WO2015125251A1 - Air-conditioning device and method for controlling air-conditioning device - Google Patents
Air-conditioning device and method for controlling air-conditioning device Download PDFInfo
- Publication number
- WO2015125251A1 WO2015125251A1 PCT/JP2014/054030 JP2014054030W WO2015125251A1 WO 2015125251 A1 WO2015125251 A1 WO 2015125251A1 JP 2014054030 W JP2014054030 W JP 2014054030W WO 2015125251 A1 WO2015125251 A1 WO 2015125251A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- heat exchanger
- operation mode
- temperature
- air
- refrigerant
- Prior art date
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F3/00—Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems
- F24F3/12—Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling
- F24F3/14—Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F1/00—Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
- F24F1/02—Self-contained room units for air-conditioning, i.e. with all apparatus for treatment installed in a common casing
- F24F1/032—Self-contained room units for air-conditioning, i.e. with all apparatus for treatment installed in a common casing characterised by heat exchangers
- F24F1/0323—Self-contained room units for air-conditioning, i.e. with all apparatus for treatment installed in a common casing characterised by heat exchangers by the mounting or arrangement of the heat exchangers
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F1/00—Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
- F24F1/02—Self-contained room units for air-conditioning, i.e. with all apparatus for treatment installed in a common casing
- F24F1/0358—Self-contained room units for air-conditioning, i.e. with all apparatus for treatment installed in a common casing with dehumidification means
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F11/00—Control or safety arrangements
- F24F11/30—Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F11/00—Control or safety arrangements
- F24F11/30—Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
- F24F11/41—Defrosting; Preventing freezing
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F11/00—Control or safety arrangements
- F24F11/62—Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
- F24F11/63—Electronic processing
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F11/00—Control or safety arrangements
- F24F11/70—Control systems characterised by their outputs; Constructional details thereof
- F24F11/72—Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure
- F24F11/74—Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure for controlling air flow rate or air velocity
- F24F11/77—Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure for controlling air flow rate or air velocity by controlling the speed of ventilators
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F11/00—Control or safety arrangements
- F24F11/70—Control systems characterised by their outputs; Constructional details thereof
- F24F11/80—Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air
- F24F11/83—Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling the supply of heat-exchange fluids to heat-exchangers
- F24F11/84—Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling the supply of heat-exchange fluids to heat-exchangers using valves
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F13/00—Details common to, or for air-conditioning, air-humidification, ventilation or use of air currents for screening
- F24F13/22—Means for preventing condensation or evacuating condensate
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F3/00—Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems
- F24F3/12—Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling
- F24F3/14—Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification
- F24F3/1411—Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification by absorbing or adsorbing water, e.g. using an hygroscopic desiccant
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F2110/00—Control inputs relating to air properties
- F24F2110/10—Temperature
Definitions
- the present invention relates to an air conditioner having a dehumidifying function and an air conditioner control method having a dehumidifying function.
- a conventional air conditioner includes a refrigerant circulation circuit in which a compressor, a condenser, an expansion valve, and an evaporator are sequentially connected by piping, and a defrost heater.
- the refrigerant compressed by the compressor becomes a high-temperature and high-pressure gas refrigerant and is sent to the condenser.
- the refrigerant flowing into the condenser is liquefied by releasing heat into the air.
- the liquefied refrigerant is decompressed by the expansion valve, becomes a gas-liquid two-phase refrigerant, and flows into the evaporator.
- the gas-liquid two-phase refrigerant is gasified by absorbing heat from ambient air with an evaporator, and is sucked into the compressor.
- the evaporator of the air conditioner It is necessary to control the evaporating temperature to be lower than 0 ° C., and as a result, frosting occurs in the evaporator, and the refrigerating capacity (dehumidifying capacity) of the air conditioner decreases. Therefore, the defrosting operation is periodically performed by the defrost heater attached to the evaporator.
- the moisture in the air flowing into the evaporator (heat absorber) is combined with the refrigeration cycle and the moisture adsorbing means, and the moisture adsorbing means removes in advance, For example, the defrosting operation is not necessary, and the discomfort of the person in the air-conditioned space is reduced.
- Patent Document 1 discloses an air conditioner including a desiccant rotor that is a moisture adsorption means.
- air from which moisture has been removed by a desiccant rotor is supplied to an evaporator (heat absorber).
- heat absorber heat absorber
- air heated by a condenser heat radiator
- a moisture absorption air passage and a moisture release air passage are necessary, and in order to suppress air leakage between the air passages, a moisture absorption air passage is required.
- a seal structure is required that hermetically separates the boundary between the air passage and the air passage for moisture release. Therefore, an air conditioning apparatus will enlarge and cost will be increased.
- the air path structure in an air conditioning apparatus is complicated, and replacement
- the present invention has been made against the background of the above problems, and it is intended to obtain an air conditioner having improved cost performance and maintenance performance while improving dehumidification performance, particularly dehumidification performance in a low temperature environment. It is aimed. Moreover, it aims at obtaining the control method of such an air conditioning apparatus.
- the air conditioner according to the present invention includes a refrigerant circulation circuit in which a compressor, a flow path switching device, a first heat exchanger, a decompression device, and a second heat exchanger are sequentially connected by piping, and the first heat A desiccant material disposed between the exchanger and the second heat exchanger, and a blower that generates an airflow that passes through the first heat exchanger, the desiccant material, and the second heat exchanger in this order.
- a temperature detecting means for detecting the temperature of the airflow; and the flow path switching device is controlled so that the first heat exchanger acts as a condenser or a radiator, and the second heat exchanger is an evaporator.
- the first operation mode for desorbing moisture held in the desiccant material, the first heat exchanger as an evaporator, and the second heat exchanger as a condenser or radiator Let the desiccant material adsorb moisture
- the control device comprising: a temperature determination means for determining whether the temperature of the airflow detected by the temperature detection means is low or high; and the temperature determination means When it is determined that the temperature of the airflow is low, the desiccant material is in a state where the surface temperature of the first heat exchanger is higher than the surface temperature of the first heat exchanger in the second operation mode. And a third operation mode setting means for shifting to the third operation mode.
- the first heat exchanger, the desiccant material, and the second heat exchanger are arranged in series in the air passage, and the first heat exchanger is the condenser or In addition to acting as a radiator, the second heat exchanger acts as an evaporator to desorb moisture held in the desiccant material, the first heat exchanger acts as an evaporator, Dehumidification of the conditioned space is performed by switching the second operation mode in which the two heat exchangers act as a condenser or a radiator to adsorb moisture to the desiccant material.
- the desiccant material adsorbing action is combined with the cooling action and heating action in the refrigerant circulation circuit to increase the amount of dehumidification, thereby improving the dehumidifying performance and relatively difficult to dehumidify. High dehumidifying performance is ensured even in a low temperature environment.
- a common air path is used in the first operation mode for desorbing moisture held in the desiccant material and in the second operation mode for adsorbing moisture to the desiccant material.
- the increase in the size of the air conditioner is suppressed, and the dehumidifying performance is improved, and the cost performance is improved.
- the complexity of the air path structure in the air conditioner is suppressed, and the dehumidifying performance is improved, and the maintenance performance is improved.
- the third operation mode setting unit determines that the surface temperature of the first heat exchanger is in the second operation mode. A transition is made to the third operation mode in which moisture is adsorbed by the desiccant material in a state higher than the surface temperature of the first heat exchanger. Therefore, when the second operation mode is performed in a state where the temperature of the air sucked into the air conditioner is low, frost formation on the first heat exchanger is suppressed, and the cooling operation of the refrigeration cycle is suppressed. The amount of dehumidification in the dehumidification performed by is ensured over a long period of time, and the operating efficiency of the refrigeration cycle is improved.
- the air conditioner according to the present invention performs dehumidification by the desiccant material and the first heat exchanger disposed on the upstream side in the second operation mode in which moisture is adsorbed to the desiccant material. Therefore, if the temperature determination means determines that the temperature of the airflow is low, the surface temperature of the first heat exchanger is the first in the second operation mode. This is realized while utilizing existing equipment by the third operation mode setting means for causing the desiccant material to adsorb moisture and shifting to the third operation mode in a state higher than the surface temperature of the heat exchanger.
- FIG. 3 is a moist air diagram in the first operation mode of the air-conditioning apparatus according to Embodiment 1. It is a moist air diagram in the 2nd operation mode of the air harmony device concerning Embodiment 1. It is a figure for demonstrating the adsorption characteristic of the desiccant material of the air conditioning apparatus which concerns on Embodiment 1.
- FIG. 3 is a moist air diagram in the first operation mode of the air-conditioning apparatus according to Embodiment 1. It is a moist air diagram in the 2nd operation mode of the air harmony device concerning Embodiment 1. It is a figure for demonstrating the adsorption characteristic of the desiccant material of the air conditioning apparatus which concerns on Embodiment 1.
- FIG. 3 is a moist air diagram in the first operation mode of the air-conditioning apparatus according to Embodiment 1. It is a moist air diagram in the 2nd operation mode of the air harmony device concerning Embodiment 1. It is a figure for demonstrating the adsorption characteristic of the desiccant
- Embodiment 1 The air conditioning apparatus according to Embodiment 1 will be described. ⁇ Configuration of air conditioner> Below, the structure of the air conditioning apparatus which concerns on Embodiment 1 is demonstrated.
- 1 is a diagram for explaining a configuration of an air-conditioning apparatus according to Embodiment 1.
- FIG. 1 the air flow is indicated by a white arrow
- the refrigerant flow in the first operation mode is indicated by a solid arrow
- the refrigerant flow in the second operation mode is indicated by a dotted arrow.
- the flow path of the four-way valve 12 in the first operation mode is indicated by a solid line
- the flow path of the four-way valve 12 in the second operation mode is indicated by a dotted line.
- an air conditioner 100 includes a compressor 11, a four-way valve 12 that is a flow path switching device, a first heat exchanger 13, and an expansion valve that is a decompression device in a housing 1. 14 and a second heat exchanger 15 disposed substantially parallel to the first heat exchanger 13, and these are connected by a pipe to form the refrigerant circulation circuit A.
- the inside of the housing 1 is partitioned into an air passage chamber 2 and a machine chamber 3 by a drain pan 21 disposed below the first heat exchanger 13 and the second heat exchanger 15.
- the compressor 11 and the four-way valve 12 are arranged in the machine room 3, and the others are arranged in the air passage chamber 2.
- the refrigerant circulation direction in the refrigerant circuit A is reversed by switching the flow path of the four-way valve 12.
- the four-way valve 12 may be another flow path switching device.
- the refrigerant discharged from the compressor 11 is transferred to the four-way valve 12, the first heat exchanger 13, the expansion valve 14, and the second heat. It flows in the order of the exchanger 15 and the four-way valve 12, and returns to the compressor 11.
- the 1st heat exchanger 13 acts as a condenser
- the 2nd heat exchanger 15 acts as an evaporator.
- the refrigerant discharged from the compressor 11 is transferred to the four-way valve 12, the second heat exchanger 15, the expansion valve 14, and the first heat. It flows in the order of the exchanger 13 and the four-way valve 12 and returns to the compressor 11.
- the 2nd heat exchanger 15 acts as a condenser
- the 1st heat exchanger 13 acts as an evaporator.
- the refrigerant of the refrigerant circuit A includes, for example, R410A refrigerant.
