WO2016143060A1 - Dehumidification device - Google Patents

Dehumidification device Download PDF

Info

Publication number
WO2016143060A1
WO2016143060A1 PCT/JP2015/056960 JP2015056960W WO2016143060A1 WO 2016143060 A1 WO2016143060 A1 WO 2016143060A1 JP 2015056960 W JP2015056960 W JP 2015056960W WO 2016143060 A1 WO2016143060 A1 WO 2016143060A1
Authority
WO
WIPO (PCT)
Prior art keywords
air
heat exchanger
operation mode
moisture
adsorption
Prior art date
Application number
PCT/JP2015/056960
Other languages
French (fr)
Japanese (ja)
Inventor
田中 学
啓三 福原
圭吾 岡島
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to CN201580072704.2A priority Critical patent/CN107106975B/en
Priority to PCT/JP2015/056960 priority patent/WO2016143060A1/en
Priority to JP2017504476A priority patent/JP6338765B2/en
Publication of WO2016143060A1 publication Critical patent/WO2016143060A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/26Drying gases or vapours
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F3/00Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems
    • F24F3/12Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling
    • F24F3/14Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification

Definitions

  • the present invention relates to a dehumidifying device, and more particularly to a dehumidifying device including a moisture adsorbing means and a refrigerant circuit.
  • Patent Document 1 discloses a dehumidifying device including a refrigerant circuit in which a refrigerant circulates and a desiccant material that adsorbs and desorbs moisture in the air.
  • the refrigerant circuit of the dehumidifying device is configured by connecting a compressor, a flow path switching device, a first heat exchanger, a decompression device, and a second heat exchanger with piping.
  • the first heat exchanger operates as a condenser and the second heat exchanger operates as an evaporator, and a first operation mode in which moisture held in the desiccant material is desorbed, and first heat The exchanger operates as an evaporator and the second heat exchanger operates as a condenser to perform an operation for alternately switching between a second operation mode in which moisture is adsorbed from air by a desiccant material.
  • the present invention has been made against the background of the above problems, and an object thereof is to provide a dehumidifying device that can suppress the number of operations of the flow path switching device.
  • a dehumidifying device is a refrigerant in which a refrigerant is circulated by connecting a compressor, a flow path switching unit that switches a refrigerant flow path, a first heat exchanger, a pressure reducing device, and a second heat exchanger in a pipe.
  • a moisture adsorbing member disposed between the circuit and the first heat exchanger and the second heat exchanger, for adsorbing moisture contained in the air flowing in the air passage and desorbing the adsorbed moisture; and dehumidification
  • a blower for flowing air in a target space into the air path, the blower for flowing air in the order of the first heat exchanger, the moisture adsorption member, and the second heat exchanger, and the temperature of the dehumidification target space
  • a temperature sensor for detecting the humidity
  • a humidity sensor for detecting the humidity of the space to be dehumidified
  • a control means for controlling the compressor, the flow path switching device, and the blower.
  • the refrigerant is circulated through the refrigerant circuit so that the second heat exchanger functions as a condenser, and the air blower is operated so that the air in the dehumidification target space is A first adsorption operation mode in which the moisture adsorbing member adsorbs moisture by the air passage, and the operation of the compressor is stopped to circulate the refrigerant, and the blower is operated to perform the dehumidification target.
  • the first heat exchanger is configured to control a second adsorption operation mode in which air in the space is caused to flow into the air passage and moisture is adsorbed by the moisture adsorption member, and the flow path switch and the compressor are controlled.
  • the refrigerant is circulated through the refrigerant circuit so that the second heat exchanger functions as an evaporator, and the air blower is operated to cause the air in the dehumidifying target space to enter the air path. sink,
  • the desorption operation mode for desorbing the moisture adsorbed by the moisture adsorbing member is configured to execute any one of the first adsorption operation mode and the second adsorption operation mode. And the desorption operation mode are switched alternately.
  • the dehumidifying apparatus alternately switches between the first adsorption operation mode or the second adsorption operation mode and the desorption operation mode. For this reason, the frequency
  • FIG. 1 is a schematic configuration diagram of a dehumidifying apparatus 100 according to Embodiment 1 of the present invention.
  • the dehumidifying device 100 includes a compressor 11, a first heat exchanger 12 a, a second heat exchanger 12 b, and a third heat exchange that are housed in a housing (not shown).
  • the refrigerant circuit 10, the moisture adsorbing member 20, and the blower 30 are connected to each other by a refrigerant pipe.
  • an air passage 1 is formed in the housing of the dehumidifying device 100 to connect the suction port 1a that takes in air from the dehumidification target space (dehumidification target air) and the air outlet 1b that discharges air to the dehumidification target space.
  • a first heat exchanger 12a, a moisture adsorbing member 20, a second heat exchanger 12b, a third heat exchanger 12c, and a blower 30 are arranged in the air path 1 in order from the suction port 1a.
  • the compressor 11 is a positive displacement compressor that is driven by a motor (not shown) and compresses the refrigerant in the refrigerant circuit 10.
  • a motor not shown
  • refrigerant in the present embodiment for example, HFC refrigerants such as R410A, R407C, and R404A, HCFC refrigerants such as R22 and R134a, or natural refrigerants such as hydrocarbon and helium are used.
  • the number of compressors 11 is not limited to one, and two or more compressors may be connected in parallel or in series.
  • the first heat exchanger 12a, the second heat exchanger 12b, and the third heat exchanger 12c are cross-fin type fin-and-tube heat exchangers configured by heat transfer tubes and a plurality of fins. is there.
  • the first heat exchanger 12 a and the second heat exchanger 12 b function as a condenser (heat radiator) or an evaporator according to the refrigerant circulation path switched by the flow path switch 14.
  • the third heat exchanger 12c functions as a condenser (heat radiator).
  • the 1st heat exchanger 12a and the 2nd heat exchanger 12b can be made into the heat exchanger of the same structure by providing the 3rd heat exchanger 12c which functions as a condenser. . Thereby, it becomes possible to share components.
  • the decompression device 13 decompresses the refrigerant flowing in the refrigerant circuit 10 and adjusts the flow rate.
  • an electronic expansion valve capable of adjusting the opening degree of the throttle by a stepping motor (not shown), a mechanical expansion valve employing a diaphragm for the pressure receiving portion, or a capillary tube is used.
  • the flow path switch 14 is a four-way valve that switches the direction of the refrigerant flowing through the first heat exchanger 12a and the second heat exchanger 12b.
  • the flow path switch 14 is a flow path in which the refrigerant flows in the order of the third heat exchanger 12c, the second heat exchanger 12b, the decompression device 13, and the first heat exchanger 12a in the first adsorption operation mode.
  • the third heat exchanger 12c and the second heat exchanger 12b function as a condenser (heat radiator), and the first heat exchanger 12a functions as an evaporator.
  • the flow path switch 14 is a flow path in which the refrigerant flows in the order of the third heat exchanger 12c, the first heat exchanger 12a, the decompression device 13, and the second heat exchanger 12b in the desorption operation mode.
  • the third heat exchanger 12c and the first heat exchanger 12a function as a condenser (heat radiator), and the second heat exchanger 12b functions as an evaporator.
  • the switching of the flow path by the flow path switch 14 is controlled by the control means 4 (FIG. 3).
  • the moisture adsorbing member 20 is a desiccant block installed between the first heat exchanger 12a and the second heat exchanger 12b.
  • the moisture adsorbing member 20 is a porous flat plate having a shape (polygonal or circular, etc.) along the cross section of the air passage 1 so that the cross sectional area of the air passage 1 of the dehumidifying device 100 can be increased. Composed. Then, air passes in the thickness direction of the moisture adsorbing member 20.
  • the surface of the porous flat plate is coated, surface-treated or impregnated with an adsorbent having a characteristic of absorbing moisture from relatively high humidity air and releasing it to relatively low humidity air.
  • zeolite, silica gel, activated carbon, polymer adsorbent, or the like is used as the adsorbent.
  • FIG. 2 is an adsorption isotherm showing the transition of the equilibrium adsorption amount with respect to the relative humidity of the moisture adsorbing member 20 of the present embodiment.
  • the equilibrium adsorption amount increases as the relative humidity increases.
  • an adsorbent having a large difference between the equilibrium adsorption amount with a relative humidity of 80% or more and the equilibrium adsorption amount with a relative humidity of 40 to 60% (for example, 50%) is used. Thereby, the adsorption
  • the blower 30 is a fan capable of changing the flow rate of air passing through the air passage 1 of the dehumidifier 100.
  • a centrifugal fan or a multiblade fan driven by a motor such as a DC fan motor is used.
  • the air blower 30 is not limited to the case where it is arrange
  • the dehumidifier 100 further includes a temperature / humidity sensor 2a that detects the temperature and humidity (relative humidity) of the air to be dehumidified taken in from the suction port 1a, and the temperature and temperature (relative humidity) of the air after passing through the moisture adsorbing member 20. ) And a wind speed sensor 3 for detecting the speed of the air passing through the air path 1 (wind speed). Note that the wind speed sensor 3 is not limited to the arrangement shown in FIG. 1 (the most downstream of the air path 1), and can be arranged at any position where the wind speed passing through the air path 1 can be detected. .
  • the temperature / humidity sensor 2a corresponds to a “temperature sensor” and a “humidity sensor” in the present invention.
  • the second temperature / humidity sensor 2b corresponds to the “second temperature sensor” and the “second humidity sensor” in the present invention.
  • FIG. 3 is a block diagram showing the control means 4 provided in the dehumidifying apparatus 100 according to the present embodiment and the elements controlled by the control means 4.
  • the control means 4 is composed of a microcomputer or the like and controls the entire dehumidifying device 100. Based on outputs from the temperature / humidity sensor 2a, the wind speed sensor 3 and the time measuring means 5, the control means 4 controls the rotational speed of the blower 30, the rotational speed control of the compressor 11, the opening degree control of the decompression device 13, and the flow path switching. Various controls such as switching control of the device 14 are performed.
  • the time measuring means 5 measures the operating time of the dehumidifying device 100 under the control of the control means 4.
  • the storage unit 6 is a memory that stores a program and various data necessary for the operation of the dehumidifier 100.
  • the dehumidifier 100 operates in the first adsorption operation mode and the desorption operation mode by controlling the flow path switch 14 by the control means 4 and switching the refrigerant circulation path of the refrigerant circuit 10. Further, in the dehumidifying apparatus 100, the compressor 11 is controlled by the control means 4, and the refrigerant circulation operation of the refrigerant circuit 10 is switched between operation and stop, so that either the first adsorption operation mode or the second adsorption operation mode is selected. On the other hand, it works.
  • the blower 30 is driven and controlled by the control means 4 in any operation mode. Thereby, the air from the dehumidification target space is taken into the air passage 1 from the suction port 1a, and the first heat exchanger 12a, the moisture adsorbing member 20, the second heat exchanger 12b, and the third heat exchanger. It passes in the order of 12c and is discharged from the blower outlet 1b.
  • the moisture adsorbing member 20 performs an adsorption operation on high-humidity air (eg, relative humidity of 70% or more) with a small moisture retention amount, and in the desorption operation mode.
  • the desorption operation is performed on air having a large amount of moisture retention and low humidity (for example, relative humidity of 60% or less).
  • FIG. 4 shows the refrigerant circulation path in the first adsorption operation mode
  • FIG. 5 is a humid air diagram showing the temperature and humidity transition in the first adsorption operation mode
  • FIG. 6 is a moist air diagram showing the temperature and humidity transition in the second adsorption operation mode
  • FIG. 7 shows the refrigerant circulation path in the desorption operation mode
  • FIG. 8 is a humid air diagram showing the temperature and humidity transition in the desorption operation mode.
  • First adsorption operation mode operation of refrigerant circuit 10.
  • the refrigerant flows along the solid line shown in FIG. Specifically, the refrigerant compressed and discharged by the compressor 11 flows into the third heat exchanger 12c.
  • the third heat exchanger 12c functions as a condenser, and the refrigerant exchanges heat with air to partially condense.
  • the refrigerant that has passed through the third heat exchanger 12c flows through the flow path switch 14 into the second heat exchanger 12b.
  • the second heat exchanger 12b functions as a condenser, and the refrigerant exchanges heat with air to be condensed and liquefied.
  • the refrigerant that has passed through the second heat exchanger 12b flows into the decompression device 13, is decompressed by the decompression device 13, and then flows into the first heat exchanger 12a.
  • the first heat exchanger 12a functions as an evaporator, and the refrigerant evaporates by exchanging heat with air.
  • the refrigerant that has passed through the first heat exchanger 12a passes through the flow path switch 14 and is sucked into the compressor 11 again.
  • first adsorption operation mode air operation
  • the dehumidification target air introduced from the suction port 1a of the dehumidifier 100 flows into the first heat exchanger 12a.
