiver 8 and the first refrigerant that has passed through the pressure reducing device 13 in the defrosting mode.
  • a fourth heat exchanger 12 is further provided.
  • the present disclosure relates to a refrigeration system 1000A including any one of the heat source devices 10A to 10E described above and a load device 20A.
  • the return refrigerant from the load-side heat exchanger 11 is switched to the heat exchanger 7 and the A refrigerant circuit passing through the liquid receiver 8 is constructed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Devices That Are Associated With Refrigeration Equipment (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

A heat source machine (10A) comprises a first compressor (1b), a first heat exchanger (7), a second heat exchanger (5), a liquid receiver (8), a four-way valve (4), and a flow path switching device (6). In a cooling mode, a first refrigerant circulates through the first compressor (1b), the four-way valve (4), the second heat exchanger (5), the flow path switching device (6), the first heat exchanger (7), the liquid receiver (8), the flow path switching device (6), a load device (20A), and the four-way valve (4) in this order and back to the first compressor (1b). In a defrosting mode, the first refrigerant circulates through the first compressor (1b), the four-way valve (4), the load device (20A), the flow path switching device (6), the first heat exchanger (7), the liquid receiver (8), the flow path switching device (6), the second heat exchanger (5), and the four-way valve (4) in this order and back to the first compressor (1b).