- the refrigerant in the refrigerant circuit A is not limited to such a refrigerant, and may include, for example, an HFC refrigerant, an HC refrigerant, an HFO refrigerant, or a natural refrigerant. That is, for example, a mixture of HFO refrigerant and HFC refrigerant may be used.
- the natural refrigerant includes, for example, a CO 2 refrigerant or an NH 3 refrigerant.
- the first heat exchanger 13 or the second heat exchanger 15 dissipates heat. Acts as a vessel.
- the first heat exchanger 13 and the second heat exchanger 15 are plate fin tube type heat exchangers. In the first heat exchanger 13 and the second heat exchanger 15, heat is exchanged between the refrigerant flowing in the heat transfer tubes and the air flowing around the fins.
- the expansion valve 14 expands the refrigerant passing through under reduced pressure.
- the expansion valve 14 is a valve whose opening degree is fixed.
- the expansion valve 14 is not limited to such a valve, and may be, for example, an electronic expansion valve capable of opening degree control.
- the expansion valve 14 may be another decompression device such as a capillary tube.
- the air passage chamber 2 is formed with a suction port 4 for introducing air to be air-conditioned into the air passage chamber 2, an air outlet 5 for discharging the air-conditioned air to the outside of the air conditioner 100, and an inspection window 6. Is done.
- An air passage forming plate 22 is disposed in the air passage chamber 2 to form an air passage B that communicates between the suction port 4 and the air outlet 5.
- a lid 7 that closes the inspection window 6 is attached to the inspection window 6. At the time of inspection, the lid 7 is removed.
- the two heat exchangers 15 and the fan 24, which is a blower, are arranged substantially in series.
- the fan 24 may be disposed in the downstream portion of the air passage B, or may be disposed in the upstream portion of the air passage B.
- the desiccant block 23 is obtained by solidifying a desiccant material, which is a material that absorbs and desorbs moisture, into a rectangular shape.
- the desiccant material is, for example, zeolite, silica gel, mesoporous silica, a polymeric adsorbent, or the like.
- the 1st heat exchanger 13, the desiccant block 23, and the 2nd heat exchanger 15 do not necessarily need to be arrange
- the 1st heat exchanger 13, the desiccant block 23, and the 2nd heat exchanger 15 do not necessarily need to be arrange
- the air passage chamber 2 is provided with a temperature / humidity sensor 81 that measures the temperature and humidity of the air sucked into the air conditioner 100, that is, the temperature and humidity of the air around the air conditioner 100.
- the machine room 3 is provided with a control device 90 that controls the operation of the entire air conditioner 100.
- the control device 90 controls the dehumidifying operation described later (switching of the operation mode according to the detection signal of the temperature / humidity sensor 81, etc.), the rotation speed of the compressor 11, the opening degree of the expansion valve 14, and the fan 24. Controls the number of rotations.
- the control device 90 includes at least a temperature determination unit 91 and a third operation mode setting unit 92.
- the temperature determination unit 91 and the third operation mode setting unit 92 control the dehumidification operation (temperature This is used for switching the operation mode according to the detection signal of the humidity sensor 81). All or each part constituting the control device 90 may be constituted by, for example, a microcomputer, a microprocessor unit or the like, or may be constituted by an updatable one such as firmware, or by a command from the CPU or the like. It may be a program module to be executed. Further, the control device 90 may be provided outside the air conditioner 100.
- the temperature / humidity sensor 81 corresponds to “temperature detection means” in the present invention.
- the temperature determination unit 91 corresponds to “temperature determination means” in the present invention.
- the third operation mode setting unit 92 corresponds to “third operation mode setting means” in the present invention.
- the temperature / humidity sensor 81 may detect the temperature / humidity of the air sucked into the air conditioner 100, or detect other physical quantities that can be converted into the temperature / humidity of the air sucked into the air conditioner 100. May be. That is, the “temperature detection means” in the present invention may be any means that substantially detects the temperature. Further, “when it is determined that the temperature of the airflow is low” in the present invention may be a case where it is determined that the temperature of the airflow is substantially low.
- the liquid refrigerant flowing out of the first heat exchanger 13 is decompressed by the expansion valve 14 and becomes a low-pressure two-phase refrigerant.
- the refrigerant that has become a low-pressure two-phase refrigerant flows into the second heat exchanger 15, absorbs heat from the air flowing through the air passage B, cools the air, is heated by the air and evaporates, and low-pressure gas It becomes a refrigerant and flows out from the second heat exchanger 15.
- the gas refrigerant flowing out of the second heat exchanger 15 is sucked into the compressor 11 through the four-way valve 12.
- FIG. 2 is a wet air diagram in the first operation mode of the air-conditioning apparatus according to Embodiment 1.
- the vertical axis represents the absolute humidity of the air
- the horizontal axis represents the dry bulb temperature of the air.
- a state where the air is saturated air is indicated by a curve C. That is, on the curve C, the relative humidity is 100%.
- the air around the air conditioner 100 is in the state of point a shown in FIG. 2, the air flows into the air passage B and is then heated by the first heat exchanger 13, so that the temperature Rises to the point b shown in FIG. 2, the relative humidity decreases, and flows into the desiccant block 23.
- the moisture held in the desiccant block 23 is desorbed (released), and the amount of moisture contained in the air increases.
- desorption heat accompanying desorption is deprived from the air flowing into the desiccant block 23, and the temperature of the air decreases. Therefore, the air flowing out from the desiccant block 23 is in the state of point c shown in FIG.
- the air flowing out from the desiccant block 23 then flows into the second heat exchanger 15 and is cooled.
- the refrigerant circuit A is controlled by the control device 90 so that the refrigerant temperature in the second heat exchanger 15 becomes lower than the dew point temperature of the air,
- the air is cooled and dehumidified by the heat exchanger 15, and is in the state of point d shown in FIG. 2 to become air having a low temperature and a low absolute humidity.
- the air that has flowed out of the second heat exchanger 15 flows into the fan 24 and is discharged from the air outlet 5 to the outside of the air conditioner 100.
- the liquid refrigerant flowing out of the second heat exchanger 15 is decompressed by the expansion valve 14 and becomes a low-pressure two-phase refrigerant.
- the refrigerant that has become a low-pressure two-phase refrigerant flows into the first heat exchanger 13, absorbs heat from the air flowing through the air passage B, cools the air, and is heated and evaporated by the air to generate a low-pressure gas. It becomes a refrigerant and flows out from the first heat exchanger 13.
- the gas refrigerant flowing out of the first heat exchanger 13 is sucked into the compressor 11 through the four-way valve 12.
- FIG. 3 is a moist air diagram in the second operation mode of the air-conditioning apparatus according to Embodiment 1.
- the vertical axis represents the absolute humidity of the air
- the horizontal axis represents the dry bulb temperature of the air.
- a state where the air is saturated air is indicated by a curve C. That is, on the curve C, the relative humidity is 100%.
- the air flows into the air passage B and is then cooled by the first heat exchanger 13.
- the refrigerant circulation circuit A is controlled by the control device 90 so that the refrigerant temperature in the first heat exchanger 13 is lower than the dew point temperature of the air.
- the air is cooled and dehumidified by the heat exchanger 13, and is in a state of point e shown in FIG. 3 to become air having a low temperature and a high relative humidity.
- the air that has flowed out of the first heat exchanger 13 flows into the desiccant block 23.
- the air flowing into the desiccant block 23 is heated by the adsorption heat accompanying the adsorption, and the temperature of the air rises. Therefore, the air flowing out from the desiccant block 23 is in the state of point f shown in FIG. 3, and becomes high temperature and low humidity.
- the air that has flowed out of the desiccant block 23 is then heated by the second heat exchanger 15 to reach the point g shown in FIG.
- the air that has flowed out of the second heat exchanger 15 flows into the fan 24 and is discharged from the air outlet 5 to the outside of the air conditioner 100.
- the desiccant is performed in the dehumidification (the difference between the absolute humidity at point a and the absolute humidity at point e in FIG. 3) performed by cooling using the refrigerant in the first heat exchanger 13.
- Dehumidification performed by the adsorption action of the block 23 (the difference between the absolute humidity at point e and the absolute humidity at point f in FIG. 3) is added. That is, as is apparent from a comparison between FIG. 2 and FIG. 3, it is possible to ensure a larger amount of dehumidification in the second operation mode than in the first operation mode. Therefore, the dehumidifying function of the air conditioner 100 is mainly realized by the second operation mode.
- the air conditioning apparatus 100 repeats the first operation mode and the second operation mode alternately. For example, when the second operation mode is continuously carried out, there is an upper limit on the amount of moisture that can be held by the desiccant block 23. Therefore, after a certain period of time, moisture is not adsorbed by the desiccant block 23, and dehumidification The amount is reduced. Therefore, the air conditioner 100 switches to the first operation mode when the amount of moisture held in the desiccant block 23 is close to the upper limit, and performs an operation of desorbing moisture from the desiccant block 23.
- the adsorption / desorption action of the desiccant block 23 is sequentially exhibited, and the dehumidification amount is increased by the adsorption action of the desiccant block 23. This effect is sustained over a long period of time.
- Each operation time in the first operation mode and the second operation mode may be set to an appropriate time according to the air condition, the operation state of the air conditioner 100, and the like.
- Each operation time in the first operation mode and the second operation mode may be a predetermined time set in advance.
- the proper operation time in the first operation mode is the time required for an appropriate amount of moisture to be desorbed from the desiccant block 23 until the amount of moisture remaining in the desiccant block 23 becomes an appropriate amount.
- the proper operation time in the second operation mode is a time in which an appropriate amount of moisture is adsorbed on the desiccant block 23 and the amount of moisture held in the desiccant block 23 becomes an appropriate amount.
- the operation time of the second operation mode with a large amount of dehumidification is shortened compared to the first operation mode.
- the dehumidification amount decreases significantly.
- the operation time in the second operation mode is too long, the desiccant block 23 will continue to be unable to adsorb moisture in the second half of the second operation mode, and the dehumidification amount will similarly decrease.
- the proper operation time in the first operation mode and the proper operation time in the second operation mode are It changes depending on the relative humidity of the air flowing into the block 23. That is, when air having a high relative humidity flows into the desiccant block 23, the moisture held in the desiccant block 23 is difficult to be desorbed, and conversely, the amount of moisture adsorbed on the desiccant block 23 increases. In addition, when air having a low relative humidity flows into the desiccant block 23, the moisture held in the desiccant block 23 is easily desorbed, and conversely, the amount of moisture adsorbed on the desiccant block 23 is reduced.
- the relative humidity of the intake air is obtained based on the detection signal of the temperature / humidity sensor 81, and the respective operation times of the first operation mode and the second operation mode are determined according to the relative humidity. To do.
- the control device 90 generates relative humidity (hereinafter referred to as “reference relative humidity”) that serves as a reference for the intake air, and the intake air having the reference relative humidity that is obtained in advance through experiments, simulations, and the like.
- reference relative humidity that serves as a reference for the intake air
- the reference operation time of each of the first operation mode and the second operation mode that can increase the dehumidification amount when passing through the path B is stored, and the actual relative humidity of the intake air and the reference relative humidity According to the magnitude relationship, the time obtained by appropriately increasing or decreasing the reference operation time is determined as the operation time of each of the first operation mode and the second operation mode.