  • the air to be dehumidified is cooled to a dew point temperature or lower by the first heat exchanger 12a functioning as an evaporator, and becomes dehumidified air from which moisture has been dehumidified (points 1-2 in FIG. 5).
  • the air cooled and dehumidified by the first heat exchanger 12 a flows into the moisture adsorption member 20.
  • the relative humidity of the cooled and dehumidified air is as high as about 80 to 90 (% RH)
  • the adsorbent of the moisture adsorbing member 20 easily adsorbs moisture.
  • Moisture is adsorbed (dehumidified) by the adsorbent of the moisture adsorbing member 20, and the air whose humidity has been reduced (points 1-3 in FIG. 5) flows into the second heat exchanger 12b. Since the second heat exchanger 12b functions as a condenser, the passing air is heated and the temperature rises (points 1-4 in FIG. 5).
  • the air that has passed through the second heat exchanger 12b flows into the third heat exchanger 12c. Since the third heat exchanger 12c functions as a condenser, the passing air is heated and the temperature rises (point 1-5 in FIG. 5). The air that has passed through the third heat exchanger 12c is discharged from the air outlet 1b.
  • the air to be dehumidified introduced from the suction port 1a of the dehumidifier 100 passes through the first heat exchanger 12a without exchanging heat in the first heat exchanger 12a.
  • Moisture is adsorbed (dehumidified) by the adsorbent of the moisture adsorbing member 20 in the air to be dehumidified (point in FIG. 6, 1-2a) that has passed through the first heat exchanger 12a (point in FIG. 6, 1-3a).
  • the air whose humidity has been reduced by the adsorbent of the moisture adsorbing member 20 passes through the second heat exchanger 12b without being subjected to heat exchange in the second heat exchanger 12b, and is discharged from the outlet 1b.
  • the refrigerant operation of the refrigerant circuit 10 in the desorption operation mode will be described with reference to FIG.
  • the refrigerant flows along the solid line shown in FIG. Specifically, the refrigerant compressed and discharged by the compressor 11 flows into the third heat exchanger 12c.
  • the third heat exchanger 12c functions as a condenser, and the refrigerant exchanges heat with air to partially condense.
  • the refrigerant that has passed through the third heat exchanger 12c flows through the flow path switch 14 into the first heat exchanger 12a.
  • the first heat exchanger 12a functions as a condenser, and the refrigerant exchanges heat with air to be condensed and liquefied.
  • the refrigerant that has passed through the first heat exchanger 12a flows into the decompression device 13, is decompressed by the decompression device 13, and then flows into the second heat exchanger 12b.
  • the second heat exchanger 12b functions as an evaporator, and the refrigerant evaporates by exchanging heat with air.
  • the refrigerant that has passed through the second heat exchanger 12b passes through the flow path switch 14 and is sucked into the compressor 11 again.
  • the air to be dehumidified (point 2-1 in FIG. 8) introduced from the suction port 1a of the dehumidifier 100 flows into the first heat exchanger 12a.
  • the air to be dehumidified is heated by the first heat exchanger 12a functioning as a condenser, and the temperature rises (points 2-2 in FIG. 8).
  • the air that has passed through the first heat exchanger 12 a flows into the moisture adsorption member 20.
  • the adsorbent of the moisture adsorbing member 20 can easily desorb moisture.
  • Moisture is desorbed (humidified) by the adsorbent of the moisture adsorbing member 20, and air that has been reduced in temperature and humidity (points 2-3 in FIG. 8) flows into the second heat exchanger 12b.
  • the second heat exchanger 12b functions as an evaporator, the air passing through the second heat exchanger 12b is cooled to a dew point temperature or lower and dehumidified air from which moisture has been dehumidified (FIG. 8, 2-4 points).
  • the present embodiment when the first heat exchanger 12a or the second heat exchanger 12b is frosted, by switching the refrigerant flow path (operation mode) by the flow path switch 14, It is possible to defrost using the heat of condensation. Thereby, it becomes unnecessary to provide a heater for defrosting or to stop the compressor 11 for defrosting, and it becomes possible to reduce power consumption and defrosting time.
  • the desorption operation mode dehumidification by the moisture adsorbing member 20 is not performed, and only dehumidification by the second heat exchanger 12b is performed. Therefore, in the present embodiment, the third heat exchanger 12c is provided to suppress the heat of condensation in the first heat exchanger 12a. This makes it possible to reduce the amount of moisture that cannot be captured by the second heat exchanger 12b.
  • the dehumidifying apparatus 100 of the present embodiment performs dehumidification of the air in the dehumidifying target space by alternately switching either the first adsorption operation mode or the second adsorption operation mode and the desorption operation mode.
  • the control means 4 selects either the first adsorption operation mode or the second adsorption operation mode according to the temperature and humidity of the air to be dehumidified, and selects the selected operation mode. carry out.
  • a description will be given based on FIG.
  • FIG. 9 is a flowchart showing the operation mode switching process in the first embodiment of the present invention.
  • the control means 4 performs the desorption operation mode (S1).
  • the control means 4 determines whether or not a predetermined time has elapsed based on the time measured by the time measuring means 5. If the predetermined time has not elapsed (S2: NO), the process returns to step S1. On the other hand, when the predetermined time has elapsed (S2: YES), the control means 4 acquires the temperature and humidity of the dehumidification target air from the temperature and humidity sensor 2a (S3).
  • the control means 4 acquires the temperature threshold value Tr and humidity threshold value RHr previously stored in the storage means 6, the temperature T of the dehumidification target air is lower than the temperature threshold value Tr, and the dehumidification target It is determined whether the humidity RH of the air is higher than the humidity threshold RHr (S4).
  • the humidity threshold RHr is set to a humidity (for example, 80%) at which the equilibrium adsorption amount of the moisture adsorption member 20 can be sufficiently secured.
  • the temperature threshold Tr is set to a temperature (for example, 15 ° C. to 20 ° C.) at which frost formation is likely to occur in the first heat exchanger 12a.
  • step S4 when the temperature T of the dehumidification target air is equal to or higher than the temperature threshold value Tr or the humidity RH of the dehumidification target air is equal to or lower than the humidity threshold value RHr (S4: NO), the control unit 4 performs the first adsorption operation.
  • a mode is selected (S5). And the control means 4 switches a refrigerant
  • control means 4 determines whether or not the end condition for the first adsorption operation mode is satisfied (S6). If the end condition is satisfied, the process returns to step S1 and the control means 4 performs the desorption operation mode.
  • the end condition of the first adsorption operation mode for example, it may be determined that the end condition is satisfied when a predetermined time has elapsed, or the end condition is satisfied when the first heat exchanger 12a detects frost formation. It may be determined that is established. The frost formation on the first heat exchanger 12a is frosted on the first heat exchanger 12a, for example, when it is determined that the wind speed detected by the wind speed sensor 3 has decreased below a reference value. Can be detected. The detection of frost formation is not limited to this. For example, when the low pressure of the refrigerant circuit 10 is lower than a predetermined value for a predetermined time or longer, the fin surface temperature of the first heat exchanger 12a is 0 ° C. You may detect that the following states continue and frost formation has occurred.
  • the control means 4 When the temperature T of the dehumidification target air is lower than the temperature threshold value Tr and the humidity RH of the dehumidification target air is higher than the humidity threshold value RHr in step S4 (S4: YES), the control means 4 The second adsorption operation mode is selected (S7). In the second adsorption operation mode, the control unit 4 stops the operation of the compressor 11 and stops the circulation of the refrigerant in the refrigerant circuit 10. At this time, the control means 4 does not operate the flow path switch 14, and the flow path switching state remains the switching state in the desorption operation mode.
  • the air to be dehumidified having a low temperature and high humidity passes through the first heat exchanger 12a without exchanging heat in the first heat exchanger 12a, and moisture is adsorbed by the adsorbent of the moisture adsorption member 20.
  • control means 4 determines whether or not the end condition for the second adsorption operation mode is satisfied (S8).
  • the process returns to step S1, and the control means 4 performs the desorption operation mode.
  • the second adsorption operation mode for example, when the temperature difference between the temperature detected by the temperature / humidity sensor 2a and the temperature detected by the second temperature / humidity sensor 2b falls below a preset temperature difference. It is determined that the end condition is satisfied. That is, when the temperature difference between the temperature of the air before passing through the moisture adsorption member 20 and the temperature of the air after passing through the moisture adsorption member 20 falls below a preset temperature difference, the second adsorption operation mode is set. When finished, switch to desorption mode. The determination based on such a temperature difference is because when the moisture adsorption amount of the moisture adsorption member 20 is saturated, a temperature change does not occur in the air passing through the moisture adsorption member 20.
  • the second temperature / humidity sensor 2b may be omitted.
  • the end condition of the second adsorption operation mode is not limited to these, and it may be determined that the end condition is satisfied when the operation time of the second adsorption operation mode has passed a predetermined time. For example, a sufficient time until the moisture adsorption amount of the moisture adsorption member 20 is saturated is set in advance. Further, for example, the time until the moisture adsorption amount of the moisture adsorption member 20 is saturated according to the specification and experimental data of the moisture adsorption member 20 is acquired in accordance with the temperature and humidity of the air, and the second adsorption operation mode is obtained.
  • the predetermined time may be set according to the temperature and humidity at the start of the above.
  • the control means 4 alternately switches between the first adsorption operation mode or the second adsorption operation mode and the desorption operation mode. For this reason, the frequency
  • the circulation of the refrigerant in the refrigerant circuit 10 is stopped, so that the air to be dehumidified passes through the first heat exchanger 12a without exchanging heat. For this reason, the frost formation in the 1st heat exchanger 12a does not generate
  • control means 4 operates the flow path switch 14 when switching from the second adsorption operation mode to the desorption operation mode or when switching from the desorption operation mode to the second adsorption operation mode. I won't let you. For this reason, the switching frequency of the flow path switching device 14 can be reduced, a failure associated with an increase in the number of opening / closing operations can be suppressed, and the highly reliable dehumidifying device 100 can be provided.
  • the control means 4 selects the first adsorption operation mode when the temperature of the dehumidification target air is equal to or higher than the preset temperature or when the humidity of the dehumidification target air is equal to or lower than the preset humidity. . Further, the control means 4 selects the second adsorption operation mode when the temperature of the dehumidifying target air is lower than the preset temperature and the humidity of the dehumidifying target air is higher than the preset humidity. That is, the second adsorption operation mode in which the dehumidification target air is not cooled is selected under the condition where the dehumidification target air is at low temperature and high humidity. For this reason, generation
  • a flow path switch for example, four-way valve
  • the control means 4 ends the second adsorption operation mode when the air temperature difference or humidity difference before and after passing through the moisture adsorbing member 20 falls below a preset value, and the desorption operation. Implement the mode. For this reason, when the adsorption amount in the moisture adsorption member 20 is saturated, the second adsorption operation mode can be switched to the desorption operation mode. Therefore, the second operation mode does not end before the moisture adsorbing member 20 sufficiently adsorbs moisture in the air, and a decrease in dehumidification efficiency can be suppressed.
  • FIG. 10 is a schematic configuration diagram of the dehumidifying apparatus 100 according to the second embodiment.
  • the dehumidifying device 100 according to the present embodiment is different from the first embodiment in that the third heat exchanger 12c is not provided.
  • Other configurations of the dehumidifying apparatus 100 and operation mode switching processing are the same as those in the first embodiment.
  • the refrigerant flows from the compressor 11 into the flow path switch 14, and thereafter flows through the refrigerant circulation path corresponding to the operation mode, as in the first embodiment.
  • control means 4 alternately switches either the first adsorption operation mode or the second adsorption operation mode and the desorption operation mode. For this reason, the frequency

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Drying Of Gases (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

A dehumidification device according to the present invention is configured to perform any of the following operating modes: a first adsorption operating mode for adsorbing moisture by a moisture adsorption member, with a first heat exchanger functioning as an evaporator; a second adsorption operating mode for adsorbing moisture by the moisture adsorption member, with the operation of a compressor being stopped to stop circulation of refrigerant; and a desorption operating mode for desorbing moisture adsorbed by the moisture absorption member, with the first heat exchanger functioning as a condenser. The dehumidification device switches the operating mode alternately between one of the first adsorption operating mode and the second adsorption operating mode, and the desorption operating mode.