Description

冷凍装置の熱源機およびそれを備える冷凍装置Heat source machine for refrigeration equipment and refrigeration equipment provided with the same
 本開示は、冷凍装置の熱源機およびそれを備える冷凍装置に関する。 The present disclosure relates to a heat source machine of a refrigeration system and a refrigeration system including the same.
 モントリオール議定書をはじめとした地球環境問題の種々取り組みにより、地球温暖化係数(GWP:Global Warming Potential)の低い冷媒を使用した空調機器および冷凍装置の普及が求められている。 Due to various efforts to address global environmental issues, including the Montreal Protocol, there is a demand for the spread of air conditioners and refrigeration equipment that use refrigerants with a low Global Warming Potential (GWP).
 種々の冷媒のなかでも二酸化炭素(冷媒記号:R744)は、GWPが1であり、現在普及しているR404AおよびR32といったフロン冷媒に比べて、冷媒漏洩時の地球温暖化への影響が著しく低い。R744は、現在では給湯器およびコンデンシングユニットで使用されている。 Among various refrigerants, carbon dioxide (refrigerant symbol: R744) has a GWP of 1, and compared to the currently popular Freon refrigerants such as R404A and R32, it has a significantly lower impact on global warming when a refrigerant leaks. . R744 is currently used in water heaters and condensing units.
 R404AおよびR32といった汎用的に利用されているフロン冷媒と比べると、R744は圧力が非常に高く、設計圧力を12~14MPa程度で設計することが通常である。したがって、R744を使用する冷媒回路は、耐圧を高くする必要があり構築の難易度が高い。  Compared to the commonly used Freon refrigerants such as R404A and R32, R744 has a very high pressure and is usually designed with a design pressure of about 12 to 14 MPa. Therefore, a refrigerant circuit using R744 needs to have a high pressure resistance and is difficult to construct.
 その解決手段として、二元サイクル方式による冷凍装置が用いられる。二元サイクル方式では、低温側サイクルにR744を使う場合、低温側サイクルの圧力上昇時に高温側サイクルを稼働させることによって、低温側サイクルの圧力上昇を防止することができる。これにより、低温側サイクルの設計圧力をフロン冷媒相当に下げることができ、回路構築の難易度をフロン使用時と同等にすることができる。 As a solution, a refrigeration system with a binary cycle system is used. In the binary cycle system, when R744 is used for the low temperature side cycle, pressure rise in the low temperature side cycle can be prevented by operating the high temperature side cycle when the pressure in the low temperature side cycle rises. As a result, the design pressure of the low-temperature side cycle can be lowered to a level equivalent to that of a chlorofluorocarbon refrigerant, and the degree of difficulty in circuit construction can be made the same as when chlorofluorocarbon is used.
国際公開第2020/161803号WO2020/161803
 冷凍装置には、クーラーに付着する霜を融解させるための除霜モードが設けられる。除霜方式としては、たとえば、通常時は蒸発器として働くクーラーに圧縮機からの高温ガスを送るように、四方弁によって冷媒の循環方向を変更するリバースホットガス除霜方式が知られている。 The refrigeration system is equipped with a defrosting mode to melt the frost that adheres to the cooler. As a defrosting method, for example, a reverse hot gas defrosting method is known, in which a four-way valve changes the circulation direction of the refrigerant so as to send high temperature gas from the compressor to a cooler that normally functions as an evaporator.
 一般的な冷凍装置は受液器を含むので、四方弁を使用するリバースホットガス除霜運転を行なうためには、たとえば国際公開第2020/161803号(特許文献1)に記載の冷凍装置のように、専用のバイパス回路を設けるなどの工夫が必要になる。 Since a typical refrigerating device includes a liquid receiver, in order to perform reverse hot gas defrosting operation using a four-way valve, for example, the refrigerating device described in International Publication No. 2020/161803 (Patent Document 1) Therefore, it is necessary to devise a method such as providing a dedicated bypass circuit.
 しかしながら、国際公開第2020/161803号(特許文献1)に記載の冷凍装置でリバースホットガス除霜運転を行なう場合は、除霜運転中に冷媒が受液器を通らないため、除霜運転開始前に除霜運転に不要な余剰冷媒を受液器に予め移行させる等の冷媒量の適正化が必要になる。 However, when reverse hot gas defrosting operation is performed in the refrigeration apparatus described in International Publication No. 2020/161803 (Patent Document 1), the refrigerant does not pass through the liquid receiver during defrosting operation, so defrosting operation is started. Before defrosting operation, it is necessary to optimize the amount of refrigerant, such as transferring excess refrigerant unnecessary for the defrosting operation to the liquid receiver in advance.
 除霜運転開始前に余剰冷媒を受液器に移行させた場合でも、蒸発器の霜が次第に除去されるにしたがって蒸発器において冷媒の冷却および凝縮ができなくなり、除霜運転終盤にかけては必要冷媒量がさらに小さくなる。このため、除霜運転中に冷媒を再度受液器に移行させることが必要になり、除霜運転の制御が複雑化する。 Even if the surplus refrigerant is transferred to the liquid receiver before the defrosting operation starts, as the frost on the evaporator gradually disappears, the evaporator becomes unable to cool and condense the refrigerant. quantity becomes even smaller. Therefore, it is necessary to transfer the refrigerant to the liquid receiver again during the defrosting operation, which complicates the control of the defrosting operation.
 さらに、除霜運転終盤には、蒸発器で冷媒が凝縮できなくなることで、凝縮圧力が上昇する。この場合、機器の設計圧力を超える前に保護が働くため運転停止が発生し、除霜不良となり得る。 Furthermore, at the end of the defrosting operation, the refrigerant cannot be condensed in the evaporator, so the condensation pressure rises. In this case, the protection works before the equipment's design pressure is exceeded, so shutdown occurs and defrost failure may occur.
 本開示は、四方弁を用いたホットガス除霜運転を行なう二元冷凍装置において、ホットガス除霜運転中に冷媒量の調整を不要とし、かつ除霜運転終盤の凝縮圧力上昇を回避することができる熱源機および冷凍装置を開示することを目的とする。 The present disclosure eliminates the need to adjust the amount of refrigerant during hot gas defrosting operation in a binary refrigerating device that performs hot gas defrosting operation using a four-way valve, and avoids an increase in condensation pressure at the end of defrosting operation. An object of the present invention is to disclose a heat source machine and a refrigeration apparatus capable of
 本開示は、負荷装置とともに冷凍装置を形成する熱源機に関する。冷凍装置は、運転モードとして冷却モードと除霜モードとを有する。熱源機は、第1圧縮機と、第1熱交換器と、第2熱交換器と、受液器と、四方弁と、流路切替装置とを備える。第1圧縮機、第1熱交換器、第2熱交換器および受液器は、負荷装置とともに、第1冷媒が循環する第1冷凍サイクル装置を構成する。四方弁は、冷却モードと除霜モードとの間で、負荷装置および第2熱交換器の接続先を入れ替える。流路切替装置は、第1熱交換器を経て受液器に第1冷媒を流す流路の上流部と、流路の下流部と、負荷装置と、第2熱交換器とに接続され、第1冷媒の流れを切替える。冷却モードにおいては、第1圧縮機、四方弁、第2熱交換器、流路切替装置、第1熱交換器、受液器、流路切替装置、負荷装置、四方弁を順に経て第1圧縮機に戻るように第1冷媒が循環する。除霜モードにおいては、第1圧縮機、四方弁、負荷装置、流路切替装置、第1熱交換器、受液器、流路切替装置、第2熱交換器、四方弁を順に経て第1圧縮機に戻るように第1冷媒が循環する。 The present disclosure relates to a heat source machine that forms a refrigeration system together with a load device. The refrigeration system has a cooling mode and a defrosting mode as operation modes. The heat source device includes a first compressor, a first heat exchanger, a second heat exchanger, a liquid receiver, a four-way valve, and a channel switching device. The first compressor, the first heat exchanger, the second heat exchanger, and the liquid receiver together with the load device constitute a first refrigeration cycle device in which the first refrigerant circulates. The four-way valve switches connection destinations of the load device and the second heat exchanger between the cooling mode and the defrosting mode. The flow path switching device is connected to an upstream portion of the flow path through which the first refrigerant flows to the liquid receiver through the first heat exchanger, a downstream portion of the flow path, a load device, and the second heat exchanger, Switching the flow of the first refrigerant. In the cooling mode, the first compressor, the four-way valve, the second heat exchanger, the flow switching device, the first heat exchanger, the receiver, the flow switching device, the load device, the four-way valve in this order, and the first compression A first refrigerant is circulated back to the machine. In the defrosting mode, the first compressor, the four-way valve, the load device, the flow switching device, the first heat exchanger, the liquid receiver, the flow switching device, the second heat exchanger, the four-way valve in this order. A first refrigerant is circulated back to the compressor.
 本開示の熱源機および冷凍装置によれば、除霜運転時において、圧力上昇を回避しつつ冷媒量調整が不要となるので、制御を複雑にすることを避けることができる。 According to the heat source device and the refrigeration system of the present disclosure, it is possible to avoid complicating the control during the defrosting operation because it is unnecessary to adjust the amount of refrigerant while avoiding pressure rise.
実施の形態1の冷凍装置の構成を示す図である。1 is a diagram showing a configuration of a refrigerating apparatus according to Embodiment 1; FIG. 高温側回路の圧縮機の制御を説明するためのフローチャートである。4 is a flowchart for explaining control of a compressor in a high temperature side circuit; 中間冷却器が空冷式の場合に、ファンの制御を説明するためのフローチャートである。4 is a flow chart for explaining fan control when the intercooler is an air-cooled type. 除霜モード終了時の制御を説明するためのフローチャートである。5 is a flowchart for explaining control at the end of defrosting mode; 実施の形態2の冷凍装置の構成を示す図である。FIG. 10 is a diagram showing the configuration of a refrigeration system according to Embodiment 2; 実施の形態3の冷凍装置の構成を示す図である。FIG. 10 is a diagram showing the configuration of a refrigeration system according to Embodiment 3; 実施の形態3において実行される液戻り防止のための制御を説明するためのフローチャートである。10 is a flow chart for explaining control for liquid return prevention executed in Embodiment 3. FIG. 実施の形態5の冷凍装置の構成を示す図である。FIG. 10 is a diagram showing the configuration of a refrigeration system according to Embodiment 5; 実施の形態6の冷凍装置の構成を示す図である。FIG. 12 is a diagram showing the configuration of a refrigeration system according to Embodiment 6; 実施の形態7の冷凍装置の構成を示す図である。FIG. 12 is a diagram showing the configuration of a refrigeration system according to Embodiment 7; 膨張弁の配置の他の例を示す図である。FIG. 10 is a diagram showing another example of the arrangement of expansion valves;
 以下、本発明の実施の形態について、図面を参照しながら詳細に説明する。以下では、複数の実施の形態について説明するが、各実施の形態で説明された構成を適宜組合わせることは出願当初から予定されている。なお、図中同一又は相当部分には同一符号を付してその説明は繰返さない。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. A plurality of embodiments will be described below, but appropriate combinations of the configurations described in the respective embodiments have been planned since the filing of the application. The same or corresponding parts in the drawings are denoted by the same reference numerals, and the description thereof will not be repeated.
 実施の形態1.
 図1は、実施の形態1の冷凍装置の構成を示す図である。
Embodiment 1.
FIG. 1 is a diagram showing the configuration of a refrigeration system according to Embodiment 1. FIG.
 図1に示す冷凍装置1000Aは、熱源機10Aと熱源機10Aで発生した温熱または冷熱を利用する負荷装置20Aとを備える。熱源機10Aは、高温側回路101と、低温側回路102と、制御装置110とを含む。 A refrigeration system 1000A shown in FIG. 1 includes a heat source device 10A and a load device 20A that utilizes heat or cold heat generated by the heat source device 10A. The heat source device 10A includes a high temperature side circuit 101, a low temperature side circuit 102, and a control device 110.
 高温側回路101は、圧縮機1aと、熱交換器2と、膨張弁3aと、カスケード熱交換器である熱交換器7と、これらを接続する配管とを含む。高温側回路101は、第2冷媒が循環する第2冷凍サイクル装置RC2を構成する。 The high temperature side circuit 101 includes a compressor 1a, a heat exchanger 2, an expansion valve 3a, a heat exchanger 7, which is a cascade heat exchanger, and piping connecting them. The high temperature side circuit 101 constitutes a second refrigeration cycle device RC2 in which a second refrigerant circulates.
 膨張弁3aは、熱交換器7の蒸発側入口部と接続される。熱交換器7の蒸発側出口部は、圧縮機1aの吸入口と接続される。 The expansion valve 3a is connected to the evaporation side inlet of the heat exchanger 7. An evaporation-side outlet of the heat exchanger 7 is connected to the suction port of the compressor 1a.
 低温側回路102は、圧縮機1bと、四方弁4と、中間冷却器として働く熱交換器5と、4つの逆止弁がブリッジ接続された流路切替装置6と、熱交換器7と、受液器8と、膨張弁9と、気液分離器10と、これらを接続する配管と、圧力センサ51と、温度センサ52とを含む。低温側回路102は、負荷装置20Aと接続され、第1冷媒が循環する第1冷凍サイクル装置RC1を構成する。 The low-temperature side circuit 102 includes a compressor 1b, a four-way valve 4, a heat exchanger 5 acting as an intercooler, a flow path switching device 6 in which four check valves are bridge-connected, a heat exchanger 7, It includes a liquid receiver 8 , an expansion valve 9 , a gas-liquid separator 10 , piping connecting these, a pressure sensor 51 , and a temperature sensor 52 . The low temperature side circuit 102 is connected to the load device 20A and constitutes a first refrigeration cycle device RC1 in which the first refrigerant circulates.
 たとえば、第2冷凍サイクル装置RC2で用いられる第2冷媒はHFC冷媒、HFO冷媒、自然冷媒(CO、プロパン)等であり、第1冷凍サイクル装置RC1で用いられる第1冷媒は、CO(R744冷媒)である。 For example, the second refrigerant used in the second refrigeration cycle device RC2 is HFC refrigerant, HFO refrigerant, natural refrigerant (CO 2 , propane), etc., and the first refrigerant used in the first refrigeration cycle device RC1 is CO 2 ( R744 refrigerant).
 流路切替装置6は逆止弁61~64を含む。逆止弁61~64は、図1のようにブリッジ状に配置される。熱交換器5の冷却運転時出口と、熱交換器7の凝縮側入口と、受液器8の出口と、膨張弁9の出口とで図1のように接続される。 The flow path switching device 6 includes check valves 61-64. The check valves 61-64 are arranged in a bridge shape as shown in FIG. The cooling operation outlet of the heat exchanger 5, the condensation side inlet of the heat exchanger 7, the liquid receiver 8 outlet, and the expansion valve 9 outlet are connected as shown in FIG.
 負荷装置20Aは、直列に配管で接続された膨張弁3bと負荷側熱交換器11とファン11Fとを含む。なお、ファン11Fは、必須ではない。 The load device 20A includes an expansion valve 3b, a load-side heat exchanger 11, and a fan 11F that are connected in series by piping. Note that the fan 11F is not essential.
 熱源機10Aと負荷装置20Aは配管によって接続される。
 制御装置110は、熱源機10Aと、負荷装置20Aの各構成機器を適正に運転するコントローラである。
The heat source device 10A and the load device 20A are connected by piping.
The control device 110 is a controller that appropriately operates each component of the heat source device 10A and the load device 20A.