- the control device 90 obtains the actual relative humidity of the intake air based on the detection signal of the temperature / humidity sensor 81 at the start of the dehumidifying operation. If the relative humidity is higher than the pre-stored reference relative humidity, the amount of moisture desorbed from the desiccant block 23 in the first operation mode is equal to the relative relative humidity of the actual intake air. Since it is smaller than the amount of moisture to be desorbed when it is equal to the humidity, the operation time of the first operation mode is set to a longer time than the preset reference operation time of the first operation mode. In the second operation mode, the amount of moisture adsorbed on the desiccant block 23 is larger than the amount of moisture adsorbed when the actual relative humidity of the intake air is equal to the reference relative humidity. The operation time in the second operation mode is set to a time shorter than the preset reference operation time in the second operation mode.
- the amount of moisture desorbed from the desiccant block 23 in the first operation mode is the actual relative humidity of the intake air. Since the amount of moisture to be desorbed in the case of being equal to the reference relative humidity is increased, the operation time of the first operation mode is set to a short time compared to the preset reference operation time of the first operation mode. To do. In the second operation mode, the amount of moisture adsorbed on the desiccant block 23 is smaller than the amount of moisture adsorbed when the actual relative humidity of the intake air is equal to the reference relative humidity. The operation time in the second operation mode is set to a longer time than the preset reference operation time in the second operation mode.
- the temperature determination unit 91 of the control device 90 is based on the detection signal of the temperature / humidity sensor 81 when switching to the second operation mode or when executing the second operation mode. It is determined whether or not the temperature of the intake air is equal to or lower than a preset reference temperature. Then, when the temperature determination unit 91 of the control device 90 determines that the temperature of the intake air is equal to or lower than a preset reference temperature, immediately after that or after the set standby time has elapsed, The three operation mode setting unit 92 shifts the defrosting operation to the third operation mode.
- the third operation mode is an operation mode in which moisture is adsorbed to the desiccant block 23 in a state where the surface temperature of the first heat exchanger 13 is higher than the surface temperature of the first heat exchanger 13 in the second operation mode. It is.
- the standby time is the time until clogging due to frosting occurs in the first heat exchanger 13, which is stored or calculated in the third operation mode setting unit 92.
- the waiting time may be set to a different time according to the temperature of the intake air. That is, the standby time may be set to a shorter time as the temperature of the intake air is lower.
- Air operation in the third operation mode In the third operation mode, driving of the fan 24 in the second operation mode is continued. Therefore, the air around the air conditioner 100 passes through the first heat exchanger 13, then flows into the desiccant block 23, and moisture is adsorbed by the desiccant block 23 to be dehumidified. The air that has flowed out of the desiccant block 23 then passes through the second heat exchanger 15, flows into the fan 24, and is discharged from the air outlet 5 to the outside of the air conditioner 100.
- FIG. 4 is a diagram for explaining adsorption characteristics of a desiccant material in the air-conditioning apparatus according to Embodiment 1.
- the vertical axis represents the equilibrium adsorption rate of moisture, and the horizontal axis represents the relative humidity of air.
- D represents the adsorption characteristic when the desiccant material is silica gel or zeolite.
- E represents the adsorption characteristic when the desiccant material is a porous silicon material and mesoporous silica having a large number of pores of about 1.5 nm.
- F represents the adsorption characteristic when the desiccant material is a polymer adsorbent.
- the slope which is the rate of change of the equilibrium adsorption rate relative to the relative humidity, is less than 30% or 40%. It is large compared to the slope in the exceeding range.
- the polymer adsorbent has a markedly high equilibrium adsorption rate in a range where the relative humidity is high.
- the desiccant material of the desiccant block 23 may be any of D, E, and F in the figure.
- the desiccant material of the desiccant block 23 is E or F in the figure, it is necessary to lower the relative humidity during desorption compared to the case where the desiccant material of the desiccant block 23 is D in the figure
- the first heat exchanger 13 acts as a condenser in the first operation mode
- the desiccant block 23 can be desorbed using the air that has passed through the first heat exchanger 13.
- an auxiliary heater (not shown) is required depending on the case.
- action of the air conditioning apparatus which concerns on Embodiment 1 is demonstrated.
- the air conditioner 100 the first operation mode and the second operation are performed in the state where the first heat exchanger 13, the desiccant block 23, and the second heat exchanger 15 are arranged in series in the air passage B.
- the air-conditioned space is dehumidified. Therefore, by combining the adsorption action of the desiccant block 23 with the cooling action and the heating action in the refrigerant circuit A, the amount of dehumidification increases, the dehumidification performance is improved, and the dehumidification is relatively reduced. High dehumidification performance is ensured even in difficult low-temperature environments.
- dehumidification performed by the desiccant block 23 is added to dehumidification performed by the cooling action of the refrigeration cycle, that is, dehumidification performed by the first heat exchanger 13, and thus dehumidification performance is improved. Moreover, high dehumidification performance is ensured even in a low temperature environment where dehumidification is relatively difficult.
- the air path B If the temperature of the air flowing through the air is about 10 ° C. or less, frost formation occurs in the first heat exchanger 13, so the frequency of defrosting operation increases, and the dehumidification capacity extremely decreases.
- the dehumidification performed by the desiccant block 23 is added to the dehumidification performed by the cooling action of the refrigeration cycle, that is, the dehumidification performed by the first heat exchanger 13, the temperature of the air flowing through the air passage B is about Even if it is 10 degrees C or less, it becomes possible to suppress the dehumidification performed in the 1st heat exchanger 13 only by the dehumidification performed in the desiccant block 23, the frequency of a defrosting operation increases, and dehumidification capability is carried out. It is possible to avoid the extreme decrease.
- the air flowing through the air path B is It was difficult to make the relative humidity below about%.
- the air conditioner 100 in the second operation mode, dehumidification performed in the desiccant block 23 is added, and further, the air flowing through the air passage B is heated by the second heat exchanger 15, so that the air passage B It is possible to make the air flowing through the state of point g shown in FIG. 3, that is, in a state of high temperature and low absolute humidity, and a relative humidity of about 20% or less.
- Air having a relative humidity of about 20% or less is suitable for drying applications. For example, when such air is directly applied to an object to be dried such as laundry, drying of the object to be dried is greatly accelerated, so that the drying function of the air conditioner 100 is improved.
- the air conditioning apparatus 100 since the common wind path B is used by the 1st operation mode and the 2nd operation mode, it is suppressed that the air conditioning apparatus 100 enlarges, and dehumidification performance is improved. However, cost performance is improved. Moreover, it is suppressed that the air path structure in the housing
- the temperature of the intake air is equal to or lower than a preset reference temperature in the temperature determination unit 91 of the control device 90 when switching to the second operation mode or when executing the second operation mode. If it is determined that there is, the third operation mode setting unit 92 of the control device 90 stops the compressor 11 immediately after that or after the set standby time has elapsed. Therefore, when the second operation mode is performed in a state where the temperature of the air sucked into the air conditioning apparatus 100 is low, frost formation on the first heat exchanger 13 is suppressed, and the refrigeration cycle. The amount of dehumidification in the dehumidification performed by the cooling action is ensured over a long period of time, and the operation efficiency of the refrigeration cycle is improved.
- the air conditioner 100 performs dehumidification by the desiccant block 23 and the first heat exchanger 13 disposed on the upstream side in the second operation mode.
- the third operation mode setting unit 92 that stops the compressor 11 causes the existing equipment to be Realized while utilizing.
- Embodiment 2 An air conditioner according to Embodiment 2 will be described. Note that description overlapping or similar to that in Embodiment 1 is appropriately simplified or omitted. ⁇ Dehumidifying operation of air conditioner> Below, the dehumidification operation
- the temperature determination unit 91 of the control device 90 is based on the detection signal of the temperature / humidity sensor 81 when switching to the second operation mode or when executing the second operation mode. Is less than or equal to a preset reference temperature. Then, when the temperature determination unit 91 of the control device 90 determines that the temperature of the intake air is equal to or lower than a preset reference temperature, immediately after that or after the set standby time has elapsed, The three operation mode setting unit 92 shifts the defrosting operation to the third operation mode.
- the third operation mode is an operation mode in which moisture is adsorbed to the desiccant block 23 in a state where the surface temperature of the first heat exchanger 13 is higher than the surface temperature of the first heat exchanger 13 in the second operation mode. It is.
- the standby time is the time until clogging due to frosting occurs in the first heat exchanger 13, which is stored or calculated in the third operation mode setting unit 92.
- the waiting time may be set to a different time according to the temperature of the intake air. That is, the standby time may be set to a shorter time as the temperature of the intake air is lower.
- the opening degree of the expansion valve 14 is increased in a state where the flow path of the four-way valve 12 is switched to the flow path indicated by the dotted line in FIG. That is, in the third operation mode, the refrigerant evaporation temperature in the first heat exchanger 13 is increased.
- the rotation speed of the compressor 11 may be decreased, and the evaporation temperature of the refrigerant in the first heat exchanger 13 may be increased.
- the change amount of the opening degree of the expansion valve 14 and the change amount of the rotation speed of the compressor 11 may be different change amounts according to the temperature of the intake air.
- the opening degree of the expansion valve 14 is preferably set to a larger opening degree as the temperature of the intake air is lower.
- the rotation speed of the compressor 11 is good to be set to a low rotation speed, so that the temperature of suction air is low.
- Air operation in the third operation mode In the third operation mode, driving of the fan 24 in the second operation mode is continued. Therefore, the air around the air conditioner 100 is dehumidified by the first heat exchanger 13, then flows into the desiccant block 23, moisture is adsorbed by the desiccant block 23, and further dehumidified. The air flowing out from the desiccant block 23 is then heated by the second heat exchanger 15, flows into the fan 24, and is discharged from the air outlet 5 to the outside of the air conditioner 100.
- the temperature of the intake air is equal to or lower than a preset reference temperature in the temperature determination unit 91 of the control device 90 when switching to the second operation mode or when executing the second operation mode. If it determines, immediately after that or after the set standby time elapses, the third operation mode setting unit 92 of the control device 90 increases the evaporation temperature of the refrigerant in the first heat exchanger 13. Therefore, when the second operation mode is performed in a state where the temperature of the air sucked into the air conditioning apparatus 100 is low, frost formation on the first heat exchanger 13 is suppressed, and the refrigeration cycle. The amount of dehumidification in the dehumidification performed by the cooling action is ensured over a long period, and the operation efficiency of the refrigeration cycle is improved.
- dehumidification performance that is possible because the air conditioner 100 performs dehumidification by the desiccant block 23 and the first heat exchanger 13 disposed on the upstream side in the second operation mode.
- the third operation mode in which the further improvement of the operation efficiency increases the evaporation temperature of the refrigerant in the first heat exchanger 13 when it is determined that the temperature of the intake air is equal to or lower than a preset reference temperature.
- the setting unit 92 is realized while utilizing existing equipment.
- Embodiment 1 and Embodiment 2 were demonstrated, this invention is not limited to description of each embodiment. For example, it is possible to combine all or a part of each embodiment, each modification, and the like.
