WO2018142583A1 - Refrigeration system - Google Patents
Refrigeration system Download PDFInfo
- Publication number
- WO2018142583A1 WO2018142583A1 PCT/JP2017/004012 JP2017004012W WO2018142583A1 WO 2018142583 A1 WO2018142583 A1 WO 2018142583A1 JP 2017004012 W JP2017004012 W JP 2017004012W WO 2018142583 A1 WO2018142583 A1 WO 2018142583A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- heat exchanger
- flow path
- refrigerant
- dehumidifying
- refrigeration system
- Prior art date
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F1/00—Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B1/00—Compression machines, plants or systems with non-reversible cycle
Definitions
- the present invention relates to a refrigeration system having a dehumidifying function.
- Patent Document 1 An air conditioner that avoids defrosting and avoids frost formation on a heat absorber has been proposed (see, for example, Patent Document 1).
- the air conditioning apparatus described in Patent Document 1 uses air heated by a radiator to desorb moisture from the adsorbent, and it is necessary to discharge the humidified air outside the freezer warehouse. .
- taking air into and out of the refrigerated warehouse is not desirable from the viewpoint of operating efficiency because the temperature inside the warehouse rises.
- the present invention has been made to solve the above-described problems, and an object of the present invention is to provide a refrigeration system with improved operational efficiency without exhausting humidified air outside the room.
- a refrigeration system includes a refrigerant circuit in which a compressor, a condenser, a flow path switching unit, a heat exchanger for dehumidification, an expansion valve, and a cooler are connected by piping, and the flow path switching unit includes a refrigerant A first flow path in which at least the refrigerant condensed in the condenser flows to the cooler through the dehumidifying heat exchanger, and the refrigerant evaporated in the cooler is in the dehumidifying heat exchange It switches to either of the 2nd flow paths which flow into the above-mentioned compressor via a vessel.
- FIG. 1 is a schematic diagram illustrating a configuration of a refrigeration system 100 according to Embodiment 1 of the present invention.
- the configuration of the refrigeration system 100 according to the first embodiment will be described with reference to FIG.
- an example in which the refrigeration system 100 is applied to a refrigeration warehouse will be described.
- a refrigeration system 100 according to Embodiment 1 includes a refrigerant circuit in which a compressor 1, a condenser 2, a flow path switching unit, a heat exchanger 11 for dehumidification, an expansion valve 9, and a cooler 10 are connected by a refrigerant pipe. It has. Moreover, the outdoor unit 30a, the dehumidification unit 40a, and the cooling unit 50a are provided, and the outdoor unit 30a and the cooling unit 50a are connected by refrigerant piping via the dehumidification unit 40a.
- the outdoor unit 30a has a compressor 1 and a condenser 2, which are connected by a refrigerant pipe.
- the dehumidifying unit 40a has a dehumidifying heat exchanger 11 and a flow path switching means.
- the flow path switching means is a plurality of solenoid valves, and the first solenoid valve 3, the second solenoid valve 4, the third solenoid valve 5, the fourth solenoid valve 6, the fifth solenoid valve 7, And it comprises the sixth solenoid valve 8.
- the dehumidifying heat exchanger 11 is composed of, for example, a refrigerant pipe and a metal plate.
- the refrigerant pipe and the metal plate are joined, for example, by welding or pressure bonding (caulking).
- the refrigerant flows through the refrigerant pipe of the dehumidifying heat exchanger 11, the refrigerant and air exchange heat, the refrigerant is cooled or heated, and the dehumidifying heat exchanger 11 itself is also cooled or heated.
- the cooling surface is oriented vertically, that is, the cooling surface is oriented in the vertical direction, and frost or water droplets adhering to the cooling surface are likely to fall.
- a frost receiver 13 for receiving frost or water droplets dropped from the dehumidifying heat exchanger 11.
- the frost receiver 13 is a container for storing frost or water droplets.
- the frost receiver 13 is provided, for example, in a position where the inside of the dehumidifying unit 40a can be easily attached and detached.
- the frost acceptor 13 may be provided outside the dehumidifying unit 40a, and the frost acceptor 13 is provided outside the dehumidifying unit 40a. It becomes easy to carry out of the freezer warehouse.
- the notification means 16 (see FIG. 2 to be described later) by sound or display or the like is used. The fact that the defrost has been completed is notified.
- the notification means 16 notifies that the defrosting of the dehumidifying heat exchanger 11 has been completed, the worker who has received the notification carries out the frost or water accumulated in the frost receiver 13 to the outside of the freezer warehouse.
- the notification unit 16 is, for example, a buzzer, a speaker, an LED, a display screen, or the like.
- the thing using a fin tube is also assumed.
- the fin pitch wider than the cooler 10 it is possible to increase the amount of frost formed on the dehumidifying heat exchanger 11, and to defrost the dehumidifying heat exchanger 11 in a short time. Can be executed.
- One end of the dehumidifying heat exchanger 11 is connected to one end of the first electromagnetic valve 3 and one end of the second electromagnetic valve 4 through refrigerant pipes, and the other end of the dehumidifying heat exchanger 11 is connected to the third electromagnetic valve. 5 and one end of the fourth electromagnetic valve 6 are connected to each other by refrigerant piping.
- the cooling unit 50a has an expansion valve 9 and a cooler 10, which are connected by a refrigerant pipe.
- a condenser 2 a first electromagnetic valve 3 and a fifth electromagnetic valve 7 are connected between the outdoor unit 30a and the dehumidifying unit 40a, and the suction side of the compressor 1 and the second electromagnetic valve 4 are connected. And the 6th solenoid valve 8 is connected. Further, the third electromagnetic valve 5, the fifth electromagnetic valve 7 and the expansion valve 9 are connected between the dehumidifying unit 40a and the cooling unit 50a, and further, the cooler 10, the fourth electromagnetic valve 6 and A sixth electromagnetic valve 8 is connected.
- FIG. 2 is a functional block diagram of the control device 60a of the refrigeration system 100 according to Embodiment 1 of the present invention.
- the refrigeration system 100 according to the first embodiment is provided inside and outside the control device 60a, a sensor 70 that detects the temperature of the dehumidifying heat exchanger 11, a remote controller 71 that remotely controls the refrigeration system 100, and the control device 60a. And a switch 72 for operating the refrigeration system 100.
- the control device 60a has a normal mode, a dehumidification mode, and a defrost mode, and controls the flow path switching means and the like according to each mode.
- the control device 60 a includes a defrost determination unit 61, a dehumidification determination unit 62, a capability determination unit 63, and an operation control unit 64.
- the defrost determination unit 61 acquires information from the sensor 70, the remote controller 71, the switch 72, and the like during operation, and determines whether or not the dehumidification heat exchanger 11 is necessary. In addition, as a method for determining whether or not the defrosting heat exchanger 11 needs to be defrosted, any method may be adopted as long as it can detect the frosting state of the dehumidifying heat exchanger 11.
- the defrost determining means 61 determines that the dehumidifying heat exchanger 11 is frosted and the dehumidifying heat exchanger 11 needs to be defrosted. Also good.
- a well-known technique can be used about the determination method of the necessity of defrost of the heat exchanger 11 for dehumidification.
- the dehumidification determining means 62 acquires information from the sensor 70, the remote controller 71, the switch 72, etc. during operation, and determines whether or not dehumidification is necessary in the freezer warehouse. As a method for determining whether or not the defrosting is necessary in the freezer warehouse, any method may be adopted as long as the humidity in the freezer warehouse can be detected.
- the dehumidification determination means 62 may determine that dehumidification in the freezer warehouse is necessary if the temperature of the dehumidification heat exchanger 11 detected by the sensor 70 is equal to or higher than a preset threshold. Further, the dehumidification determining means 62 may determine that dehumidification in the refrigeration warehouse is necessary when there is a dehumidification command from the remote controller 71 or the switch 72. In addition, a well-known technique can be used about the determination method of the necessity for defrosting in a freezer warehouse.
- the capability determination unit 63 determines whether the capability condition and the capability limit condition are satisfied based on the information acquired from the sensor 70.
- the capacity condition is a condition in which the condensation capacity of the outdoor unit 30a exceeds the required evaporation capacity of the cooling unit 50a.
- the operation control means 64 performs main operation control of the dehumidifying unit 40a and the cooling unit 50a. Specifically, the flow path switching means, the notifying means 16 and the expansion valve 9 are controlled in accordance with the determination results of the respective modes or the defrost determination means 61, the dehumidification determination means 62, and the capacity determination means 63. To do. Further, the operation control means 64 acquires and holds operation information, which is information indicating, for example, cooling operation of the cooling unit 50a, cooling stop, and the like through communication with the outdoor unit 30a.
- FIG. 3 is a diagram showing a control flow at the time of operation of the refrigeration system 100 according to Embodiment 1 of the present invention
- FIG. 4 is a refrigerant in the normal mode of the refrigeration system 100 according to Embodiment 1 of the present invention
- 5 is a diagram illustrating an example of the flow of refrigerant
- FIG. 5 is a diagram illustrating an example of the flow of refrigerant in the dehumidification mode of the refrigeration system 100 according to Embodiment 1 of the present invention
- FIG. 6 is a diagram illustrating the implementation of the present invention.
- FIGS. 4 to 6 It is a figure which shows an example of the flow of the refrigerant
- the arrows in FIGS. 4 to 6 indicate the flow of the refrigerant.
- the operation control means 64 is configured so that the condenser 2 and the expansion valve 9 communicate with each other and the cooler 10 and the suction side of the compressor 1 communicate with each other as shown in FIG. Open and close each solenoid valve. Specifically, the operation control means 64 closes the first solenoid valve 3, the second solenoid valve 4, the third solenoid valve 5, and the fourth solenoid valve 6, and the fifth solenoid valve 7, The sixth solenoid valve 8 is opened (step S102).
- the refrigerant flow path in the dehumidifying unit 40a is changed to a flow path in which the refrigerant from the outdoor unit 30a flows to the cooling unit 50a without passing through the heat exchanger 11 for dehumidification. It becomes composition.
- step S102 the dehumidification determining means 62 determines whether dehumidification in the freezer warehouse is necessary (step S103). If it is determined that dehumidification in the refrigerated warehouse is not necessary (No in step S103), the dehumidification determining unit 62 executes step S103 again. On the other hand, when the dehumidification determining unit 62 determines that dehumidification in the refrigerated warehouse is necessary (Yes in step S103), the process proceeds to step S104.
- step S104 the operation control means 64 causes the cooler 10 and the dehumidifying heat exchanger 11 to communicate with each other, and the dehumidifying heat exchanger 11 and the suction side of the compressor 1 to communicate with each other.
- each solenoid valve is opened and closed. Specifically, the operation control means 64 closes the first solenoid valve 3, the third solenoid valve 5, and the sixth solenoid valve 8, the second solenoid valve 4, the fourth solenoid valve 6, The fifth solenoid valve 7 is opened.
- the refrigerant flow path in the dehumidifying unit 40a is made a flow path in which the refrigerant from the cooling unit 50a flows to the outdoor unit 30a via the heat exchanger 11 for dehumidification, so that the refrigerant circuit configuration in the dehumidifying mode is achieved. It becomes.
- the cold refrigerant after passing through the cooler 10 passes through the dehumidification heat exchanger 11 and is cooled to promote frost formation on the dehumidification heat exchanger 11, thereby realizing dehumidification in the refrigeration warehouse. To do.
- step S104 the dehumidification determining means 62 determines whether the dehumidification in the freezer warehouse has been completed (step S105). If it is determined that the dehumidification in the refrigerated warehouse has been completed (Yes in step S105), the dehumidification determining means 62 returns to step S102. On the other hand, when the dehumidification determining unit 62 determines that the dehumidification in the freezer warehouse is not completed (No in step S105), the process proceeds to step S106.
- step S106 the defrost determination means 61 determines whether or not the dehumidification heat exchanger 11 needs to be defrosted. If it is determined that the defrosting of the dehumidifying heat exchanger 11 is not necessary (No in step S106), the defrost determining means 61 returns to step S105. On the other hand, when the defrost determination means 61 determines that the defrost of the dehumidifying heat exchanger 11 is necessary (Yes in step S106), the process proceeds to step S107.
- step S107 the operation control means 64 communicates each electromagnetic so that the condenser 2 and the dehumidifying heat exchanger 11 communicate with each other, and the dehumidifying heat exchanger 11 and the expansion valve 9 communicate with each other. Open and close the valve. Specifically, the operation control means 64 closes the second solenoid valve 4, the fourth solenoid valve 6, and the fifth solenoid valve 7, the first solenoid valve 3, the third solenoid valve 5, The sixth solenoid valve 8 is opened.
- the refrigerant circuit configuration in the defrost mode is achieved by using the refrigerant flow path in the dehumidifying unit 40a as a flow path in which the refrigerant from the outdoor unit 30a flows to the cooling unit 50a through the dehumidifying heat exchanger 11. It becomes.