 制御装置110は、CPU(Central Processing Unit)111と、メモリ112と、図示しない通信インターフェース等とを含む。CPU111は、メモリ112に記憶されたデータおよび通信インターフェースを経由して得た情報に従って、熱源機10Aと、負荷装置20Aの各構成機器を制御する。 The control device 110 includes a CPU (Central Processing Unit) 111, a memory 112, and a communication interface (not shown). The CPU 111 controls each component of the heat source device 10A and the load device 20A according to the data stored in the memory 112 and the information obtained via the communication interface.
 メモリ112は、たとえば、ROM(Read Only Memory)と、RAM(Random Access Memory)と、フラッシュメモリとを含んで構成される。なお、フラッシュメモリには、オペレーティングシステム、アプリケーションプログラム、各種のデータが記憶される。なお、図1に示した制御装置110は、CPU111がメモリ112に記憶されたオペレーティングシステムおよびアプリケーションプログラムを実行することにより実現される。アプリケーションプログラムの実行の際には、メモリ112に記憶されている各種のデータが参照される。 The memory 112 includes, for example, ROM (Read Only Memory), RAM (Random Access Memory), and flash memory. The flash memory stores an operating system, application programs, and various data. Control device 110 shown in FIG. 1 is implemented by CPU 111 executing an operating system and application programs stored in memory 112 . Various data stored in the memory 112 are referenced when the application program is executed.
 高温側回路101では、第2冷媒が、圧縮機1aから圧縮冷媒ガスとして吐出され、熱源側の熱交換器2で凝縮され、膨張弁3aで低温低圧状態に膨張され、熱交換器7で蒸発し、圧縮機1aに吸入される。 In the high temperature side circuit 101, the second refrigerant is discharged as a compressed refrigerant gas from the compressor 1a, condensed in the heat exchanger 2 on the heat source side, expanded to a low temperature and low pressure state in the expansion valve 3a, and evaporated in the heat exchanger 7. and is sucked into the compressor 1a.
 冷凍装置1000Aは、動作モードとして、冷却モードと除霜モードとを有する。冷却モードでは、図1の実線矢印に示す向きに第1冷媒が流れ、除霜モードでは、破線矢印に示す向きに第1冷媒が流れる。本実施の形態では、除霜モードにおいて、圧縮機1bから吐出された第1冷媒の高温高圧ガス(ホットガス)が四方弁4によって負荷側熱交換器11に導入される。 The refrigeration system 1000A has a cooling mode and a defrosting mode as operation modes. In the cooling mode, the first refrigerant flows in the direction indicated by the solid line arrow in FIG. 1, and in the defrosting mode, the first refrigerant flows in the direction indicated by the broken line arrow. In the present embodiment, the high-temperature, high-pressure gas (hot gas) of the first refrigerant discharged from the compressor 1b is introduced into the load-side heat exchanger 11 by the four-way valve 4 in the defrosting mode.
 冷却運転では、低温側回路102の圧縮機1bから吐出された第1冷媒は、四方弁4を冷却運転方向に通り、熱交換器5で一次冷却され、流路切替装置6を通り、熱交換器7で凝縮され、受液器8を介して、膨張弁9を通り、再び流路切替装置6を通り、熱源機10A出口から負荷装置20Aに流入する。 In the cooling operation, the first refrigerant discharged from the compressor 1b of the low temperature side circuit 102 passes through the four-way valve 4 in the cooling operation direction, is primarily cooled by the heat exchanger 5, passes through the flow path switching device 6, and heat exchanges. It is condensed in the vessel 7, passes through the liquid receiver 8, the expansion valve 9, the flow path switching device 6 again, and flows into the load device 20A from the outlet of the heat source device 10A.
 熱源機10Aから負荷装置20Aに流入した高圧液状態の第1冷媒は、膨張弁3bで低温低圧状態に膨張され、負荷側熱交換器11で蒸発し低圧ガス状態となって熱源機10Aに戻る。そして、負荷装置20Aから戻ってきた第1冷媒は、四方弁4を冷却運転方向に通り、気液分離器10を介して、圧縮機1bに吸入される。 The first refrigerant in a high-pressure liquid state that has flowed into the load device 20A from the heat source device 10A is expanded to a low-temperature, low-pressure state by the expansion valve 3b, evaporated in the load-side heat exchanger 11, and returned to the heat source device 10A in a low-pressure gas state. . Then, the first refrigerant returned from the load device 20A passes through the four-way valve 4 in the cooling operation direction and is sucked into the compressor 1b via the gas-liquid separator 10. As shown in FIG.
 除霜運転では、低温側回路102の圧縮機1bから吐出した高圧ガス状態の第1冷媒が、四方弁4を除霜運転方向に通り、熱源機10Aから流出し負荷装置20Aに接続された配管に流入する。 In the defrosting operation, the first refrigerant in a high-pressure gas state discharged from the compressor 1b of the low-temperature side circuit 102 passes through the four-way valve 4 in the defrosting operation direction, flows out from the heat source device 10A, and flows through the pipe connected to the load device 20A. flow into
 負荷装置20Aに入った高圧ガス状態の第1冷媒は、負荷側熱交換器11で霜と熱交換しながら凝縮し、膨張弁3bを通り、熱源機10Aに戻る。 The first refrigerant in the high-pressure gas state that has entered the load device 20A is condensed while exchanging heat with frost in the load-side heat exchanger 11, passes through the expansion valve 3b, and returns to the heat source device 10A.
 負荷装置20Aから熱源機10Aに戻ってきた高圧の第1冷媒は、流路切替装置6を通り、熱交換器7でさらに凝縮され、受液器8を経由して、膨張弁9に至る。第1冷媒は、膨張弁9で低温低圧状態に膨張され、流路切替装置6を通り、熱交換器5で蒸発し、四方弁4を除霜運転方向に通り、気液分離器10を経由し、圧縮機1bに吸入される。 The high-pressure first refrigerant returned from the load device 20A to the heat source device 10A passes through the flow path switching device 6, is further condensed in the heat exchanger 7, passes through the liquid receiver 8, and reaches the expansion valve 9. The first refrigerant is expanded to a low temperature and low pressure state by the expansion valve 9, passes through the flow switching device 6, evaporates in the heat exchanger 5, passes through the four-way valve 4 in the defrosting operation direction, and passes through the gas-liquid separator 10. and is sucked into the compressor 1b.
 熱源機10Aの高温側回路101は、低温側回路102が冷却運転の時も除霜運転の時も運転方法は変わらない。ただし、たとえば、冷却運転時に低温側回路102が低容量運転となり、熱交換器5のみで冷媒が凝縮できる場合は、高温側回路101を停止することができる。また、除霜運転時に負荷装置20Aのみで冷媒が凝縮できる場合は高温側回路101を停止することができる。 The operation method of the high temperature side circuit 101 of the heat source device 10A does not change whether the low temperature side circuit 102 is in cooling operation or defrosting operation. However, for example, when the low-temperature side circuit 102 is in low-capacity operation during cooling operation and the refrigerant can be condensed only in the heat exchanger 5, the high-temperature side circuit 101 can be stopped. Further, when the refrigerant can be condensed only by the load device 20A during the defrosting operation, the high temperature side circuit 101 can be stopped.
 高温側回路101の熱源側の熱交換器2は、空冷フィンコイル式熱交換器および水冷式シェルアンドチューブ熱交換器などの種類があるが、本実施の形態では、特に限定しない。 The heat exchanger 2 on the heat source side of the high temperature side circuit 101 includes types such as an air-cooled fin-coil heat exchanger and a water-cooled shell-and-tube heat exchanger, but is not particularly limited in this embodiment.
 熱交換器7としては、主にプレート熱交換器が用いられる。
 低温側回路102の熱交換器5としては、主に空冷フィンコイル式熱交換器が用いられる。この場合、ファンモータとファン5Fとによって冷媒と空気とを熱交換するが、ファンモータの回転速度の制御は制御装置110によって行なわれる。
A plate heat exchanger is mainly used as the heat exchanger 7 .
As the heat exchanger 5 of the low temperature side circuit 102, an air-cooled fin coil type heat exchanger is mainly used. In this case, heat is exchanged between the refrigerant and the air by the fan motor and fan 5F, and control device 110 controls the rotational speed of the fan motor.
 冷却運転時には、低温側回路102の膨張弁9は、受液器8から流出した液冷媒を極力膨張させないように、開度が全開となるように制御される。膨張弁9が電子式膨張弁の場合は、図示していない圧力センサと温度センサの検出値を制御装置110に入力し、制御装置110から電子式膨張弁のパルス制御を行なう。膨張弁9の開度を全開にしても圧力損失が発生する場合は、液配管でのフラッシュガスの発生を防止するために、膨張弁9をバイパスする回路を設けてもよい。その場合、除霜運転の時に冷媒がバイパス回路を通らないように電磁弁などをバイパス回路に設置する。 During the cooling operation, the expansion valve 9 of the low-temperature side circuit 102 is controlled so that the degree of opening is fully open so as not to expand the liquid refrigerant flowing out of the liquid receiver 8 as much as possible. If the expansion valve 9 is an electronic expansion valve, the values detected by a pressure sensor and a temperature sensor (not shown) are input to the control device 110, and the control device 110 performs pulse control of the electronic expansion valve. If pressure loss occurs even when the expansion valve 9 is fully opened, a circuit bypassing the expansion valve 9 may be provided to prevent flash gas from being generated in the liquid pipe. In that case, a solenoid valve or the like is installed in the bypass circuit so that the refrigerant does not pass through the bypass circuit during the defrosting operation.
 除霜運転時には、低温側回路102の膨張弁9は、熱交換器5で冷媒を蒸発できるように、熱交換器5の出口部の冷媒過熱度を一定、または圧縮機吸込み圧力を一定にするように制御される。膨張弁9が電子式膨張弁の場合は図示していない圧力センサと温度センサの検出値を制御装置110に入力し、制御装置110から電子式膨張弁のパルス制御を行なう。ここで膨張弁9についても制御目標値は前述した値に限らず、冷凍サイクルを安定化する上で、適宜変更できるものとする。 During defrosting operation, the expansion valve 9 of the low-temperature side circuit 102 keeps the degree of superheat of the refrigerant at the outlet of the heat exchanger 5 constant or the compressor suction pressure constant so that the refrigerant can evaporate in the heat exchanger 5. controlled as When the expansion valve 9 is an electronic expansion valve, the detected values of a pressure sensor and a temperature sensor (not shown) are input to the control device 110, and the control device 110 performs pulse control of the electronic expansion valve. Here, the control target value of the expansion valve 9 is not limited to the value described above, and can be changed as appropriate in order to stabilize the refrigeration cycle.
 低温側回路102の流路切替装置6において、逆止弁61~64の向きを図1のように配置することによって、冷却運転時および除霜運転時のいずれにおいても、第1冷媒が同じ向きに受液器8を必ず通るようにすることができる。そのため、冷却運転時も除霜運転時も余剰冷媒を受液器8に保有することができる。 In the flow switching device 6 of the low temperature side circuit 102, by arranging the direction of the check valves 61 to 64 as shown in FIG. can always pass through the liquid receiver 8. Therefore, surplus refrigerant can be retained in the liquid receiver 8 both during the cooling operation and during the defrosting operation.
 負荷装置20Aの膨張弁3bは、冷却運転時は液状態の第1冷媒を膨張させ、負荷側熱交換器11の冷媒出口部の冷媒過熱度を一定にするように制御される。膨張弁3bが電子式膨張弁の場合は図示していない圧力センサと温度センサの検出値を制御装置110に入力し、制御装置110から電子式膨張弁のパルス制御を行なう。 The expansion valve 3b of the load device 20A expands the first refrigerant in the liquid state during the cooling operation, and is controlled to keep the degree of superheat of the refrigerant at the refrigerant outlet of the load-side heat exchanger 11 constant. When the expansion valve 3b is an electronic expansion valve, the detected values of a pressure sensor and a temperature sensor (not shown) are input to the control device 110, and the control device 110 performs pulse control of the electronic expansion valve.
 負荷装置20Aの膨張弁3bは、除霜運転時は負荷側熱交換器11で凝縮した液冷媒を極力膨張させないように開度が全開となるように制御される。膨張弁3bが電子式膨張弁の場合は図示していない圧力センサと温度センサの検出値を制御装置110に入力し、制御装置110から電子式膨張弁のパルス制御を行なう。膨張弁開度を全開にしても圧力損失が発生する場合は、圧縮機1bの吐出圧力上昇を防止するために、膨張弁3bをバイパスする流路を設けてもよい。その場合、冷却運転の時に第1冷媒がバイパス流路を通らないように電磁弁などをバイパス流路に設置する。 The expansion valve 3b of the load device 20A is controlled to be fully open during the defrosting operation so that the liquid refrigerant condensed in the load side heat exchanger 11 is not expanded as much as possible. When the expansion valve 3b is an electronic expansion valve, the detected values of a pressure sensor and a temperature sensor (not shown) are input to the control device 110, and the control device 110 performs pulse control of the electronic expansion valve. If pressure loss occurs even when the expansion valve is fully opened, a flow path bypassing the expansion valve 3b may be provided to prevent an increase in the discharge pressure of the compressor 1b. In that case, an electromagnetic valve or the like is installed in the bypass channel so that the first refrigerant does not pass through the bypass channel during the cooling operation.
 負荷装置20Aの負荷側熱交換器11は、空冷フィンコイル式熱交換器およびプレート式熱交換器などの種類があるが、本実施の形態では特に種類は限定しない。 The load-side heat exchanger 11 of the load device 20A includes types such as an air-cooled fin-coil heat exchanger and a plate-type heat exchanger, but the type is not particularly limited in this embodiment.
 高温側回路101には、油分離器、気液分離器、圧力センサ、温度センサ、遮断弁などが図示されていないが、必要に応じてこれらを設置してもよい。 An oil separator, a gas-liquid separator, a pressure sensor, a temperature sensor, a shutoff valve, etc. are not shown in the high temperature side circuit 101, but these may be installed as necessary.
 同様に、低温側回路102には、油分離器、圧力センサ、温度センサ、遮断弁などが図示されていないが、必要に応じてこれらを設置してもよい。気液分離器10は図示されているが、搭載機器の適正制御により不要と判断される場合は、気液分離器10を設けなくてもよい。 Similarly, in the low temperature side circuit 102, an oil separator, pressure sensor, temperature sensor, shutoff valve, etc. are not shown, but these may be installed as necessary. Although the gas-liquid separator 10 is shown in the drawing, the gas-liquid separator 10 may not be provided if it is judged unnecessary by appropriate control of the on-board equipment.
 図1の構成では、制御装置110は、熱源機10Aに設けられるが、負荷装置20Aの機器制御部分のみを制御装置110から分離して、負荷装置20Aの付近に設置してもよい。 In the configuration of FIG. 1, the control device 110 is provided in the heat source device 10A, but only the equipment control portion of the load device 20A may be separated from the control device 110 and installed near the load device 20A.
 低温側回路102の圧力センサ51は、受液器8付近の圧力上昇を検知する。図1では圧力センサ51を熱交換器7の入口部に設けているが、熱交換器7の出口部または受液器8に圧力センサ51を設置してもよい。制御装置110は、圧力センサ51の検出値がある閾値を超えると高温側回路101を運転し、R744冷媒を熱交換器7で凝縮することによって圧力上昇を抑制する。この閾値は、設計圧力に対して裕度をもった値に設定する。 The pressure sensor 51 of the low temperature side circuit 102 detects a pressure rise near the liquid receiver 8 . Although the pressure sensor 51 is provided at the inlet of the heat exchanger 7 in FIG. The control device 110 operates the high temperature side circuit 101 when the detected value of the pressure sensor 51 exceeds a certain threshold, and condenses the R744 refrigerant in the heat exchanger 7 to suppress the pressure increase. This threshold is set to a value with a margin for the design pressure.