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- Physics & Mathematics (AREA)
- Signal Processing (AREA)
- Fluid Mechanics (AREA)
- Fuzzy Systems (AREA)
- Mathematical Physics (AREA)
- Thermal Sciences (AREA)
- Central Air Conditioning (AREA)
- Air Conditioning Control Device (AREA)
- Drying Of Gases (AREA)
Abstract
An air-conditioning device (100) equipped with: a refrigerant circulation circuit (A); a desiccant material arranged between a first heat exchanger (13) and a second heat exchanger (15); a blower device that generates an air current that passes through the first heat exchanger (13), the desiccant material, and the second heat exchanger (15), in that order; a temperature detection means that detects the temperature of the air current; and a control device (90) that controls a flow path switching device to switch between a first operating mode, wherein moisture retained in the desiccant material is desorbed, and a second operating mode, wherein moisture is adsorbed by the desiccant material. The control device (90) has: a temperature assessment means that assesses whether the temperature of the air current as detected by the temperature detection means is low or high; and a third operating mode setting means that, when the temperature of the air current as detected by the temperature detection means is assessed as low, moves to a third operating mode whereby moisture is adsorbed by the desiccant material while the surface temperature of the first heat exchanger (13) is higher than the surface temperature of the first heat exchange (13) in the second operating mode.
Description
本発明は、除湿機能を有する空気調和装置、及び、除湿機能を有する空気調和装置の制御方法に関する。
The present invention relates to an air conditioner having a dehumidifying function and an air conditioner control method having a dehumidifying function.
従来の空気調和装置として、例えば、圧縮機、凝縮器、膨張弁、及び、蒸発器が、配管で順次接続された冷媒循環回路と、デフロストヒータと、を備えたものがある。冷媒循環回路では、圧縮機で圧縮された冷媒が、高温高圧のガス冷媒となって、凝縮器に送り込まれる。凝縮器に流入した冷媒は、空気に熱を放出することによって、液化する。液化した冷媒は、膨張弁で減圧されて、気液二相冷媒となって、蒸発器に流入する。気液二相冷媒は、蒸発器で周囲空気から熱を吸収することによって、ガス化して、圧縮機に吸入される。
For example, a conventional air conditioner includes a refrigerant circulation circuit in which a compressor, a condenser, an expansion valve, and an evaporator are sequentially connected by piping, and a defrost heater. In the refrigerant circulation circuit, the refrigerant compressed by the compressor becomes a high-temperature and high-pressure gas refrigerant and is sent to the condenser. The refrigerant flowing into the condenser is liquefied by releasing heat into the air. The liquefied refrigerant is decompressed by the expansion valve, becomes a gas-liquid two-phase refrigerant, and flows into the evaporator. The gas-liquid two-phase refrigerant is gasified by absorbing heat from ambient air with an evaporator, and is sucked into the compressor.
そのような空気調和装置が、例えば、冷凍倉庫、冷蔵倉庫等で使用される場合には、庫内温度を、10℃と比較して低い温度帯に維持するために、空気調和装置の蒸発器における蒸発温度が、0℃と比較して低くなるように制御される必要があり、その結果、蒸発器において、着霜が発生して、空気調和装置の冷凍能力(除湿能力)が低下する。そのため、蒸発器に取り付けられたデフロストヒータによって、定期的に霜取り運転が行われる。
When such an air conditioner is used in, for example, a freezer warehouse, a refrigerated warehouse, etc., in order to maintain the internal temperature in a temperature range lower than 10 ° C., the evaporator of the air conditioner It is necessary to control the evaporating temperature to be lower than 0 ° C., and as a result, frosting occurs in the evaporator, and the refrigerating capacity (dehumidifying capacity) of the air conditioner decreases. Therefore, the defrosting operation is periodically performed by the defrost heater attached to the evaporator.
そして、そのような空気調和装置では、その霜取り運転が行われる分だけ、余計にエネルギーが消費されることとなって、空気調和装置の運転効率が低下する。また、その霜取り運転中に、庫内温度が上昇することに起因して、その霜取り運転後の空気調和装置にかかる負荷が増大することとなって、結果的に、空気調和装置の消費電力が増加する。
In such an air conditioner, energy is consumed as much as the defrosting operation is performed, and the operation efficiency of the air conditioner is reduced. Further, during the defrosting operation, the load on the air conditioner after the defrosting operation is increased due to the rise in the internal temperature, and as a result, the power consumption of the air conditioner is reduced. To increase.
また、そのような空気調和装置が、例えば、回転数が制御される圧縮機を用いたものである場合には、冷房の中間期(梅雨どき、秋等)における冷房負荷の低下に伴って、圧縮機の回転数が、その負荷に追従するように低下される。その際、蒸発器における蒸発温度が上昇して、部屋等の顕熱が除去されるが、部屋等の潜熱が除去されない状況が生じることとなって、部屋等の相対湿度が上昇し、空調空間に居る人が不快と感じる。
In addition, when such an air conditioner uses, for example, a compressor whose rotation speed is controlled, along with a decrease in cooling load in the middle period of cooling (rainy season, autumn, etc.), The rotational speed of the compressor is lowered to follow the load. At that time, the evaporation temperature in the evaporator rises and the sensible heat of the room is removed, but the latent heat of the room etc. is not removed, resulting in an increase in the relative humidity of the room and the air-conditioned space. People who are in the area feel uncomfortable.
そこで、従来の空気調和装置では、冷凍サイクルと、水分吸着手段と、が組み合わされて、蒸発器(吸熱器)に流れこむ空気中の水分が、その水分吸着手段によって予め除去されることによって、例えば、霜取り運転が不要とされ、また、空調空間に居る人の不快感が低減される。
Therefore, in the conventional air conditioner, the moisture in the air flowing into the evaporator (heat absorber) is combined with the refrigeration cycle and the moisture adsorbing means, and the moisture adsorbing means removes in advance, For example, the defrosting operation is not necessary, and the discomfort of the person in the air-conditioned space is reduced.
例えば、特許文献1には、水分吸着手段であるデシカントロータを備えた空気調和装置が開示されている。特許文献1に開示された空気調和装置では、デシカントロータで水分が除去された空気が、蒸発器(吸熱器)に供給される。また、水分を吸着したデシカントロータから水分を脱着して、デシカントロータを再生させるために、凝縮器(放熱器)で加熱された空気が、デシカントロータに供給される。
For example, Patent Document 1 discloses an air conditioner including a desiccant rotor that is a moisture adsorption means. In the air conditioner disclosed in Patent Document 1, air from which moisture has been removed by a desiccant rotor is supplied to an evaporator (heat absorber). In addition, in order to regenerate the desiccant rotor by desorbing moisture from the desiccant rotor that has adsorbed moisture, air heated by a condenser (heat radiator) is supplied to the desiccant rotor.
例えば、特許文献1に開示された空気調和装置では、吸湿用の風路と放湿用の風路とが必要であり、それらの風路間で生じる空気漏れを抑制するために、吸湿用の風路と放湿用の風路との境界部分を気密に分離するシール構造が必要となる。そのため、空気調和装置が大型化して、高コスト化されてしまう。また、吸湿用の風路と放湿用の風路とが必要であるため、空気調和装置内の風路構造が複雑化されて、デシカントロータの交換等が困難になってしまう。
For example, in the air conditioner disclosed in Patent Document 1, a moisture absorption air passage and a moisture release air passage are necessary, and in order to suppress air leakage between the air passages, a moisture absorption air passage is required. A seal structure is required that hermetically separates the boundary between the air passage and the air passage for moisture release. Therefore, an air conditioning apparatus will enlarge and cost will be increased. Moreover, since the air path for moisture absorption and the air path for moisture release are required, the air path structure in an air conditioning apparatus is complicated, and replacement | exchange of a desiccant rotor etc. will become difficult.
本発明は、上記のような課題を背景としてなされたものであり、除湿性能、特に低温環境下での除湿性能が向上されつつ、コスト性能及び保守性能が向上された空気調和装置を得ることを目的としている。また、そのような空気調和装置の制御方法を得ることを目的としている。
The present invention has been made against the background of the above problems, and it is intended to obtain an air conditioner having improved cost performance and maintenance performance while improving dehumidification performance, particularly dehumidification performance in a low temperature environment. It is aimed. Moreover, it aims at obtaining the control method of such an air conditioning apparatus.
本発明に係る空気調和装置は、圧縮機、流路切換装置、第一熱交換器、減圧装置、及び、第二熱交換器が、配管で順次接続された冷媒循環回路と、前記第一熱交換器と前記第二熱交換器との間に配設されたデシカント材と、前記第一熱交換器、前記デシカント材、及び、前記第二熱交換器の順に通過する気流を生じさせる送風装置と、前記気流の温度を検出する温度検出手段と、前記流路切換装置を制御して、前記第一熱交換器を凝縮器又は放熱器として作用させると共に、前記第二熱交換器を蒸発器として作用させて、前記デシカント材に保持された水分を脱着させる第一運転モードと、前記第一熱交換器を蒸発器として作用させると共に、前記第二熱交換器を凝縮器又は放熱器として作用させて、前記デシカント材に水分を吸着させる第二運転モードと、を切り換える制御装置と、を備え、前記制御装置は、前記温度検出手段で検出される前記気流の温度が、低いか高いかを判定する温度判定手段と、前記温度判定手段で前記気流の温度が低いと判定される場合に、前記第一熱交換器の表面温度が、前記第二運転モードにおける前記第一熱交換器の表面温度と比較して高い状態で、前記デシカント材に水分を吸着させる、第三運転モードに移行させる第三運転モード設定手段と、を有するものである。
The air conditioner according to the present invention includes a refrigerant circulation circuit in which a compressor, a flow path switching device, a first heat exchanger, a decompression device, and a second heat exchanger are sequentially connected by piping, and the first heat A desiccant material disposed between the exchanger and the second heat exchanger, and a blower that generates an airflow that passes through the first heat exchanger, the desiccant material, and the second heat exchanger in this order. And a temperature detecting means for detecting the temperature of the airflow; and the flow path switching device is controlled so that the first heat exchanger acts as a condenser or a radiator, and the second heat exchanger is an evaporator. The first operation mode for desorbing moisture held in the desiccant material, the first heat exchanger as an evaporator, and the second heat exchanger as a condenser or radiator Let the desiccant material adsorb moisture A control device for switching between two operation modes, the control device comprising: a temperature determination means for determining whether the temperature of the airflow detected by the temperature detection means is low or high; and the temperature determination means When it is determined that the temperature of the airflow is low, the desiccant material is in a state where the surface temperature of the first heat exchanger is higher than the surface temperature of the first heat exchanger in the second operation mode. And a third operation mode setting means for shifting to the third operation mode.
本発明に係る空気調和装置では、風路に、第一熱交換器、デシカント材、及び、第二熱交換器が、ほぼ直列に配設された状態で、第一熱交換器を凝縮器又は放熱器として作用させると共に、第二熱交換器を蒸発器として作用させて、デシカント材に保持された水分を脱着させる第一運転モードと、第一熱交換器を蒸発器として作用させると共に、第二熱交換器を凝縮器又は放熱器として作用させて、デシカント材に水分を吸着させる第二運転モードと、が切り換えられることによって、空調空間の除湿が行われる。そのため、デシカント材の吸着作用に、冷媒循環回路での冷却作用と加熱作用とが組み合わされることによって、除湿量が増加することとなって、除湿性能が向上され、また、比較的除湿が困難な低温環境下においても、高い除湿性能が確保される。
In the air conditioner according to the present invention, the first heat exchanger, the desiccant material, and the second heat exchanger are arranged in series in the air passage, and the first heat exchanger is the condenser or In addition to acting as a radiator, the second heat exchanger acts as an evaporator to desorb moisture held in the desiccant material, the first heat exchanger acts as an evaporator, Dehumidification of the conditioned space is performed by switching the second operation mode in which the two heat exchangers act as a condenser or a radiator to adsorb moisture to the desiccant material. Therefore, the desiccant material adsorbing action is combined with the cooling action and heating action in the refrigerant circulation circuit to increase the amount of dehumidification, thereby improving the dehumidifying performance and relatively difficult to dehumidify. High dehumidifying performance is ensured even in a low temperature environment.