- the warm refrigerant after passing through the condenser 2 passes through the dehumidifying heat exchanger 11 and is heated, whereby defrosting of the dehumidifying heat exchanger 11 is realized.
- the defrost of the dehumidifying heat exchanger 11 causes frost or water droplets or the like adhering to the cooling surface of the dehumidifying heat exchanger 11 to fall.
- the dropped frost or water droplets are below the dehumidifying heat exchanger 11. It accommodates in the frost receiver 13 provided in the.
- step S108 the defrost determination means 61 determines whether the defrost of the dehumidifying heat exchanger 11 is completed (step S108). If it is determined that the defrosting of the dehumidifying heat exchanger 11 has not been completed (No in step S108), the defrost determination unit 61 executes step S108 again. On the other hand, when the defrost determination means 61 determines that the defrost of the dehumidifying heat exchanger 11 is completed (Yes in step S108), the operation control means 64 completes the defrosting of the dehumidifying heat exchanger 11 by the notification means 16. It is notified (step S109) and it returns to step S102.
- the worker who received the notification carries out the frost or water accumulated in the frost receiver 13 to the outside of the freezer warehouse. Further, the notification that the defrosting of the dehumidifying heat exchanger 11 has been completed is stopped by the worker who has received the notification. Further, the notification that the defrosting of the dehumidifying heat exchanger 11 has been completed may be omitted, and an operator who performs periodic inspection may carry out frost or water accumulated in the frost receiver 13 to the outside of the freezer warehouse. It may be.
- the operation control unit 64 changes the opening degree of the expansion valve 9 according to the determination result of the capability determination unit 63.
- the compressor 1, the condenser 2, the flow path switching unit, the dehumidifying heat exchanger 11, the expansion valve 9, and the cooler 10 are connected by piping.
- a refrigerant circuit, and the flow path switching means includes at least a first flow path in which the refrigerant condensed in the condenser 2 flows to the cooler 10 via the heat exchanger 11 for dehumidification, and cooling.
- the second flow path in which the refrigerant evaporated in the condenser 10 flows to the compressor 1 through the dehumidification heat exchanger 11, and the cooler in which the refrigerant condensed in the condenser 2 does not go through the dehumidification heat exchanger 11 10 is switched to any one of the third flow paths that flow to 10.
- the refrigeration system 100 controls the refrigerant flowing to the dehumidification heat exchanger 11 by opening and closing each solenoid valve that is a flow path switching unit, thereby dehumidifying and dehumidifying the dehumidification heat exchanger 11. Defrosting of the heat exchanger 11 is realized. Therefore, according to the refrigeration system 100 according to the first embodiment, it is possible to improve the operation efficiency without exhausting the humidified air to the outside.
- the refrigeration system 100 includes an outdoor unit 30a having the compressor 1 and the condenser 2, a cooling unit 50a having the cooler 10 and the expansion valve 9, and a heat exchanger 11 for dehumidification. And a dehumidifying unit 40a having a flow path switching means, and the outdoor unit 30a and the cooling unit 50a are connected by piping via the dehumidifying unit 40a.
- the dehumidifying unit 40a is unitized. Therefore, the dehumidifying function can be added to the existing refrigeration apparatus only by adding the dehumidifying unit 40a to the existing refrigeration apparatus.
- the dehumidifying unit 40a in the vicinity of the cooling unit 50a, an effect of reducing the frosting frequency on the cooler 10 can be obtained.
- the dehumidifying unit 40a in the vicinity of the entrance / exit of the refrigerated warehouse where outside air easily enters, an effect of positively dehumidifying the inside of the refrigerated warehouse can be obtained.
- Embodiment 2 of the present invention will be described, but the description overlapping with Embodiment 1 will be omitted, and the same reference numerals will be given to the same or corresponding parts as those in Embodiment 1.
- FIG. 7 is a schematic diagram illustrating the configuration of the refrigeration system 100a according to Embodiment 2 of the present invention.
- the configuration of the refrigeration system 100a according to the second embodiment will be described with reference to FIG.
- an example in which the refrigeration system 100a is applied to a refrigeration warehouse will be described.
- the refrigeration system 100a includes a compressor 1, a condenser 2, a flow path switching unit, a dehumidifying heat exchanger 11, a first expansion valve 9a, a cooler 10, and a second expansion valve 12.
- a refrigerant circuit connected by a refrigerant pipe is provided.
- the outdoor unit 30a, the dehumidification unit 40a, and the cooling unit 50a are provided, and the outdoor unit 30a and the cooling unit 50a are connected by refrigerant piping via the dehumidification unit 40a.
- the outdoor unit 30a has a compressor 1 and a condenser 2, which are connected by a refrigerant pipe.
- the dehumidifying unit 40a has a dehumidifying heat exchanger 11 and a flow path switching means.
- the flow path switching means is a plurality of flow path switching valves, and includes a first flow path switching valve 14 and a second flow path switching valve 15.
- the dehumidifying heat exchanger 11 One end of the dehumidifying heat exchanger 11 is connected to the second flow path switching valve 15 and a refrigerant pipe, and the other end of the dehumidifying heat exchanger 11 is connected to the first expansion valve 9a of the cooling unit 50a and the refrigerant pipe. It is connected.
- the first flow path switching valve 14 and the second flow path switching valve 15 are connected by a refrigerant pipe.
- the cooling unit 50a includes a first expansion valve 9a, a cooler 10, and a second expansion valve 12, and the first expansion valve 9a, the cooler 10, and the second expansion valve 12 are sequentially connected by a refrigerant pipe.
- the condenser 2 and the first flow path switching valve 14 are connected between the outdoor unit 30a and the dehumidifying unit 40a, and the suction side of the compressor 1 and the second flow path switching valve 15 are further connected. Yes. Further, the dehumidifying heat exchanger 11 and the first expansion valve 9a are connected between the dehumidifying unit 40a and the cooling unit 50a, and further, the second expansion valve 12 and the first flow path switching valve 14 are connected. Has been.
- the direction of the refrigerant passing through the cooler 10 is changed according to each mode of the refrigeration system 100a. Therefore, by providing the second expansion valve 12 between the first flow path switching valve 14 and the cooler 10 as shown in FIG.
- the refrigeration system 100a includes the control device 60a
- the functional blocks of the control device 60a are the same as those in FIG.
- FIG. 8 is a diagram showing a control flow during operation of the refrigeration system 100a according to Embodiment 2 of the present invention
- FIG. 9 shows refrigerant in the dehumidifying mode of the refrigeration system 100a according to Embodiment 2 of the present invention
- FIG. 10 is a diagram illustrating an example of the refrigerant flow when the refrigeration system 100a according to Embodiment 2 of the present invention is in the defrost mode. Note that the arrows in FIGS. 9 and 10 indicate the flow of the refrigerant.
- step S201 the operation control means 64 switches the first flow path switching valve 14 so that the condenser 2 and the second expansion valve 12 communicate with each other as shown in FIG. Further, the operation control means 64 switches the second flow path switching valve 15 so that the suction side of the compressor 1 and the dehumidifying heat exchanger 11 communicate with each other. Then, both the first expansion valve 9a and the second expansion valve 12 are throttled (step S202).
- the refrigerant flow path in the dehumidifying unit 40a is made a flow path in which the refrigerant from the cooling unit 50a flows to the outdoor unit 30a via the heat exchanger 11 for dehumidification, so that the refrigerant circuit configuration in the dehumidifying mode is achieved. It becomes.
- the first expansion valve 9a plays a role of adjusting the evaporation temperature of the refrigerant in the dehumidifying mode.
- step S203 the dehumidification determining means 62 determines whether the dehumidification in the freezer warehouse has been completed (step S203). When it is determined that the dehumidification in the refrigeration warehouse has been completed (Yes in step S203), the dehumidification determining unit 62 returns to step S202. On the other hand, when the dehumidification determining unit 62 determines that the dehumidification in the freezer warehouse has not been completed (No in step S203), the process proceeds to step S204.
- step S204 the defrost determination means 61 determines whether the defrost of the dehumidifying heat exchanger 11 is necessary. If it is determined that the defrosting of the dehumidifying heat exchanger 11 is not necessary (No in step S204), the defrost determination unit 61 returns to step S203. On the other hand, when the defrost determination means 61 determines that the defrost of the dehumidifying heat exchanger 11 is necessary (Yes in step S204), the process proceeds to step S205.
- step S205 the operation control means 64 causes the condenser 2 and the second flow path switching valve 15, and the second expansion valve 12 and the second flow path switching valve 15 to communicate with each other.
- the first flow path switching valve 14 is switched.
- the operation control means 64 includes the dehumidifying heat exchanger 11 and the first flow path switching valve 14, and the second flow path switching valve 15 so that the suction side of the compressor 1 and the first flow path switching valve 14 communicate with each other. Switch. Then, the first expansion valve 9a is throttled and the second expansion valve 12 is fully opened.
- the operation control means 64 is configured so that the condenser 2 and the dehumidifying heat exchanger 11 communicate with each other, and the second expansion valve 12 and the suction side of the compressor 1 communicate with each other. Each of the two flow path switching valves 15 is switched.
- the refrigerant circuit configuration in the defrost mode is achieved by using the refrigerant flow path in the dehumidifying unit 40a as a flow path in which the refrigerant from the outdoor unit 30a flows to the cooling unit 50a through the dehumidifying heat exchanger 11. It becomes.
- the warm refrigerant after passing through the condenser 2 passes through the dehumidifying heat exchanger 11 and is heated, whereby defrosting of the dehumidifying heat exchanger 11 is realized.
- the pressure of the warm refrigerant that has passed through the dehumidifying heat exchanger 11 with the first expansion valve 9a it is possible to cause the cold refrigerant to flow through the cooler 10.
- the refrigerant that has passed through the cooler 10 returns to the compressor 1 without being depressurized by the second expansion valve 12.
- step S206 the defrost determining means 61 determines whether or not the defrosting of the dehumidifying heat exchanger 11 is completed. If it is determined that the defrosting of the dehumidifying heat exchanger 11 has not been completed (No in step S206), the defrost determination unit 61 executes step S206 again. On the other hand, when the defrost determination means 61 determines that the defrost of the dehumidifying heat exchanger 11 is completed (Yes in step S206), the operation control means 64 completes the defrosting of the dehumidifying heat exchanger 11 by the notification means 16. It is notified (step S207) and it returns to step S202.
- the operation control means 64 changes the opening degrees of the first expansion valve 9a and the second expansion valve 12 according to the determination result of the capacity determination means 63.
- control device 60a has only the dehumidification mode and the defrost mode, and the flow path of the refrigerant in the dehumidification unit 40a from the outdoor unit 30a as in the first embodiment. There is no normal mode in which the refrigerant flows into the cooling unit 50a without going through the dehumidifying heat exchanger 11.
- the compressor 1, the condenser 2, the flow path switching unit, the heat exchanger 11 for dehumidification, the first expansion valve 9a, and the cooler 10 are refrigerants.
- a refrigerant circuit connected by piping is provided, and the flow path switching means is a first flow path in which at least the refrigerant condensed by the condenser 2 flows to the cooler 10 via the heat exchanger 11 for dehumidification.
- coolant evaporated by the cooler 10 switches to either the 2nd flow path which flows into the compressor 1 via the heat exchanger 11 for dehumidification.
- the refrigeration system 100a controls the refrigerant flowing into the dehumidification heat exchanger 11 by switching each flow path switching valve, which is a flow path switching unit, so that dehumidification and dehumidification by the dehumidification heat exchanger 11 are performed. Defrosting of the heat exchanger 11 for dehumidification is realized. Therefore, according to the refrigeration system 100a according to the second embodiment, it is possible to improve the operation efficiency without exhausting the humidified air outside the room.
- the refrigeration system 100a includes an outdoor unit 30a having the compressor 1 and the condenser 2, a cooling unit 50a having the cooler 10 and the first expansion valve 9a, and heat exchange for dehumidification.
- the outdoor unit 30a and the cooling unit 50a are connected to each other by a refrigerant pipe via the dehumidification unit 40a.
- the dehumidifying unit 40a is unitized as in the first embodiment. Therefore, the dehumidifying function can be added to the existing refrigeration apparatus only by adding the dehumidifying unit 40a to the existing refrigeration apparatus.
- the refrigeration system 100a according to Embodiment 2 includes two expansion valves, the first expansion valve 9a is connected to one end of the cooler 10, and the second expansion valve 12 is connected to the cooler 10. And the other end of the pipe. Therefore, the second expansion valve 12 plays a role of adjusting the evaporation temperature of the refrigerant in the dehumidifying mode, and can be positively frosted on the dehumidifying heat exchanger 11 by the second expansion valve 12.