Description

除湿装置Dehumidifier
 本発明は、除湿装置に関するものであり、特に水分吸着手段と冷媒回路とを備えた除湿装置に関するものである。 The present invention relates to a dehumidifying device, and more particularly to a dehumidifying device including a moisture adsorbing means and a refrigerant circuit.
 特許文献1には、冷媒が循環する冷媒回路と、空気中の水分を吸着及び脱着するデシカント材とを備えた除湿装置が開示されている。この除湿装置の冷媒回路は、圧縮機、流路切替装置、第1熱交換器、減圧装置及び第2熱交換器を配管で接続して構成される。
 この除湿装置は、第1熱交換器が凝縮器として動作すると共に第2熱交換器が蒸発器として動作して、デシカント材に保持されている水分を脱着する第1運転モードと、第1熱交換器が蒸発器として動作すると共に第2熱交換器が凝縮器として動作して、デシカント材によって空気から水分を吸着する第2運転モードとを交互に切り換える運転を行う。
Patent Document 1 discloses a dehumidifying device including a refrigerant circuit in which a refrigerant circulates and a desiccant material that adsorbs and desorbs moisture in the air. The refrigerant circuit of the dehumidifying device is configured by connecting a compressor, a flow path switching device, a first heat exchanger, a decompression device, and a second heat exchanger with piping.
In the dehumidifying device, the first heat exchanger operates as a condenser and the second heat exchanger operates as an evaporator, and a first operation mode in which moisture held in the desiccant material is desorbed, and first heat The exchanger operates as an evaporator and the second heat exchanger operates as a condenser to perform an operation for alternately switching between a second operation mode in which moisture is adsorbed from air by a desiccant material.
特許第5452565号公報Japanese Patent No. 5454565
 特許文献1に記載される除湿装置では、第2運転モード中において、第1熱交換器への霜の付着(着霜)を検知すると、第2運転モードを終了して第1運転モードに切り換える動作を行う。これにより、第1熱交換器に付着した霜の増大による空気風路の閉塞を低減させ、送風量の低下を抑制している。
 しかしながら、除湿対象空間の空気の温度が低く且つ湿度が高い場合、第1熱交換器が蒸発器として動作する第2運転モードの開始から第1熱交換器へ霜が付着するまでの時間(着霜時間)が短く、第1運転モードと第2運転モードとの切替が頻繁に実施されることとなる。つまり、冷媒流路を切り換える流路切替器(例えば四方弁)が頻繁に動作することとなる。
 このため、流路切替器の切り換え動作の回数が増大し、製品寿命が低下してしまうという課題があった。また、デシカント材によって空気中の水分を十分に吸着する前に第2運転モードが終了してしまい除湿効率が低下するという課題があった。
In the dehumidifying apparatus described in Patent Document 1, when the frost adhesion (frost formation) to the first heat exchanger is detected during the second operation mode, the second operation mode is terminated and the first operation mode is switched. Perform the action. Thereby, obstruction | occlusion of the air wind path by the increase in the frost adhering to the 1st heat exchanger is reduced, and the fall of the ventilation volume is suppressed.
However, when the temperature of the air in the dehumidification target space is low and the humidity is high, the time from the start of the second operation mode in which the first heat exchanger operates as an evaporator until frost adheres to the first heat exchanger (arrival) (Frost time) is short, and switching between the first operation mode and the second operation mode is frequently performed. That is, a flow path switch (for example, a four-way valve) that switches the refrigerant flow path frequently operates.
For this reason, the frequency | count of switching operation | movement of a flow-path switching device increases, and there existed a subject that a product lifetime will fall. Moreover, before the moisture in the air was sufficiently adsorbed by the desiccant material, there was a problem that the dehumidifying efficiency was lowered because the second operation mode was ended.
 本発明は、上記のような課題を背景になされたものであり、流路切替器の動作回数を抑制することができる除湿装置を提供することを目的とする。 The present invention has been made against the background of the above problems, and an object thereof is to provide a dehumidifying device that can suppress the number of operations of the flow path switching device.
 本発明に係る除湿装置は、圧縮機、冷媒流路を切り替える流路切替器、第1の熱交換器、減圧装置、および第2の熱交換器が配管で順次接続され、冷媒が循環する冷媒回路と、前記第1の熱交換器および前記第2の熱交換器の間に配置され、風路内を流れる空気に含まれる水分の吸着および吸着した水分の脱着を行う水分吸着部材と、除湿対象空間の空気を前記風路内に流す送風機であって、前記第1の熱交換器、前記水分吸着部材および前記第2の熱交換器の順に空気を流す送風機と、前記除湿対象空間の温度を検知する温度センサと、前記除湿対象空間の湿度を検知する湿度センサと、前記圧縮機、前記流路切替器、及び前記送風機を制御する制御手段と、を備え、前記制御手段は、前記流路切替器及び前記圧縮機を制御して、前記第1の熱交換器を蒸発器として機能させるとともに前記第2の熱交換器を凝縮器として機能させるように前記冷媒回路に前記冷媒を循環させ、前記送風機を動作させて前記除湿対象空間の空気を前記風路内に流し、前記水分吸着部材による水分の吸着を行う第1の吸着運転モードと、前記圧縮機の動作を停止して前記冷媒の循環を停止させ、前記送風機を動作させて前記除湿対象空間の空気を前記風路内に流し、前記水分吸着部材による水分の吸着を行う第2の吸着運転モードと、前記流路切替器及び前記圧縮機を制御して、前記第1の熱交換器を凝縮器として機能させるとともに前記第2の熱交換器を蒸発器として機能させるように前記冷媒回路に前記冷媒を循環させ、前記送風機を動作させて前記除湿対象空間の空気を前記風路内に流し、前記水分吸着部材が吸着した水分の脱着を行う脱着運転モードと、の何れかの運転モードを実行するように構成され、前記第1の吸着運転モード又は前記第2の吸着運転モードの何れか一方と、前記脱着運転モードとを交互に切り換えるものである。 A dehumidifying device according to the present invention is a refrigerant in which a refrigerant is circulated by connecting a compressor, a flow path switching unit that switches a refrigerant flow path, a first heat exchanger, a pressure reducing device, and a second heat exchanger in a pipe. A moisture adsorbing member disposed between the circuit and the first heat exchanger and the second heat exchanger, for adsorbing moisture contained in the air flowing in the air passage and desorbing the adsorbed moisture; and dehumidification A blower for flowing air in a target space into the air path, the blower for flowing air in the order of the first heat exchanger, the moisture adsorption member, and the second heat exchanger, and the temperature of the dehumidification target space A temperature sensor for detecting the humidity, a humidity sensor for detecting the humidity of the space to be dehumidified, and a control means for controlling the compressor, the flow path switching device, and the blower. Controlling the path switch and the compressor, The refrigerant is circulated through the refrigerant circuit so that the second heat exchanger functions as a condenser, and the air blower is operated so that the air in the dehumidification target space is A first adsorption operation mode in which the moisture adsorbing member adsorbs moisture by the air passage, and the operation of the compressor is stopped to circulate the refrigerant, and the blower is operated to perform the dehumidification target. The first heat exchanger is configured to control a second adsorption operation mode in which air in the space is caused to flow into the air passage and moisture is adsorbed by the moisture adsorption member, and the flow path switch and the compressor are controlled. The refrigerant is circulated through the refrigerant circuit so that the second heat exchanger functions as an evaporator, and the air blower is operated to cause the air in the dehumidifying target space to enter the air path. sink, The desorption operation mode for desorbing the moisture adsorbed by the moisture adsorbing member is configured to execute any one of the first adsorption operation mode and the second adsorption operation mode. And the desorption operation mode are switched alternately.
 本発明に係る除湿装置は、第1の吸着運転モード又は第2の吸着運転モードの何れか一方と、脱着運転モードとを交互に切り換える。このため、流路切替器の動作回数を抑制することができる。よって、製品寿命の短縮を抑制することができる。 The dehumidifying apparatus according to the present invention alternately switches between the first adsorption operation mode or the second adsorption operation mode and the desorption operation mode. For this reason, the frequency | count of operation | movement of a flow path switch can be suppressed. Therefore, shortening of the product life can be suppressed.
本発明の実施の形態1における除湿装置の概略構成図である。It is a schematic block diagram of the dehumidification apparatus in Embodiment 1 of this invention. 本発明の実施の形態1における水分吸着部材の相対湿度に対する平衡吸着量の推移を示した吸着等温線図である。It is the adsorption isotherm which showed transition of the equilibrium adsorption amount with respect to the relative humidity of the moisture adsorption member in Embodiment 1 of this invention. 本発明の実施の形態1における除湿装置が備える制御手段と制御手段によって制御される要素を示したブロック図である。It is the block diagram which showed the element controlled by the control means with which the dehumidification apparatus in Embodiment 1 of this invention is equipped, and a control means. 本発明の実施の形態1における除湿装置の第1の吸着運転モードでの冷媒循環経路を示す図である。It is a figure which shows the refrigerant | coolant circulation path | route in the 1st adsorption | suction operation mode of the dehumidification apparatus in Embodiment 1 of this invention. 本発明の実施の形態1における除湿装置の第1の吸着運転モードでの温湿度推移を示す湿り空気線図である。It is a humid air line figure which shows temperature / humidity transition in the 1st adsorption | suction operation mode of the dehumidification apparatus in Embodiment 1 of this invention. 本発明の実施の形態1における除湿装置の第2の吸着運転モードでの温湿度推移を示す湿り空気線図である。It is a humid air line figure which shows temperature / humidity transition in the 2nd adsorption | suction operation mode of the dehumidification apparatus in Embodiment 1 of this invention. 本発明の実施の形態1における除湿装置の脱着運転モードでの冷媒循環経路を示す図である。It is a figure which shows the refrigerant | coolant circulation path | route in the desorption operation mode of the dehumidification apparatus in Embodiment 1 of this invention. 本発明の実施の形態1における除湿装置の脱着運転モードでの温湿度推移を示す湿り空気線図である。It is a humid air line figure which shows temperature / humidity transition in the desorption operation mode of the dehumidification apparatus in Embodiment 1 of this invention. 本発明の実施の形態1における運転モード切り換え処理を示すフローチャートである。It is a flowchart which shows the operation mode switching process in Embodiment 1 of this invention. 本発明の実施の形態2における除湿装置の概略構成図である。It is a schematic block diagram of the dehumidification apparatus in Embodiment 2 of this invention.
 以下に、本発明における除湿装置の実施の形態を図面に基づいて詳細に説明する。 Hereinafter, an embodiment of a dehumidifying device according to the present invention will be described in detail with reference to the drawings.
実施の形態1.
 図1は本発明の実施の形態1における除湿装置100の概略構成図である。図1に示すように、除湿装置100は、筐体(図示せず)内に収容される、圧縮機11、第1の熱交換器12a、第2の熱交換器12b、第3の熱交換器12c、減圧装置13および流路切替器14が冷媒配管で接続された冷媒回路10と、水分吸着部材20と、送風機30とを備える。また、除湿装置100の筐体内には、除湿対象空間からの空気(除湿対象空気)を取り込む吸込口1aと除湿対象空間へ空気を放出する吹出口1bとをつなぐ風路1が形成される。風路1には、吸込口1aから順に、第1の熱交換器12a、水分吸着部材20、第2の熱交換器12b、第3の熱交換器12cおよび送風機30が配置される。
Embodiment 1 FIG.
FIG. 1 is a schematic configuration diagram of a dehumidifying apparatus 100 according to Embodiment 1 of the present invention. As shown in FIG. 1, the dehumidifying device 100 includes a compressor 11, a first heat exchanger 12 a, a second heat exchanger 12 b, and a third heat exchange that are housed in a housing (not shown). The refrigerant circuit 10, the moisture adsorbing member 20, and the blower 30 are connected to each other by a refrigerant pipe. In addition, an air passage 1 is formed in the housing of the dehumidifying device 100 to connect the suction port 1a that takes in air from the dehumidification target space (dehumidification target air) and the air outlet 1b that discharges air to the dehumidification target space. A first heat exchanger 12a, a moisture adsorbing member 20, a second heat exchanger 12b, a third heat exchanger 12c, and a blower 30 are arranged in the air path 1 in order from the suction port 1a.
 圧縮機11は、図示しないモータによって駆動され、冷媒回路10内の冷媒を圧縮する容積式圧縮機である。なお、本実施の形態の冷媒としては、例えば、R410A、R407C、R404AなどのHFC冷媒、R22、R134aなどのHCFC冷媒、または炭化水素、ヘリウムのような自然冷媒などが使用される。また、圧縮機11の台数は1台に限定されるものではなく、2台以上の圧縮機を並列もしくは直列に接続しても良い。 The compressor 11 is a positive displacement compressor that is driven by a motor (not shown) and compresses the refrigerant in the refrigerant circuit 10. As the refrigerant in the present embodiment, for example, HFC refrigerants such as R410A, R407C, and R404A, HCFC refrigerants such as R22 and R134a, or natural refrigerants such as hydrocarbon and helium are used. Further, the number of compressors 11 is not limited to one, and two or more compressors may be connected in parallel or in series.
 第1の熱交換器12a、第2の熱交換器12bおよび第3の熱交換器12cは、伝熱管と複数のフィンとにより構成されたクロスフィン式のフィン・アンド・チューブ型熱交換器である。第1の熱交換器12aおよび第2の熱交換器12bは、流路切替器14によって切り換えられる冷媒循環経路に応じて凝縮器(放熱器)または蒸発器として機能する。第3の熱交換器12cは、凝縮器(放熱器)として機能する。本実施の形態では、凝縮器として機能する第3の熱交換器12cを備えることで、第1の熱交換器12aおよび第2の熱交換器12bを同じ構成の熱交換器とすることができる。これにより、部品を共通化することが可能となる。 The first heat exchanger 12a, the second heat exchanger 12b, and the third heat exchanger 12c are cross-fin type fin-and-tube heat exchangers configured by heat transfer tubes and a plurality of fins. is there. The first heat exchanger 12 a and the second heat exchanger 12 b function as a condenser (heat radiator) or an evaporator according to the refrigerant circulation path switched by the flow path switch 14. The third heat exchanger 12c functions as a condenser (heat radiator). In this Embodiment, the 1st heat exchanger 12a and the 2nd heat exchanger 12b can be made into the heat exchanger of the same structure by providing the 3rd heat exchanger 12c which functions as a condenser. . Thereby, it becomes possible to share components.