また、本発明に係る空気調和装置では、デシカント材に保持された水分を脱着させる第一運転モードと、デシカント材に水分を吸着させる第二運転モードと、で、共通の風路が用いられるため、空気調和装置が大型化されることが抑制されて、除湿性能が向上されつつ、コスト性能が向上される。また、空気調和装置内の風路構造が複雑化されることが抑制されて、除湿性能が向上されつつ、保守性能が向上される。
Further, in the air conditioner according to the present invention, a common air path is used in the first operation mode for desorbing moisture held in the desiccant material and in the second operation mode for adsorbing moisture to the desiccant material. The increase in the size of the air conditioner is suppressed, and the dehumidifying performance is improved, and the cost performance is improved. Further, the complexity of the air path structure in the air conditioner is suppressed, and the dehumidifying performance is improved, and the maintenance performance is improved.
また、本発明に係る空気調和装置では、温度判定手段で気流の温度が低いと判定される場合に、第三運転モード設定手段が、第一熱交換器の表面温度が、第二運転モードにおける第一熱交換器の表面温度と比較して高い状態で、デシカント材に水分を吸着させる、第三運転モードに移行させる。そのため、空気調和装置内に吸い込まれる空気の温度が低い状態で、第二運転モードが行われることによって、第一熱交換器に着霜が生じてしまうことが抑制されて、冷凍サイクルの冷却作用によって行われる除湿での除湿量が長期に亘って確保され、また、冷凍サイクルの運転効率が向上される。
Further, in the air conditioner according to the present invention, when the temperature determination unit determines that the temperature of the airflow is low, the third operation mode setting unit determines that the surface temperature of the first heat exchanger is in the second operation mode. A transition is made to the third operation mode in which moisture is adsorbed by the desiccant material in a state higher than the surface temperature of the first heat exchanger. Therefore, when the second operation mode is performed in a state where the temperature of the air sucked into the air conditioner is low, frost formation on the first heat exchanger is suppressed, and the cooling operation of the refrigeration cycle is suppressed. The amount of dehumidification in the dehumidification performed by is ensured over a long period of time, and the operating efficiency of the refrigeration cycle is improved.
つまり、本発明に係る空気調和装置が、デシカント材に水分を吸着させる第二運転モードにおいて、デシカント材と、その上流側に配設された第一熱交換器と、によって除湿を行うものであるが故に可能となる、除湿性能及び運転効率の更なる向上が、温度判定手段で気流の温度が低いと判定される場合に、第一熱交換器の表面温度が、第二運転モードにおける第一熱交換器の表面温度と比較して高い状態で、デシカント材に水分を吸着させる、第三運転モードに移行させる、第三運転モード設定手段によって、既設の機器を活用しつつ、実現される。
That is, the air conditioner according to the present invention performs dehumidification by the desiccant material and the first heat exchanger disposed on the upstream side in the second operation mode in which moisture is adsorbed to the desiccant material. Therefore, if the temperature determination means determines that the temperature of the airflow is low, the surface temperature of the first heat exchanger is the first in the second operation mode. This is realized while utilizing existing equipment by the third operation mode setting means for causing the desiccant material to adsorb moisture and shifting to the third operation mode in a state higher than the surface temperature of the heat exchanger.
以下、本発明に係る空気調和装置について、図面を用いて説明する。
なお、以下で説明する構成、動作等は、一例にすぎず、本発明に係る空気調和装置は、そのような構成、動作等である場合に限定されない。また、各図において、同一又は類似するものには、同一の符号を付すか、又は、符号を付すことを省略している。また、細かい構造については、適宜図示を簡略化又は省略している。また、重複又は類似する説明については、適宜簡略化又は省略している。 Hereinafter, an air conditioner according to the present invention will be described with reference to the drawings.
In addition, the structure, operation | movement, etc. which are demonstrated below are only examples, and the air conditioning apparatus which concerns on this invention is not limited to the case where it is such a structure, operation | movement, etc. Moreover, in each figure, the same code | symbol is attached | subjected to the same or similar thing, or attaching | subjecting code | symbol is abbreviate | omitted. Further, the illustration of the fine structure is simplified or omitted as appropriate. In addition, overlapping or similar descriptions are appropriately simplified or omitted.
なお、以下で説明する構成、動作等は、一例にすぎず、本発明に係る空気調和装置は、そのような構成、動作等である場合に限定されない。また、各図において、同一又は類似するものには、同一の符号を付すか、又は、符号を付すことを省略している。また、細かい構造については、適宜図示を簡略化又は省略している。また、重複又は類似する説明については、適宜簡略化又は省略している。 Hereinafter, an air conditioner according to the present invention will be described with reference to the drawings.
In addition, the structure, operation | movement, etc. which are demonstrated below are only examples, and the air conditioning apparatus which concerns on this invention is not limited to the case where it is such a structure, operation | movement, etc. Moreover, in each figure, the same code | symbol is attached | subjected to the same or similar thing, or attaching | subjecting code | symbol is abbreviate | omitted. Further, the illustration of the fine structure is simplified or omitted as appropriate. In addition, overlapping or similar descriptions are appropriately simplified or omitted.
実施の形態1.
実施の形態1に係る空気調和装置について説明する。
<空気調和装置の構成>
以下に、実施の形態1に係る空気調和装置の構成について説明する。
図1は、実施の形態1に係る空気調和装置の、構成を説明するための図である。なお、図1では、空気の流れを白抜き矢印で示し、第一運転モードにおける冷媒の流れを実線矢印で示し、第二運転モードにおける冷媒の流れを点線矢印で示している。また、第一運転モードにおける四方弁12の流路を実線で示し、第二運転モードにおける四方弁12の流路を点線で示している。Embodiment 1 FIG.
The air conditioning apparatus according toEmbodiment 1 will be described.
<Configuration of air conditioner>
Below, the structure of the air conditioning apparatus which concerns onEmbodiment 1 is demonstrated.
1 is a diagram for explaining a configuration of an air-conditioning apparatus according toEmbodiment 1. FIG. In FIG. 1, the air flow is indicated by a white arrow, the refrigerant flow in the first operation mode is indicated by a solid arrow, and the refrigerant flow in the second operation mode is indicated by a dotted arrow. Further, the flow path of the four-way valve 12 in the first operation mode is indicated by a solid line, and the flow path of the four-way valve 12 in the second operation mode is indicated by a dotted line.
実施の形態1に係る空気調和装置について説明する。
<空気調和装置の構成>
以下に、実施の形態1に係る空気調和装置の構成について説明する。
図1は、実施の形態1に係る空気調和装置の、構成を説明するための図である。なお、図1では、空気の流れを白抜き矢印で示し、第一運転モードにおける冷媒の流れを実線矢印で示し、第二運転モードにおける冷媒の流れを点線矢印で示している。また、第一運転モードにおける四方弁12の流路を実線で示し、第二運転モードにおける四方弁12の流路を点線で示している。
The air conditioning apparatus according to
<Configuration of air conditioner>
Below, the structure of the air conditioning apparatus which concerns on
1 is a diagram for explaining a configuration of an air-conditioning apparatus according to
図1に示されるように、空気調和装置100は、筐体1内に、圧縮機11と、流路切換装置である四方弁12と、第一熱交換器13と、減圧装置である膨張弁14と、第一熱交換器13とほぼ平行に配設された第二熱交換器15と、を備えており、これらが配管で接続されて冷媒循環回路Aが形成される。筐体1内は、第一熱交換器13及び第二熱交換器15の下方に配置されたドレンパン21によって、風路室2と、機械室3と、に区画される。圧縮機11及び四方弁12は機械室3に配設され、他は風路室2に配設される。
As shown in FIG. 1, an air conditioner 100 includes a compressor 11, a four-way valve 12 that is a flow path switching device, a first heat exchanger 13, and an expansion valve that is a decompression device in a housing 1. 14 and a second heat exchanger 15 disposed substantially parallel to the first heat exchanger 13, and these are connected by a pipe to form the refrigerant circulation circuit A. The inside of the housing 1 is partitioned into an air passage chamber 2 and a machine chamber 3 by a drain pan 21 disposed below the first heat exchanger 13 and the second heat exchanger 15. The compressor 11 and the four-way valve 12 are arranged in the machine room 3, and the others are arranged in the air passage chamber 2.
四方弁12の流路が切り換えられることで、冷媒循環回路Aにおける冷媒の循環方向が反転される。四方弁12は、他の流路切換装置であってもよい。四方弁12の流路が、図1に実線で示される流路に切り換えられると、圧縮機11から吐出された冷媒は、四方弁12、第一熱交換器13、膨張弁14、第二熱交換器15、及び、四方弁12の順に流れて、圧縮機11に戻る。その際、第一熱交換器13は凝縮器として作用し、第二熱交換器15は蒸発器として作用する。四方弁12の流路が、図1に点線で示される流路に切り換えられると、圧縮機11から吐出された冷媒は、四方弁12、第二熱交換器15、膨張弁14、第一熱交換器13、及び、四方弁12の順に流れて圧縮機11に戻る。その際、第二熱交換器15は凝縮器として作用し、第一熱交換器13は蒸発器として作用する。
The refrigerant circulation direction in the refrigerant circuit A is reversed by switching the flow path of the four-way valve 12. The four-way valve 12 may be another flow path switching device. When the flow path of the four-way valve 12 is switched to the flow path indicated by the solid line in FIG. 1, the refrigerant discharged from the compressor 11 is transferred to the four-way valve 12, the first heat exchanger 13, the expansion valve 14, and the second heat. It flows in the order of the exchanger 15 and the four-way valve 12, and returns to the compressor 11. In that case, the 1st heat exchanger 13 acts as a condenser, and the 2nd heat exchanger 15 acts as an evaporator. When the flow path of the four-way valve 12 is switched to the flow path indicated by the dotted line in FIG. 1, the refrigerant discharged from the compressor 11 is transferred to the four-way valve 12, the second heat exchanger 15, the expansion valve 14, and the first heat. It flows in the order of the exchanger 13 and the four-way valve 12 and returns to the compressor 11. In that case, the 2nd heat exchanger 15 acts as a condenser, and the 1st heat exchanger 13 acts as an evaporator.
冷媒循環回路Aの冷媒は、例えば、R410A冷媒を含む。冷媒循環回路Aの冷媒は、そのような冷媒に限定されず、例えば、HFC冷媒、HC冷媒、HFO冷媒、又は、自然冷媒を含むものであってもよい。つまり、例えば、HFO冷媒とHFC冷媒とが混合されたもの等であってもよい。自然冷媒は、例えば、CO2冷媒、又は、NH3冷媒を含む。例えば、自然冷媒がCO2冷媒である場合等のように、冷媒循環回路Aの高圧側圧力が臨界圧力以上になる場合には、第一熱交換器13又は第二熱交換器15は、放熱器として作用する。
The refrigerant of the refrigerant circuit A includes, for example, R410A refrigerant. The refrigerant in the refrigerant circuit A is not limited to such a refrigerant, and may include, for example, an HFC refrigerant, an HC refrigerant, an HFO refrigerant, or a natural refrigerant. That is, for example, a mixture of HFO refrigerant and HFC refrigerant may be used. The natural refrigerant includes, for example, a CO 2 refrigerant or an NH 3 refrigerant. For example, when the high pressure side pressure of the refrigerant circuit A is equal to or higher than the critical pressure, such as when the natural refrigerant is a CO 2 refrigerant, the first heat exchanger 13 or the second heat exchanger 15 dissipates heat. Acts as a vessel.