- the dehumidifying unit 40a in the vicinity of the cooling unit 50a, an effect of reducing the frequency of frost formation on the cooler 10 can be obtained.
- the dehumidifying unit 40a in the vicinity of the entrance / exit of the refrigerated warehouse where outside air easily enters, an effect of positively dehumidifying the inside of the refrigerated warehouse can be obtained.
- the fourth electromagnetic valve 6 may be changed to an expansion valve.
- the expansion valve in the dehumidifying mode, plays a role of adjusting the evaporation temperature of the refrigerant, like the first expansion valve 9a in the second embodiment, and therefore the expansion valve is used for dehumidification.
- the heat exchanger 11 can be actively frosted.
- the second expansion valve 12 in the second embodiment may be provided in the refrigeration system 100a according to the first embodiment.
- the position where the second expansion valve 12 is provided is between the cooler 10 and the dehumidifying unit 40a, as in the second embodiment.
- the second expansion valve 12 plays a role of adjusting the evaporation temperature of the refrigerant, like the first expansion valve 9a in the second embodiment, in the dehumidifying mode. 12, the dehumidifying heat exchanger 11 can be actively frosted.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Devices That Are Associated With Refrigeration Equipment (AREA)
- Air Conditioning Control Device (AREA)
Abstract
This refrigeration system is provided with a refrigerant circuit in which a compressor, a condenser, a flow path switching means, a dehumidifying heat exchanger, an expansion valve, and a cooler are connected by piping. The flow path switching means switches the flow path of a refrigerant between at least a first flow path in which refrigerant condensed by the condenser flows through the dehumidifying heat exchanger to the cooler, and a second flow path in which refrigerant evaporated by the cooler flows through the dehumidifying heat exchanger to the compressor.
Description
本発明は、除湿機能を備えた冷凍システムに関するものである。
The present invention relates to a refrigeration system having a dehumidifying function.
従来、運転効率を向上させるため、デフロスト運転を不要としつつ、吸熱器の着霜を回避した空気調和装置が提案されている(例えば、特許文献1参照)。
Conventionally, in order to improve operation efficiency, an air conditioner that avoids defrosting and avoids frost formation on a heat absorber has been proposed (see, for example, Patent Document 1).
特許文献1に記載の空気調和装置では、除湿効果のある吸着剤を吸熱器の風上に配置することで冷却器の着霜を回避している。この空気調和装置は、例えば冷凍倉庫に適用されるものである。
In the air conditioner described in Patent Document 1, frosting of the cooler is avoided by disposing an adsorbent having a dehumidifying effect on the windward side of the heat absorber. This air conditioner is applied to, for example, a freezer warehouse.
特許文献1に記載の空気調和装置は、放熱器で加熱された空気を利用して、吸着剤から水分を脱着させており、その際に加湿された空気を冷凍倉庫外に排出する必要がある。しかしながら、冷凍倉庫への空気の出し入れは庫内温度が上昇するため運転効率の観点から望ましくない。
The air conditioning apparatus described in Patent Document 1 uses air heated by a radiator to desorb moisture from the adsorbent, and it is necessary to discharge the humidified air outside the freezer warehouse. . However, taking air into and out of the refrigerated warehouse is not desirable from the viewpoint of operating efficiency because the temperature inside the warehouse rises.
本発明は、以上のような課題を解決するためになされたもので、加湿された空気を室外に排出することなく、運転効率を向上させた冷凍システムを提供することを目的としている。
The present invention has been made to solve the above-described problems, and an object of the present invention is to provide a refrigeration system with improved operational efficiency without exhausting humidified air outside the room.
本発明に係る冷凍システムは、圧縮機、凝縮器、流路切替手段、除湿用熱交換器、膨張弁、および、冷却器が配管接続された冷媒回路を備え、前記流路切替手段は、冷媒の流路を、少なくとも、前記凝縮器で凝縮された冷媒が前記除湿用熱交換器を介して前記冷却器に流れる第一流路、および、前記冷却器で蒸発された冷媒が前記除湿用熱交換器を介して前記圧縮機に流れる第二流路、のいずれかに切り替えるものである。
A refrigeration system according to the present invention includes a refrigerant circuit in which a compressor, a condenser, a flow path switching unit, a heat exchanger for dehumidification, an expansion valve, and a cooler are connected by piping, and the flow path switching unit includes a refrigerant A first flow path in which at least the refrigerant condensed in the condenser flows to the cooler through the dehumidifying heat exchanger, and the refrigerant evaporated in the cooler is in the dehumidifying heat exchange It switches to either of the 2nd flow paths which flow into the above-mentioned compressor via a vessel.
本発明に係る冷凍システムによれば、加湿された空気を室外に排出することなく、運転効率を向上させることができる。
According to the refrigeration system according to the present invention, it is possible to improve the operation efficiency without exhausting humidified air to the outside.
以下、本発明の実施の形態を図面に基づいて説明する。なお、以下に説明する実施の形態によって本発明が限定されるものではない。また、以下の図面では各構成部材の大きさの関係が実際のものとは異なる場合がある。
Hereinafter, embodiments of the present invention will be described with reference to the drawings. The present invention is not limited to the embodiments described below. Moreover, in the following drawings, the relationship of the size of each component may be different from the actual one.
実施の形態1.
図1は、本発明の実施の形態1に係る冷凍システム100の構成を説明する概略図である。
以下、図1を用いて本実施の形態1に係る冷凍システム100の構成について説明する。なお、本実施の形態1では、冷凍システム100を冷凍倉庫に適用した例について説明する。Embodiment 1 FIG.
FIG. 1 is a schematic diagram illustrating a configuration of arefrigeration system 100 according to Embodiment 1 of the present invention.
Hereinafter, the configuration of therefrigeration system 100 according to the first embodiment will be described with reference to FIG. In the first embodiment, an example in which the refrigeration system 100 is applied to a refrigeration warehouse will be described.
図1は、本発明の実施の形態1に係る冷凍システム100の構成を説明する概略図である。
以下、図1を用いて本実施の形態1に係る冷凍システム100の構成について説明する。なお、本実施の形態1では、冷凍システム100を冷凍倉庫に適用した例について説明する。
FIG. 1 is a schematic diagram illustrating a configuration of a
Hereinafter, the configuration of the
(機器構成)
本実施の形態1に係る冷凍システム100は、圧縮機1、凝縮器2、流路切替手段、除湿用熱交換器11、膨張弁9、および、冷却器10が冷媒配管で接続された冷媒回路を備えている。また、室外ユニット30aと、除湿ユニット40aと、冷却ユニット50aとを備え、室外ユニット30aと冷却ユニット50aとは除湿ユニット40aを介して冷媒配管で接続されている。 (Equipment configuration)
Arefrigeration system 100 according to Embodiment 1 includes a refrigerant circuit in which a compressor 1, a condenser 2, a flow path switching unit, a heat exchanger 11 for dehumidification, an expansion valve 9, and a cooler 10 are connected by a refrigerant pipe. It has. Moreover, the outdoor unit 30a, the dehumidification unit 40a, and the cooling unit 50a are provided, and the outdoor unit 30a and the cooling unit 50a are connected by refrigerant piping via the dehumidification unit 40a.
本実施の形態1に係る冷凍システム100は、圧縮機1、凝縮器2、流路切替手段、除湿用熱交換器11、膨張弁9、および、冷却器10が冷媒配管で接続された冷媒回路を備えている。また、室外ユニット30aと、除湿ユニット40aと、冷却ユニット50aとを備え、室外ユニット30aと冷却ユニット50aとは除湿ユニット40aを介して冷媒配管で接続されている。 (Equipment configuration)
A
室外ユニット30aは、圧縮機1と凝縮器2とを有し、それらが冷媒配管で接続されている。除湿ユニット40aは、除湿用熱交換器11と流路切替手段とを有している。本実施の形態1において、流路切替手段は、複数の電磁弁であり、第一電磁弁3、第二電磁弁4、第三電磁弁5、第四電磁弁6、第五電磁弁7、および、第六電磁弁8で構成されている。
The outdoor unit 30a has a compressor 1 and a condenser 2, which are connected by a refrigerant pipe. The dehumidifying unit 40a has a dehumidifying heat exchanger 11 and a flow path switching means. In the first embodiment, the flow path switching means is a plurality of solenoid valves, and the first solenoid valve 3, the second solenoid valve 4, the third solenoid valve 5, the fourth solenoid valve 6, the fifth solenoid valve 7, And it comprises the sixth solenoid valve 8.
除湿用熱交換器11は、例えば冷媒配管と金属板とで構成されている。冷媒配管と金属板とは、例えば溶接または圧着(かしめ)によって接合されている。除湿用熱交換器11の冷媒配管に冷媒が流れることで、その冷媒と空気とが熱交換を行い、冷媒が冷却または加熱され、除湿用熱交換器11自体も冷却または加熱される。除湿用熱交換器11は、冷却面が縦向きとなっており、つまり冷却面が鉛直方向を向いており、冷却面に付着した霜または水滴などが落下しやすくなっている。
The dehumidifying heat exchanger 11 is composed of, for example, a refrigerant pipe and a metal plate. The refrigerant pipe and the metal plate are joined, for example, by welding or pressure bonding (caulking). When the refrigerant flows through the refrigerant pipe of the dehumidifying heat exchanger 11, the refrigerant and air exchange heat, the refrigerant is cooled or heated, and the dehumidifying heat exchanger 11 itself is also cooled or heated. In the dehumidifying heat exchanger 11, the cooling surface is oriented vertically, that is, the cooling surface is oriented in the vertical direction, and frost or water droplets adhering to the cooling surface are likely to fall.
また、除湿用熱交換器11の下方には、除湿用熱交換器11から落下した霜または水滴などを受ける霜受容器13が設けられている。霜受容器13は、霜または水滴などを収容する容器である。霜受容器13は、例えば除湿ユニット40aの内部の着脱が容易な位置に設けられている。なお、霜受容器13は、除湿ユニット40aの内部ではなく外部に設けられていてもよく、除湿ユニット40aの外部に設けられることで、作業者が霜受容器13に溜まった霜または水滴などを冷凍倉庫の外部に運び出すことが容易となる。
Further, below the dehumidifying heat exchanger 11, there is provided a frost receiver 13 for receiving frost or water droplets dropped from the dehumidifying heat exchanger 11. The frost receiver 13 is a container for storing frost or water droplets. The frost receiver 13 is provided, for example, in a position where the inside of the dehumidifying unit 40a can be easily attached and detached. The frost acceptor 13 may be provided outside the dehumidifying unit 40a, and the frost acceptor 13 is provided outside the dehumidifying unit 40a. It becomes easy to carry out of the freezer warehouse.
本実施の形態1に係る冷凍システム100は、例えば除湿用熱交換器11のデフロストが完了した後に、音または表示などによる報知手段16(後述する図2参照)によって、除湿用熱交換器11のデフロストが完了した旨を報知するようになっている。そして、報知手段16により除湿用熱交換器11のデフロストが完了した旨が報知されたら、報知を受けた作業者が、霜受容器13に溜まった霜または水などを、冷凍倉庫の外部に運び出す。なお、報知手段16は、例えばブザー、スピーカー、LED、表示画面などである。
In the refrigeration system 100 according to the first embodiment, for example, after the defrosting of the dehumidifying heat exchanger 11 is completed, the notification means 16 (see FIG. 2 to be described later) by sound or display or the like is used. The fact that the defrost has been completed is notified. When the notification means 16 notifies that the defrosting of the dehumidifying heat exchanger 11 has been completed, the worker who has received the notification carries out the frost or water accumulated in the frost receiver 13 to the outside of the freezer warehouse. . The notification unit 16 is, for example, a buzzer, a speaker, an LED, a display screen, or the like.
上記の構成により、従来では必要であったドレイン配管工事、配管凍結防止のヒータ、および、断熱材加工が不要となり、省工事性を実現することができる。
With the above configuration, drain piping work, heaters for preventing pipe freezing, and heat insulating material processing, which were conventionally required, are no longer necessary, and construction efficiency can be realized.
なお、除湿用熱交換器11については、フィンチューブを用いたものも想定される。その場合、フィンピッチを冷却器10よりも広く形成することにより、除湿用熱交換器11に着霜させる着霜量を多くすることができ、除湿用熱交換器11の除霜を短時間で実行することができる。
In addition, about the heat exchanger 11 for dehumidification, the thing using a fin tube is also assumed. In that case, by forming the fin pitch wider than the cooler 10, it is possible to increase the amount of frost formed on the dehumidifying heat exchanger 11, and to defrost the dehumidifying heat exchanger 11 in a short time. Can be executed.