 図2は、高温側回路の圧縮機の制御を説明するためのフローチャートである。まずステップS1において、制御装置110は、以下の(1)~(3)の3条件のいずれかが成立するか否かを判断する。なお、サーモONは、冷凍機の冷却対象空間の温度が、目標温度に基づいて定められているサーモON閾値よりも上昇した場合に成立する。
(1)低温側回路102の圧力センサ51の取得値がサーモON閾値以上
(2)サーモON判定を満足
(3)低温側回路102から運転信号あり
 上記3条件のいずれも成立しない場合には(S1でNO)、ステップS1の判断が繰返し実行される。一方、上記3条件のいずれかが成立した場合には(S1でYES)、ステップS2において制御装置110は、高温側回路101を始動する。具体的には、制御装置110は、圧縮機1aの運転を開始する。
FIG. 2 is a flow chart for explaining the control of the compressor of the high temperature side circuit. First, in step S1, control device 110 determines whether or not any one of the following three conditions (1) to (3) is satisfied. Note that thermo-ON is established when the temperature of the cooling target space of the refrigerator rises above a thermo-ON threshold determined based on the target temperature.
(1) The value obtained by the pressure sensor 51 of the low temperature side circuit 102 is equal to or greater than the thermo ON threshold value (2) Satisfying the thermo ON determination (3) There is an operation signal from the low temperature side circuit 102 NO in S1), the determination in step S1 is repeatedly executed. On the other hand, if any one of the above three conditions is satisfied (YES in S1), control device 110 starts high temperature side circuit 101 in step S2. Specifically, the control device 110 starts the operation of the compressor 1a.
 そして、ステップS3において、制御装置110は、以下の(1)~(2)の2条件のいずれかが成立するか否かを判断する。なお、サーモOFFは、冷凍機の冷却対象空間の温度が、目標温度に基づいて定められているサーモOFF閾値よりも低下した場合に成立する。
(1)サーモOFF判定を満足
(2)低温側回路102から停止信号あり
 上記2条件のいずれも成立しない場合には(S3でNO)、ステップS3の判断が繰返し実行される。一方、上記2条件のいずれかが成立した場合には(S3でYES)、ステップS4において制御装置110は、高温側回路101を停止する。具体的には、制御装置110は、圧縮機1aの運転を停止する。
Then, in step S3, control device 110 determines whether or not one of the following two conditions (1) to (2) is satisfied. Note that thermo-OFF is established when the temperature of the cooling target space of the refrigerator falls below a thermo-OFF threshold that is determined based on the target temperature.
(1) Thermo OFF determination is satisfied (2) There is a stop signal from the low temperature side circuit 102 If neither of the above two conditions is satisfied (NO in S3), the determination in step S3 is repeatedly executed. On the other hand, if either of the above two conditions is satisfied (YES in S3), control device 110 stops high temperature side circuit 101 in step S4. Specifically, the control device 110 stops the operation of the compressor 1a.
 このように、運転開始の条件に低温側回路102の圧力センサ51の情報を設定しておくことによって、除霜運転終盤に霜が溶けてしまい蒸発器(負荷側熱交換器11)で第1冷媒が十分に凝縮せずに低温側回路102の高圧圧力が上昇する場合に、高温側回路101を始動させることができる。 In this way, by setting the information of the pressure sensor 51 of the low temperature side circuit 102 as the operation start condition, the frost melts at the end of the defrosting operation and the evaporator (load side heat exchanger 11) If the refrigerant does not condense sufficiently and the high pressure in the cold side circuit 102 rises, the hot side circuit 101 can be started.
 図3は、中間冷却器が空冷式の場合に、ファンの制御を説明するためのフローチャートである。まず、ステップS11において制御装置110は、運転モードが冷却モードであるか否かを判断する。 FIG. 3 is a flowchart for explaining fan control when the intercooler is air-cooled. First, in step S11, the control device 110 determines whether or not the operation mode is the cooling mode.
 運転モードが冷却モードであった場合(S11でYES)、ステップS12以下の処理が実行される。ステップS12では、熱交換器5の出口温度が「外気温度+α」の判定値より高いか否かが判断される。出口温度が高い場合(S12でYES)、高温側サイクルの蒸発負荷が過少となるのを避けるため、第1冷媒からの放熱を減少させるように、制御装置110は、ステップS13においてファン5Fの回転速度を低下させる。一方、出口温度が判定値よりも高くない場合(S12でNO)、制御装置110は、ステップS14においてファン5Fの回転速度を増加させる。 If the operation mode is the cooling mode (YES in S11), the processing from step S12 onwards is executed. In step S12, it is determined whether or not the outlet temperature of the heat exchanger 5 is higher than the determination value of "outside air temperature +α". If the outlet temperature is high (YES in S12), the control device 110 rotates the fan 5F in step S13 so as to reduce heat radiation from the first refrigerant in order to prevent the evaporation load of the high-temperature side cycle from becoming too low. Decrease speed. On the other hand, if the outlet temperature is not higher than the determination value (NO in S12), control device 110 increases the rotational speed of fan 5F in step S14.
 このように、熱交換器5の出口温度が低温側目標凝縮温度+αの値になるようにファン5Fの回転速度をコントロールすることによって、外気温度が低い場合に、熱交換器5で冷媒が凝縮しすぎて、高温側サイクルの蒸発負荷が小さくならないようにすることができる。 In this way, by controlling the rotational speed of the fan 5F so that the outlet temperature of the heat exchanger 5 becomes the value of the low temperature side target condensing temperature +α, the refrigerant is condensed in the heat exchanger 5 when the outside air temperature is low. It is possible to prevent the evaporative load of the high-temperature side cycle from becoming small due to excessive increase.
 なお、αの値は、冷凍装置の特性を反映するように、机上設計または試験的に求めることができる。また、図3のフローチャートに記載のない、目標温度に対する温度差の影響を考慮したり、保護制御との協調をしたりすることは適宜可能である。 It should be noted that the value of α can be determined by desk design or experimentally so as to reflect the characteristics of the refrigeration system. In addition, it is possible to consider the influence of the temperature difference on the target temperature, which is not described in the flowchart of FIG. 3, and to cooperate with the protection control.
 図4は、除霜モード終了時の制御を説明するためのフローチャートである。ホットガス除霜運転中に熱交換器5に発生した霜を除去するため、除霜モード終了時には、制御装置110は、サーモONおよびOFFの状態に関わらず、強制的に冷凍装置を運転する。 FIG. 4 is a flowchart for explaining the control when the defrosting mode ends. In order to remove the frost generated in the heat exchanger 5 during the hot gas defrosting operation, the control device 110 forcibly operates the refrigerating device at the end of the defrosting mode regardless of whether the thermostat is ON or OFF.
 ステップS21において、制御装置110は、除霜モードの終了条件が成立したか否かを判断する。除霜モードの終了条件は、たとえば、除霜モードに移行してから、一定の時間が経過した場合、負荷側熱交換器11を監視して除霜が終了したことを検知した場合、負荷側熱交換器11を通過する冷媒温度の上昇を検知した場合などに成立する。 In step S21, the control device 110 determines whether or not the conditions for ending the defrost mode are satisfied. Conditions for terminating the defrost mode are, for example, when a certain period of time has elapsed after shifting to the defrost mode, when the load side heat exchanger 11 is monitored to detect that defrosting has ended, and when the load side This is established when an increase in the temperature of the refrigerant passing through the heat exchanger 11 is detected.
 ステップS21において、除霜モードの終了条件が成立しない場合には(S21でNO)、制御装置110は、ステップS21の判定を継続して実行する。一方、ステップS21において、除霜モードの終了条件が成立した場合には(S21でYES)、制御装置110は、ステップS22において、運転モードを冷却モードに変更する。冷却モードでは、四方弁4の切替によって図1の破線矢印から実線矢印に示すように冷媒の流通方向が変更される。 In step S21, if the conditions for ending the defrosting mode are not met (NO in S21), the control device 110 continues the determination in step S21. On the other hand, in step S21, if the condition for ending the defrosting mode is satisfied (YES in S21), control device 110 changes the operation mode to the cooling mode in step S22. In the cooling mode, switching of the four-way valve 4 changes the flow direction of the refrigerant as indicated by the broken line arrow in FIG. 1 and the solid line arrow.
 続いて、ステップS23において、制御装置110は、以下の(1)または(2)の条件が成立するか否かを判断する。
(1)熱交換器5の出口部分の冷媒温度がα℃よりも高い
(2)冷却運転モードを開始してから一定時間が経過
 ここで、熱交換器5の出口冷媒温度の判定値であるαは、霜の除去を達成できる値を机上検討または試験によって定めることができる。また、強制運転時間に相当する一定時間も同様に机上検討または試験によって定めることができる。
Subsequently, in step S23, control device 110 determines whether or not the following condition (1) or (2) is satisfied.
(1) The refrigerant temperature at the outlet of the heat exchanger 5 is higher than α°C. (2) A certain period of time has elapsed since the start of the cooling operation mode. Here, the judgment value of the outlet refrigerant temperature of the heat exchanger 5 The value of α that can achieve frost removal can be determined by desk study or test. Also, the fixed time corresponding to the forced operation time can be similarly determined by desk study or test.
 ステップS23において、(1)および(2)の条件がいずれも成立しない場合には(S23でNO)、制御装置110は、ステップS23の判定を継続して実行する。一方、ステップS23において、(1)および(2)の条件がいずれかが成立した場合には(S23でYES)、制御装置110は、ステップS24において、サーモON判定の結果がサーモONであるか否かを判断する。サーモON判定の結果がサーモONであった場合には(S24でYES)、そのまま図4のフローチャートの処理は終了し、そうでなければ(S24でNO)、制御装置110は、ステップS25においてサーモOFF状態に冷凍機を制御する。 In step S23, if the conditions (1) and (2) are not satisfied (NO in S23), the control device 110 continues the determination in step S23. On the other hand, if one of the conditions (1) and (2) is satisfied in step S23 (YES in S23), control device 110 determines in step S24 whether the result of thermo ON determination is thermo ON. determine whether or not If the result of the thermo ON determination is that the thermo is ON (YES at S24), the processing of the flowchart of FIG. 4 is terminated as it is. Control the refrigerator to the OFF state.
 なお、図4のフローチャートは除霜運転後の強制運転方法の一例を示しており、示していない条件または保護制御との協調は適宜実施することができる。 Note that the flowchart of FIG. 4 shows an example of the forced operation method after the defrosting operation, and conditions not shown or cooperation with protective control can be implemented as appropriate.
 実施の形態2.
 図5は、実施の形態2の冷凍装置の構成を示す図である。図5に示す冷凍装置1000Bは、熱源機10Bと負荷装置20Aとを備える。熱源機10Bは、高温側回路101と、低温側回路102Bと、制御装置110とを含む。
Embodiment 2.
FIG. 5 is a diagram showing the configuration of a refrigeration system according to Embodiment 2. FIG. A refrigeration system 1000B shown in FIG. 5 includes a heat source device 10B and a load device 20A. The heat source device 10B includes a high temperature side circuit 101, a low temperature side circuit 102B, and a control device 110.
 図5に示す実施の形態2の冷凍装置1000Bが図1に示す実施の形態1の冷凍装置1000Aと異なる点は、低温側回路102Bにおいて、低温側回路102の受液器8から膨張弁9に接続される配管の途中に、膨張弁9と流路切替装置6をバイパスする流路22と、流路22に設けられる逆止弁21とを追加したことである。逆止弁21の向きは、受液器8から負荷装置20Aに向けて冷媒を流す向きである。他の部分の構成については、図5の構成は図1と同様であるので説明は繰返さない。 Refrigeration system 1000B of the second embodiment shown in FIG. 5 differs from refrigeration system 1000A of the first embodiment shown in FIG. It is that the flow path 22 bypassing the expansion valve 9 and the flow path switching device 6 and the check valve 21 provided in the flow path 22 are added in the middle of the connected piping. The direction of the check valve 21 is the direction in which the refrigerant flows from the liquid receiver 8 toward the load device 20A. The configuration of other parts is the same as that of FIG. 1, so description thereof will not be repeated.
 逆止弁21は、低温側回路102Bが冷却運転を行なっている時、膨張弁9の開度を全開にしても圧力降下が生じる場合に、膨張弁9を介さずに熱源機10Bから液冷媒を取り出し、液配管でのフラッシュガスの発生を防止する。膨張弁9で圧力降下が発生するような状態の場合、膨張弁9の流路抵抗が逆止弁21の流路抵抗よりも大きくなるので、逆止弁21側に冷媒が流れる。 The check valve 21 supplies liquid refrigerant from the heat source device 10B without going through the expansion valve 9 when a pressure drop occurs even if the opening of the expansion valve 9 is fully opened while the low temperature side circuit 102B is performing cooling operation. to prevent the generation of flash gas in the liquid piping. When the pressure drop occurs in the expansion valve 9, the flow path resistance of the expansion valve 9 becomes larger than the flow path resistance of the check valve 21, so the refrigerant flows to the check valve 21 side.
 除霜運転時は、逆止弁の構造上逆流しないため、原則として逆止弁21の前後には電磁弁などの遮断弁を用意しなくてもよい。 During defrosting operation, there is no reverse flow due to the structure of the check valve, so in principle, it is not necessary to prepare a shutoff valve such as an electromagnetic valve before and after the check valve 21.
 実施の形態3.
 図6は、実施の形態3の冷凍装置の構成を示す図である。図6に示す冷凍装置1000Cは、熱源機10Cと負荷装置20Aとを備える。熱源機10Cは、高温側回路101Cと、低温側回路102と、制御装置110とを含む。
Embodiment 3.
FIG. 6 is a diagram showing the configuration of a refrigeration system according to Embodiment 3. FIG. A refrigerating device 1000C shown in FIG. 6 includes a heat source device 10C and a load device 20A. The heat source device 10C includes a high temperature side circuit 101C, a low temperature side circuit 102, and a control device 110.
 図6に示す実施の形態3の冷凍装置1000Cが図1に示す実施の形態1の冷凍装置1000Aと異なる点は、熱源機10Cの高温側回路101Cにおいて、圧縮機1aと熱源側の熱交換器2とを接続する配管の途中から分岐し、膨張弁3aと熱交換器7とを接続する配管の途中に向けて第2冷媒を流すバイパス流路32と、バイパス流路32の途中に配置される膨張弁31とを追加したことである。他の部分の構成については、図6の構成は図1と同様であるので説明は繰返さない。 A refrigerating device 1000C according to the third embodiment shown in FIG. 6 differs from the refrigerating device 1000A according to the first embodiment shown in FIG. A bypass flow path 32 that branches from the middle of the pipe connecting the expansion valve 3 a and the heat exchanger 7 and flows the second refrigerant toward the middle of the pipe connecting the expansion valve 3 a and the heat exchanger 7 . The expansion valve 31 is added. The configuration of other parts is the same as that of FIG. 1, so description thereof will not be repeated.
 膨張弁31として電子式膨張弁を用いる場合には、図示していない圧力センサと温度センサの検出値を制御装置110に入力し、制御装置110が電子式膨張弁のパルス制御を行なう。 When an electronic expansion valve is used as the expansion valve 31, the detected values of the pressure sensor and temperature sensor (not shown) are input to the control device 110, and the control device 110 performs pulse control of the electronic expansion valve.