第一熱交換器13及び第二熱交換器15は、プレートフィンチューブ型の熱交換器である。第一熱交換器13及び第二熱交換器15において、伝熱管内を流れる冷媒と、フィンの周囲を流れる空気と、が熱交換する。
The first heat exchanger 13 and the second heat exchanger 15 are plate fin tube type heat exchangers. In the first heat exchanger 13 and the second heat exchanger 15, heat is exchanged between the refrigerant flowing in the heat transfer tubes and the air flowing around the fins.
膨張弁14は、通過する冷媒を減圧膨張する。膨張弁14は、開度が固定された弁である。膨張弁14は、そのような弁に限定されず、例えば、開度制御が可能な電子式膨張弁等であってもよい。また、膨張弁14が、キャピラリチューブ等の、他の減圧装置であってもよい。
The expansion valve 14 expands the refrigerant passing through under reduced pressure. The expansion valve 14 is a valve whose opening degree is fixed. The expansion valve 14 is not limited to such a valve, and may be, for example, an electronic expansion valve capable of opening degree control. The expansion valve 14 may be another decompression device such as a capillary tube.
風路室2には、空調対象の空気を風路室2内に導入する吸込口4と、空調された空気を空気調和装置100外に排出する吹出口5と、点検窓6と、が形成される。風路室2内に風路形成板22が配設されて、吸込口4と吹出口5との間を連通させる風路Bが形成される。点検窓6には、点検窓6を塞ぐ蓋7が取り付けられる。点検時には、蓋7が取り外される。
The air passage chamber 2 is formed with a suction port 4 for introducing air to be air-conditioned into the air passage chamber 2, an air outlet 5 for discharging the air-conditioned air to the outside of the air conditioner 100, and an inspection window 6. Is done. An air passage forming plate 22 is disposed in the air passage chamber 2 to form an air passage B that communicates between the suction port 4 and the air outlet 5. A lid 7 that closes the inspection window 6 is attached to the inspection window 6. At the time of inspection, the lid 7 is removed.
風路Bには、第一熱交換器13と、第一熱交換器13とほぼ平行に配設された、デシカント材であるデシカントブロック23と、デシカントブロック23とほぼ平行に配設された第二熱交換器15と、送風装置であるファン24と、が、ほぼ直列に配置される。ファン24は、風路Bの下流部に配設されてもよく、また、風路Bの上流部に配設されてもよい。ファン24が駆動されることによって、風路Bに、図1に白抜き矢印で示される気流が生じる。つまり、吸込口4から風路Bに吸入された空気は、第一熱交換器13、デシカントブロック23、第二熱交換器15、及び、ファン24の順に通過した後に、吹出口5から排出される。
In the air passage B, a first heat exchanger 13, a desiccant block 23, which is a desiccant material, disposed substantially parallel to the first heat exchanger 13, and a first heat exchanger disposed substantially parallel to the desiccant block 23. The two heat exchangers 15 and the fan 24, which is a blower, are arranged substantially in series. The fan 24 may be disposed in the downstream portion of the air passage B, or may be disposed in the upstream portion of the air passage B. When the fan 24 is driven, an air flow indicated by a white arrow in FIG. That is, the air drawn into the air passage B from the suction port 4 passes through the first heat exchanger 13, the desiccant block 23, the second heat exchanger 15, and the fan 24 in this order, and is then discharged from the blowout port 5. The
デシカントブロック23は、水分を吸脱着する材料であるデシカント材を、固形化して矩形に成型したものである。デシカント材は、例えば、ゼオライト、シリカゲル、メソポーラスシリカ、高分子系吸着材等である。
The desiccant block 23 is obtained by solidifying a desiccant material, which is a material that absorbs and desorbs moisture, into a rectangular shape. The desiccant material is, for example, zeolite, silica gel, mesoporous silica, a polymeric adsorbent, or the like.
なお、第一熱交換器13と、デシカントブロック23と、第二熱交換器15と、は、必ずしも平行に配設されなくてもよい。また、第一熱交換器13と、デシカントブロック23と、第二熱交換器15と、は、必ずしも重力方向と平行に配設されなくてもよい。
In addition, the 1st heat exchanger 13, the desiccant block 23, and the 2nd heat exchanger 15 do not necessarily need to be arrange | positioned in parallel. Moreover, the 1st heat exchanger 13, the desiccant block 23, and the 2nd heat exchanger 15 do not necessarily need to be arrange | positioned in parallel with a gravitational direction.
風路室2には、空気調和装置100内に吸い込まれる空気の温湿度、つまり、空気調和装置100の周囲の空気の温湿度を計測する温湿度センサ81が配設される。また、機械室3には、空気調和装置100全体の動作を司る制御装置90が配設される。制御装置90は、後述される除湿動作の制御(温湿度センサ81の検出信号に応じた運転モードの切り換え等)、圧縮機11の回転数の制御、膨張弁14の開度の制御、ファン24の回転数の制御等を司る。制御装置90は、少なくとも、温度判定部91と、第三運転モード設定部92と、を有し、温度判定部91と第三運転モード設定部92とは、後述される除湿動作の制御(温湿度センサ81の検出信号に応じた運転モードの切り換え等)に用いられる。制御装置90を構成する全部又は各部は、例えば、マイコン、マイクロプロセッサユニット等で構成されてもよく、また、ファームウェア等の更新可能なもので構成されてもよく、また、CPU等からの指令によって実行されるプログラムモジュール等であってもよい。また、制御装置90は、空気調和装置100外に設けられていてもよい。温湿度センサ81は、本発明における「温度検出手段」に相当する。温度判定部91は、本発明における「温度判定手段」に相当する。第三運転モード設定部92は、本発明における「第三運転モード設定手段」に相当する。
The air passage chamber 2 is provided with a temperature / humidity sensor 81 that measures the temperature and humidity of the air sucked into the air conditioner 100, that is, the temperature and humidity of the air around the air conditioner 100. The machine room 3 is provided with a control device 90 that controls the operation of the entire air conditioner 100. The control device 90 controls the dehumidifying operation described later (switching of the operation mode according to the detection signal of the temperature / humidity sensor 81, etc.), the rotation speed of the compressor 11, the opening degree of the expansion valve 14, and the fan 24. Controls the number of rotations. The control device 90 includes at least a temperature determination unit 91 and a third operation mode setting unit 92. The temperature determination unit 91 and the third operation mode setting unit 92 control the dehumidification operation (temperature This is used for switching the operation mode according to the detection signal of the humidity sensor 81). All or each part constituting the control device 90 may be constituted by, for example, a microcomputer, a microprocessor unit or the like, or may be constituted by an updatable one such as firmware, or by a command from the CPU or the like. It may be a program module to be executed. Further, the control device 90 may be provided outside the air conditioner 100. The temperature / humidity sensor 81 corresponds to “temperature detection means” in the present invention. The temperature determination unit 91 corresponds to “temperature determination means” in the present invention. The third operation mode setting unit 92 corresponds to “third operation mode setting means” in the present invention.
なお、温湿度センサ81は、空気調和装置100内に吸い込まれる空気の温湿度自体を検出してもよく、また、空気調和装置100内に吸い込まれる空気の温湿度に換算できる他の物理量を検出してもよい。つまり、本発明における「温度検出手段」は、実質的に温度を検出する手段であればよい。また、本発明における「気流の温度が低いと判定される場合」は、実質的に気流の温度が低いと判定される場合であればよい。
Note that the temperature / humidity sensor 81 may detect the temperature / humidity of the air sucked into the air conditioner 100, or detect other physical quantities that can be converted into the temperature / humidity of the air sucked into the air conditioner 100. May be. That is, the “temperature detection means” in the present invention may be any means that substantially detects the temperature. Further, “when it is determined that the temperature of the airflow is low” in the present invention may be a case where it is determined that the temperature of the airflow is substantially low.
<空気調和装置の除湿動作>
以下に、実施の形態1に係る空気調和装置の除湿動作について説明する。
空気調和装置100では、除湿動作において、制御装置90が、四方弁12の流路を切り換えることによって、第一運転モード及び第二運転モードの2つの運転モードが行われる。
まず、第一運転モード及び第二運転モードのそれぞれの動作について説明する。 <Dehumidifying operation of air conditioner>
Hereinafter, the dehumidifying operation of the air-conditioning apparatus according toEmbodiment 1 will be described.
In theair conditioner 100, in the dehumidifying operation, the control device 90 switches the flow path of the four-way valve 12, whereby the two operation modes of the first operation mode and the second operation mode are performed.
First, each operation in the first operation mode and the second operation mode will be described.
以下に、実施の形態1に係る空気調和装置の除湿動作について説明する。
空気調和装置100では、除湿動作において、制御装置90が、四方弁12の流路を切り換えることによって、第一運転モード及び第二運転モードの2つの運転モードが行われる。
まず、第一運転モード及び第二運転モードのそれぞれの動作について説明する。 <Dehumidifying operation of air conditioner>
Hereinafter, the dehumidifying operation of the air-conditioning apparatus according to
In the
First, each operation in the first operation mode and the second operation mode will be described.
(第一運転モードにおける冷凍サイクルの動作)
第一運転モードでは、図1に実線で示されるように、四方弁12の流路が切り換えられる。圧縮機11に吸入された低圧のガス冷媒は、圧縮されて、高温高圧のガス冷媒となる。圧縮機11から吐出された冷媒は、四方弁12を経て、第一熱交換器13に流入する。第一熱交換器13に流入した冷媒は、風路Bを流れる空気に放熱してその空気を加熱すると共に、その空気によって冷却されて凝縮し、高圧の液冷媒となって第一熱交換器13から流出する。第一熱交換器13から流出した液冷媒は、膨張弁14で減圧され、低圧の二相冷媒となる。低圧の二相冷媒となった冷媒は、第二熱交換器15に流入し、風路Bを流れる空気から吸熱してその空気を冷却すると共に、その空気によって加熱されて蒸発し、低圧のガス冷媒となって第二熱交換器15から流出する。第二熱交換器15から流出したガス冷媒は、四方弁12を経て、圧縮機11に吸入される。 (Refrigeration cycle operation in the first operation mode)
In the first operation mode, the flow path of the four-way valve 12 is switched as shown by the solid line in FIG. The low-pressure gas refrigerant sucked into the compressor 11 is compressed into a high-temperature and high-pressure gas refrigerant. The refrigerant discharged from the compressor 11 flows into the first heat exchanger 13 through the four-way valve 12. The refrigerant flowing into the first heat exchanger 13 dissipates heat to the air flowing through the air passage B to heat the air, and is cooled and condensed by the air to become a high-pressure liquid refrigerant. 13 will flow out. The liquid refrigerant flowing out of the first heat exchanger 13 is decompressed by the expansion valve 14 and becomes a low-pressure two-phase refrigerant. The refrigerant that has become a low-pressure two-phase refrigerant flows into the second heat exchanger 15, absorbs heat from the air flowing through the air passage B, cools the air, is heated by the air and evaporates, and low-pressure gas It becomes a refrigerant and flows out from the second heat exchanger 15. The gas refrigerant flowing out of the second heat exchanger 15 is sucked into the compressor 11 through the four-way valve 12.