除湿用熱交換器11の一端は、第一電磁弁3の一端および第二電磁弁4の一端とそれぞれ冷媒配管で接続されており、除湿用熱交換器11の他端は、第三電磁弁5の一端および第四電磁弁6の一端とそれぞれ冷媒配管で接続されている。
One end of the dehumidifying heat exchanger 11 is connected to one end of the first electromagnetic valve 3 and one end of the second electromagnetic valve 4 through refrigerant pipes, and the other end of the dehumidifying heat exchanger 11 is connected to the third electromagnetic valve. 5 and one end of the fourth electromagnetic valve 6 are connected to each other by refrigerant piping.
また、第五電磁弁7の一端は第一電磁弁3の他端と冷媒配管で接続されており、第五電磁弁7の他端は第三電磁弁5の他端と冷媒配管で接続されている。また、第六電磁弁8の一端は第二電磁弁4の他端と冷媒配管で接続されており、第四電磁弁6の他端は第四電磁弁6の他端と冷媒配管で接続されている。冷却ユニット50aは、膨張弁9と冷却器10とを有し、それらが冷媒配管で接続されている。
One end of the fifth solenoid valve 7 is connected to the other end of the first solenoid valve 3 by a refrigerant pipe, and the other end of the fifth solenoid valve 7 is connected to the other end of the third solenoid valve 5 by a refrigerant pipe. ing. One end of the sixth solenoid valve 8 is connected to the other end of the second solenoid valve 4 by a refrigerant pipe, and the other end of the fourth solenoid valve 6 is connected to the other end of the fourth solenoid valve 6 by a refrigerant pipe. ing. The cooling unit 50a has an expansion valve 9 and a cooler 10, which are connected by a refrigerant pipe.
室外ユニット30aと除湿ユニット40aとの間は、凝縮器2と、第一電磁弁3および第五電磁弁7とが接続されており、さらに、圧縮機1の吸入側と、第二電磁弁4および第六電磁弁8とが接続されている。また、除湿ユニット40aと冷却ユニット50aとの間は、第三電磁弁5および第五電磁弁7と、膨張弁9とが接続されており、さらに、冷却器10と、第四電磁弁6および第六電磁弁8とが接続されている。
A condenser 2, a first electromagnetic valve 3 and a fifth electromagnetic valve 7 are connected between the outdoor unit 30a and the dehumidifying unit 40a, and the suction side of the compressor 1 and the second electromagnetic valve 4 are connected. And the 6th solenoid valve 8 is connected. Further, the third electromagnetic valve 5, the fifth electromagnetic valve 7 and the expansion valve 9 are connected between the dehumidifying unit 40a and the cooling unit 50a, and further, the cooler 10, the fourth electromagnetic valve 6 and A sixth electromagnetic valve 8 is connected.
図2は、本発明の実施の形態1に係る冷凍システム100の制御装置60aの機能ブロック図である。
本実施の形態1に係る冷凍システム100は、制御装置60aと、除湿用熱交換器11の温度を検知するセンサ70と、冷凍システム100の遠隔操作を行うリモコン71と、制御装置60a内外に設けられ冷凍システム100の操作を行うスイッチ72とを備えている。 FIG. 2 is a functional block diagram of thecontrol device 60a of the refrigeration system 100 according to Embodiment 1 of the present invention.
Therefrigeration system 100 according to the first embodiment is provided inside and outside the control device 60a, a sensor 70 that detects the temperature of the dehumidifying heat exchanger 11, a remote controller 71 that remotely controls the refrigeration system 100, and the control device 60a. And a switch 72 for operating the refrigeration system 100.
本実施の形態1に係る冷凍システム100は、制御装置60aと、除湿用熱交換器11の温度を検知するセンサ70と、冷凍システム100の遠隔操作を行うリモコン71と、制御装置60a内外に設けられ冷凍システム100の操作を行うスイッチ72とを備えている。 FIG. 2 is a functional block diagram of the
The
制御装置60aは、通常モード、除湿モード、および、デフロストモードを有し、各モードに応じて流路切替手段などを制御する。また、制御装置60aは、デフロスト判定手段61と、除湿判定手段62と、能力判定手段63と、運転制御手段64とを備えている。
The control device 60a has a normal mode, a dehumidification mode, and a defrost mode, and controls the flow path switching means and the like according to each mode. The control device 60 a includes a defrost determination unit 61, a dehumidification determination unit 62, a capability determination unit 63, and an operation control unit 64.
デフロスト判定手段61は、運転中にセンサ70、リモコン71、スイッチ72などから情報を取得し、除湿用熱交換器11のデフロスト要否を判定する。なお、除湿用熱交換器11のデフロスト要否の判定方法としては、除湿用熱交換器11の着霜状態を検知できる方法であればどのような方法を採用してもよい。
The defrost determination unit 61 acquires information from the sensor 70, the remote controller 71, the switch 72, and the like during operation, and determines whether or not the dehumidification heat exchanger 11 is necessary. In addition, as a method for determining whether or not the defrosting heat exchanger 11 needs to be defrosted, any method may be adopted as long as it can detect the frosting state of the dehumidifying heat exchanger 11.
例えばデフロスト判定手段61は、センサ70が検知した除湿用熱交換器11の温度があらかじめ設定された閾値以下であったら、除湿用熱交換器11が着霜しており、除湿用熱交換器11のデフロストが必要であると判定してもよい。また、デフロスト判定手段61は、リモコン71またはスイッチ72からのデフロスト指令があったら、除湿用熱交換器11が着霜しており、除湿用熱交換器11のデフロストが必要であると判定してもよい。なお、除湿用熱交換器11のデフロスト要否の判定方法については、公知技術を用いることができる。
For example, if the temperature of the dehumidifying heat exchanger 11 detected by the sensor 70 is equal to or lower than a preset threshold value, the defrost determining means 61 is frosted and the dehumidifying heat exchanger 11 It may be determined that defrosting is necessary. Further, when there is a defrost command from the remote controller 71 or the switch 72, the defrost determination means 61 determines that the dehumidifying heat exchanger 11 is frosted and the dehumidifying heat exchanger 11 needs to be defrosted. Also good. In addition, a well-known technique can be used about the determination method of the necessity of defrost of the heat exchanger 11 for dehumidification.
除湿判定手段62は、運転中にセンサ70、リモコン71、スイッチ72などから情報を取得し、冷凍倉庫内の除湿要否を判定する。冷凍倉庫内の除霜要否の判定方法は、冷凍倉庫内の湿度を検知できる方法であればどのような方法を採用してもよい。
The dehumidification determining means 62 acquires information from the sensor 70, the remote controller 71, the switch 72, etc. during operation, and determines whether or not dehumidification is necessary in the freezer warehouse. As a method for determining whether or not the defrosting is necessary in the freezer warehouse, any method may be adopted as long as the humidity in the freezer warehouse can be detected.
例えば除湿判定手段62は、センサ70が検知した除湿用熱交換器11の温度があらかじめ設定された閾値以上であったら、冷凍倉庫内の除湿が必要であると判定してもよい。また、除湿判定手段62は、リモコン71またはスイッチ72からの除湿指令があったら、冷凍倉庫内の除湿が必要であると判定してもよい。なお、冷凍倉庫内の除霜要否の判定方法については公知技術を用いることができる。
For example, the dehumidification determination means 62 may determine that dehumidification in the freezer warehouse is necessary if the temperature of the dehumidification heat exchanger 11 detected by the sensor 70 is equal to or higher than a preset threshold. Further, the dehumidification determining means 62 may determine that dehumidification in the refrigeration warehouse is necessary when there is a dehumidification command from the remote controller 71 or the switch 72. In addition, a well-known technique can be used about the determination method of the necessity for defrosting in a freezer warehouse.
能力判定手段63は、センサ70から取得した情報に基づいて、能力条件および能力限界条件が満たされるか否かを判定する。ここで、能力条件とは、室外ユニット30aの凝縮能力が冷却ユニット50aの必要蒸発能力を上回る条件のことである。
The capability determination unit 63 determines whether the capability condition and the capability limit condition are satisfied based on the information acquired from the sensor 70. Here, the capacity condition is a condition in which the condensation capacity of the outdoor unit 30a exceeds the required evaporation capacity of the cooling unit 50a.
運転制御手段64は、除湿ユニット40aおよび冷却ユニット50aの主な運転制御を行う。具体的には、各モード、または、デフロスト判定手段61、除湿判定手段62、および、能力判定手段63の各判定結果に応じて、流路切替手段、報知手段16、および、膨張弁9を制御する。また、運転制御手段64は、室外ユニット30aとの通信により、例えば冷却ユニット50aの冷却運転、冷却停止などを示す情報である運転情報を取得し、保持する。
The operation control means 64 performs main operation control of the dehumidifying unit 40a and the cooling unit 50a. Specifically, the flow path switching means, the notifying means 16 and the expansion valve 9 are controlled in accordance with the determination results of the respective modes or the defrost determination means 61, the dehumidification determination means 62, and the capacity determination means 63. To do. Further, the operation control means 64 acquires and holds operation information, which is information indicating, for example, cooling operation of the cooling unit 50a, cooling stop, and the like through communication with the outdoor unit 30a.
(動作)
図3は、本発明の実施の形態1に係る冷凍システム100の動作時の制御フローを示す図であり、図4は、本発明の実施の形態1に係る冷凍システム100の通常モード時における冷媒の流れの一例を示す図であり、図5は、本発明の実施の形態1に係る冷凍システム100の除湿モード時における冷媒の流れの一例を示す図であり、図6は、本発明の実施の形態1に係る冷凍システム100のデフロストモード時における冷媒の流れの一例を示す図である。なお、図4~図6中の矢印は、冷媒の流れを示している。 (Operation)
FIG. 3 is a diagram showing a control flow at the time of operation of therefrigeration system 100 according to Embodiment 1 of the present invention, and FIG. 4 is a refrigerant in the normal mode of the refrigeration system 100 according to Embodiment 1 of the present invention. 5 is a diagram illustrating an example of the flow of refrigerant, FIG. 5 is a diagram illustrating an example of the flow of refrigerant in the dehumidification mode of the refrigeration system 100 according to Embodiment 1 of the present invention, and FIG. 6 is a diagram illustrating the implementation of the present invention. It is a figure which shows an example of the flow of the refrigerant | coolant at the time of the defrost mode of the refrigerating system 100 which concerns on the form 1. The arrows in FIGS. 4 to 6 indicate the flow of the refrigerant.
図3は、本発明の実施の形態1に係る冷凍システム100の動作時の制御フローを示す図であり、図4は、本発明の実施の形態1に係る冷凍システム100の通常モード時における冷媒の流れの一例を示す図であり、図5は、本発明の実施の形態1に係る冷凍システム100の除湿モード時における冷媒の流れの一例を示す図であり、図6は、本発明の実施の形態1に係る冷凍システム100のデフロストモード時における冷媒の流れの一例を示す図である。なお、図4~図6中の矢印は、冷媒の流れを示している。 (Operation)
FIG. 3 is a diagram showing a control flow at the time of operation of the
以下、図3~図6を用いて本実施の形態1に係る冷凍システム100の制御フローについて説明する。
電源投入後(ステップS101)、運転制御手段64は、図4に示すように、凝縮器2と膨張弁9とが連通し、冷却器10と圧縮機1の吸入側とが連通するように、各電磁弁を開閉する。具体的には、運転制御手段64は、第一電磁弁3と、第二電磁弁4と、第三電磁弁5と、第四電磁弁6とを閉状態にし、第五電磁弁7と、第六電磁弁8とを開状態にする(ステップS102)。このように、除湿ユニット40a内の冷媒の流路を、室外ユニット30aからの冷媒が除湿用熱交換器11を介さずに冷却ユニット50aに流れる流路にすることで、通常モード時における冷媒回路構成となる。 Hereinafter, the control flow of therefrigeration system 100 according to the first embodiment will be described with reference to FIGS.
After turning on the power (step S101), the operation control means 64 is configured so that thecondenser 2 and the expansion valve 9 communicate with each other and the cooler 10 and the suction side of the compressor 1 communicate with each other as shown in FIG. Open and close each solenoid valve. Specifically, the operation control means 64 closes the first solenoid valve 3, the second solenoid valve 4, the third solenoid valve 5, and the fourth solenoid valve 6, and the fifth solenoid valve 7, The sixth solenoid valve 8 is opened (step S102). As described above, the refrigerant flow path in the dehumidifying unit 40a is changed to a flow path in which the refrigerant from the outdoor unit 30a flows to the cooling unit 50a without passing through the heat exchanger 11 for dehumidification. It becomes composition.