 圧縮機1aの吐出ガスの一部を膨張弁31によって減圧し、熱交換器7の入口にバイパスすることで、熱交換器7での蒸発負荷を小さくすることができる。したがって、低温側回路102の凝縮負荷が小さい時に、高温側回路101Cを適正過熱度で運転することができ、圧縮機1aへの液状態の第2冷媒の戻り(液戻り)を防止するだけでなく、過度な始動および停止の繰返しを防止することができる。 By decompressing a part of the gas discharged from the compressor 1a by the expansion valve 31 and bypassing it to the inlet of the heat exchanger 7, the evaporation load on the heat exchanger 7 can be reduced. Therefore, when the condensation load of the low-temperature side circuit 102 is small, the high-temperature side circuit 101C can be operated at an appropriate degree of superheat, and the return (liquid return) of the second refrigerant in the liquid state to the compressor 1a can be prevented. It is possible to prevent excessive starting and stopping repetitions.
 実施の形態3において、バイパス流路32に冷媒を多く流すと、熱源側の熱交換器2での凝縮圧力が低くなるためバイパス流路32への冷媒バイパス量が小さくなる。またはバイパス流路32に設置の膨張弁31を全開開度にしても蒸発負荷に対して蒸発能力が大きくなる場合は、圧縮機1aへの液戻りが発生する。 In Embodiment 3, when a large amount of refrigerant is allowed to flow through the bypass passage 32, the condensation pressure in the heat exchanger 2 on the heat source side becomes low, so the refrigerant bypass amount to the bypass passage 32 becomes small. Alternatively, even if the expansion valve 31 installed in the bypass flow path 32 is fully opened, if the evaporation capacity increases with respect to the evaporation load, liquid returns to the compressor 1a.
 図7は、実施の形態3において実行される液戻り防止のための制御を説明するためのフローチャートである。このフローチャートの処理は、第2冷凍サイクル装置RC2の制御のメインルーチンから、一定時間ごとに呼び出されて実行される。 FIG. 7 is a flowchart for explaining control for liquid return prevention executed in the third embodiment. The processing of this flowchart is called and executed at regular time intervals from the main routine for controlling the second refrigeration cycle device RC2.
 まず、制御装置110は、ステップS31において液戻り判定条件が成立するか否かを判断する。液戻り判定の条件が満たされていない場合(S31でNO)つまり圧縮機1aに対する液戻りが発生していない場合には、メインルーチンに処理が戻る。液戻り判定の条件が満たされている場合(S31でYES)、制御装置110は、ステップS32において膨張弁3aの開度が最小であるか否かを判断する。 First, in step S31, the control device 110 determines whether or not the liquid return determination condition is satisfied. If the conditions for liquid return determination are not satisfied (NO in S31), that is, if liquid return to the compressor 1a does not occur, the process returns to the main routine. If the conditions for liquid return determination are satisfied (YES in S31), the control device 110 determines in step S32 whether or not the degree of opening of the expansion valve 3a is minimum.
 膨張弁3aの開度が最小でない場合(S32でNO)、制御装置110は、ステップS33において、膨張弁3aの開度を減少させる。この場合の減少幅としては、予め定められた固定値を用いることができる。ステップS33において膨張弁3aの開度を減少させた後、制御装置110は、再びステップS31において液戻り判定を実行する。 If the opening of the expansion valve 3a is not the minimum (NO in S32), the controller 110 reduces the opening of the expansion valve 3a in step S33. A predetermined fixed value can be used as the width of decrease in this case. After reducing the degree of opening of the expansion valve 3a in step S33, the control device 110 executes the liquid return determination again in step S31.
 一方、膨張弁3aの開度が最小であった場合(S32でYES)、ステップS33において制御装置110は、バイパス流路32に設けられた膨張弁31の開度が最大であるか否かを判断する。 On the other hand, if the opening degree of the expansion valve 3a is the minimum (YES in S32), in step S33, the controller 110 determines whether the opening degree of the expansion valve 31 provided in the bypass flow path 32 is maximum. to decide.
 膨張弁31の開度がまだ最大ではなかった場合(S34でNO)、制御装置110は、ステップS35において、膨張弁31の開度を増加させる。この場合の増加幅としては、予め定められた固定値を用いることができる。 If the degree of opening of the expansion valve 31 is not yet maximum (NO in S34), the controller 110 increases the degree of opening of the expansion valve 31 in step S35. A predetermined fixed value can be used as the increase width in this case.
 一方、膨張弁31の開度がすでに最大であった場合(S34でYES)、制御装置110は、ステップS36において、高温側目標凝縮温度を上昇させる、もしくは高温側目標蒸発温度を低下させる、またはそれらを同時に実施する。 On the other hand, if the degree of opening of expansion valve 31 is already maximum (YES in S34), controller 110 increases the high temperature side target condensing temperature or decreases the high temperature side target evaporating temperature in step S36, or Do them at the same time.
 このような制御を行なうことにより、強制的に第2冷凍サイクル装置RC2の冷凍能力を小さくし、バイパス流路32を通過する冷媒量の適正化ができ、圧縮機1aへの液戻りを防止することができる。 By performing such control, the refrigerating capacity of the second refrigerating cycle device RC2 can be forcibly reduced, the amount of refrigerant passing through the bypass flow path 32 can be optimized, and liquid return to the compressor 1a can be prevented. be able to.
 なお、図7のフローチャートでは一例を示したが、各ステップの処理の順番を入れ替えたり、目標凝縮温度と目標蒸発温度の変更を別工程で行なったり、他の保護制御との協調を考慮したりする等の変更は、適宜可能であるとする。 Although an example is shown in the flowchart of FIG. 7, the order of processing in each step may be changed, the target condensing temperature and target evaporating temperature may be changed in separate processes, and cooperation with other protection controls may be considered. It is assumed that it is possible to make changes such as
 また、実施の形態3には実施の形態2における逆止弁21が設けられていないが、必要に応じて実施の形態2と実施の形態3とを複合的に採用することができる。 Also, although the check valve 21 in the second embodiment is not provided in the third embodiment, the second embodiment and the third embodiment can be combined as needed.
 実施の形態4.
 図1に示す熱源機10Aが空冷式の場合、搭載する熱交換器は高温側サイクルと低温側サイクルで同様の構造のものを選定することが一般的である。たとえば、冷凍装置の熱源機側の凝縮器が空気熱交換器である場合、国際公開第2020/161803号(特許文献1)に記載の凝縮器は同じ種類の熱交換器にすることがモノづくりとして一般的である。しかし、ホットガスによる除霜運転を行なう場合、熱交換器5で霜付きが発生し、高効率PFC熱交換器を使う場合は目詰まり等を発生させる。
Embodiment 4.
When the heat source device 10A shown in FIG. 1 is an air-cooled type, it is common to select heat exchangers having the same structure for the high-temperature side cycle and the low-temperature side cycle. For example, if the condenser on the heat source machine side of the refrigeration system is an air heat exchanger, the condenser described in International Publication No. 2020/161803 (Patent Document 1) can be the same type of heat exchanger. It is common as However, when a defrosting operation is performed using hot gas, frosting occurs in the heat exchanger 5, and clogging or the like occurs when a high-efficiency PFC heat exchanger is used.
 実施の形態4では、実施の形態1と異なり、熱源機10Aにおける低温側回路102の熱交換器5としてプレートフィンチューブ式空気熱交換器を採用する。 In the fourth embodiment, unlike the first embodiment, a plate-fin tube air heat exchanger is adopted as the heat exchanger 5 of the low temperature side circuit 102 in the heat source equipment 10A.
 さらに、高温側の熱交換器2を高効率PFC(パラレルフローコンデンサ)熱交換器とし、かつ、熱交換器5をプレートフィンチューブ式熱交換器にすることにより、高温側の高効率化および低コスト化の実現に加えて、リバースホットガス除霜運転時の中間冷却器への着霜耐力を向上させることができる。 Furthermore, by using a high-efficiency PFC (parallel flow condenser) heat exchanger as the heat exchanger 2 on the high-temperature side and a plate-fin tube heat exchanger as the heat exchanger 5, the efficiency of the high-temperature side is increased and the temperature is reduced. In addition to the realization of cost reduction, it is possible to improve the resistance to frost formation on the intercooler during the reverse hot gas defrosting operation.
 実施の形態5.
 図8は、実施の形態5の冷凍装置の構成を示す図である。図8に示す冷凍装置1000Dは、熱源機10Dと負荷装置20Aとを備える。熱源機10Dは、高温側回路101と、低温側回路102Dと、制御装置110とを含む。
Embodiment 5.
FIG. 8 is a diagram showing the configuration of a refrigeration system according to Embodiment 5. In FIG. A refrigerating device 1000D shown in FIG. 8 includes a heat source device 10D and a load device 20A. The heat source device 10D includes a high temperature side circuit 101, a low temperature side circuit 102D, and a control device 110.
 図8に示す実施の形態2の低温側回路102Dが図1に示す実施の形態1の低温側回路102と異なる点は、インジェクション用流路14と、過冷却熱交換器である第4熱交換器12と、インジェクション用の減圧装置13とが追加された点である。インジェクション用流路14は、第4熱交換器12と膨張弁3bとを接続する流路から分岐し、第1冷媒を圧縮機1bの圧縮中間部に戻す。減圧装置13は、分岐した流路を流れる第1冷媒を減圧する。第4熱交換器12は、冷却運転時において、インジェクション用流路14において減圧装置13で減圧され温度が低下した第1冷媒によって、流路切替装置6から膨張弁3bに流れる第1冷媒を冷却する。 The low temperature side circuit 102D of the second embodiment shown in FIG. 8 differs from the low temperature side circuit 102 of the first embodiment shown in FIG. The only difference is that a vessel 12 and a decompression device 13 for injection are added. The injection flow path 14 branches from the flow path connecting the fourth heat exchanger 12 and the expansion valve 3b, and returns the first refrigerant to the compression intermediate portion of the compressor 1b. The decompression device 13 decompresses the first refrigerant flowing through the branched flow path. During the cooling operation, the fourth heat exchanger 12 cools the first refrigerant flowing from the flow path switching device 6 to the expansion valve 3b with the first refrigerant whose temperature has been lowered by the pressure reduction device 13 in the injection flow path 14. do.
 他の部分の低温側回路102Dの構成は、図1で説明した低温側回路102と同様であるので、ここでは説明は繰返さない。 The rest of the configuration of the low temperature side circuit 102D is the same as the low temperature side circuit 102 described in FIG. 1, so the description will not be repeated here.
 インジェクション流路14を流れる冷媒流量は、机上または試験的に求められる制御目標値(過熱度、圧縮機吐出温度、または液温度)に基づいて設計される。膨張弁31としては、電子膨張弁、温度膨張弁、キャピラリチューブなどが選定される。 The flow rate of the refrigerant flowing through the injection flow path 14 is designed based on control target values (degree of superheat, compressor discharge temperature, or liquid temperature) obtained theoretically or experimentally. As the expansion valve 31, an electronic expansion valve, a thermal expansion valve, a capillary tube, or the like is selected.
 なお、第4熱交換器12は図9には記載されているが、これを設けずに、インジェクション用の減圧装置13のみをインジェクション用流路14に配置しても良い。 Although the fourth heat exchanger 12 is shown in FIG. 9, only the pressure reducing device 13 for injection may be arranged in the injection flow path 14 without providing the fourth heat exchanger 12 .
 実施の形態6.
 図9は、実施の形態6の冷凍装置の構成を示す図である。図9に示す冷凍装置1000Eは、熱源機10Eと負荷装置20Aとを備える。熱源機10Eは、高温側回路101と、低温側回路102Eと、制御装置110とを含む。
Embodiment 6.
FIG. 9 is a diagram showing the configuration of a refrigeration system according to Embodiment 6. FIG. A refrigeration system 1000E shown in FIG. 9 includes a heat source device 10E and a load device 20A. The heat source device 10E includes a high temperature side circuit 101, a low temperature side circuit 102E, and a control device 110.
 図8に示す実施の形態2の低温側回路102Eが図8に示す実施の形態5の低温側回路102Dと異なる点は、インジェクション用流路14の接続先が圧縮機1bの吸入側に変更された点である。図8においてインジェクション用流路14Eは、第4熱交換器12と膨張弁3bとを接続する流路から分岐し、第1冷媒を圧縮機1bの吸入ポートに戻す。 A low temperature side circuit 102E of Embodiment 2 shown in FIG. 8 differs from a low temperature side circuit 102D of Embodiment 5 shown in FIG. That is the point. In FIG. 8, the injection flow path 14E branches from the flow path connecting the fourth heat exchanger 12 and the expansion valve 3b, and returns the first refrigerant to the suction port of the compressor 1b.
 他の部分の低温側回路102Eの構成は、図8で説明した低温側回路102Dと同様であるので、ここでは説明は繰返さない。なお、第4熱交換器12は図9には記載されているが、これを設けずに、インジェクション用の減圧装置13のみをインジェクション用流路14Eに配置しても良い。 Other parts of the configuration of the low temperature side circuit 102E are the same as those of the low temperature side circuit 102D described with reference to FIG. 8, so description thereof will not be repeated here. Although the fourth heat exchanger 12 is shown in FIG. 9, the pressure reducing device 13 for injection may be arranged in the injection flow path 14E without providing the fourth heat exchanger 12. FIG.
 実施の形態7.
 実施の形態7では、膨張弁9の配置を変更した例を示す。図10は、実施の形態7の冷凍装置の構成を示す図である。図10に示す冷凍装置1000Fは、熱源機10Fと負荷装置20Aとを備える。熱源機10Fは、高温側回路101と、低温側回路102Fと、制御装置110とを含む。
Embodiment 7.
Embodiment 7 shows an example in which the arrangement of the expansion valve 9 is changed. FIG. 10 is a diagram showing the configuration of a refrigeration system according to Embodiment 7. FIG. A refrigeration system 1000F shown in FIG. 10 includes a heat source device 10F and a load device 20A. The heat source equipment 10F includes a high temperature side circuit 101, a low temperature side circuit 102F, and a control device 110.
 図10に示す実施の形態7の冷凍装置1000Fが図1に示す実施の形態1の冷凍装置1000Aと異なる点は、膨張弁9に代えて設けられる膨張弁9Fの配置である。膨張弁9Fは、熱交換器5と流路切替装置6との間に配置される。他の部分の構成については、図10の構成は図1と同様であるので説明は繰返さない。 A refrigeration system 1000F of Embodiment 7 shown in FIG. 10 differs from the refrigeration system 1000A of Embodiment 1 shown in FIG. The expansion valve 9</b>F is arranged between the heat exchanger 5 and the flow switching device 6 . 10 is the same as that of FIG. 1, the description of other parts will not be repeated.
 膨張弁9は、除霜運転時の冷媒の流れにおける受液器8から熱交換器5に至る流路のどこかにあればよい。したがって、図1の膨張弁9を移動させて図10の膨張弁9Fのように配置することができる。 The expansion valve 9 may be anywhere in the flow path from the liquid receiver 8 to the heat exchanger 5 in the flow of refrigerant during defrosting operation. Therefore, the expansion valve 9 of FIG. 1 can be moved and arranged like the expansion valve 9F of FIG.
 図11は、膨張弁の配置の他の例を示す図である。図11に示す変形例では、膨張弁9Gが流路切替装置6において逆止弁62と直列に配置されている。 FIG. 11 is a diagram showing another example of the arrangement of expansion valves. In the modification shown in FIG. 11, the expansion valve 9G is arranged in series with the check valve 62 in the flow path switching device 6. In the modification shown in FIG.
 なお、実施の形態1のように膨張弁9が受液器8と流路切替装置6の間にある場合は負荷装置20Aの膨張弁3bは設置しなくてもよい場合が考えられるが、図10および図11に示す構成の場合は、膨張弁3bは冷却運転時の減圧膨張を行なうため設置する必要がある。 Note that when the expansion valve 9 is located between the liquid receiver 8 and the channel switching device 6 as in the first embodiment, the expansion valve 3b of the load device 20A may not be installed. 10 and 11, the expansion valve 3b must be installed to perform decompression expansion during the cooling operation.