 減圧装置13は、冷媒回路10内を流れる冷媒を減圧し、流量を調節する。減圧装置13としては、ステッピングモータ(図示せず)によって絞りの開度を調整することが可能な電子膨張弁、受圧部にダイアフラムを採用した機械式膨張弁、またはキャピラリーチューブが使用される。 The decompression device 13 decompresses the refrigerant flowing in the refrigerant circuit 10 and adjusts the flow rate. As the decompression device 13, an electronic expansion valve capable of adjusting the opening degree of the throttle by a stepping motor (not shown), a mechanical expansion valve employing a diaphragm for the pressure receiving portion, or a capillary tube is used.
 流路切替器14は、第1の熱交換器12aおよび第2の熱交換器12bを流れる冷媒の方向を切り換える四方弁である。流路切替器14は、第1の吸着運転モードにおいて、冷媒が、第3の熱交換器12c、第2の熱交換器12b、減圧装置13および第1の熱交換器12aの順に流れる流路を形成する。後述する第1の吸着運転モードでは、第3の熱交換器12cおよび第2の熱交換器12bは凝縮器(放熱器)として機能し、第1の熱交換器12aは蒸発器として機能する。また、流路切替器14は、脱着運転モードにおいて、冷媒が、第3の熱交換器12c、第1の熱交換器12a、減圧装置13および第2の熱交換器12bの順に流れる流路を形成する。脱着運転モードでは、第3の熱交換器12cおよび第1の熱交換器12aは凝縮器(放熱器)として機能し、第2の熱交換器12bは蒸発器として機能する。流路切替器14による流路の切り換えは、制御手段4(図3)によって制御される。 The flow path switch 14 is a four-way valve that switches the direction of the refrigerant flowing through the first heat exchanger 12a and the second heat exchanger 12b. The flow path switch 14 is a flow path in which the refrigerant flows in the order of the third heat exchanger 12c, the second heat exchanger 12b, the decompression device 13, and the first heat exchanger 12a in the first adsorption operation mode. Form. In a first adsorption operation mode described later, the third heat exchanger 12c and the second heat exchanger 12b function as a condenser (heat radiator), and the first heat exchanger 12a functions as an evaporator. Further, the flow path switch 14 is a flow path in which the refrigerant flows in the order of the third heat exchanger 12c, the first heat exchanger 12a, the decompression device 13, and the second heat exchanger 12b in the desorption operation mode. Form. In the desorption operation mode, the third heat exchanger 12c and the first heat exchanger 12a function as a condenser (heat radiator), and the second heat exchanger 12b functions as an evaporator. The switching of the flow path by the flow path switch 14 is controlled by the control means 4 (FIG. 3).
 水分吸着部材20は、第1の熱交換器12aと第2の熱交換器12bとの間に設置されるデシカントブロックである。水分吸着部材20は、除湿装置100の風路1の断面積に対して通風断面積を大きくとれるように、風路1の断面に沿った形状(多角形または円形など)の多孔質平板などで構成される。そして、水分吸着部材20の厚さ方向に空気が通過する。また、多孔質平板の表面には、相対的に湿度の高い空気から吸湿して相対的に湿度の低い空気に対して放湿する特性を有する吸着剤が塗布、表面処理または含浸される。吸着剤としては、ゼオライト、シリカゲル、活性炭または高分子吸着剤等が使用される。 The moisture adsorbing member 20 is a desiccant block installed between the first heat exchanger 12a and the second heat exchanger 12b. The moisture adsorbing member 20 is a porous flat plate having a shape (polygonal or circular, etc.) along the cross section of the air passage 1 so that the cross sectional area of the air passage 1 of the dehumidifying device 100 can be increased. Composed. Then, air passes in the thickness direction of the moisture adsorbing member 20. The surface of the porous flat plate is coated, surface-treated or impregnated with an adsorbent having a characteristic of absorbing moisture from relatively high humidity air and releasing it to relatively low humidity air. As the adsorbent, zeolite, silica gel, activated carbon, polymer adsorbent, or the like is used.
 図2は、本実施の形態の水分吸着部材20の相対湿度に対する平衡吸着量の推移を示した吸着等温線図である。一般的に、平衡吸着量は相対湿度が高くなると増加する。本実施の形態では、相対湿度が80%以上の平衡吸着量と相対湿度が40~60%(例えば50%)での平衡吸着量との差が大きい吸着剤を使用する。これにより、水分吸着部材20の吸着および脱着能力を向上させることができる。 FIG. 2 is an adsorption isotherm showing the transition of the equilibrium adsorption amount with respect to the relative humidity of the moisture adsorbing member 20 of the present embodiment. In general, the equilibrium adsorption amount increases as the relative humidity increases. In the present embodiment, an adsorbent having a large difference between the equilibrium adsorption amount with a relative humidity of 80% or more and the equilibrium adsorption amount with a relative humidity of 40 to 60% (for example, 50%) is used. Thereby, the adsorption | suction and desorption capability of the moisture adsorption member 20 can be improved.
 送風機30は、除湿装置100の風路1を通過する空気の流量を変更することが可能なファンである。送風機30としては、DCファンモータなどのモータによって駆動される遠心ファンまたは多翼ファン等が使用される。なお、送風機30は、風路1の最下流に配置される場合に限定されるものではなく、目標の風量を第1の熱交換器12a、水分吸着部材20、第2の熱交換器12bおよび第3の熱交換器12cの順に送風するものであれば良い。 The blower 30 is a fan capable of changing the flow rate of air passing through the air passage 1 of the dehumidifier 100. As the blower 30, a centrifugal fan or a multiblade fan driven by a motor such as a DC fan motor is used. In addition, the air blower 30 is not limited to the case where it is arrange | positioned in the most downstream of the air path 1, but the target air volume is made into the 1st heat exchanger 12a, the water | moisture-content adsorption member 20, the 2nd heat exchanger 12b, and What is necessary is just to ventilate in order of the 3rd heat exchanger 12c.
 除湿装置100は、さらに、吸込口1aから取り込まれた除湿対象空気の温度及び湿度(相対湿度)を検知する温湿度センサ2a、水分吸着部材20を通過したあとの空気の温度及び温度(相対湿度)を検知する第2の温湿度センサ2b、および風路1内を通過する空気の速度(風速)を検知する風速センサ3を備える。なお、風速センサ3は、図1の配置(風路1の最下流)に限定されるものではなく、風路1を通過する風速を検知することが可能な任意の位置に配置することができる。 The dehumidifier 100 further includes a temperature / humidity sensor 2a that detects the temperature and humidity (relative humidity) of the air to be dehumidified taken in from the suction port 1a, and the temperature and temperature (relative humidity) of the air after passing through the moisture adsorbing member 20. ) And a wind speed sensor 3 for detecting the speed of the air passing through the air path 1 (wind speed). Note that the wind speed sensor 3 is not limited to the arrangement shown in FIG. 1 (the most downstream of the air path 1), and can be arranged at any position where the wind speed passing through the air path 1 can be detected. .
 なお、温湿度センサ2aは、本発明における「温度センサ」および「湿度センサ」に相当する。また、第2の温湿度センサ2bは、本発明における「第2の温度センサ」および「第2の湿度センサ」に相当する。 The temperature / humidity sensor 2a corresponds to a “temperature sensor” and a “humidity sensor” in the present invention. The second temperature / humidity sensor 2b corresponds to the “second temperature sensor” and the “second humidity sensor” in the present invention.
 また、除湿装置100は、制御手段4、計時手段5および記憶手段6を備えている。図3は、本実施の形態における除湿装置100が備える制御手段4と制御手段4によって制御される要素を示したブロック図である。制御手段4は、マイクロコンピュータなどで構成され、除湿装置100の全体を制御する。制御手段4は、温湿度センサ2a、風速センサ3および計時手段5からの出力に基づき、送風機30の回転数制御、圧縮機11の回転数制御、減圧装置13の開度制御、および流路切替器14の切り換え制御等の各種制御を行う。計時手段5は、制御手段4の制御の下、除湿装置100の運転時間を計測する。記憶手段6は、除湿装置100の動作に必要なプログラムおよび各種データを記憶するメモリである。 Further, the dehumidifying device 100 includes a control unit 4, a time measuring unit 5, and a storage unit 6. FIG. 3 is a block diagram showing the control means 4 provided in the dehumidifying apparatus 100 according to the present embodiment and the elements controlled by the control means 4. The control means 4 is composed of a microcomputer or the like and controls the entire dehumidifying device 100. Based on outputs from the temperature / humidity sensor 2a, the wind speed sensor 3 and the time measuring means 5, the control means 4 controls the rotational speed of the blower 30, the rotational speed control of the compressor 11, the opening degree control of the decompression device 13, and the flow path switching. Various controls such as switching control of the device 14 are performed. The time measuring means 5 measures the operating time of the dehumidifying device 100 under the control of the control means 4. The storage unit 6 is a memory that stores a program and various data necessary for the operation of the dehumidifier 100.
 次に、除湿装置100の運転モードについて説明する。除湿装置100は、制御手段4によって流路切替器14が制御され、冷媒回路10の冷媒循環経路が切り換えられることにより、第1の吸着運転モードおよび脱着運転モードで動作する。また、除湿装置100は、制御手段4によって圧縮機11が制御され、冷媒回路10の冷媒循環の動作と停止とが切り換えられることにより、第1の吸着運転モードと第2の吸着運転モードの何れか一方で動作する。 Next, the operation mode of the dehumidifier 100 will be described. The dehumidifier 100 operates in the first adsorption operation mode and the desorption operation mode by controlling the flow path switch 14 by the control means 4 and switching the refrigerant circulation path of the refrigerant circuit 10. Further, in the dehumidifying apparatus 100, the compressor 11 is controlled by the control means 4, and the refrigerant circulation operation of the refrigerant circuit 10 is switched between operation and stop, so that either the first adsorption operation mode or the second adsorption operation mode is selected. On the other hand, it works.
 何れの運転モードにおいても、制御手段4によって送風機30が駆動制御される。これにより、除湿対象空間からの空気が、吸込口1aから風路1内に取り込まれ、第1の熱交換器12a、水分吸着部材20、第2の熱交換器12b、第3の熱交換器12cの順に通過し、吹出口1bから放出される。第1の吸着運転モード又は第2の吸着運転モードにおいて、水分吸着部材20は、水分保持量が少なく高湿の空気(例えば相対湿度70%以上)に対して吸着動作を行い、脱着運転モードにおいて、水分保持量が多く低湿の空気(例えば相対湿度60%以下)に対して脱着動作を行う。 The blower 30 is driven and controlled by the control means 4 in any operation mode. Thereby, the air from the dehumidification target space is taken into the air passage 1 from the suction port 1a, and the first heat exchanger 12a, the moisture adsorbing member 20, the second heat exchanger 12b, and the third heat exchanger. It passes in the order of 12c and is discharged from the blower outlet 1b. In the first adsorption operation mode or the second adsorption operation mode, the moisture adsorbing member 20 performs an adsorption operation on high-humidity air (eg, relative humidity of 70% or more) with a small moisture retention amount, and in the desorption operation mode. The desorption operation is performed on air having a large amount of moisture retention and low humidity (for example, relative humidity of 60% or less).
 図4は第1の吸着運転モードにおける冷媒循環経路を示し、図5は第1の吸着運転モードにおける温湿度推移を示す湿り空気線図である。また、図6は第2の吸着運転モードにおける温湿度推移を示す湿り空気線図である。また、図7は脱着運転モードにおける冷媒循環経路を示し、図8は脱着運転モードにおける温湿度推移を示す湿り空気線図である。 FIG. 4 shows the refrigerant circulation path in the first adsorption operation mode, and FIG. 5 is a humid air diagram showing the temperature and humidity transition in the first adsorption operation mode. FIG. 6 is a moist air diagram showing the temperature and humidity transition in the second adsorption operation mode. FIG. 7 shows the refrigerant circulation path in the desorption operation mode, and FIG. 8 is a humid air diagram showing the temperature and humidity transition in the desorption operation mode.
(第1の吸着運転モード:冷媒回路10の動作)
 まず、図4を参照して第1の吸着運転モードでの冷媒回路10の冷媒動作を説明する。第1の吸着運転モードでは、図4に示す実線に沿って冷媒が流れる。詳しくは、圧縮機11によって圧縮され、吐出された冷媒は第3の熱交換器12cに流入する。第3の熱交換器12cは凝縮器として機能し、冷媒は空気と熱交換して一部が凝縮液化する。第3の熱交換器12cを通過した冷媒は、流路切替器14を通って第2の熱交換器12bに流入する。第2の熱交換器12bは凝縮器として機能し、冷媒は空気と熱交換して凝縮液化する。第2の熱交換器12bを通過した冷媒は、減圧装置13に流入し、減圧装置13で減圧された後、第1の熱交換器12aに流入する。第1の熱交換器12aは、蒸発器として機能し、冷媒は空気と熱交換して蒸発する。第1の熱交換器12aを通過した冷媒は、流路切替器14を通って再び圧縮機11に吸入される。
(First adsorption operation mode: operation of refrigerant circuit 10)
First, the refrigerant operation of the refrigerant circuit 10 in the first adsorption operation mode will be described with reference to FIG. In the first adsorption operation mode, the refrigerant flows along the solid line shown in FIG. Specifically, the refrigerant compressed and discharged by the compressor 11 flows into the third heat exchanger 12c. The third heat exchanger 12c functions as a condenser, and the refrigerant exchanges heat with air to partially condense. The refrigerant that has passed through the third heat exchanger 12c flows through the flow path switch 14 into the second heat exchanger 12b. The second heat exchanger 12b functions as a condenser, and the refrigerant exchanges heat with air to be condensed and liquefied. The refrigerant that has passed through the second heat exchanger 12b flows into the decompression device 13, is decompressed by the decompression device 13, and then flows into the first heat exchanger 12a. The first heat exchanger 12a functions as an evaporator, and the refrigerant evaporates by exchanging heat with air. The refrigerant that has passed through the first heat exchanger 12a passes through the flow path switch 14 and is sucked into the compressor 11 again.
(第1の吸着運転モード:空気の動作)
 次に図5を参照して第1の吸着運転モードでの除湿装置100の風路1内における空気の動作を説明する。第1の吸着運転モードでは、まず、除湿装置100の吸込口1aから導入された除湿対象空気(図5、1-1点)が第1の熱交換器12aに流入する。ここで、除湿対象空気は、蒸発器として機能する第1の熱交換器12aによって露点温度以下に冷却され、水分が除湿された除湿空気となる(図5、1-2点)。第1の熱交換器12aによって冷却除湿された空気は、水分吸着部材20に流入する。ここで、冷却除湿された空気の相対湿度は80~90(%RH)程度と高くなっているため、水分吸着部材20の吸着剤は水分を吸着しやすくなる。水分吸着部材20の吸着剤により水分が吸着(除湿)され、低湿化された空気(図5、1-3点)は、第2の熱交換器12bに流入する。第2の熱交換器12bは凝縮器として機能しているため、通過する空気は加熱され、温度が上昇する(図5、1-4点)。第2の熱交換器12bを通過した空気は、第3の熱交換器12cに流入する。第3の熱交換器12cは凝縮器として機能しているため、通過する空気は加熱され、温度が上昇する(図5、1-5点)。第3の熱交換器12cを通過した空気は、吹出口1bより放出される。