電源投入後(ステップS101)、運転制御手段64は、図4に示すように、凝縮器2と膨張弁9とが連通し、冷却器10と圧縮機1の吸入側とが連通するように、各電磁弁を開閉する。具体的には、運転制御手段64は、第一電磁弁3と、第二電磁弁4と、第三電磁弁5と、第四電磁弁6とを閉状態にし、第五電磁弁7と、第六電磁弁8とを開状態にする(ステップS102)。このように、除湿ユニット40a内の冷媒の流路を、室外ユニット30aからの冷媒が除湿用熱交換器11を介さずに冷却ユニット50aに流れる流路にすることで、通常モード時における冷媒回路構成となる。 Hereinafter, the control flow of the
After turning on the power (step S101), the operation control means 64 is configured so that the
ステップS102の後、除湿判定手段62は、冷凍倉庫内の除湿が必要であるかどうかを判定する(ステップS103)。除湿判定手段62は、冷凍倉庫内の除湿が必要ないと判定した場合(ステップS103のNo)、再度ステップS103を実行する。一方、除湿判定手段62は、冷凍倉庫内の除湿が必要であると判定した場合(ステップS103のYes)、ステップS104に進む。
After step S102, the dehumidification determining means 62 determines whether dehumidification in the freezer warehouse is necessary (step S103). If it is determined that dehumidification in the refrigerated warehouse is not necessary (No in step S103), the dehumidification determining unit 62 executes step S103 again. On the other hand, when the dehumidification determining unit 62 determines that dehumidification in the refrigerated warehouse is necessary (Yes in step S103), the process proceeds to step S104.
ステップS104において、運転制御手段64は、図5に示すように、冷却器10と除湿用熱交換器11とが連通し、除湿用熱交換器11と圧縮機1の吸入側とが連通するように、各電磁弁を開閉する。具体的には、運転制御手段64は、第一電磁弁3と、第三電磁弁5と、第六電磁弁8とを閉状態にし、第二電磁弁4と、第四電磁弁6と、第五電磁弁7とを開状態にする。このように、除湿ユニット40a内の冷媒の流路を、冷却ユニット50aからの冷媒が除湿用熱交換器11を介して室外ユニット30aに流れる流路にすることで、除湿モード時における冷媒回路構成となる。この冷媒回路構成により、冷却器10を通った後の冷たい冷媒が除湿用熱交換器11を通り、冷却することで除湿用熱交換器11への着霜を促し、冷凍倉庫内の除湿を実現する。
In step S104, as shown in FIG. 5, the operation control means 64 causes the cooler 10 and the dehumidifying heat exchanger 11 to communicate with each other, and the dehumidifying heat exchanger 11 and the suction side of the compressor 1 to communicate with each other. In addition, each solenoid valve is opened and closed. Specifically, the operation control means 64 closes the first solenoid valve 3, the third solenoid valve 5, and the sixth solenoid valve 8, the second solenoid valve 4, the fourth solenoid valve 6, The fifth solenoid valve 7 is opened. In this way, the refrigerant flow path in the dehumidifying unit 40a is made a flow path in which the refrigerant from the cooling unit 50a flows to the outdoor unit 30a via the heat exchanger 11 for dehumidification, so that the refrigerant circuit configuration in the dehumidifying mode is achieved. It becomes. With this refrigerant circuit configuration, the cold refrigerant after passing through the cooler 10 passes through the dehumidification heat exchanger 11 and is cooled to promote frost formation on the dehumidification heat exchanger 11, thereby realizing dehumidification in the refrigeration warehouse. To do.
ステップS104の後、除湿判定手段62は、冷凍倉庫内の除湿が完了したかどうかを判定する(ステップS105)。除湿判定手段62は、冷凍倉庫内の除湿が完了したと判定した場合(ステップS105のYes)、ステップS102に戻る。一方、除湿判定手段62は、冷凍倉庫内の除湿が完了していないと判定した場合(ステップS105のNo)、ステップS106に進む。
After step S104, the dehumidification determining means 62 determines whether the dehumidification in the freezer warehouse has been completed (step S105). If it is determined that the dehumidification in the refrigerated warehouse has been completed (Yes in step S105), the dehumidification determining means 62 returns to step S102. On the other hand, when the dehumidification determining unit 62 determines that the dehumidification in the freezer warehouse is not completed (No in step S105), the process proceeds to step S106.
ステップS106において、デフロスト判定手段61は、除湿用熱交換器11のデフロストが必要であるかどうかを判定する。デフロスト判定手段61は、除湿用熱交換器11のデフロストが必要ないと判定した場合(ステップS106のNo)、ステップS105に戻る。一方、デフロスト判定手段61は、除湿用熱交換器11のデフロストが必要であると判定した場合(ステップS106のYes)、ステップS107に進む。
In step S106, the defrost determination means 61 determines whether or not the dehumidification heat exchanger 11 needs to be defrosted. If it is determined that the defrosting of the dehumidifying heat exchanger 11 is not necessary (No in step S106), the defrost determining means 61 returns to step S105. On the other hand, when the defrost determination means 61 determines that the defrost of the dehumidifying heat exchanger 11 is necessary (Yes in step S106), the process proceeds to step S107.
ステップS107において、運転制御手段64は、図6に示すように、凝縮器2と除湿用熱交換器11とが連通し、除湿用熱交換器11と膨張弁9とが連通するように各電磁弁を開閉する。具体的には、運転制御手段64は、第二電磁弁4と、第四電磁弁6と、第五電磁弁7とを閉状態にし、第一電磁弁3と、第三電磁弁5と、第六電磁弁8とを開状態にする。このように、除湿ユニット40a内の冷媒の流路を、室外ユニット30aからの冷媒が除湿用熱交換器11を介して冷却ユニット50aに流れる流路にすることで、デフロストモード時における冷媒回路構成となる。この冷媒回路構成により、凝縮器2を通った後の温かい冷媒が除湿用熱交換器11を通り、加熱することで除湿用熱交換器11のデフロストを実現する。
In step S107, as shown in FIG. 6, the operation control means 64 communicates each electromagnetic so that the condenser 2 and the dehumidifying heat exchanger 11 communicate with each other, and the dehumidifying heat exchanger 11 and the expansion valve 9 communicate with each other. Open and close the valve. Specifically, the operation control means 64 closes the second solenoid valve 4, the fourth solenoid valve 6, and the fifth solenoid valve 7, the first solenoid valve 3, the third solenoid valve 5, The sixth solenoid valve 8 is opened. Thus, the refrigerant circuit configuration in the defrost mode is achieved by using the refrigerant flow path in the dehumidifying unit 40a as a flow path in which the refrigerant from the outdoor unit 30a flows to the cooling unit 50a through the dehumidifying heat exchanger 11. It becomes. With this refrigerant circuit configuration, the warm refrigerant after passing through the condenser 2 passes through the dehumidifying heat exchanger 11 and is heated, whereby defrosting of the dehumidifying heat exchanger 11 is realized.
なお、除湿用熱交換器11のデフロストにより、除湿用熱交換器11の冷却面に付着した霜または水滴などが落下するが、その落下した霜または水滴などは、除湿用熱交換器11の下方に設けられた霜受容器13に収容される。
The defrost of the dehumidifying heat exchanger 11 causes frost or water droplets or the like adhering to the cooling surface of the dehumidifying heat exchanger 11 to fall. The dropped frost or water droplets are below the dehumidifying heat exchanger 11. It accommodates in the frost receiver 13 provided in the.
ステップS107の後、デフロスト判定手段61は、除湿用熱交換器11のデフロストが完了したかどうかを判定する(ステップS108)。デフロスト判定手段61は、除湿用熱交換器11のデフロストが完了していないと判定した場合(ステップS108のNo)、再度ステップS108を実行する。一方、デフロスト判定手段61は、除湿用熱交換器11のデフロストが完了したと判定した場合(ステップS108のYes)、運転制御手段64は、報知手段16により除湿用熱交換器11のデフロストが完了した旨を報知し(ステップS109)、ステップS102に戻る。
After step S107, the defrost determination means 61 determines whether the defrost of the dehumidifying heat exchanger 11 is completed (step S108). If it is determined that the defrosting of the dehumidifying heat exchanger 11 has not been completed (No in step S108), the defrost determination unit 61 executes step S108 again. On the other hand, when the defrost determination means 61 determines that the defrost of the dehumidifying heat exchanger 11 is completed (Yes in step S108), the operation control means 64 completes the defrosting of the dehumidifying heat exchanger 11 by the notification means 16. It is notified (step S109) and it returns to step S102.
なお、報知を受けた作業者は、霜受容器13に溜まった霜または水などを冷凍倉庫の外部に運び出す。また、除湿用熱交換器11のデフロストが完了した旨の報知は、報知を受けた作業者が報知を止めるようになっている。また、除湿用熱交換器11のデフロストが完了した旨の報知は省略されてもよく、定期点検を行う作業者が、霜受容器13に溜まった霜または水などを冷凍倉庫の外部に運び出すようにしてもよい。
In addition, the worker who received the notification carries out the frost or water accumulated in the frost receiver 13 to the outside of the freezer warehouse. Further, the notification that the defrosting of the dehumidifying heat exchanger 11 has been completed is stopped by the worker who has received the notification. Further, the notification that the defrosting of the dehumidifying heat exchanger 11 has been completed may be omitted, and an operator who performs periodic inspection may carry out frost or water accumulated in the frost receiver 13 to the outside of the freezer warehouse. It may be.
また、運転制御手段64は、能力判定手段63の判定結果に応じて膨張弁9の開度を変化させる。
Further, the operation control unit 64 changes the opening degree of the expansion valve 9 according to the determination result of the capability determination unit 63.
以上のように、本実施の形態1に係る冷凍システム100は、圧縮機1、凝縮器2、流路切替手段、除湿用熱交換器11、膨張弁9、および、冷却器10が配管接続された冷媒回路を備え、流路切替手段は、冷媒の流路を、少なくとも、凝縮器2で凝縮された冷媒が除湿用熱交換器11を介して冷却器10に流れる第一流路、および、冷却器10で蒸発された冷媒が除湿用熱交換器11を介して圧縮機1に流れる第二流路、および、凝縮器2で凝縮された冷媒が除湿用熱交換器11を介さずに冷却器10に流れる第三流路、のいずれかに切り替えるものである。
As described above, in the refrigeration system 100 according to the first embodiment, the compressor 1, the condenser 2, the flow path switching unit, the dehumidifying heat exchanger 11, the expansion valve 9, and the cooler 10 are connected by piping. A refrigerant circuit, and the flow path switching means includes at least a first flow path in which the refrigerant condensed in the condenser 2 flows to the cooler 10 via the heat exchanger 11 for dehumidification, and cooling. The second flow path in which the refrigerant evaporated in the condenser 10 flows to the compressor 1 through the dehumidification heat exchanger 11, and the cooler in which the refrigerant condensed in the condenser 2 does not go through the dehumidification heat exchanger 11 10 is switched to any one of the third flow paths that flow to 10.
本実施の形態1に係る冷凍システム100は、流路切替手段である各電磁弁の開閉により除湿用熱交換器11に流れる冷媒を制御することで、除湿用熱交換器11による除湿および除湿用熱交換器11のデフロストを実現している。そのため、本実施の形態1に係る冷凍システム100によれば、加湿された空気を室外に排出することなく、運転効率を向上させることができる。
The refrigeration system 100 according to the first embodiment controls the refrigerant flowing to the dehumidification heat exchanger 11 by opening and closing each solenoid valve that is a flow path switching unit, thereby dehumidifying and dehumidifying the dehumidification heat exchanger 11. Defrosting of the heat exchanger 11 is realized. Therefore, according to the refrigeration system 100 according to the first embodiment, it is possible to improve the operation efficiency without exhausting the humidified air to the outside.
また、本実施の形態1に係る冷凍システム100は、圧縮機1と凝縮器2とを有する室外ユニット30aと、冷却器10と膨張弁9とを有する冷却ユニット50aと、除湿用熱交換器11と流路切替手段とを有する除湿ユニット40aと、を備え、室外ユニット30aと冷却ユニット50aとは除湿ユニット40aを介して配管接続されているものである。
Further, the refrigeration system 100 according to the first embodiment includes an outdoor unit 30a having the compressor 1 and the condenser 2, a cooling unit 50a having the cooler 10 and the expansion valve 9, and a heat exchanger 11 for dehumidification. And a dehumidifying unit 40a having a flow path switching means, and the outdoor unit 30a and the cooling unit 50a are connected by piping via the dehumidifying unit 40a.
本実施の形態1に係る冷凍システム100は、除湿ユニット40aがユニット化されている。そのため、既存の冷凍装置に除湿ユニット40aを追加するのみで、その既存の冷凍装置に除湿機能を追加することができる。
In the refrigeration system 100 according to the first embodiment, the dehumidifying unit 40a is unitized. Therefore, the dehumidifying function can be added to the existing refrigeration apparatus only by adding the dehumidifying unit 40a to the existing refrigeration apparatus.