第一運転モードでは、図1に実線で示されるように、四方弁12の流路が切り換えられる。圧縮機11に吸入された低圧のガス冷媒は、圧縮されて、高温高圧のガス冷媒となる。圧縮機11から吐出された冷媒は、四方弁12を経て、第一熱交換器13に流入する。第一熱交換器13に流入した冷媒は、風路Bを流れる空気に放熱してその空気を加熱すると共に、その空気によって冷却されて凝縮し、高圧の液冷媒となって第一熱交換器13から流出する。第一熱交換器13から流出した液冷媒は、膨張弁14で減圧され、低圧の二相冷媒となる。低圧の二相冷媒となった冷媒は、第二熱交換器15に流入し、風路Bを流れる空気から吸熱してその空気を冷却すると共に、その空気によって加熱されて蒸発し、低圧のガス冷媒となって第二熱交換器15から流出する。第二熱交換器15から流出したガス冷媒は、四方弁12を経て、圧縮機11に吸入される。 (Refrigeration cycle operation in the first operation mode)
In the first operation mode, the flow path of the four-
(第一運転モードにおける空気の動作)
図2は、実施の形態1に係る空気調和装置の、第一運転モードにおける湿り空気線図である。なお、図2では、縦軸を空気の絶対湿度、横軸を空気の乾球温度としている。また、図2では、空気が飽和空気である状態を曲線Cで示している。つまり、曲線C上では、相対湿度が100%である。 (Air operation in the first operation mode)
FIG. 2 is a wet air diagram in the first operation mode of the air-conditioning apparatus according toEmbodiment 1. In FIG. 2, the vertical axis represents the absolute humidity of the air, and the horizontal axis represents the dry bulb temperature of the air. Further, in FIG. 2, a state where the air is saturated air is indicated by a curve C. That is, on the curve C, the relative humidity is 100%.
図2は、実施の形態1に係る空気調和装置の、第一運転モードにおける湿り空気線図である。なお、図2では、縦軸を空気の絶対湿度、横軸を空気の乾球温度としている。また、図2では、空気が飽和空気である状態を曲線Cで示している。つまり、曲線C上では、相対湿度が100%である。 (Air operation in the first operation mode)
FIG. 2 is a wet air diagram in the first operation mode of the air-conditioning apparatus according to
空気調和装置100の周囲の空気が、図2に示されるa点の状態であるとすると、その空気は、風路Bに流入した後、第一熱交換器13によって加熱されることで、温度が上昇し、図2に示されるb点の状態になって、相対湿度が低下し、デシカントブロック23に流入する。その際、その空気の相対湿度が低くなっているため、デシカントブロック23に保持された水分が脱着(放出)されて、その空気に含まれる水分の量が増加する。また、デシカントブロック23に流入した空気から、脱着に伴う脱着熱が奪われることとなって、その空気の温度が低下する。そのため、デシカントブロック23から流出する空気は、図2に示されるc点の状態になって、高湿度となる。デシカントブロック23から流出した空気は、その後、第二熱交換器15に流入し、冷却される。その際、冷媒循環回路Aは、制御装置90によって、第二熱交換器15内の冷媒温度が、空気の露点温度と比較して低くなるように制御されているため、その空気は、第二熱交換器15によって冷却されると共に除湿され、図2に示されるd点の状態となって、低温で且つ絶対湿度の低い空気となる。第二熱交換器15から流出した空気は、ファン24に流入し、吹出口5から空気調和装置100の外側に排出される。
If the air around the air conditioner 100 is in the state of point a shown in FIG. 2, the air flows into the air passage B and is then heated by the first heat exchanger 13, so that the temperature Rises to the point b shown in FIG. 2, the relative humidity decreases, and flows into the desiccant block 23. At that time, since the relative humidity of the air is low, the moisture held in the desiccant block 23 is desorbed (released), and the amount of moisture contained in the air increases. In addition, desorption heat accompanying desorption is deprived from the air flowing into the desiccant block 23, and the temperature of the air decreases. Therefore, the air flowing out from the desiccant block 23 is in the state of point c shown in FIG. The air flowing out from the desiccant block 23 then flows into the second heat exchanger 15 and is cooled. At that time, since the refrigerant circuit A is controlled by the control device 90 so that the refrigerant temperature in the second heat exchanger 15 becomes lower than the dew point temperature of the air, The air is cooled and dehumidified by the heat exchanger 15, and is in the state of point d shown in FIG. 2 to become air having a low temperature and a low absolute humidity. The air that has flowed out of the second heat exchanger 15 flows into the fan 24 and is discharged from the air outlet 5 to the outside of the air conditioner 100.
(第二運転モードにおける冷凍サイクルの動作)
第二運転モードでは、図1に点線で示されるように、四方弁12の流路が切り換えられる。圧縮機11に吸入された低圧のガス冷媒は、圧縮されて、高温高圧のガス冷媒となる。圧縮機11から吐出された冷媒は、四方弁12を経て、第二熱交換器15に流入する。第二熱交換器15に流入した冷媒は、風路Bを流れる空気に放熱してその空気を加熱すると共に、その空気によって冷却されて凝縮し、高圧の液冷媒となって第二熱交換器15から流出する。第二熱交換器15から流出した液冷媒は、膨張弁14で減圧され、低圧の二相冷媒となる。低圧の二相冷媒となった冷媒は、第一熱交換器13に流入し、風路Bを流れる空気から吸熱してその空気を冷却すると共に、その空気によって加熱されて蒸発し、低圧のガス冷媒となって第一熱交換器13から流出する。第一熱交換器13から流出したガス冷媒は、四方弁12を経て、圧縮機11に吸入される。 (Operation of the refrigeration cycle in the second operation mode)
In the second operation mode, the flow path of the four-way valve 12 is switched as indicated by a dotted line in FIG. The low-pressure gas refrigerant sucked into the compressor 11 is compressed into a high-temperature and high-pressure gas refrigerant. The refrigerant discharged from the compressor 11 flows into the second heat exchanger 15 through the four-way valve 12. The refrigerant flowing into the second heat exchanger 15 radiates heat to the air flowing through the air passage B to heat the air, and is cooled and condensed by the air to become a high-pressure liquid refrigerant. Flows out of 15. The liquid refrigerant flowing out of the second heat exchanger 15 is decompressed by the expansion valve 14 and becomes a low-pressure two-phase refrigerant. The refrigerant that has become a low-pressure two-phase refrigerant flows into the first heat exchanger 13, absorbs heat from the air flowing through the air passage B, cools the air, and is heated and evaporated by the air to generate a low-pressure gas. It becomes a refrigerant and flows out from the first heat exchanger 13. The gas refrigerant flowing out of the first heat exchanger 13 is sucked into the compressor 11 through the four-way valve 12.
第二運転モードでは、図1に点線で示されるように、四方弁12の流路が切り換えられる。圧縮機11に吸入された低圧のガス冷媒は、圧縮されて、高温高圧のガス冷媒となる。圧縮機11から吐出された冷媒は、四方弁12を経て、第二熱交換器15に流入する。第二熱交換器15に流入した冷媒は、風路Bを流れる空気に放熱してその空気を加熱すると共に、その空気によって冷却されて凝縮し、高圧の液冷媒となって第二熱交換器15から流出する。第二熱交換器15から流出した液冷媒は、膨張弁14で減圧され、低圧の二相冷媒となる。低圧の二相冷媒となった冷媒は、第一熱交換器13に流入し、風路Bを流れる空気から吸熱してその空気を冷却すると共に、その空気によって加熱されて蒸発し、低圧のガス冷媒となって第一熱交換器13から流出する。第一熱交換器13から流出したガス冷媒は、四方弁12を経て、圧縮機11に吸入される。 (Operation of the refrigeration cycle in the second operation mode)
In the second operation mode, the flow path of the four-
(第二運転モードにおける空気の動作)
図3は、実施の形態1に係る空気調和装置の、第二運転モードにおける湿り空気線図である。なお、図3では、縦軸を空気の絶対湿度、横軸を空気の乾球温度としている。また、図3では、空気が飽和空気である状態を曲線Cで示している。つまり、曲線C上では、相対湿度が100%である。 (Air operation in the second operation mode)
FIG. 3 is a moist air diagram in the second operation mode of the air-conditioning apparatus according toEmbodiment 1. In FIG. 3, the vertical axis represents the absolute humidity of the air, and the horizontal axis represents the dry bulb temperature of the air. In FIG. 3, a state where the air is saturated air is indicated by a curve C. That is, on the curve C, the relative humidity is 100%.
図3は、実施の形態1に係る空気調和装置の、第二運転モードにおける湿り空気線図である。なお、図3では、縦軸を空気の絶対湿度、横軸を空気の乾球温度としている。また、図3では、空気が飽和空気である状態を曲線Cで示している。つまり、曲線C上では、相対湿度が100%である。 (Air operation in the second operation mode)
FIG. 3 is a moist air diagram in the second operation mode of the air-conditioning apparatus according to
空気調和装置100の周囲の空気が、図3に示されるa点の状態であるとすると、その空気は、風路Bに流入した後、第一熱交換器13によって冷却される。その際、冷媒循環回路Aは、制御装置90によって、第一熱交換器13内の冷媒温度が、空気の露点温度と比較して低くなるように制御されているため、その空気は、第一熱交換器13によって冷却されると共に除湿され、図3に示されるe点の状態となって、低温で且つ相対湿度の高い空気となる。第一熱交換器13から流出した空気は、デシカントブロック23に流入する。その際、その空気の相対湿度が高くなっているため、デシカントブロック23に水分が吸着されて、その空気に含まれる水分の量が減少することとなって、その空気は、更に除湿される。また、デシカントブロック23に流入した空気は、吸着に伴う吸着熱によって加熱されることとなって、その空気の温度が上昇する。そのため、デシカントブロック23から流出する空気は、図3に示されるf点の状態になって、高温且つ低湿度となる。デシカントブロック23から流出した空気は、その後、第二熱交換器15によって加熱されて、図3に示されるg点の状態となって、高温となる。第二熱交換器15から流出した空気は、ファン24に流入し、吹出口5から空気調和装置100の外側に排出される。
Assuming that the air around the air conditioner 100 is in the state of point a shown in FIG. 3, the air flows into the air passage B and is then cooled by the first heat exchanger 13. At that time, the refrigerant circulation circuit A is controlled by the control device 90 so that the refrigerant temperature in the first heat exchanger 13 is lower than the dew point temperature of the air. The air is cooled and dehumidified by the heat exchanger 13, and is in a state of point e shown in FIG. 3 to become air having a low temperature and a high relative humidity. The air that has flowed out of the first heat exchanger 13 flows into the desiccant block 23. At that time, since the relative humidity of the air is high, moisture is adsorbed to the desiccant block 23, and the amount of moisture contained in the air is reduced, so that the air is further dehumidified. Further, the air flowing into the desiccant block 23 is heated by the adsorption heat accompanying the adsorption, and the temperature of the air rises. Therefore, the air flowing out from the desiccant block 23 is in the state of point f shown in FIG. 3, and becomes high temperature and low humidity. The air that has flowed out of the desiccant block 23 is then heated by the second heat exchanger 15 to reach the point g shown in FIG. The air that has flowed out of the second heat exchanger 15 flows into the fan 24 and is discharged from the air outlet 5 to the outside of the air conditioner 100.