(First adsorption operation mode: air operation)
Next, the operation of air in the air passage 1 of the dehumidifier 100 in the first adsorption operation mode will be described with reference to FIG. In the first adsorption operation mode, first, the dehumidification target air introduced from the suction port 1a of the dehumidifier 100 (points 1-1 in FIG. 5) flows into the first heat exchanger 12a. Here, the air to be dehumidified is cooled to a dew point temperature or lower by the first heat exchanger 12a functioning as an evaporator, and becomes dehumidified air from which moisture has been dehumidified (points 1-2 in FIG. 5). The air cooled and dehumidified by the first heat exchanger 12 a flows into the moisture adsorption member 20. Here, since the relative humidity of the cooled and dehumidified air is as high as about 80 to 90 (% RH), the adsorbent of the moisture adsorbing member 20 easily adsorbs moisture. Moisture is adsorbed (dehumidified) by the adsorbent of the moisture adsorbing member 20, and the air whose humidity has been reduced (points 1-3 in FIG. 5) flows into the second heat exchanger 12b. Since the second heat exchanger 12b functions as a condenser, the passing air is heated and the temperature rises (points 1-4 in FIG. 5). The air that has passed through the second heat exchanger 12b flows into the third heat exchanger 12c. Since the third heat exchanger 12c functions as a condenser, the passing air is heated and the temperature rises (point 1-5 in FIG. 5). The air that has passed through the third heat exchanger 12c is discharged from the air outlet 1b.
(第2の吸着運転モード:冷媒回路10の動作)
 第2の吸着運転モードでは、制御手段4は圧縮機11の動作を停止させ、冷媒回路10における冷媒の循環を停止させる。
(Second adsorption operation mode: operation of refrigerant circuit 10)
In the second adsorption operation mode, the control unit 4 stops the operation of the compressor 11 and stops the circulation of the refrigerant in the refrigerant circuit 10.
(第2の吸着運転モード:空気の動作)
 次に図6を参照して第2の吸着運転モードでの除湿装置100の風路1内における空気の動作を説明する。第2の吸着運転モードでは、除湿装置100の吸込口1aから導入された除湿対象空気が、第1の熱交換器12aにおいて熱交換することなく第1の熱交換器12aを通過する。第1の熱交換器12aを通過した除湿対象空気(図6、1-2a点)は、水分吸着部材20の吸着剤により水分が吸着(除湿)される(図6、1-3a点)。水分吸着部材20の吸着剤により低湿化された空気は、第2の熱交換器12bにおいて熱交換することなく第2の熱交換器12bを通過し、吹出口1bより放出される。
(Second adsorption operation mode: air operation)
Next, the operation of air in the air passage 1 of the dehumidifier 100 in the second adsorption operation mode will be described with reference to FIG. In the second adsorption operation mode, the air to be dehumidified introduced from the suction port 1a of the dehumidifier 100 passes through the first heat exchanger 12a without exchanging heat in the first heat exchanger 12a. Moisture is adsorbed (dehumidified) by the adsorbent of the moisture adsorbing member 20 in the air to be dehumidified (point in FIG. 6, 1-2a) that has passed through the first heat exchanger 12a (point in FIG. 6, 1-3a). The air whose humidity has been reduced by the adsorbent of the moisture adsorbing member 20 passes through the second heat exchanger 12b without being subjected to heat exchange in the second heat exchanger 12b, and is discharged from the outlet 1b.
(脱着運転モード:冷媒回路10の動作)
 次に、図7を参照して脱着運転モードでの冷媒回路10の冷媒動作を説明する。脱着運転モードでは、図7に示す実線に沿って冷媒が流れる。詳しくは、圧縮機11によって圧縮され、吐出された冷媒は第3の熱交換器12cに流入する。第3の熱交換器12cは凝縮器として機能し、冷媒は空気と熱交換して一部が凝縮液化する。第3の熱交換器12cを通過した冷媒は、流路切替器14を通って第1の熱交換器12aに流入する。第1の熱交換器12aは凝縮器として機能し、冷媒は空気と熱交換して凝縮液化する。第1の熱交換器12aを通過した冷媒は、減圧装置13に流入し、減圧装置13で減圧された後、第2の熱交換器12bに流入する。第2の熱交換器12bは、蒸発器として機能し、冷媒は空気と熱交換して蒸発する。第2の熱交換器12bを通過した冷媒は、流路切替器14を通って再び圧縮機11に吸入される。
(Desorption operation mode: operation of the refrigerant circuit 10)
Next, the refrigerant operation of the refrigerant circuit 10 in the desorption operation mode will be described with reference to FIG. In the desorption operation mode, the refrigerant flows along the solid line shown in FIG. Specifically, the refrigerant compressed and discharged by the compressor 11 flows into the third heat exchanger 12c. The third heat exchanger 12c functions as a condenser, and the refrigerant exchanges heat with air to partially condense. The refrigerant that has passed through the third heat exchanger 12c flows through the flow path switch 14 into the first heat exchanger 12a. The first heat exchanger 12a functions as a condenser, and the refrigerant exchanges heat with air to be condensed and liquefied. The refrigerant that has passed through the first heat exchanger 12a flows into the decompression device 13, is decompressed by the decompression device 13, and then flows into the second heat exchanger 12b. The second heat exchanger 12b functions as an evaporator, and the refrigerant evaporates by exchanging heat with air. The refrigerant that has passed through the second heat exchanger 12b passes through the flow path switch 14 and is sucked into the compressor 11 again.
(脱着運転モード:空気の動作)
 次に、図8を参照して脱着運転モードでの除湿装置100の風路1内における空気の動作を説明する。除湿装置100の吸込口1aより導入された除湿対象空気(図8、2-1点)は第1の熱交換器12aに流入する。ここで、除湿対象空気は、凝縮器として機能する第1の熱交換器12aによって加熱され、温度が上昇する(図8、2-2点)。第1の熱交換器12aを通過した空気は、水分吸着部材20に流入する。ここで、第1の熱交換器12aによって加熱された空気の相対湿度は、導入時の空気の相対湿度よりも低くなっているため、水分吸着部材20の吸着剤は水分を脱着しやすくなる。水分吸着部材20の吸着剤によって水分が脱着(加湿)され、低温高湿化された空気(図8、2-3点)は、第2の熱交換器12bに流入する。第2の熱交換器12bは蒸発器として機能するため、第2の熱交換器12bを通過する空気は、露点温度以下に冷却され、水分が除湿された除湿空気(図8、2-4点)となる。第2の熱交換器12bによって冷却除湿された空気は、第3の熱交換器12cに流入する。第3の熱交換器12cは凝縮器として機能しているため、通過する空気は加熱され、温度が上昇する(図8、2-5点)。第3の熱交換器12cを通過した空気は、吹出口1bより放出される。
(Desorption operation mode: Air operation)
Next, the operation of air in the air passage 1 of the dehumidifier 100 in the desorption operation mode will be described with reference to FIG. The air to be dehumidified (point 2-1 in FIG. 8) introduced from the suction port 1a of the dehumidifier 100 flows into the first heat exchanger 12a. Here, the air to be dehumidified is heated by the first heat exchanger 12a functioning as a condenser, and the temperature rises (points 2-2 in FIG. 8). The air that has passed through the first heat exchanger 12 a flows into the moisture adsorption member 20. Here, since the relative humidity of the air heated by the first heat exchanger 12a is lower than the relative humidity of the air at the time of introduction, the adsorbent of the moisture adsorbing member 20 can easily desorb moisture. Moisture is desorbed (humidified) by the adsorbent of the moisture adsorbing member 20, and air that has been reduced in temperature and humidity (points 2-3 in FIG. 8) flows into the second heat exchanger 12b. Since the second heat exchanger 12b functions as an evaporator, the air passing through the second heat exchanger 12b is cooled to a dew point temperature or lower and dehumidified air from which moisture has been dehumidified (FIG. 8, 2-4 points). ) The air that has been cooled and dehumidified by the second heat exchanger 12b flows into the third heat exchanger 12c. Since the third heat exchanger 12c functions as a condenser, the passing air is heated and the temperature rises (2-5 points in FIG. 8). The air that has passed through the third heat exchanger 12c is discharged from the air outlet 1b.
 上記のように、本実施の形態では、第1の熱交換器12aまたは第2の熱交換器12bが着霜した場合、流路切替器14によって冷媒流路(運転モード)を切り換えることにより、凝縮熱を利用して除霜することができる。これにより、除霜のためのヒータを備えること、または除霜のために圧縮機11を停止させることなどが不要となり、消費電力の削減および除霜時間の削減が可能となる。また、脱着運転モードでは、水分吸着部材20による除湿は行われず、第2の熱交換器12bによる除湿のみが行われる。そこで、本実施の形態では、第3の熱交換器12cを備えることで、第1の熱交換器12aにおける凝縮熱を抑制する構成となっている。これにより、第2の熱交換器12bにおいて捕捉しきれない水分量を低減させることが可能となる。 As described above, in the present embodiment, when the first heat exchanger 12a or the second heat exchanger 12b is frosted, by switching the refrigerant flow path (operation mode) by the flow path switch 14, It is possible to defrost using the heat of condensation. Thereby, it becomes unnecessary to provide a heater for defrosting or to stop the compressor 11 for defrosting, and it becomes possible to reduce power consumption and defrosting time. In the desorption operation mode, dehumidification by the moisture adsorbing member 20 is not performed, and only dehumidification by the second heat exchanger 12b is performed. Therefore, in the present embodiment, the third heat exchanger 12c is provided to suppress the heat of condensation in the first heat exchanger 12a. This makes it possible to reduce the amount of moisture that cannot be captured by the second heat exchanger 12b.
 次に、各運転モードの切り換えについて説明する。本実施の形態の除湿装置100は、第1の吸着運転モード又は第2の吸着運転モードの何れか一方と、脱着運転モードとを交互に切り換えて除湿対象空間の空気の除湿を行う。制御手段4は、脱着運転モードを実施した後に、除湿対象空気の温度及び湿度に応じて、第1の吸着運転モード又は第2の吸着運転モードの何れか一方を選択し、選択した運転モードを実施する。以下、図9に基づき説明する。 Next, switching of each operation mode will be described. The dehumidifying apparatus 100 of the present embodiment performs dehumidification of the air in the dehumidifying target space by alternately switching either the first adsorption operation mode or the second adsorption operation mode and the desorption operation mode. After performing the desorption operation mode, the control means 4 selects either the first adsorption operation mode or the second adsorption operation mode according to the temperature and humidity of the air to be dehumidified, and selects the selected operation mode. carry out. Hereinafter, a description will be given based on FIG.
 図9は、本発明の実施の形態1における運転モード切り換え処理を示すフローチャートである。除湿装置100の運転開始が開始すると、制御手段4は脱着運転モードを実施する(S1)。制御手段4は、計時手段5によって計測される時間に基づき、所定時間を経過したか否かを判断する。所定時間が経過していない場合(S2:NO)、ステップS1に戻る。一方、所定時間が経過した場合(S2:YES)、制御手段4は、温湿度センサ2aから除湿対象空気の温湿度を取得する(S3)。 FIG. 9 is a flowchart showing the operation mode switching process in the first embodiment of the present invention. When the operation start of the dehumidifying apparatus 100 starts, the control means 4 performs the desorption operation mode (S1). The control means 4 determines whether or not a predetermined time has elapsed based on the time measured by the time measuring means 5. If the predetermined time has not elapsed (S2: NO), the process returns to step S1. On the other hand, when the predetermined time has elapsed (S2: YES), the control means 4 acquires the temperature and humidity of the dehumidification target air from the temperature and humidity sensor 2a (S3).
 そして、制御手段4は、記憶手段6に予め記憶された温度しきい値Tr及び湿度しきい値RHrを取得し、除湿対象空気の温度Tが温度しきい値Trよりも低く、且つ、除湿対象空気の湿度RHが湿度しきい値RHrよりも高いか否かを判断する(S4)。ここで、湿度しきい値RHrは、例えば、水分吸着部材20の平衡吸着量が十分に確保できる湿度(例えば80%)に設定する。また、温度しきい値Trは、例えば、第1の熱交換器12aに着霜が発生し易くなる温度(例えば15℃~20℃)に設定する。 And the control means 4 acquires the temperature threshold value Tr and humidity threshold value RHr previously stored in the storage means 6, the temperature T of the dehumidification target air is lower than the temperature threshold value Tr, and the dehumidification target It is determined whether the humidity RH of the air is higher than the humidity threshold RHr (S4). Here, for example, the humidity threshold RHr is set to a humidity (for example, 80%) at which the equilibrium adsorption amount of the moisture adsorption member 20 can be sufficiently secured. Further, the temperature threshold Tr is set to a temperature (for example, 15 ° C. to 20 ° C.) at which frost formation is likely to occur in the first heat exchanger 12a.
 ステップS4において、除湿対象空気の温度Tが温度しきい値Tr以上、又は、除湿対象空気の湿度RHが湿度しきい値RHr以下の場合(S4:NO)、制御手段4は第1の吸着運転モードを選択する(S5)。そして、制御手段4は、流路切替器14によって冷媒流路を切り換えて、第1の吸着運転モードを実施する。 In step S4, when the temperature T of the dehumidification target air is equal to or higher than the temperature threshold value Tr or the humidity RH of the dehumidification target air is equal to or lower than the humidity threshold value RHr (S4: NO), the control unit 4 performs the first adsorption operation. A mode is selected (S5). And the control means 4 switches a refrigerant | coolant flow path with the flow path switch 14, and implements 1st adsorption | suction operation mode.
 次に、制御手段4は、第1の吸着運転モードの終了条件が成立したか否かを判断する(S6)。終了条件が成立した場合、ステップS1に戻り、制御手段4は脱着運転モードを実施する。 Next, the control means 4 determines whether or not the end condition for the first adsorption operation mode is satisfied (S6). If the end condition is satisfied, the process returns to step S1 and the control means 4 performs the desorption operation mode.