また、除湿ユニット40aを冷却ユニット50a付近に配置することで、冷却器10への着霜頻度を減らす効果が得られる。もしくは、除湿ユニット40aを外気が侵入しやすい冷凍倉庫の出入口付近に配置することで、冷凍倉庫内が積極的に除湿される効果が得られる。
Further, by arranging the dehumidifying unit 40a in the vicinity of the cooling unit 50a, an effect of reducing the frosting frequency on the cooler 10 can be obtained. Alternatively, by arranging the dehumidifying unit 40a in the vicinity of the entrance / exit of the refrigerated warehouse where outside air easily enters, an effect of positively dehumidifying the inside of the refrigerated warehouse can be obtained.
実施の形態2.
以下、本発明の実施の形態2について説明するが、実施の形態1と重複するものについては説明を省略し、実施の形態1と同じ部分または相当する部分には同じ符号を付す。Embodiment 2. FIG.
Hereinafter,Embodiment 2 of the present invention will be described, but the description overlapping with Embodiment 1 will be omitted, and the same reference numerals will be given to the same or corresponding parts as those in Embodiment 1.
以下、本発明の実施の形態2について説明するが、実施の形態1と重複するものについては説明を省略し、実施の形態1と同じ部分または相当する部分には同じ符号を付す。
Hereinafter,
図7は、本発明の実施の形態2に係る冷凍システム100aの構成を説明する概略図である。
以下、図7を用いて本実施の形態2に係る冷凍システム100aの構成について説明する。なお、本実施の形態2では、冷凍システム100aを冷凍倉庫に適用した例について説明する。 FIG. 7 is a schematic diagram illustrating the configuration of therefrigeration system 100a according to Embodiment 2 of the present invention.
Hereinafter, the configuration of therefrigeration system 100a according to the second embodiment will be described with reference to FIG. In the second embodiment, an example in which the refrigeration system 100a is applied to a refrigeration warehouse will be described.
以下、図7を用いて本実施の形態2に係る冷凍システム100aの構成について説明する。なお、本実施の形態2では、冷凍システム100aを冷凍倉庫に適用した例について説明する。 FIG. 7 is a schematic diagram illustrating the configuration of the
Hereinafter, the configuration of the
(機器構成)
本実施の形態2に係る冷凍システム100aは、圧縮機1、凝縮器2、流路切替手段、除湿用熱交換器11、第一膨張弁9a、冷却器10、および、第二膨張弁12が冷媒配管で接続された冷媒回路を備えている。また、室外ユニット30aと、除湿ユニット40aと、冷却ユニット50aとを備え、室外ユニット30aと冷却ユニット50aとは除湿ユニット40aを介して冷媒配管で接続されている。 (Equipment configuration)
Therefrigeration system 100a according to Embodiment 2 includes a compressor 1, a condenser 2, a flow path switching unit, a dehumidifying heat exchanger 11, a first expansion valve 9a, a cooler 10, and a second expansion valve 12. A refrigerant circuit connected by a refrigerant pipe is provided. Moreover, the outdoor unit 30a, the dehumidification unit 40a, and the cooling unit 50a are provided, and the outdoor unit 30a and the cooling unit 50a are connected by refrigerant piping via the dehumidification unit 40a.
本実施の形態2に係る冷凍システム100aは、圧縮機1、凝縮器2、流路切替手段、除湿用熱交換器11、第一膨張弁9a、冷却器10、および、第二膨張弁12が冷媒配管で接続された冷媒回路を備えている。また、室外ユニット30aと、除湿ユニット40aと、冷却ユニット50aとを備え、室外ユニット30aと冷却ユニット50aとは除湿ユニット40aを介して冷媒配管で接続されている。 (Equipment configuration)
The
室外ユニット30aは、圧縮機1と凝縮器2とを有し、それらが冷媒配管で接続されている。除湿ユニット40aは、除湿用熱交換器11と流路切替手段とを有している。本実施の形態2において、流路切替手段は、複数の流路切替弁であり、第一流路切替弁14および第二流路切替弁15で構成されている。
The outdoor unit 30a has a compressor 1 and a condenser 2, which are connected by a refrigerant pipe. The dehumidifying unit 40a has a dehumidifying heat exchanger 11 and a flow path switching means. In the second embodiment, the flow path switching means is a plurality of flow path switching valves, and includes a first flow path switching valve 14 and a second flow path switching valve 15.
除湿用熱交換器11の一端は、第二流路切替弁15と冷媒配管で接続されており、除湿用熱交換器11の他端は、冷却ユニット50aの第一膨張弁9aと冷媒配管で接続されている。また、第一流路切替弁14と第二流路切替弁15とが冷媒配管で接続されている。冷却ユニット50aは、第一膨張弁9aと冷却器10と第二膨張弁12とを有し、第一膨張弁9a、冷却器10、第二膨張弁12が冷媒配管で順次接続されている。
One end of the dehumidifying heat exchanger 11 is connected to the second flow path switching valve 15 and a refrigerant pipe, and the other end of the dehumidifying heat exchanger 11 is connected to the first expansion valve 9a of the cooling unit 50a and the refrigerant pipe. It is connected. The first flow path switching valve 14 and the second flow path switching valve 15 are connected by a refrigerant pipe. The cooling unit 50a includes a first expansion valve 9a, a cooler 10, and a second expansion valve 12, and the first expansion valve 9a, the cooler 10, and the second expansion valve 12 are sequentially connected by a refrigerant pipe.
室外ユニット30aと除湿ユニット40aとの間は、凝縮器2と第一流路切替弁14とが接続されており、さらに、圧縮機1の吸入側と第二流路切替弁15とが接続されている。また、除湿ユニット40aと冷却ユニット50aとの間は、除湿用熱交換器11と第一膨張弁9aとが接続されており、さらに、第二膨張弁12と第一流路切替弁14とが接続されている。
The condenser 2 and the first flow path switching valve 14 are connected between the outdoor unit 30a and the dehumidifying unit 40a, and the suction side of the compressor 1 and the second flow path switching valve 15 are further connected. Yes. Further, the dehumidifying heat exchanger 11 and the first expansion valve 9a are connected between the dehumidifying unit 40a and the cooling unit 50a, and further, the second expansion valve 12 and the first flow path switching valve 14 are connected. Has been.
なお、本実施の形態2では、流路切替手段による冷媒制御を行うため、冷凍システム100aの各モードに応じて冷却器10を通る冷媒方向が変わる。そこで、図7に示すように第一流路切替弁14と冷却器10との間に第二膨張弁12を設けることで、どちらの冷媒方向にも対応可能となる。
In the second embodiment, since the refrigerant is controlled by the flow path switching unit, the direction of the refrigerant passing through the cooler 10 is changed according to each mode of the refrigeration system 100a. Therefore, by providing the second expansion valve 12 between the first flow path switching valve 14 and the cooler 10 as shown in FIG.
本実施の形態2に係る冷凍システム100aは、制御装置60aを備えているが、制御装置60aの機能ブロックは、実施の形態1で説明した図2と同様であるため、説明を省略する。
Although the refrigeration system 100a according to the second embodiment includes the control device 60a, the functional blocks of the control device 60a are the same as those in FIG.
(動作)
図8は、本発明の実施の形態2に係る冷凍システム100aの動作時の制御フローを示す図であり、図9は、本発明の実施の形態2に係る冷凍システム100aの除湿モード時における冷媒の流れの一例を示す図であり、図10は、本発明の実施の形態2に係る冷凍システム100aのデフロストモード時における冷媒の流れの一例を示す図である。なお、図9および図10中の矢印は、冷媒の流れを示している。 (Operation)
FIG. 8 is a diagram showing a control flow during operation of therefrigeration system 100a according to Embodiment 2 of the present invention, and FIG. 9 shows refrigerant in the dehumidifying mode of the refrigeration system 100a according to Embodiment 2 of the present invention. FIG. 10 is a diagram illustrating an example of the refrigerant flow when the refrigeration system 100a according to Embodiment 2 of the present invention is in the defrost mode. Note that the arrows in FIGS. 9 and 10 indicate the flow of the refrigerant.
図8は、本発明の実施の形態2に係る冷凍システム100aの動作時の制御フローを示す図であり、図9は、本発明の実施の形態2に係る冷凍システム100aの除湿モード時における冷媒の流れの一例を示す図であり、図10は、本発明の実施の形態2に係る冷凍システム100aのデフロストモード時における冷媒の流れの一例を示す図である。なお、図9および図10中の矢印は、冷媒の流れを示している。 (Operation)
FIG. 8 is a diagram showing a control flow during operation of the
以下、図8~図10を用いて本実施の形態2に係る冷凍システム100aの制御フローについて説明する。
電源投入後(ステップS201)、運転制御手段64は、図9に示すように、凝縮器2と第二膨張弁12とが連通するように第一流路切替弁14を切り替える。また、運転制御手段64は、圧縮機1の吸入側と除湿用熱交換器11とが連通するように第二流路切替弁15を切り替える。そして、第一膨張弁9aおよび第二膨張弁12をともに絞る(ステップS202)。 Hereinafter, the control flow of therefrigeration system 100a according to the second embodiment will be described with reference to FIGS.
After the power is turned on (step S201), the operation control means 64 switches the first flowpath switching valve 14 so that the condenser 2 and the second expansion valve 12 communicate with each other as shown in FIG. Further, the operation control means 64 switches the second flow path switching valve 15 so that the suction side of the compressor 1 and the dehumidifying heat exchanger 11 communicate with each other. Then, both the first expansion valve 9a and the second expansion valve 12 are throttled (step S202).
電源投入後(ステップS201)、運転制御手段64は、図9に示すように、凝縮器2と第二膨張弁12とが連通するように第一流路切替弁14を切り替える。また、運転制御手段64は、圧縮機1の吸入側と除湿用熱交換器11とが連通するように第二流路切替弁15を切り替える。そして、第一膨張弁9aおよび第二膨張弁12をともに絞る(ステップS202)。 Hereinafter, the control flow of the
After the power is turned on (step S201), the operation control means 64 switches the first flow
このように、除湿ユニット40a内の冷媒の流路を、冷却ユニット50aからの冷媒が除湿用熱交換器11を介して室外ユニット30aに流れる流路にすることで、除湿モード時における冷媒回路構成となる。この冷媒回路構成により、冷却器10を通った後の冷たい冷媒が第一膨張弁9aで減圧されることでさらに冷たくなった後、除湿用熱交換器11を通り、冷却することで除湿用熱交換器11への着霜を促し、冷凍倉庫内の除湿を実現する。なお、上記のように、第一膨張弁9aは、除湿モード時では冷媒の蒸発温度を調整する役割を果たしている。
In this way, the refrigerant flow path in the dehumidifying unit 40a is made a flow path in which the refrigerant from the cooling unit 50a flows to the outdoor unit 30a via the heat exchanger 11 for dehumidification, so that the refrigerant circuit configuration in the dehumidifying mode is achieved. It becomes. With this refrigerant circuit configuration, after the cold refrigerant that has passed through the cooler 10 is further cooled by being depressurized by the first expansion valve 9a, it passes through the heat exchanger 11 for dehumidification, and is then cooled by passing through the heat exchanger 11 for dehumidification. It promotes frost formation on the exchanger 11 and realizes dehumidification in the freezer warehouse. As described above, the first expansion valve 9a plays a role of adjusting the evaporation temperature of the refrigerant in the dehumidifying mode.
ステップS202の後、除湿判定手段62は、冷凍倉庫内の除湿が完了したかどうかを判定する(ステップS203)。除湿判定手段62は、冷凍倉庫内の除湿が完了したと判定した場合(ステップS203のYes)、ステップS202に戻る。一方、除湿判定手段62は、冷凍倉庫内の除湿が完了していないと判定した場合(ステップS203のNo)、ステップS204に進む。
After step S202, the dehumidification determining means 62 determines whether the dehumidification in the freezer warehouse has been completed (step S203). When it is determined that the dehumidification in the refrigeration warehouse has been completed (Yes in step S203), the dehumidification determining unit 62 returns to step S202. On the other hand, when the dehumidification determining unit 62 determines that the dehumidification in the freezer warehouse has not been completed (No in step S203), the process proceeds to step S204.
ステップS204において、デフロスト判定手段61は、除湿用熱交換器11のデフロストが必要であるかどうかを判定する。デフロスト判定手段61は、除湿用熱交換器11のデフロストが必要ないと判定した場合(ステップS204のNo)、ステップS203に戻る。一方、デフロスト判定手段61は、除湿用熱交換器11のデフロストが必要であると判定した場合(ステップS204のYes)、ステップS205に進む。
In step S204, the defrost determination means 61 determines whether the defrost of the dehumidifying heat exchanger 11 is necessary. If it is determined that the defrosting of the dehumidifying heat exchanger 11 is not necessary (No in step S204), the defrost determination unit 61 returns to step S203. On the other hand, when the defrost determination means 61 determines that the defrost of the dehumidifying heat exchanger 11 is necessary (Yes in step S204), the process proceeds to step S205.