 (まとめ)
 以上の実施の形態について、再び図面を参照して総括する。
(summary)
The above embodiments will be summarized with reference to the drawings again.
 本開示は、負荷装置20Aとともに冷凍装置1000Aを形成する熱源機10Aに関する。冷凍装置1000Aは、運転モードとして冷却モードと除霜モードとを有する。熱源機10Aは、第1圧縮機(1b)と、第1熱交換器(7)と、第2熱交換器(5)と、受液器8とを備える。第1圧縮機(1b)、第1熱交換器(7)、第2熱交換器(5)および受液器8は、負荷装置20Aとともに、第1冷媒が循環する第1冷凍サイクル装置RC1を構成する。熱源機10Aは、四方弁4と、流路切替装置6とをさらに備える。四方弁4は、冷却モードと除霜モードとの間で、負荷装置20Aおよび第2熱交換器(5)の接続先を入れ替える。流路切替装置6は、第1熱交換器(7)を経て受液器8に第1冷媒を流す流路の上流部と、その流路の下流部と、負荷装置20Aと、第2熱交換器(5)とに接続され、第1冷媒の流れを切替える。下流部は、第1熱交換器(7)を経て受液器8に第1冷媒を流す流路の下流に位置する。冷却モードにおいては、第1圧縮機(1b)、四方弁4、第2熱交換器(5)、流路切替装置6、第1熱交換器(7)、受液器8、流路切替装置6、負荷装置20A、四方弁4を順に経て第1圧縮機(1b)に戻るように第1冷媒が循環する。除霜モードにおいては、第1圧縮機(1b)、四方弁4、負荷装置20A、流路切替装置6、第1熱交換器(7)、受液器8、流路切替装置6、第2熱交換器(5)、四方弁4を順に経て第1圧縮機(1b)に戻るように第1冷媒が循環する。 The present disclosure relates to a heat source device 10A that forms a refrigeration system 1000A together with a load device 20A. The refrigeration system 1000A has a cooling mode and a defrosting mode as operation modes. The heat source device 10A includes a first compressor (1b), a first heat exchanger (7), a second heat exchanger (5), and a liquid receiver 8. A first compressor (1b), a first heat exchanger (7), a second heat exchanger (5), and a liquid receiver 8, together with a load device 20A, form a first refrigeration cycle device RC1 in which a first refrigerant circulates. Configure. The heat source device 10A further includes a four-way valve 4 and a channel switching device 6 . The four-way valve 4 switches the connection destinations of the load device 20A and the second heat exchanger (5) between the cooling mode and the defrosting mode. The flow path switching device 6 includes an upstream portion of a flow path through which the first refrigerant flows to the liquid receiver 8 via the first heat exchanger (7), a downstream portion of the flow path, a load device 20A, and a second heat exchanger. It is connected to the exchanger (5) and switches the flow of the first refrigerant. The downstream part is located downstream of the flow path through which the first refrigerant flows to the liquid receiver 8 via the first heat exchanger (7). In the cooling mode, the first compressor (1b), the four-way valve 4, the second heat exchanger (5), the flow switching device 6, the first heat exchanger (7), the liquid receiver 8, the flow switching device 6. The first refrigerant circulates through the load device 20A and the four-way valve 4 in order and returns to the first compressor (1b). In the defrosting mode, the first compressor (1b), the four-way valve 4, the load device 20A, the channel switching device 6, the first heat exchanger (7), the liquid receiver 8, the channel switching device 6, the second The first refrigerant circulates through the heat exchanger (5) and the four-way valve 4 in order and returns to the first compressor (1b).
 好ましくは、流路切替装置6は、第1~第4逆止弁61~64を含む。第1逆止弁61は、負荷装置20Aと第1熱交換器(7)との間に、負荷装置20Aから第1熱交換器(7)に第1冷媒を流す向きに配置される。第2逆止弁62は、受液器8の出口と第2熱交換器(5)との間に、受液器8の出口から第2熱交換器(5)に第1冷媒を流す向きに配置される。第3逆止弁63は、第2熱交換器(5)と第1熱交換器(7)との間に、第2熱交換器(5)から第1熱交換器(7)に第1冷媒を流す向きに配置される。第4逆止弁64は、受液器8の出口と負荷装置20Aとの間に、受液器8の出口から負荷装置20Aに第1冷媒を流す向きに配置される。 Preferably, the channel switching device 6 includes first to fourth check valves 61-64. The first check valve 61 is arranged between the load device 20A and the first heat exchanger (7) in a direction in which the first refrigerant flows from the load device 20A to the first heat exchanger (7). The second check valve 62 is positioned between the outlet of the liquid receiver 8 and the second heat exchanger (5) in the direction in which the first refrigerant flows from the outlet of the liquid receiver 8 to the second heat exchanger (5). placed in A third check valve 63 provides a first flow from the second heat exchanger (5) to the first heat exchanger (7) between the second heat exchanger (5) and the first heat exchanger (7). It is arranged in the direction in which the coolant flows. The fourth check valve 64 is arranged between the outlet of the liquid receiver 8 and the load device 20A in the direction in which the first refrigerant flows from the outlet of the liquid receiver 8 to the load device 20A.
 好ましくは、熱源機10Aは、第1冷媒の流量を調整する膨張弁9をさらに備える。膨張弁9は、除霜モードにおいて受液器8の出口から第2熱交換器(5)に第1冷媒を流す経路に設けられる。 Preferably, the heat source device 10A further includes an expansion valve 9 that adjusts the flow rate of the first refrigerant. The expansion valve 9 is provided on a path through which the first refrigerant flows from the outlet of the liquid receiver 8 to the second heat exchanger (5) in the defrosting mode.
 より好ましくは、図5に示すように、熱源機10Bは、受液器8と膨張弁9とを接続する配管から分岐し、膨張弁9および流路切替装置6をバイパスし、負荷装置20Aに第1冷媒を流すバイパス流路22と、バイパス流路22に設けられ、受液器8から負荷装置20Aに向けて冷媒を流すように構成された第5逆止弁21とをさらに備える。 More preferably, as shown in FIG. 5, the heat source device 10B is branched from the pipe connecting the liquid receiver 8 and the expansion valve 9, bypasses the expansion valve 9 and the flow path switching device 6, and connects to the load device 20A. Further provided are a bypass flow path 22 through which the first refrigerant flows, and a fifth check valve 21 provided in the bypass flow path 22 and configured to flow the refrigerant from the liquid receiver 8 toward the load device 20A.
 好ましくは、熱源機10Aは、第2圧縮機(1a)と、第3熱交換器(2)と、膨張弁3aとをさらに備える。第2圧縮機(1a)、第3熱交換器(2)、膨張弁3aは、第1熱交換器(7)とともに、第2冷媒が順に循環する第2冷凍サイクル装置RC2を構成する。第1熱交換器(7)は、第1冷媒と第2冷媒との間の熱交換を行なうように構成される。なお、第2冷凍サイクル装置RC2は、必ずしも設けなくても良い。たとえば、第1熱交換器(7)は、水またはブラインと第1冷媒との間で熱交換を行なうものであってもよい。 Preferably, the heat source device 10A further includes a second compressor (1a), a third heat exchanger (2), and an expansion valve 3a. The second compressor (1a), the third heat exchanger (2), and the expansion valve 3a together with the first heat exchanger (7) constitute a second refrigeration cycle device RC2 in which the second refrigerant sequentially circulates. A first heat exchanger (7) is configured to exchange heat between a first refrigerant and a second refrigerant. Note that the second refrigeration cycle device RC2 may not necessarily be provided. For example, the first heat exchanger (7) may exchange heat between water or brine and the first refrigerant.
 より好ましくは、図6に示すように、熱源機10Cは、第2冷凍サイクル装置RC2において、第2圧縮機(1a)と第3熱交換器(2)とを接続する配管の途中から分岐し、膨張弁3aと第1熱交換器(7)とを接続する配管に第2冷媒を流すバイパス流路32と、バイパス流路32に設けられ、第2冷媒の流量を調整する膨張弁31とをさらに備える。 More preferably, as shown in FIG. 6, in the second refrigeration cycle device RC2, the heat source device 10C is branched from the middle of the pipe connecting the second compressor (1a) and the third heat exchanger (2). , a bypass passage 32 for flowing the second refrigerant through a pipe connecting the expansion valve 3a and the first heat exchanger (7), and an expansion valve 31 provided in the bypass passage 32 for adjusting the flow rate of the second refrigerant. further provide.
 より好ましくは、第3熱交換器(2)は、パラレルフローコンデンサ式熱交換器であり、第2熱交換器(5)は、プレートフィンチューブ式空気熱交換器である。 More preferably, the third heat exchanger (2) is a parallel flow condenser heat exchanger, and the second heat exchanger (5) is a plate fin tube air heat exchanger.
 より好ましくは、熱源機10Cは、膨張弁31を制御する制御装置110をさらに備える。制御装置110は、第2圧縮機(1a)に液状態の第1冷媒が吸入される液戻りが発生したと判定された場合に膨張弁31の開度を増加させるように構成される。 More preferably, the heat source device 10C further includes a control device 110 that controls the expansion valve 31. The control device 110 is configured to increase the degree of opening of the expansion valve 31 when it is determined that liquid return occurs in which the first refrigerant in the liquid state is sucked into the second compressor (1a).
 さらに好ましくは、図7に示すように、制御装置110は、膨張弁31の開度を上限まで増加しても液戻り判定が解消しない場合、第2冷凍サイクル装置RC2の目標凝縮温度および目標蒸発温度を変更するように構成される。 More preferably, as shown in FIG. 7, when the liquid return determination is not resolved even when the degree of opening of the expansion valve 31 is increased to the upper limit, the controller 110 sets the target condensation temperature and the target evaporation temperature of the second refrigeration cycle device RC2. Configured to change temperature.
 好ましくは、熱源機10A~10Fは、流路切替装置6から第1熱交換器(7)を経由して受液器8に至る経路のいずれかに設けられ第1冷媒の圧力を検出する圧力センサ51をさらに備える。第2冷凍サイクル装置RC2は、圧力センサの51検出値が判定値を超えた場合に運転を開始するように構成される。 Preferably, the heat source devices 10A to 10F are provided in one of the paths from the flow path switching device 6 to the liquid receiver 8 via the first heat exchanger (7) and detect the pressure of the first refrigerant. A sensor 51 is further provided. The second refrigeration cycle device RC2 is configured to start operation when the pressure sensor 51 detection value exceeds the judgment value.
 好ましくは、第2熱交換器(5)は、空気と第1冷媒との間で熱交換を行なうプレートフィンチューブ式熱交換器である。 Preferably, the second heat exchanger (5) is a plate-fin tube heat exchanger that exchanges heat between air and the first refrigerant.
 好ましくは、熱源機10Aは、第1圧縮機(1b)と四方弁4と流路切替装置6とを制御し、運転モードの切替えを行なう制御装置110をさらに備える。図4に示すように、制御装置110は、除霜モードを冷却モードに変更した後、第1圧縮機(1b)を一定時間強制的に連続運転させる。 Preferably, the heat source device 10A further includes a control device 110 that controls the first compressor (1b), the four-way valve 4, and the flow path switching device 6 to switch the operation mode. As shown in FIG. 4, after changing the defrosting mode to the cooling mode, the control device 110 forces the first compressor (1b) to operate continuously for a certain period of time.
 好ましくは、熱源機10Aは、第1圧縮機(1b)と四方弁4と流路切替装置6を制御し、運転モードの切替えを行なう制御装置110をさらに備える。図4に示すように、制御装置110は、除霜モードを冷却モードに変更した後、一定時間が経過するか、または、第2熱交換器(5)の冷媒出口の冷媒温度が判定値に達するまでは、第1圧縮機(1b)を強制的に連続運転させる。 Preferably, the heat source device 10A further includes a control device 110 that controls the first compressor (1b), the four-way valve 4, and the flow path switching device 6 to switch the operation mode. As shown in FIG. 4, after the defrost mode is changed to the cooling mode, the control device 110 determines whether a certain period of time has elapsed or the refrigerant temperature at the refrigerant outlet of the second heat exchanger (5) has reached the judgment value. The first compressor (1b) is forcibly operated continuously until it reaches.
 好ましくは、図8に示すように、熱源機10Dは、受液器8から排出される第2冷媒の一部を第1圧縮機(1b)に戻すインジェクション流路14と、インジェクション流路14に配置された減圧装置13とをさらに備える。 Preferably, as shown in FIG. 8, the heat source device 10D includes an injection passage 14 for returning part of the second refrigerant discharged from the liquid receiver 8 to the first compressor (1b), and and a decompression device 13 arranged therein.
 より好ましくは、図8に示すように、熱源機10Dは、除霜モードにおいて、受液器8から排出される第1冷媒と減圧装置13を通過した第1冷媒との間で熱交換を行なう第4熱交換器12をさらに備える。 More preferably, as shown in FIG. 8, the heat source device 10D performs heat exchange between the first refrigerant discharged from the liquid receiver 8 and the first refrigerant that has passed through the pressure reducing device 13 in the defrosting mode. A fourth heat exchanger 12 is further provided.
 本開示は、他の局面では、上記のいずれかの熱源機10A~10Eと、負荷装置20Aとを備える、冷凍装置1000Aに関する。 In another aspect, the present disclosure relates to a refrigeration system 1000A including any one of the heat source devices 10A to 10E described above and a load device 20A.
 以上に示した本開示の冷凍装置は、逆止弁61~64を組み合わせた流路切替装置6によって、ホットガス除霜運転中に負荷側熱交換器11からの戻り冷媒が熱交換器7および受液器8を通るようにする冷媒回路を構成する。 In the refrigeration system of the present disclosure described above, the return refrigerant from the load-side heat exchanger 11 is switched to the heat exchanger 7 and the A refrigerant circuit passing through the liquid receiver 8 is constructed.
 これにより、除霜運転時において、圧力上昇を回避しつつ冷媒量調整が不要となるとともに、制御を複雑にすることを避けつつ、冷却運転時と変更することなく高温側の冷凍サイクルを運用することができる。 This eliminates the need to adjust the amount of refrigerant while avoiding an increase in pressure during defrosting operation, and operates the refrigeration cycle on the high temperature side without changing from cooling operation while avoiding complication of control. be able to.
 今回開示された実施の形態は、すべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は、上記した実施の形態の説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味及び範囲内でのすべての変更が含まれることが意図される。 The embodiments disclosed this time should be considered illustrative in all respects and not restrictive. The scope of the present invention is indicated by the scope of the claims rather than the description of the above-described embodiments, and is intended to include all modifications within the meaning and scope equivalent to the scope of the claims.
 1a,1b 圧縮機、2,5,7,12 熱交換器、3a,3b,9,9F,9G,31 膨張弁、4 四方弁、5F ファン、6 切替装置、8 受液器、10 気液分離器、10A~10F 熱源機、11 負荷側熱交換器、13 減圧装置、14,14E,22,32 流路、20A 負荷装置、21,61~64 逆止弁、51 圧力センサ、52 温度センサ、101,101C 高温側回路、102,102B,102D,102E,102F 低温側回路、110 制御装置、111 CPU、112 メモリ、1000A~1000F 冷凍装置、RC1 第1冷凍サイクル装置、RC2 第2冷凍サイクル装置。 1a, 1b compressor, 2, 5, 7, 12 heat exchanger, 3a, 3b, 9, 9F, 9G, 31 expansion valve, 4 four-way valve, 5F fan, 6 switching device, 8 liquid receiver, 10 gas liquid Separator, 10A to 10F heat source equipment, 11 load side heat exchanger, 13 decompression device, 14, 14E, 22, 32 flow path, 20A load device, 21, 61 to 64 check valve, 51 pressure sensor, 52 temperature sensor , 101, 101C High temperature side circuit, 102, 102B, 102D, 102E, 102F Low temperature side circuit, 110 Control device, 111 CPU, 112 Memory, 1000A to 1000F Refrigerating device, RC1 First refrigerating cycle device, RC2 Second refrigerating cycle device .