 第1の吸着運転モードの終了条件としては、例えば、所定時間が経過したとき終了条件が成立したと判定しても良いし、第1の熱交換器12aが着霜を検知したときに終了条件が成立したと判定しても良い。第1の熱交換器12aへの着霜は、例えば、風速センサ3によって検知された風速が基準値以下に低下したと判断された場合に、第1の熱交換器12aに着霜していることを検知することができる。なお、着霜の検知はこれに限らず、例えば、冷媒回路10の低圧圧力が所定値よりも低い時間が一定時間以上継続した場合に、第1の熱交換器12aのフィン表面温度が0℃以下の状態が継続して着霜が発生していると検知しても良い。 As the end condition of the first adsorption operation mode, for example, it may be determined that the end condition is satisfied when a predetermined time has elapsed, or the end condition is satisfied when the first heat exchanger 12a detects frost formation. It may be determined that is established. The frost formation on the first heat exchanger 12a is frosted on the first heat exchanger 12a, for example, when it is determined that the wind speed detected by the wind speed sensor 3 has decreased below a reference value. Can be detected. The detection of frost formation is not limited to this. For example, when the low pressure of the refrigerant circuit 10 is lower than a predetermined value for a predetermined time or longer, the fin surface temperature of the first heat exchanger 12a is 0 ° C. You may detect that the following states continue and frost formation has occurred.
 一方、ステップS4において、除湿対象空気の温度Tが温度しきい値Trよりも低く、且つ、除湿対象空気の湿度RHが湿度しきい値RHrよりも高い場合(S4:YES)、制御手段4は第2の吸着運転モードを選択する(S7)。第2の吸着運転モードにおいて、制御手段4は、圧縮機11の動作を停止して冷媒回路10の冷媒の循環を停止させる。このとき、制御手段4は、流路切替器14を動作させず、流路の切り換え状態は、脱着運転モードでの切替状態のままである。これにより、低温且つ高湿である除湿対象空気が、第1の熱交換器12aにおいて熱交換することなく第1の熱交換器12aを通過し、水分吸着部材20の吸着剤により水分が吸着される。 On the other hand, when the temperature T of the dehumidification target air is lower than the temperature threshold value Tr and the humidity RH of the dehumidification target air is higher than the humidity threshold value RHr in step S4 (S4: YES), the control means 4 The second adsorption operation mode is selected (S7). In the second adsorption operation mode, the control unit 4 stops the operation of the compressor 11 and stops the circulation of the refrigerant in the refrigerant circuit 10. At this time, the control means 4 does not operate the flow path switch 14, and the flow path switching state remains the switching state in the desorption operation mode. As a result, the air to be dehumidified having a low temperature and high humidity passes through the first heat exchanger 12a without exchanging heat in the first heat exchanger 12a, and moisture is adsorbed by the adsorbent of the moisture adsorption member 20. The
 次に、制御手段4は、第2の吸着運転モードの終了条件が成立したか否かを判断する(S8)。終了条件が成立した場合(S8:YES)、ステップS1に戻り、制御手段4は脱着運転モードを実施する。 Next, the control means 4 determines whether or not the end condition for the second adsorption operation mode is satisfied (S8). When the end condition is satisfied (S8: YES), the process returns to step S1, and the control means 4 performs the desorption operation mode.
 第2の吸着運転モードの終了条件としては、例えば、温湿度センサ2aが検出した温度と、第2の温湿度センサ2bが検出した温度との温度差が、予め設定した温度差を下回ったとき、終了条件が成立したと判断する。つまり、水分吸着部材20を通過する前の空気の温度と、水分吸着部材20を通過した後の空気の温度との温度差が予め設定した温度差を下回ったとき、第2の吸着運転モードを終了して、脱着運転モードに切り換える。このような温度差による判定を行うのは、水分吸着部材20の水分吸着量が飽和すると水分吸着部材20を通過する空気に温度変化が生じなくなるためである。なお、温度に限らず、水分吸着部材20を通過する前の空気の湿度と、水分吸着部材20を通過した後の空気の湿度との湿度差が予め設定した湿度差を下回ったとき、終了条件が成立したと判定しても良い。このような湿度差による判定を行うのは、水分吸着部材20の水分吸着量が飽和すると水分吸着部材20を通過する空気に湿度変化が生じなくなるためである。なお、上述した温度差または湿度差による判定を行わない場合には、第2の温湿度センサ2bを設けない構成としても良い。 As an end condition of the second adsorption operation mode, for example, when the temperature difference between the temperature detected by the temperature / humidity sensor 2a and the temperature detected by the second temperature / humidity sensor 2b falls below a preset temperature difference. It is determined that the end condition is satisfied. That is, when the temperature difference between the temperature of the air before passing through the moisture adsorption member 20 and the temperature of the air after passing through the moisture adsorption member 20 falls below a preset temperature difference, the second adsorption operation mode is set. When finished, switch to desorption mode. The determination based on such a temperature difference is because when the moisture adsorption amount of the moisture adsorption member 20 is saturated, a temperature change does not occur in the air passing through the moisture adsorption member 20. Note that not only the temperature but also the end condition when the humidity difference between the humidity of the air before passing through the moisture adsorbing member 20 and the humidity of the air after passing through the moisture adsorbing member 20 falls below a preset humidity difference. It may be determined that is established. The determination based on such a humidity difference is because when the moisture adsorption amount of the moisture adsorption member 20 is saturated, a change in humidity does not occur in the air passing through the moisture adsorption member 20. In the case where the determination based on the temperature difference or the humidity difference is not performed, the second temperature / humidity sensor 2b may be omitted.
 なお、第2の吸着運転モードの終了条件は、これらに限らず、第2の吸着運転モードの運転時間が所定時間を経過したとき終了条件が成立したと判定しても良い。例えば、水分吸着部材20の水分吸着量が飽和するまでの十分な時間を予め設定する。また例えば、予め、水分吸着部材20の仕様や実験データなどにより、水分吸着部材20の水分吸着量が飽和するまでの時間を、空気の温度及び湿度に応じて取得し、第2の吸着運転モードの開始時における温度及び湿度に応じて、上記の所定時間を設定するようにしても良い。 Note that the end condition of the second adsorption operation mode is not limited to these, and it may be determined that the end condition is satisfied when the operation time of the second adsorption operation mode has passed a predetermined time. For example, a sufficient time until the moisture adsorption amount of the moisture adsorption member 20 is saturated is set in advance. Further, for example, the time until the moisture adsorption amount of the moisture adsorption member 20 is saturated according to the specification and experimental data of the moisture adsorption member 20 is acquired in accordance with the temperature and humidity of the air, and the second adsorption operation mode is obtained. The predetermined time may be set according to the temperature and humidity at the start of the above.
 以上のように本実施の形態においては、制御手段4は、第1の吸着運転モード又は第2の吸着運転モードの何れか一方と、脱着運転モードとを交互に切り換える。このため、流路切替器14の動作回数を抑制することができる。また、第2の吸着運転モードにおいては冷媒回路10の冷媒の循環が停止するため、除湿対象空気は、熱交換することなく第1の熱交換器12aを通過する。このため、第1の熱交換器12aでの着霜が発生せず、運転モードが頻繁に切り換えられることを抑制できる。第1の熱交換器12aでの着霜にともなう運転モードの切換を実施しないため、水分吸着部材20によって空気中の水分を十分に吸着する前に脱着運転モードへ切り換えられることがなく、除湿効率の低下を抑制できる。 As described above, in the present embodiment, the control means 4 alternately switches between the first adsorption operation mode or the second adsorption operation mode and the desorption operation mode. For this reason, the frequency | count of operation | movement of the flow path switch 14 can be suppressed. Further, in the second adsorption operation mode, the circulation of the refrigerant in the refrigerant circuit 10 is stopped, so that the air to be dehumidified passes through the first heat exchanger 12a without exchanging heat. For this reason, the frost formation in the 1st heat exchanger 12a does not generate | occur | produce, but it can suppress that an operation mode is switched frequently. Since the operation mode is not switched due to frost formation in the first heat exchanger 12a, the desorption operation mode is not switched before the moisture adsorbing member 20 sufficiently adsorbs moisture in the air. Can be suppressed.
 また本実施の形態においては、制御手段4は、第2の吸着運転モードから脱着運転モードへ切り換えるとき、又は、脱着運転モードから第2の吸着運転モードへ切り換えるとき、流路切替器14を動作させない。このため、流路切替器14の切り換え回数を軽減することができ、開閉回数が増えることに伴う故障を抑制し、信頼性の高い除湿装置100を提供できる。 In the present embodiment, the control means 4 operates the flow path switch 14 when switching from the second adsorption operation mode to the desorption operation mode or when switching from the desorption operation mode to the second adsorption operation mode. I won't let you. For this reason, the switching frequency of the flow path switching device 14 can be reduced, a failure associated with an increase in the number of opening / closing operations can be suppressed, and the highly reliable dehumidifying device 100 can be provided.
 また本実施の形態においては、制御手段4は、除湿対象空気の温度が予め設定した温度以上、又は、除湿対象空気の湿度が予め設定した湿度以下の場合、第1の吸着運転モードを選択する。また、制御手段4は、除湿対象空気の温度が予め設定した温度よりも低く、且つ、除湿対象空気の湿度が予め設定した湿度よりも高い場合、第2の吸着運転モードを選択する。つまり、除湿対象空気が低温高湿の条件においては、除湿対象空気の冷却を実施しない第2の吸着運転モードを選択する。このため、第1の熱交換器12aへの着霜の発生を抑制できるとともに、流路切替器(例えば四方弁)が頻繁に動作することを抑制することができる。 In the present embodiment, the control means 4 selects the first adsorption operation mode when the temperature of the dehumidification target air is equal to or higher than the preset temperature or when the humidity of the dehumidification target air is equal to or lower than the preset humidity. . Further, the control means 4 selects the second adsorption operation mode when the temperature of the dehumidifying target air is lower than the preset temperature and the humidity of the dehumidifying target air is higher than the preset humidity. That is, the second adsorption operation mode in which the dehumidification target air is not cooled is selected under the condition where the dehumidification target air is at low temperature and high humidity. For this reason, generation | occurrence | production of the frost formation to the 1st heat exchanger 12a can be suppressed, and it can suppress that a flow path switch (for example, four-way valve) operates frequently.
 また本実施の形態においては、制御手段4は、水分吸着部材20の通過前後における空気の温度差または湿度差が予め設定した値を下回る場合に、第2の吸着運転モードを終了し、脱着運転モードを実施する。このため、水分吸着部材20での吸着量が飽和した場合に、第2の吸着運転モードから脱着運転モードに切り換えることができる。よって、水分吸着部材20によって空気中の水分を十分に吸着する前に第2運転モードが終了することがなく、除湿効率の低下を抑制することができる。 Further, in the present embodiment, the control means 4 ends the second adsorption operation mode when the air temperature difference or humidity difference before and after passing through the moisture adsorbing member 20 falls below a preset value, and the desorption operation. Implement the mode. For this reason, when the adsorption amount in the moisture adsorption member 20 is saturated, the second adsorption operation mode can be switched to the desorption operation mode. Therefore, the second operation mode does not end before the moisture adsorbing member 20 sufficiently adsorbs moisture in the air, and a decrease in dehumidification efficiency can be suppressed.
実施の形態2.
 次に本発明の実施の形態2における除湿装置100について説明する。図10は、実施の形態2の除湿装置100の概略構成図である。本実施の形態における除湿装置100は、第3の熱交換器12cを備えていない点において、実施の形態1と相違する。その他の除湿装置100の構成および運転モード切り換え処理は実施の形態1と同様である。本実施形態において、冷媒は、圧縮機11から流路切替器14に流入し、その後は実施の形態1と同様に、運転モードに応じた冷媒循環経路を流れる。
Embodiment 2.
Next, the dehumidifying device 100 in Embodiment 2 of this invention is demonstrated. FIG. 10 is a schematic configuration diagram of the dehumidifying apparatus 100 according to the second embodiment. The dehumidifying device 100 according to the present embodiment is different from the first embodiment in that the third heat exchanger 12c is not provided. Other configurations of the dehumidifying apparatus 100 and operation mode switching processing are the same as those in the first embodiment. In the present embodiment, the refrigerant flows from the compressor 11 into the flow path switch 14, and thereafter flows through the refrigerant circulation path corresponding to the operation mode, as in the first embodiment.
 本実施の形態においても、実施の形態1と同様に、制御手段4は、第1の吸着運転モード又は第2の吸着運転モードの何れか一方と、脱着運転モードとを交互に切り換える。このため、流路切替器14の動作回数を抑制することができる。 Also in the present embodiment, as in the first embodiment, the control means 4 alternately switches either the first adsorption operation mode or the second adsorption operation mode and the desorption operation mode. For this reason, the frequency | count of operation | movement of the flow path switch 14 can be suppressed.
 以上が本発明の実施の形態の説明であるが、本発明は、上記実施の形態の構成に限定されるものではなく、その技術的思想の範囲内で様々な変形または組み合わせが可能である。 The above is the description of the embodiment of the present invention, but the present invention is not limited to the configuration of the above embodiment, and various modifications or combinations are possible within the scope of the technical idea.
 1 風路、1a 吸込口、1b 吹出口、2a 温湿度センサ、2b 第2の温湿度センサ、3 風速センサ、4 制御手段、5 計時手段、6 記憶手段、10 冷媒回路、11 圧縮機、12a 第1の熱交換器、12b 第2の熱交換器、12c 第3の熱交換器、13 減圧装置、14 流路切替器、20 水分吸着部材、30 送風機、100 除湿装置。 1 air passage, 1a inlet, 1b outlet, 2a temperature / humidity sensor, 2b second temperature / humidity sensor, 3 wind speed sensor, 4 control means, 5 timing means, 6 storage means, 10 refrigerant circuit, 11 compressor, 12a 1st heat exchanger, 12b 2nd heat exchanger, 12c 3rd heat exchanger, 13 decompression device, 14 flow path switch, 20 moisture adsorption member, 30 blower, 100 dehumidification device.