ステップS205において、運転制御手段64は、図10に示すように、凝縮器2と第二流路切替弁15、および、第二膨張弁12と第二流路切替弁15がそれぞれ連通するように第一流路切替弁14を切り替える。また、運転制御手段64は、除湿用熱交換器11と第一流路切替弁14、および、圧縮機1の吸入側と第一流路切替弁14がそれぞれ連通するように第二流路切替弁15を切り替える。そして、第一膨張弁9aを絞り、第二膨張弁12を全開にする。
In step S205, as shown in FIG. 10, the operation control means 64 causes the condenser 2 and the second flow path switching valve 15, and the second expansion valve 12 and the second flow path switching valve 15 to communicate with each other. The first flow path switching valve 14 is switched. Further, the operation control means 64 includes the dehumidifying heat exchanger 11 and the first flow path switching valve 14, and the second flow path switching valve 15 so that the suction side of the compressor 1 and the first flow path switching valve 14 communicate with each other. Switch. Then, the first expansion valve 9a is throttled and the second expansion valve 12 is fully opened.
つまり、運転制御手段64は、凝縮器2と除湿用熱交換器11とが連通し、第二膨張弁12と圧縮機1の吸入側とが連通するように、第一流路切替弁14および第二流路切替弁15をそれぞれ切り替える。
That is, the operation control means 64 is configured so that the condenser 2 and the dehumidifying heat exchanger 11 communicate with each other, and the second expansion valve 12 and the suction side of the compressor 1 communicate with each other. Each of the two flow path switching valves 15 is switched.
このように、除湿ユニット40a内の冷媒の流路を、室外ユニット30aからの冷媒が除湿用熱交換器11を介して冷却ユニット50aに流れる流路にすることで、デフロストモード時における冷媒回路構成となる。この冷媒回路構成により、凝縮器2を通った後の温かい冷媒が除湿用熱交換器11を通り、加熱することで除湿用熱交換器11のデフロストを実現する。除湿用熱交換器11を通った温かい冷媒を第一膨張弁9aで減圧させることで、冷却器10に冷たい冷媒を流すことができる。なお、冷却器10を通った冷媒は第二膨張弁12で減圧されることなく圧縮機1に戻る。
Thus, the refrigerant circuit configuration in the defrost mode is achieved by using the refrigerant flow path in the dehumidifying unit 40a as a flow path in which the refrigerant from the outdoor unit 30a flows to the cooling unit 50a through the dehumidifying heat exchanger 11. It becomes. With this refrigerant circuit configuration, the warm refrigerant after passing through the condenser 2 passes through the dehumidifying heat exchanger 11 and is heated, whereby defrosting of the dehumidifying heat exchanger 11 is realized. By reducing the pressure of the warm refrigerant that has passed through the dehumidifying heat exchanger 11 with the first expansion valve 9a, it is possible to cause the cold refrigerant to flow through the cooler 10. The refrigerant that has passed through the cooler 10 returns to the compressor 1 without being depressurized by the second expansion valve 12.
ステップS205の後、デフロスト判定手段61は、除湿用熱交換器11のデフロストが完了したかどうかを判定する(ステップS206)。デフロスト判定手段61は、除湿用熱交換器11のデフロストが完了していないと判定した場合(ステップS206のNo)、再度ステップS206を実行する。一方、デフロスト判定手段61は、除湿用熱交換器11のデフロストが完了したと判定した場合(ステップS206のYes)、運転制御手段64は、報知手段16により除湿用熱交換器11のデフロストが完了した旨を報知し(ステップS207)、ステップS202に戻る。
After step S205, the defrost determining means 61 determines whether or not the defrosting of the dehumidifying heat exchanger 11 is completed (step S206). If it is determined that the defrosting of the dehumidifying heat exchanger 11 has not been completed (No in step S206), the defrost determination unit 61 executes step S206 again. On the other hand, when the defrost determination means 61 determines that the defrost of the dehumidifying heat exchanger 11 is completed (Yes in step S206), the operation control means 64 completes the defrosting of the dehumidifying heat exchanger 11 by the notification means 16. It is notified (step S207) and it returns to step S202.
なお、運転制御手段64は、能力判定手段63の判定結果に応じて第一膨張弁9aおよび第二膨張弁12の開度を変化させる。
The operation control means 64 changes the opening degrees of the first expansion valve 9a and the second expansion valve 12 according to the determination result of the capacity determination means 63.
また、本実施の形態2では、制御装置60aは、除湿モード、および、デフロストモードのみを有し、実施の形態1のように、除湿ユニット40a内の冷媒の流路を、室外ユニット30aからの冷媒が除湿用熱交換器11を介さずに冷却ユニット50aに流れる流路にする通常モードは有していない。
Further, in the second embodiment, the control device 60a has only the dehumidification mode and the defrost mode, and the flow path of the refrigerant in the dehumidification unit 40a from the outdoor unit 30a as in the first embodiment. There is no normal mode in which the refrigerant flows into the cooling unit 50a without going through the dehumidifying heat exchanger 11.
以上のように、本実施の形態2に係る冷凍システム100aは、圧縮機1、凝縮器2、流路切替手段、除湿用熱交換器11、第一膨張弁9a、および、冷却器10が冷媒配管で接続された冷媒回路を備え、流路切替手段は、冷媒の流路を、少なくとも、凝縮器2で凝縮された冷媒が除湿用熱交換器11を介して冷却器10に流れる第一流路、および、冷却器10で蒸発された冷媒が除湿用熱交換器11を介して圧縮機1に流れる第二流路、のいずれかに切り替えるものである。
As described above, in the refrigeration system 100a according to the second embodiment, the compressor 1, the condenser 2, the flow path switching unit, the heat exchanger 11 for dehumidification, the first expansion valve 9a, and the cooler 10 are refrigerants. A refrigerant circuit connected by piping is provided, and the flow path switching means is a first flow path in which at least the refrigerant condensed by the condenser 2 flows to the cooler 10 via the heat exchanger 11 for dehumidification. And the refrigerant | coolant evaporated by the cooler 10 switches to either the 2nd flow path which flows into the compressor 1 via the heat exchanger 11 for dehumidification.
本実施の形態2に係る冷凍システム100aは、流路切替手段である各流路切替弁の切り替えにより除湿用熱交換器11に流れる冷媒を制御することで、除湿用熱交換器11による除湿および除湿用熱交換器11のデフロストを実現している。そのため、本実施の形態2に係る冷凍システム100aによれば、加湿された空気を室外に排出することなく、運転効率を向上させることができる。
The refrigeration system 100a according to the second embodiment controls the refrigerant flowing into the dehumidification heat exchanger 11 by switching each flow path switching valve, which is a flow path switching unit, so that dehumidification and dehumidification by the dehumidification heat exchanger 11 are performed. Defrosting of the heat exchanger 11 for dehumidification is realized. Therefore, according to the refrigeration system 100a according to the second embodiment, it is possible to improve the operation efficiency without exhausting the humidified air outside the room.
また、本実施の形態2に係る冷凍システム100aは、圧縮機1と凝縮器2とを有する室外ユニット30aと、冷却器10と第一膨張弁9aとを有する冷却ユニット50aと、除湿用熱交換器11と流路切替手段とを有する除湿ユニット40aと、を備え、室外ユニット30aと冷却ユニット50aとは除湿ユニット40aを介して冷媒配管で接続されているものである。
Further, the refrigeration system 100a according to the second embodiment includes an outdoor unit 30a having the compressor 1 and the condenser 2, a cooling unit 50a having the cooler 10 and the first expansion valve 9a, and heat exchange for dehumidification. The outdoor unit 30a and the cooling unit 50a are connected to each other by a refrigerant pipe via the dehumidification unit 40a.
本実施の形態2に係る冷凍システム100aは、実施の形態1と同様に、除湿ユニット40aがユニット化されている。そのため、既存の冷凍装置に除湿ユニット40aを追加するのみで、その既存の冷凍装置に除湿機能を追加することができる。
In the refrigeration system 100a according to the second embodiment, the dehumidifying unit 40a is unitized as in the first embodiment. Therefore, the dehumidifying function can be added to the existing refrigeration apparatus only by adding the dehumidifying unit 40a to the existing refrigeration apparatus.
また、本実施の形態2に係る冷凍システム100aは、膨張弁を二つ備え、第一膨張弁9aは、冷却器10の一端と配管接続されており、第二膨張弁12は、冷却器10の他端と配管接続されているものである。そのため、第二膨張弁12は、除湿モード時において、冷媒の蒸発温度を調整する役割を果たし、第二膨張弁12によって除湿用熱交換器11に積極的に着霜させることができる。
In addition, the refrigeration system 100a according to Embodiment 2 includes two expansion valves, the first expansion valve 9a is connected to one end of the cooler 10, and the second expansion valve 12 is connected to the cooler 10. And the other end of the pipe. Therefore, the second expansion valve 12 plays a role of adjusting the evaporation temperature of the refrigerant in the dehumidifying mode, and can be positively frosted on the dehumidifying heat exchanger 11 by the second expansion valve 12.
また、実施の形態1と同様に、除湿ユニット40aを冷却ユニット50a付近に配置することで、冷却器10への着霜頻度を減らす効果が得られる。もしくは、除湿ユニット40aを外気が侵入しやすい冷凍倉庫の出入口付近に配置することで、冷凍倉庫内が積極的に除湿される効果が得られる。
Further, similarly to the first embodiment, by arranging the dehumidifying unit 40a in the vicinity of the cooling unit 50a, an effect of reducing the frequency of frost formation on the cooler 10 can be obtained. Alternatively, by arranging the dehumidifying unit 40a in the vicinity of the entrance / exit of the refrigerated warehouse where outside air easily enters, an effect of positively dehumidifying the inside of the refrigerated warehouse can be obtained.
なお、実施の形態1において、第四電磁弁6を膨張弁に変更してもよい。そうすることで、その膨張弁は、除湿モード時において、実施の形態2における第一膨張弁9aのように、冷媒の蒸発温度を調整する役割を果たすようになるため、その膨張弁によって除湿用熱交換器11に積極的に着霜させることができる。
In the first embodiment, the fourth electromagnetic valve 6 may be changed to an expansion valve. By doing so, the expansion valve, in the dehumidifying mode, plays a role of adjusting the evaporation temperature of the refrigerant, like the first expansion valve 9a in the second embodiment, and therefore the expansion valve is used for dehumidification. The heat exchanger 11 can be actively frosted.
また、実施の形態2における第二膨張弁12を実施の形態1に係る冷凍システム100aに設けてもよい。なお、第二膨張弁12を設ける位置は、実施の形態2と同様、冷却器10と除湿ユニット40aとの間である。そうすることで、第二膨張弁12は、除湿モード時において、実施の形態2における第一膨張弁9aのように、冷媒の蒸発温度を調整する役割を果たすようになるため、第二膨張弁12によって除湿用熱交換器11に積極的に着霜させることができる。
Further, the second expansion valve 12 in the second embodiment may be provided in the refrigeration system 100a according to the first embodiment. The position where the second expansion valve 12 is provided is between the cooler 10 and the dehumidifying unit 40a, as in the second embodiment. By doing so, the second expansion valve 12 plays a role of adjusting the evaporation temperature of the refrigerant, like the first expansion valve 9a in the second embodiment, in the dehumidifying mode. 12, the dehumidifying heat exchanger 11 can be actively frosted.
1 圧縮機、2 凝縮器、3 第一電磁弁、4 第二電磁弁、5 第三電磁弁、6 第四電磁弁、7 第五電磁弁、8 第六電磁弁、9 膨張弁、9a 第一膨張弁、10 冷却器、11 除湿用熱交換器、12 第二膨張弁、13 霜受容器、14 第一流路切替弁、15 第二流路切替弁、16 報知手段、30a 室外ユニット、40a 除湿ユニット、50a 冷却ユニット、60a 制御装置、61 デフロスト判定手段、62 除湿判定手段、63 能力判定手段、64 運転制御手段、70 センサ、71 リモコン、72 スイッチ、100 冷凍システム、100a 冷凍システム。
1 compressor, 2 condenser, 3rd solenoid valve, 4th solenoid valve, 5th solenoid valve, 6th 4th solenoid valve, 7th 5th solenoid valve, 8th 6th solenoid valve, 9th expansion valve, 9ath 1 expansion valve, 10 cooler, 11 heat exchanger for dehumidification, 12 second expansion valve, 13 frost acceptor, 14 first flow path switching valve, 15 second flow path switching valve, 16 notification means, 30a outdoor unit, 40a Dehumidification unit, 50a cooling unit, 60a control device, 61 defrost determination means, 62 dehumidification determination means, 63 capacity determination means, 64 operation control means, 70 sensor, 71 remote control, 72 switch, 100 refrigeration system, 100a refrigeration system.