Claims (16)

  1.  負荷装置とともに冷凍装置を形成する熱源機であって、
     前記冷凍装置は、運転モードとして冷却モードと除霜モードとを有し、
     前記熱源機は、
     前記負荷装置とともに、第1冷媒が循環する第1冷凍サイクル装置を構成する、第1圧縮機、第1熱交換器、第2熱交換器および受液器と、
     前記冷却モードと前記除霜モードとの間で、前記負荷装置および前記第2熱交換器の接続先を入れ替える四方弁と、
     前記第1熱交換器を経て前記受液器に前記第1冷媒を流す流路の上流部と、前記流路の下流部と、前記負荷装置と、前記第2熱交換器とに接続され、前記第1冷媒の流れを切替える流路切替装置とを備え、
     前記冷却モードにおいては、前記第1圧縮機、前記四方弁、前記第2熱交換器、前記流路切替装置、前記第1熱交換器、前記受液器、前記流路切替装置、前記負荷装置、前記四方弁を順に経て前記第1圧縮機に戻るように前記第1冷媒が循環し、
     前記除霜モードにおいては、前記第1圧縮機、前記四方弁、前記負荷装置、前記流路切替装置、前記第1熱交換器、前記受液器、前記流路切替装置、前記第2熱交換器、前記四方弁を順に経て前記第1圧縮機に戻るように前記第1冷媒が循環する、熱源機。
    A heat source machine forming a refrigeration device together with a load device,
    The refrigeration system has a cooling mode and a defrosting mode as operation modes,
    The heat source machine is
    a first compressor, a first heat exchanger, a second heat exchanger, and a liquid receiver, which together with the load device constitute a first refrigeration cycle device in which the first refrigerant circulates;
    a four-way valve that switches connection destinations of the load device and the second heat exchanger between the cooling mode and the defrosting mode;
    connected to an upstream portion of a flow path through which the first refrigerant flows to the liquid receiver through the first heat exchanger, a downstream portion of the flow path, the load device, and the second heat exchanger; and a channel switching device that switches the flow of the first refrigerant,
    In the cooling mode, the first compressor, the four-way valve, the second heat exchanger, the channel switching device, the first heat exchanger, the receiver, the channel switching device, and the load device , the first refrigerant circulates through the four-way valve and back to the first compressor;
    In the defrosting mode, the first compressor, the four-way valve, the load device, the flow path switching device, the first heat exchanger, the liquid receiver, the flow path switching device, and the second heat exchange heat source equipment, wherein the first refrigerant circulates so as to return to the first compressor through the four-way valve in order.
  2.  前記流路切替装置は、第1~第4逆止弁を含み、
     前記第1逆止弁は、前記負荷装置と前記第1熱交換器との間に、前記負荷装置から前記第1熱交換器に前記第1冷媒を流す向きに配置され、
     前記第2逆止弁は、前記受液器の出口と前記第2熱交換器との間に、前記受液器の出口から前記第2熱交換器に前記第1冷媒を流す向きに配置され、
     前記第3逆止弁は、前記第2熱交換器と前記第1熱交換器との間に、前記第2熱交換器から前記第1熱交換器に前記第1冷媒を流す向きに配置され、
     前記第4逆止弁は、前記受液器の出口と前記負荷装置との間に、前記受液器の出口から前記負荷装置に前記第1冷媒を流す向きに配置される、請求項1に記載の熱源機。
    The channel switching device includes first to fourth check valves,
    The first check valve is arranged between the load device and the first heat exchanger in a direction in which the first refrigerant flows from the load device to the first heat exchanger,
    The second check valve is arranged between the outlet of the liquid receiver and the second heat exchanger in a direction in which the first refrigerant flows from the outlet of the liquid receiver to the second heat exchanger. ,
    The third check valve is arranged between the second heat exchanger and the first heat exchanger in a direction in which the first refrigerant flows from the second heat exchanger to the first heat exchanger. ,
    2. The method according to claim 1, wherein the fourth check valve is arranged between the outlet of the liquid receiver and the load device in a direction in which the first refrigerant flows from the outlet of the liquid receiver to the load device. The heat source machine described.
  3.  前記第1冷媒の流量を調整する第1流量調整弁をさらに備え、
     前記第1流量調整弁は、前記除霜モードにおいて前記受液器の出口から前記第2熱交換器に前記第1冷媒を流す経路に設けられる、請求項1に記載の熱源機。
    further comprising a first flow rate adjustment valve that adjusts the flow rate of the first refrigerant,
    2. The heat source equipment according to claim 1, wherein said first flow control valve is provided in a path through which said first refrigerant flows from an outlet of said receiver to said second heat exchanger in said defrosting mode.
  4.  前記受液器と前記第1流量調整弁とを接続する配管から分岐し、前記第1流量調整弁および前記流路切替装置をバイパスし、前記負荷装置に前記第1冷媒を流すバイパス流路と、
     前記バイパス流路に設けられ、前記受液器から前記負荷装置に向けて冷媒を流すように構成された第5逆止弁とをさらに備える、請求項3に記載の熱源機。
    a bypass flow path branching from a pipe connecting the liquid receiver and the first flow rate control valve, bypassing the first flow rate control valve and the flow path switching device, and allowing the first refrigerant to flow to the load device; ,
    4. The heat source equipment according to claim 3, further comprising a fifth check valve provided in said bypass flow path and configured to allow refrigerant to flow from said liquid receiver toward said load device.
  5.  前記熱源機は、
     第2冷媒が順に循環し、前記第1熱交換器とともに、第2冷凍サイクル装置を構成する、第2圧縮機、第3熱交換器、膨張弁および第1熱交換器をさらに備え、
     前記第1熱交換器は、前記第1冷媒と前記第2冷媒との間の熱交換を行なうように構成される、請求項1に記載の熱源機。
    The heat source machine is
    Further comprising a second compressor, a third heat exchanger, an expansion valve and a first heat exchanger, through which a second refrigerant sequentially circulates, and together with the first heat exchanger, constitutes a second refrigeration cycle device;
    The heat source equipment according to claim 1, wherein said first heat exchanger is configured to perform heat exchange between said first refrigerant and said second refrigerant.
  6.  前記第2冷凍サイクル装置において、前記第2圧縮機と前記第3熱交換器とを接続する配管の途中から分岐し、前記膨張弁と前記第1熱交換器とを接続する配管に前記第2冷媒を流すバイパス流路と、
     前記バイパス流路に設けられ、前記第2冷媒の流量を調整する第2流量調整弁とをさらに備える、請求項5に記載の熱源機。
    In the second refrigerating cycle apparatus, the pipe connecting the second compressor and the third heat exchanger is branched from the middle, and the pipe connecting the expansion valve and the first heat exchanger is connected to the second heat exchanger. a bypass channel through which the refrigerant flows;
    6. The heat source equipment according to claim 5, further comprising a second flow rate adjustment valve provided in said bypass flow path and adjusting a flow rate of said second refrigerant.
  7.  前記第3熱交換器は、パラレルフローコンデンサ式熱交換器であり、
     前記第2熱交換器は、プレートフィンチューブ式空気熱交換器である、請求項6に記載の熱源機。
    The third heat exchanger is a parallel flow condenser heat exchanger,
    The heat source equipment according to claim 6, wherein the second heat exchanger is a plate-fin tube air heat exchanger.
  8.  前記第2流量調整弁を制御する制御装置をさらに備え、前記制御装置は、前記第2圧縮機に液状態の前記第1冷媒が吸入される液戻りが発生したと判定された場合に前記第2流量調整弁の開度を増加させるように構成される、請求項6に記載の熱源機。 A control device that controls the second flow rate control valve is further provided, and the control device controls the first flow control valve when it is determined that the liquid state of the first refrigerant is sucked into the second compressor. 7. The heat source machine according to claim 6, configured to increase the degree of opening of the two-flow control valve.
  9.  前記制御装置は、前記第2流量調整弁の開度を上限まで増加しても前記液戻りが解消しない場合、前記第2冷凍サイクル装置の目標凝縮温度および目標蒸発温度を変更するように構成される、請求項8に記載の熱源機。 The control device is configured to change the target condensing temperature and the target evaporating temperature of the second refrigerating cycle device when the liquid return does not disappear even when the degree of opening of the second flow control valve is increased to an upper limit. 9. The heat source machine according to claim 8.
  10.  前記流路切替装置から前記第1熱交換器を経由して前記受液器に至る経路のいずれかに設けられ前記第1冷媒の圧力を検出する圧力センサをさらに備え、
     前記第2冷凍サイクル装置は、前記圧力センサの検出値が判定値を超えた場合に運転を開始するように構成される、請求項5に記載の熱源機。
    further comprising a pressure sensor provided in one of the paths from the flow path switching device to the liquid receiver via the first heat exchanger and detecting the pressure of the first refrigerant;
    The heat source machine according to claim 5, wherein said second refrigeration cycle device is configured to start operation when the detected value of said pressure sensor exceeds a judgment value.
  11.  前記第2熱交換器は、空気と前記第1冷媒との間で熱交換を行なうプレートフィンチューブ式熱交換器である、請求項1に記載の熱源機。 The heat source equipment according to claim 1, wherein the second heat exchanger is a plate-fin tube heat exchanger that exchanges heat between air and the first refrigerant.
  12.  前記第1圧縮機と前記四方弁と前記流路切替装置とを制御し、前記運転モードの切替えを行なう制御装置をさらに備え、
     前記制御装置は、前記除霜モードを前記冷却モードに変更した後、前記第1圧縮機を一定時間強制的に連続運転させる、請求項1に記載の熱源機。
    further comprising a control device that controls the first compressor, the four-way valve, and the flow path switching device to switch the operation mode;
    The heat source machine according to claim 1, wherein said control device forcibly continuously operates said first compressor for a certain period of time after changing said defrosting mode to said cooling mode.
  13.  前記第1圧縮機と前記四方弁と前記流路切替装置を制御し、前記運転モードの切替えを行なう制御装置をさらに備え、
     前記制御装置は、前記除霜モードを前記冷却モードに変更した後、一定時間が経過するか、または、前記第2熱交換器の冷媒出口の冷媒温度が判定値に達するまでは、前記第1圧縮機を強制的に連続運転させる、請求項1に記載の熱源機。
    A control device for controlling the first compressor, the four-way valve, and the flow path switching device to switch the operation mode,
    After changing the defrosting mode to the cooling mode, the control device waits until a certain period of time elapses or until the refrigerant temperature at the refrigerant outlet of the second heat exchanger reaches a judgment value, the first The heat source equipment according to claim 1, wherein the compressor is forced to operate continuously.
  14.  前記受液器から排出される前記第1冷媒の一部を前記第1圧縮機に戻すインジェクション流路と、
     前記インジェクション流路に配置された減圧装置とをさらに備える、請求項1に記載の熱源機。
    an injection passage that returns a portion of the first refrigerant discharged from the liquid receiver to the first compressor;
    The heat source machine according to claim 1, further comprising a decompression device arranged in said injection channel.
  15.  前記除霜モードにおいて、前記受液器から排出される前記第1冷媒と前記減圧装置を通過した前記第1冷媒との間で熱交換を行なう第5熱交換器をさらに備える、請求項14に記載の熱源機。 15. The apparatus according to claim 14, further comprising a fifth heat exchanger that exchanges heat between the first refrigerant discharged from the liquid receiver and the first refrigerant that has passed through the pressure reducing device in the defrosting mode. The heat source machine described.
  16.  請求項1~15のいずれか1項に記載の熱源機と、前記負荷装置とを備える、冷凍装置。 A refrigeration system comprising the heat source device according to any one of claims 1 to 15 and the load device.
PCT/JP2021/010638 2021-03-16 2021-03-16 Heat source machine for refrigeration apparatus and refrigeration apparatus equipped with same WO2022195727A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/JP2021/010638 WO2022195727A1 (en) 2021-03-16 2021-03-16 Heat source machine for refrigeration apparatus and refrigeration apparatus equipped with same
DE112021007291.9T DE112021007291T5 (en) 2021-03-16 2021-03-16 Heat source machine of a cooling device and cooling device including the same
JP2023506449A JP7523667B2 (en) 2021-03-16 2021-03-16 Heat source unit for refrigeration device and refrigeration device equipped with same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/010638 WO2022195727A1 (en) 2021-03-16 2021-03-16 Heat source machine for refrigeration apparatus and refrigeration apparatus equipped with same