Claims (7)

  1.  圧縮機、冷媒流路を切り替える流路切替器、第1の熱交換器、減圧装置、および第2の熱交換器が配管で順次接続され、冷媒が循環する冷媒回路と、
     前記第1の熱交換器および前記第2の熱交換器の間に配置され、風路内を流れる空気に含まれる水分の吸着および吸着した水分の脱着を行う水分吸着部材と、
     除湿対象空間の空気を前記風路内に流す送風機であって、前記第1の熱交換器、前記水分吸着部材および前記第2の熱交換器の順に空気を流す送風機と、
     前記除湿対象空間の温度を検知する温度センサと、
     前記除湿対象空間の湿度を検知する湿度センサと、
     前記圧縮機、前記流路切替器、及び前記送風機を制御する制御手段と、
     を備え、
     前記制御手段は、
     前記流路切替器及び前記圧縮機を制御して、前記第1の熱交換器を蒸発器として機能させるとともに前記第2の熱交換器を凝縮器として機能させるように前記冷媒回路に前記冷媒を循環させ、前記送風機を動作させて前記除湿対象空間の空気を前記風路内に流し、前記水分吸着部材による水分の吸着を行う第1の吸着運転モードと、
     前記圧縮機の動作を停止して前記冷媒の循環を停止させ、前記送風機を動作させて前記除湿対象空間の空気を前記風路内に流し、前記水分吸着部材による水分の吸着を行う第2の吸着運転モードと、
     前記流路切替器及び前記圧縮機を制御して、前記第1の熱交換器を凝縮器として機能させるとともに前記第2の熱交換器を蒸発器として機能させるように前記冷媒回路に前記冷媒を循環させ、前記送風機を動作させて前記除湿対象空間の空気を前記風路内に流し、前記水分吸着部材が吸着した水分の脱着を行う脱着運転モードと、の何れかの運転モードを実行するように構成され、
     前記第1の吸着運転モード又は前記第2の吸着運転モードの何れか一方と、前記脱着運転モードとを交互に切り換える
     除湿装置。
    A refrigerant circuit in which a compressor, a flow path switching unit that switches a refrigerant flow path, a first heat exchanger, a decompression device, and a second heat exchanger are sequentially connected by piping, and the refrigerant circulates;
    A moisture adsorbing member disposed between the first heat exchanger and the second heat exchanger, for adsorbing moisture contained in the air flowing in the air passage and desorbing the adsorbed moisture;
    A blower for flowing air in a dehumidification target space into the air path, wherein the blower flows air in the order of the first heat exchanger, the moisture adsorption member, and the second heat exchanger;
    A temperature sensor for detecting the temperature of the dehumidifying target space;
    A humidity sensor for detecting the humidity of the dehumidification target space;
    Control means for controlling the compressor, the flow path switch, and the blower;
    With
    The control means includes
    The refrigerant is supplied to the refrigerant circuit so as to control the flow path switch and the compressor so that the first heat exchanger functions as an evaporator and the second heat exchanger functions as a condenser. Circulating, operating the blower to flow the air in the dehumidification target space into the air path, and performing a first adsorption operation mode in which moisture is adsorbed by the moisture adsorption member;
    The compressor is stopped to stop the circulation of the refrigerant, the blower is operated to cause the air in the dehumidification target space to flow into the air passage, and moisture is adsorbed by the moisture adsorption member. Adsorption operation mode,
    The refrigerant is supplied to the refrigerant circuit so as to control the flow path switch and the compressor so that the first heat exchanger functions as a condenser and the second heat exchanger functions as an evaporator. Circulate, operate the blower to flow the air in the dehumidification target space into the air passage, and execute one of the operation modes of desorption operation mode in which the moisture adsorbed by the moisture adsorption member is desorbed Composed of
    A dehumidifying device that alternately switches between the first adsorption operation mode or the second adsorption operation mode and the desorption operation mode.
  2.  前記制御手段は、
     前記空気の温度が予め設定した温度以上、又は、前記空気の湿度が予め設定した湿度以下の場合、前記第1の吸着運転モードを選択し、
     前記空気の温度が予め設定した温度よりも低く、且つ、前記空気の湿度が予め設定した湿度よりも高い場合、前記第2の吸着運転モードを選択する
     請求項1に記載の除湿装置。
    The control means includes
    When the temperature of the air is equal to or higher than a preset temperature or the humidity of the air is equal to or lower than a preset humidity, the first adsorption operation mode is selected,
    The dehumidifying device according to claim 1, wherein the second adsorption operation mode is selected when the temperature of the air is lower than a preset temperature and the humidity of the air is higher than a preset humidity.
  3.  前記制御手段は、
     前記第2の吸着運転モードから前記脱着運転モードへ切り換えるとき、又は、
     前記脱着運転モードから前記第2の吸着運転モードへ切り換えるとき、前記流路切替器を動作させない
     請求項1又は2に記載の除湿装置。
    The control means includes
    When switching from the second adsorption operation mode to the desorption operation mode, or
    The dehumidifier according to claim 1 or 2, wherein the flow path switch is not operated when switching from the desorption operation mode to the second adsorption operation mode.
  4.  前記水分吸着部材を通過したあとの前記空気の温度を検知する第2の温度センサを、更に備え、
     前記制御手段は、
     前記水分吸着部材を通過する前の前記空気の温度と、
     前記水分吸着部材を通過した後の前記空気の温度との温度差が、予め設定した温度を下回ったとき、前記脱着運転モードに切り換える
     請求項1~3の何れか一項に記載の除湿装置。
    A second temperature sensor for detecting the temperature of the air after passing through the moisture adsorbing member;
    The control means includes
    The temperature of the air before passing through the moisture adsorbing member;
    The dehumidifying device according to any one of claims 1 to 3, wherein when the temperature difference from the temperature of the air after passing through the moisture adsorbing member falls below a preset temperature, the desorption operation mode is switched.
  5.  前記水分吸着部材を通過したあとの前記空気の湿度を検知する第2の湿度センサを、更に備え、
     前記制御手段は、
     前記水分吸着部材を通過する前の前記空気の湿度と、
     前記水分吸着部材を通過した後の前記空気の湿度との湿度差が、予め設定した湿度を下回ったとき、前記脱着運転モードに切り換える
     請求項1~4の何れか一項に記載の除湿装置。
    A second humidity sensor for detecting the humidity of the air after passing through the moisture adsorbing member;
    The control means includes
    The humidity of the air before passing through the moisture adsorbing member;
    The dehumidifying device according to any one of claims 1 to 4, wherein when the humidity difference from the humidity of the air after passing through the moisture adsorbing member falls below a preset humidity, the desorption operation mode is switched.
  6.  前記制御手段は、
     前記第2の吸着運転モードの運転時間が予め設定した時間を超えたとき、前記脱着運転モードに切り換える
     請求項1~5の何れか一項に記載の除湿装置。
    The control means includes
    The dehumidifying device according to any one of claims 1 to 5, wherein the desorption operation mode is switched to when the operation time of the second adsorption operation mode exceeds a preset time.
  7.  前記冷媒回路は、前記圧縮機と前記流路切替器との間に配置され、凝縮器として機能する第3の熱交換器をさらに備え、
     前記第3の熱交換器は、前記風路内において、前記第2の熱交換器の下流に配置された
     請求項1~6の何れか一項に記載の除湿装置。
    The refrigerant circuit further includes a third heat exchanger that is disposed between the compressor and the flow path switch and functions as a condenser,
    The dehumidifying device according to any one of claims 1 to 6, wherein the third heat exchanger is disposed downstream of the second heat exchanger in the air passage.
PCT/JP2015/056960 2015-03-10 2015-03-10 Dehumidification device WO2016143060A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201580072704.2A CN107106975B (en) 2015-03-10 2015-03-10 Dehumidifying device
PCT/JP2015/056960 WO2016143060A1 (en) 2015-03-10 2015-03-10 Dehumidification device
JP2017504476A JP6338765B2 (en) 2015-03-10 2015-03-10 Dehumidifier