Claims (10)
- 圧縮機、凝縮器、流路切替手段、除湿用熱交換器、膨張弁、および、冷却器が配管接続された冷媒回路を備え、
前記流路切替手段は、冷媒の流路を、少なくとも、
前記凝縮器で凝縮された冷媒が前記除湿用熱交換器を介して前記冷却器に流れる第一流路、および、前記冷却器で蒸発された冷媒が前記除湿用熱交換器を介して前記圧縮機に流れる第二流路、のいずれかに切り替えるものである
冷凍システム。 A compressor, a condenser, a flow path switching means, a heat exchanger for dehumidification, an expansion valve, and a refrigerant circuit connected to a cooler by piping;
The flow path switching means has at least a refrigerant flow path,
A first flow path through which the refrigerant condensed in the condenser flows to the cooler via the dehumidifying heat exchanger, and the refrigerant evaporated in the cooler via the dehumidifying heat exchanger A refrigeration system that is switched to one of the second flow paths that flow through. - 前記圧縮機と前記凝縮器とを有する室外ユニットと、
前記冷却器と前記膨張弁とを有する冷却ユニットと、
前記除湿用熱交換器と前記流路切替手段とを有する除湿ユニットと、を備え、
前記室外ユニットと前記冷却ユニットとは前記除湿ユニットを介して配管接続されている
請求項1に記載の冷凍システム。 An outdoor unit having the compressor and the condenser;
A cooling unit having the cooler and the expansion valve;
A dehumidifying unit having the dehumidifying heat exchanger and the flow path switching means,
The refrigeration system according to claim 1, wherein the outdoor unit and the cooling unit are connected to each other through the dehumidifying unit. - 前記流路切替手段は、冷媒の流路を、前記第一流路、前記第二流路、および、前記凝縮器で凝縮された冷媒が前記除湿用熱交換器を介さずに前記冷却器に流れる第三流路、のいずれかに切り替えるものである
請求項1または2に記載の冷凍システム。 The flow path switching means is configured such that the refrigerant condensed in the first flow path, the second flow path, and the condenser flows to the cooler without passing through the heat exchanger for dehumidification. The refrigeration system according to claim 1 or 2, wherein the refrigeration system is switched to one of the third flow paths. - 前記流路切替手段は、第一電磁弁、第二電磁弁、第三電磁弁、第四電磁弁、第五電磁弁、および、第六電磁弁で構成されており、
前記除湿用熱交換器の一端は、前記第一電磁弁の一端および前記第二電磁弁の一端とそれぞれ配管接続されており、前記除湿用熱交換器の他端は、前記第三電磁弁の一端および前記第四電磁弁の一端とそれぞれ配管接続されており、前記第五電磁弁の一端は前記第一電磁弁の他端と配管接続されており、前記第五電磁弁の他端は前記第三電磁弁と配管接続されており、前記第六電磁弁の一端は前記第二電磁弁の他端と配管接続されており、前記第六電磁弁の他端は前記第四電磁弁の他端と配管接続されている
請求項3に記載の冷凍システム。 The flow path switching means is composed of a first solenoid valve, a second solenoid valve, a third solenoid valve, a fourth solenoid valve, a fifth solenoid valve, and a sixth solenoid valve,
One end of the dehumidifying heat exchanger is connected to one end of the first electromagnetic valve and one end of the second electromagnetic valve, and the other end of the dehumidifying heat exchanger is connected to the third electromagnetic valve. One end and one end of the fourth solenoid valve are connected to each other, one end of the fifth solenoid valve is connected to the other end of the first solenoid valve, and the other end of the fifth solenoid valve is connected to the other end. A pipe is connected to the third solenoid valve, one end of the sixth solenoid valve is connected to the other end of the second solenoid valve, and the other end of the sixth solenoid valve is connected to the other of the fourth solenoid valve. The refrigeration system according to claim 3, wherein the refrigeration system is pipe-connected to the end. - 除湿モード、および、デフロストモードを有し、各モードに応じて前記流路切替手段を制御する制御装置を備えた
請求項1~4のいずれか一項に記載の冷凍システム。 The refrigeration system according to any one of claims 1 to 4, further comprising a control device that has a dehumidification mode and a defrost mode, and controls the flow path switching unit according to each mode. - 前記制御装置は、
前記除湿モード時、
前記冷却器と前記除湿用熱交換器とが連通し、前記除湿用熱交換器と前記圧縮機の吸入側とが連通するように前記流路切替手段を制御し、冷媒の流路を、前記冷却器で蒸発された冷媒が前記除湿用熱交換器を介して前記圧縮機に流れる流路に切り替えるものである
請求項5に記載の冷凍システム。 The control device includes:
During the dehumidifying mode,
The flow switching means is controlled so that the cooler and the dehumidifying heat exchanger communicate with each other, and the dehumidifying heat exchanger and the suction side of the compressor communicate with each other, The refrigeration system according to claim 5, wherein the refrigerant evaporated in the cooler is switched to a flow path that flows to the compressor via the dehumidifying heat exchanger. - 前記制御装置は、
前記デフロストモード時、
前記凝縮器と前記除湿用熱交換器とが連通し、前記除湿用熱交換器と前記膨張弁とが連通するように前記流路切替手段を制御し、冷媒の流路を、前記凝縮器で凝縮された冷媒が前記除湿用熱交換器を介して前記冷却器に流れる流路に切り替えるものである
請求項5または6に記載の冷凍システム。 The control device includes:
In the defrost mode,
The flow path switching means is controlled so that the condenser and the dehumidifying heat exchanger communicate with each other, and the dehumidifying heat exchanger and the expansion valve communicate with each other. The refrigeration system according to claim 5 or 6, wherein the condensed refrigerant is switched to a flow path that flows to the cooler via the dehumidifying heat exchanger. - 前記制御装置は、
前記除湿モード、および、前記デフロストモードに加え、通常モードを有し、
前記通常モード時、
前記凝縮器と前記膨張弁とが連通し、前記冷却器と前記圧縮機の吸入側とが連通するように前記流路切替手段を制御し、冷媒の流路を、前記凝縮器で凝縮された冷媒が前記除湿用熱交換器を介さずに前記冷却器に流れる流路に切り替えるものである
請求項5~7のいずれか一項に記載の冷凍システム。 The control device includes:
In addition to the dehumidification mode and the defrost mode, it has a normal mode,
During the normal mode,
The flow path switching means is controlled so that the condenser and the expansion valve communicate with each other, and the cooler and the suction side of the compressor communicate with each other, and the refrigerant flow path is condensed by the condenser. The refrigeration system according to any one of claims 5 to 7, wherein the refrigerant is switched to a flow path that flows to the cooler without passing through the dehumidifying heat exchanger. - 前記流路切替手段は、第一流路切替弁および第二流路切替弁で構成されており、
前記除湿用熱交換器の一端は、前記第二流路切替弁と配管接続されており、前記除湿用熱交換器の他端は、前記膨張弁と冷媒配管で接続されており、前記第一流路切替弁と前記第二流路切替弁とは配管接続されている
請求項1、2、5~7のいずれか一項に記載の冷凍システム。 The flow path switching means is composed of a first flow path switching valve and a second flow path switching valve,
One end of the dehumidifying heat exchanger is connected to the second flow path switching valve by piping, and the other end of the dehumidifying heat exchanger is connected to the expansion valve by refrigerant piping, and the first flow The refrigeration system according to any one of claims 1, 2, and 5 to 7, wherein the path switching valve and the second channel switching valve are connected by piping. - 前記膨張弁を二つ備え、
一方の前記膨張弁は、前記冷却器の一端と配管接続されており、
他方の前記膨張弁は、前記冷却器の他端と配管接続されている
請求項1~9のいずれか一項に記載の冷凍システム。 Two expansion valves are provided,
One of the expansion valves is connected to one end of the cooler by piping,
The refrigeration system according to any one of claims 1 to 9, wherein the other expansion valve is connected to the other end of the cooler by piping.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018565203A JPWO2018142583A1 (en) | 2017-02-03 | 2017-02-03 | Refrigeration system |
PCT/JP2017/004012 WO2018142583A1 (en) | 2017-02-03 | 2017-02-03 | Refrigeration system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2017/004012 WO2018142583A1 (en) | 2017-02-03 | 2017-02-03 | Refrigeration system |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018142583A1 true WO2018142583A1 (en) | 2018-08-09 |
Family
ID=63040365
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2017/004012 WO2018142583A1 (en) | 2017-02-03 | 2017-02-03 | Refrigeration system |
Country Status (2)
Country | Link |
---|---|
JP (1) | JPWO2018142583A1 (en) |
WO (1) | WO2018142583A1 (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110513848A (en) * | 2019-07-22 | 2019-11-29 | 宁波奥克斯电气股份有限公司 | A kind of air conditioner preventing liquid hammer and control method |
CN110736135A (en) * | 2019-10-14 | 2020-01-31 | 珠海格力电器股份有限公司 | Heat pump system with reheating and dehumidifying functions, control method and air conditioning equipment |
CN112524684A (en) * | 2020-11-27 | 2021-03-19 | 郑州瑞邦精密机械制造有限公司 | Air conditioner with indoor air supply heating heat exchanger |
WO2021250738A1 (en) * | 2020-06-08 | 2021-12-16 | 三菱電機株式会社 | Air conditioner |
WO2022195727A1 (en) * | 2021-03-16 | 2022-09-22 | 三菱電機株式会社 | Heat source machine for refrigeration apparatus and refrigeration apparatus equipped with same |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014509728A (en) * | 2011-04-01 | 2014-04-21 | アイス エナジー インコーポレーテッド | Integrated multi-mode heat storage refrigerant circuit |
WO2016143060A1 (en) * | 2015-03-10 | 2016-09-15 | 三菱電機株式会社 | Dehumidification device |
-
2017
- 2017-02-03 JP JP2018565203A patent/JPWO2018142583A1/en active Pending
- 2017-02-03 WO PCT/JP2017/004012 patent/WO2018142583A1/en active Application Filing
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014509728A (en) * | 2011-04-01 | 2014-04-21 | アイス エナジー インコーポレーテッド | Integrated multi-mode heat storage refrigerant circuit |
WO2016143060A1 (en) * | 2015-03-10 | 2016-09-15 | 三菱電機株式会社 | Dehumidification device |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110513848A (en) * | 2019-07-22 | 2019-11-29 | 宁波奥克斯电气股份有限公司 | A kind of air conditioner preventing liquid hammer and control method |
CN110736135A (en) * | 2019-10-14 | 2020-01-31 | 珠海格力电器股份有限公司 | Heat pump system with reheating and dehumidifying functions, control method and air conditioning equipment |
WO2021250738A1 (en) * | 2020-06-08 | 2021-12-16 | 三菱電機株式会社 | Air conditioner |
CN112524684A (en) * | 2020-11-27 | 2021-03-19 | 郑州瑞邦精密机械制造有限公司 | Air conditioner with indoor air supply heating heat exchanger |
WO2022195727A1 (en) * | 2021-03-16 | 2022-09-22 | 三菱電機株式会社 | Heat source machine for refrigeration apparatus and refrigeration apparatus equipped with same |
JP7523667B2 (en) | 2021-03-16 | 2024-07-26 | 三菱電機株式会社 | Heat source unit for refrigeration device and refrigeration device equipped with same |
Also Published As
Publication number | Publication date |
---|---|
JPWO2018142583A1 (en) | 2019-06-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2018142583A1 (en) | Refrigeration system | |
CA2615689C (en) | An air conditioning heat pump with secondary compressor | |
EP2479519B1 (en) | Refrigerant system | |
CN101512249B (en) | Refrigeration device | |
KR100821728B1 (en) | Air conditioning system | |
JP6529663B2 (en) | Exhaust heat recovery type air conditioner | |
JP2010234945A (en) | Heat pump air conditioning device for railway vehicle | |
JP4582261B1 (en) | Air conditioning unit for heating | |
US20240167735A1 (en) | Heat source unit and air conditioner | |
JP2018080899A (en) | Refrigeration unit | |
CN108800440B (en) | Air conditioner and control method thereof | |
JP2016020784A (en) | Air conditioning device | |
JP2017194201A (en) | Air conditioner | |
KR101899220B1 (en) | Air Conditioner | |
CN110319542B (en) | Unloading start-stop control method of large-displacement variable-frequency multi-split system | |
JP4622901B2 (en) | Air conditioner | |
JP2012063033A (en) | Air conditioner | |
JP2010266098A (en) | Refrigeration cycle device | |
CN113669844A (en) | Air conditioner and control method thereof | |
JP2005055053A (en) | Air conditioner | |
KR101100009B1 (en) | Air conditioning system | |
JP2010127602A (en) | Refrigerating device | |
CN104976837A (en) | Air conditioner | |
JP2007085720A (en) | Refrigeration system | |
JP2002243215A (en) | Regenerative air conditioning device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17894992 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2018565203 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 17894992 Country of ref document: EP Kind code of ref document: A1 |