Publications (1)

Publication Number Publication Date
WO2022195727A1 true WO2022195727A1 (en) 2022-09-22

Family

ID=83320156

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/010638 WO2022195727A1 (en) 2021-03-16 2021-03-16 Heat source machine for refrigeration apparatus and refrigeration apparatus equipped with same

Country Status (3)

Country Link
JP (1) JP7523667B2 (en)
DE (1) DE112021007291T5 (en)
WO (1) WO2022195727A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024154207A1 (en) * 2023-01-16 2024-07-25 三菱電機株式会社 Binary refrigeration device

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01277173A (en) * 1988-04-21 1989-11-07 American Standard Inc Cooling system
JP2007178106A (en) * 2005-12-28 2007-07-12 Hitachi Ltd Cooling device
WO2014038028A1 (en) * 2012-09-06 2014-03-13 三菱電機株式会社 Refrigerating device
JP2017040464A (en) * 2014-09-03 2017-02-23 三星電子株式会社Samsung Electronics Co.,Ltd. Refrigerant amount detection device
WO2017199382A1 (en) * 2016-05-18 2017-11-23 三菱電機株式会社 Refrigerating device
WO2018142583A1 (en) * 2017-02-03 2018-08-09 三菱電機株式会社 Refrigeration system
WO2020161803A1 (en) * 2019-02-05 2020-08-13 三菱電機株式会社 Outdoor unit of refrigeration device and refrigeration device comprising same

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4966742B2 (en) 2007-05-25 2012-07-04 日立アプライアンス株式会社 Air conditioner
JP2012198020A (en) 2012-06-21 2012-10-18 Mitsubishi Heavy Ind Ltd Air conditioning system and oil return control method of the same
JP2015224846A (en) 2014-05-29 2015-12-14 パナソニックIpマネジメント株式会社 Refrigeration cycle device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01277173A (en) * 1988-04-21 1989-11-07 American Standard Inc Cooling system
JP2007178106A (en) * 2005-12-28 2007-07-12 Hitachi Ltd Cooling device
WO2014038028A1 (en) * 2012-09-06 2014-03-13 三菱電機株式会社 Refrigerating device
JP2017040464A (en) * 2014-09-03 2017-02-23 三星電子株式会社Samsung Electronics Co.,Ltd. Refrigerant amount detection device
WO2017199382A1 (en) * 2016-05-18 2017-11-23 三菱電機株式会社 Refrigerating device
WO2018142583A1 (en) * 2017-02-03 2018-08-09 三菱電機株式会社 Refrigeration system
WO2020161803A1 (en) * 2019-02-05 2020-08-13 三菱電機株式会社 Outdoor unit of refrigeration device and refrigeration device comprising same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024154207A1 (en) * 2023-01-16 2024-07-25 三菱電機株式会社 Binary refrigeration device

Also Published As

Publication number Publication date
JPWO2022195727A1 (en) 2022-09-22
DE112021007291T5 (en) 2024-01-18
JP7523667B2 (en) 2024-07-26

Similar Documents

Publication Publication Date Title
JP5452138B2 (en) Refrigeration air conditioner
US10415861B2 (en) Refrigeration cycle apparatus
JP5595245B2 (en) Refrigeration equipment
US11268743B2 (en) Air-conditioning apparatus having heating-defrosting operation mode
EP3062031B1 (en) Air conditioner
EP3217121B1 (en) Outdoor unit for air conditioner and method for controlling air conditioner
US20110023512A1 (en) Air conditioner
KR100717444B1 (en) The mothod for control airconditioner and multy-airconditioner
JP5641875B2 (en) Refrigeration equipment
US11796212B2 (en) Air-conditioning apparatus
JP2007271094A (en) Air conditioner
JP5404761B2 (en) Refrigeration equipment
JP2011179697A (en) Refrigerating cycle device and water heating/cooling device
JP2015098981A (en) Heat pump type water heater
WO2020194435A1 (en) Air-conditioning device
JP7112057B1 (en) air conditioner
JP2023503192A (en) air conditioner
JP4096984B2 (en) Refrigeration equipment
WO2022195727A1 (en) Heat source machine for refrigeration apparatus and refrigeration apparatus equipped with same
JP2008025901A (en) Air conditioner
JP6206787B2 (en) Refrigeration equipment
JP5496161B2 (en) Refrigeration cycle system
KR101692243B1 (en) Heat pump with cascade refrigerating cycle
JP2009293887A (en) Refrigerating device
CN114402171A (en) Heat pump

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21931479

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023506449

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 112021007291

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21931479

Country of ref document: EP

Kind code of ref document: A1