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/056960 WO2016143060A1 (en) 2015-03-10 2015-03-10 Dehumidification device

Publications (1)

Publication Number Publication Date
WO2016143060A1 true WO2016143060A1 (en) 2016-09-15

Family

ID=56878838

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/056960 WO2016143060A1 (en) 2015-03-10 2015-03-10 Dehumidification device

Country Status (3)

Country Link
JP (1) JP6338765B2 (en)
CN (1) CN107106975B (en)
WO (1) WO2016143060A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107131568A (en) * 2017-04-01 2017-09-05 合肥梦飞电器有限公司 The integral air conditioner fan device of purification
WO2018142583A1 (en) * 2017-02-03 2018-08-09 三菱電機株式会社 Refrigeration system
WO2018154836A1 (en) * 2017-02-23 2018-08-30 三菱電機株式会社 Dehumidifier
WO2019066127A1 (en) * 2017-09-26 2019-04-04 김성훈 Method of controlling air dehumidifier using phase change material

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013094681A (en) * 2011-10-27 2013-05-20 Mitsubishi Electric Corp Dehumidifier
JP2014208320A (en) * 2013-04-16 2014-11-06 三菱電機株式会社 Air conditioner

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5018402B2 (en) * 2007-10-31 2012-09-05 ダイキン工業株式会社 Humidity control device
WO2013136714A1 (en) * 2012-03-14 2013-09-19 ダイキン工業株式会社 Humidity control equipment
US9822988B2 (en) * 2013-04-10 2017-11-21 Mitsubishi Electric Corporation Dehumidifying apparatus

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013094681A (en) * 2011-10-27 2013-05-20 Mitsubishi Electric Corp Dehumidifier
JP2014208320A (en) * 2013-04-16 2014-11-06 三菱電機株式会社 Air conditioner

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018142583A1 (en) * 2017-02-03 2018-08-09 三菱電機株式会社 Refrigeration system
WO2018154836A1 (en) * 2017-02-23 2018-08-30 三菱電機株式会社 Dehumidifier
JPWO2018154836A1 (en) * 2017-02-23 2019-08-08 三菱電機株式会社 Dehumidifier
CN107131568A (en) * 2017-04-01 2017-09-05 合肥梦飞电器有限公司 The integral air conditioner fan device of purification
WO2019066127A1 (en) * 2017-09-26 2019-04-04 김성훈 Method of controlling air dehumidifier using phase change material

Also Published As

Publication number Publication date
CN107106975B (en) 2020-04-03
JPWO2016143060A1 (en) 2017-10-05
CN107106975A (en) 2017-08-29
JP6338765B2 (en) 2018-06-06

Similar Documents

Publication Publication Date Title
JP6021953B2 (en) Dehumidifier
JP6116669B2 (en) Dehumidifier
JP6257788B2 (en) Dehumidifier
CN106573195B (en) Dehumidifying device
US11624544B2 (en) Dehumidifier
JP6338765B2 (en) Dehumidifier
WO2015125250A1 (en) Air-conditioning device and method for controlling air-conditioning device
JP6336101B2 (en) Dehumidifier
JP6429998B2 (en) Air conditioner
JP6611826B2 (en) Dehumidifier
WO2015125251A1 (en) Air-conditioning device and method for controlling air-conditioning device
JP6664413B2 (en) Dehumidifier
JP7126611B2 (en) air conditioner
JP7233538B2 (en) air conditioner

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15884552

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017504476

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15884552

Country of ref document: EP

Kind code of ref document: A1