以上のように、第二運転モードでは、第一熱交換器13における冷媒を用いた冷却によって行われる除湿(図3における、a点の絶対湿度とe点の絶対湿度との差)に、デシカントブロック23の吸着作用によって行われる除湿(図3における、e点の絶対湿度とf点の絶対湿度との差)が、加えられる。つまり、図2と図3を比較しても明らかなように、第二運転モード時には、第一運転モード時と比較して、多くの除湿量を確保することが可能である。そのため、空気調和装置100の除湿機能は、主に第二運転モードによって実現される。
As described above, in the second operation mode, the desiccant is performed in the dehumidification (the difference between the absolute humidity at point a and the absolute humidity at point e in FIG. 3) performed by cooling using the refrigerant in the first heat exchanger 13. Dehumidification performed by the adsorption action of the block 23 (the difference between the absolute humidity at point e and the absolute humidity at point f in FIG. 3) is added. That is, as is apparent from a comparison between FIG. 2 and FIG. 3, it is possible to ensure a larger amount of dehumidification in the second operation mode than in the first operation mode. Therefore, the dehumidifying function of the air conditioner 100 is mainly realized by the second operation mode.
そして、空気調和装置100は、第一運転モードと第二運転モードとを交互に繰り返す。例えば、第二運転モードが継続して実施される場合には、デシカントブロック23が保持できる水分の量に上限があるため、一定時間が経過すると、デシカントブロック23に水分が吸着されなくなって、除湿量が低下する。そこで、空気調和装置100は、デシカントブロック23に保持された水分の量が上限近くになった段階で、第一運転モードに切り換え、デシカントブロック23から水分を脱着する運転を実施する。このように、第一運転モードと第二運転モードとが交互に実施されることで、デシカントブロック23の吸脱着作用が順次発揮されることとなり、デシカントブロック23の吸着作用によって除湿量を増加するという効果が、長期に亘って持続される。
And the air conditioning apparatus 100 repeats the first operation mode and the second operation mode alternately. For example, when the second operation mode is continuously carried out, there is an upper limit on the amount of moisture that can be held by the desiccant block 23. Therefore, after a certain period of time, moisture is not adsorbed by the desiccant block 23, and dehumidification The amount is reduced. Therefore, the air conditioner 100 switches to the first operation mode when the amount of moisture held in the desiccant block 23 is close to the upper limit, and performs an operation of desorbing moisture from the desiccant block 23. As described above, by alternately performing the first operation mode and the second operation mode, the adsorption / desorption action of the desiccant block 23 is sequentially exhibited, and the dehumidification amount is increased by the adsorption action of the desiccant block 23. This effect is sustained over a long period of time.
(第一運転モード及び第二運転モードの切換のタイミング)
次に、第一運転モード及び第二運転モードの切換のタイミングについて説明する。
第一運転モード及び第二運転モードのそれぞれの運転時間は、空気条件、空気調和装置100の運転状態等に応じた適正な時間に設定されるとよい。なお、第一運転モード及び第二運転モードのそれぞれの運転時間は、予め設定された一定の時間であってもよい。 (Timing for switching between the first operation mode and the second operation mode)
Next, the timing of switching between the first operation mode and the second operation mode will be described.
Each operation time in the first operation mode and the second operation mode may be set to an appropriate time according to the air condition, the operation state of theair conditioner 100, and the like. Each operation time in the first operation mode and the second operation mode may be a predetermined time set in advance.
次に、第一運転モード及び第二運転モードの切換のタイミングについて説明する。
第一運転モード及び第二運転モードのそれぞれの運転時間は、空気条件、空気調和装置100の運転状態等に応じた適正な時間に設定されるとよい。なお、第一運転モード及び第二運転モードのそれぞれの運転時間は、予め設定された一定の時間であってもよい。 (Timing for switching between the first operation mode and the second operation mode)
Next, the timing of switching between the first operation mode and the second operation mode will be described.
Each operation time in the first operation mode and the second operation mode may be set to an appropriate time according to the air condition, the operation state of the
第一運転モードの適正な運転時間は、デシカントブロック23から適正な量の水分が脱着されて、デシカントブロック23に残存する水分の量が適正な量となるまでに要する時間である。デシカントブロック23に残存する水分が適正な量と比較して多い状態で、第一運転モードが第二運転モードに切り換えられると、第二運転モードでデシカントブロック23に吸着される水分の量が減ってしまい、第二運転モードにおける除湿量が低減する。逆に、第一運転モードの運転時間が長すぎると、第一運転モードと比較して除湿量が多い第二運転モードへの切り換えが遅くなって、第一運転モードの運転時間の後半で、デシカントブロック23が水分を殆ど脱着できない状態が継続されることとなるため、第一運転モードと第二運転モードとの切換を繰り返した場合に、除湿量の減少が顕著となる。
The proper operation time in the first operation mode is the time required for an appropriate amount of moisture to be desorbed from the desiccant block 23 until the amount of moisture remaining in the desiccant block 23 becomes an appropriate amount. When the first operation mode is switched to the second operation mode in a state where the amount of moisture remaining in the desiccant block 23 is larger than the appropriate amount, the amount of moisture adsorbed on the desiccant block 23 in the second operation mode is reduced. As a result, the amount of dehumidification in the second operation mode is reduced. Conversely, if the operation time of the first operation mode is too long, switching to the second operation mode with a large amount of dehumidification compared to the first operation mode is delayed, and in the second half of the operation time of the first operation mode, Since the state in which the desiccant block 23 is hardly able to desorb moisture is continued, when the switching between the first operation mode and the second operation mode is repeated, the dehumidification amount is significantly reduced.
第二運転モードの適正な運転時間は、デシカントブロック23に適正な量の水分が吸着されて、デシカントブロック23で保持される水分の量が適正な量となる時間である。デシカントブロック23で吸着できる余地がある状態で、第二運転モードが第一運転モードに切り換えられると、第一運転モードと比較して除湿量の多い第二運転モードの運転時間が短くなるため、第一運転モードと第二運転モードとの切換を繰り返した場合に、除湿量の減少が顕著となる。逆に、第二運転モードの運転時間が長すぎると、第二運転モードの後半で、デシカントブロック23が水分を吸着できない状態が継続されることとなり、同様に、除湿量が減少する。
The proper operation time in the second operation mode is a time in which an appropriate amount of moisture is adsorbed on the desiccant block 23 and the amount of moisture held in the desiccant block 23 becomes an appropriate amount. When the second operation mode is switched to the first operation mode in a state where there is room to be adsorbed by the desiccant block 23, the operation time of the second operation mode with a large amount of dehumidification is shortened compared to the first operation mode. When the switching between the first operation mode and the second operation mode is repeated, the dehumidification amount decreases significantly. On the other hand, if the operation time in the second operation mode is too long, the desiccant block 23 will continue to be unable to adsorb moisture in the second half of the second operation mode, and the dehumidification amount will similarly decrease.
そして、デシカントブロック23が保持する水分の量は、デシカントブロック23に流入する空気の相対湿度によって変化するため、第一運転モードの適正な運転時間及び第二運転モードの適正な運転時間は、デシカントブロック23に流入する空気の相対湿度によって変化する。つまり、デシカントブロック23に相対湿度が高い空気が流入する場合には、デシカントブロック23に保持された水分が脱着されにくくなり、逆に、デシカントブロック23に吸着される水分の量が多くなる。また、デシカントブロック23に相対湿度の低い空気が流入する場合には、デシカントブロック23に保持された水分が脱着されやすくなり、逆に、デシカントブロック23に吸着される水分の量が少なくなる。
Since the amount of moisture held by the desiccant block 23 varies depending on the relative humidity of the air flowing into the desiccant block 23, the proper operation time in the first operation mode and the proper operation time in the second operation mode are It changes depending on the relative humidity of the air flowing into the block 23. That is, when air having a high relative humidity flows into the desiccant block 23, the moisture held in the desiccant block 23 is difficult to be desorbed, and conversely, the amount of moisture adsorbed on the desiccant block 23 increases. In addition, when air having a low relative humidity flows into the desiccant block 23, the moisture held in the desiccant block 23 is easily desorbed, and conversely, the amount of moisture adsorbed on the desiccant block 23 is reduced.
そのため、空気調和装置100では、温湿度センサ81の検出信号に基づいて、吸込空気の相対湿度を求め、その相対湿度に応じて、第一運転モード及び第二運転モードのそれぞれの運転時間を決定する。
Therefore, in the air conditioning apparatus 100, the relative humidity of the intake air is obtained based on the detection signal of the temperature / humidity sensor 81, and the respective operation times of the first operation mode and the second operation mode are determined according to the relative humidity. To do.
具体的には、制御装置90が、吸込空気の基準となる相対湿度(以降、基準相対湿度と記載する。)と、予め実験、シミュレーション等によって求められた、その基準相対湿度の吸込空気が風路Bを通過した場合に除湿量を多くすることができる、第一運転モード及び第二運転モードのそれぞれの基準運転時間と、を、記憶し、実際の吸込空気の相対湿度と基準相対湿度との大小関係に応じて、基準運転時間を適宜増減した時間を、第一運転モード及び第二運転モードのそれぞれの運転時間として、決定する。
Specifically, the control device 90 generates relative humidity (hereinafter referred to as “reference relative humidity”) that serves as a reference for the intake air, and the intake air having the reference relative humidity that is obtained in advance through experiments, simulations, and the like. The reference operation time of each of the first operation mode and the second operation mode that can increase the dehumidification amount when passing through the path B is stored, and the actual relative humidity of the intake air and the reference relative humidity According to the magnitude relationship, the time obtained by appropriately increasing or decreasing the reference operation time is determined as the operation time of each of the first operation mode and the second operation mode.
例えば、制御装置90は、除湿動作の開始時における温湿度センサ81の検出信号に基づいて、実際の吸込空気の相対湿度を求める。そして、その相対湿度が予め記憶された基準相対湿度と比較して高い場合には、第一運転モードにおいて、デシカントブロック23から脱着される水分の量が、実際の吸込空気の相対湿度が基準相対湿度と等しい場合における脱着される水分の量と比較して少なくなるため、第一運転モードの運転時間を予め設定された第一運転モードの基準運転時間と比較して長い時間に、設定する。また、第二運転モードにおいて、デシカントブロック23に吸着される水分の量が、実際の吸込空気の相対湿度が基準相対湿度と等しい場合における吸着される水分の量と比較して多くなるため、第二運転モードの運転時間を予め設定された第二運転モードの基準運転時間と比較して短い時間に、設定する。
For example, the control device 90 obtains the actual relative humidity of the intake air based on the detection signal of the temperature / humidity sensor 81 at the start of the dehumidifying operation. If the relative humidity is higher than the pre-stored reference relative humidity, the amount of moisture desorbed from the desiccant block 23 in the first operation mode is equal to the relative relative humidity of the actual intake air. Since it is smaller than the amount of moisture to be desorbed when it is equal to the humidity, the operation time of the first operation mode is set to a longer time than the preset reference operation time of the first operation mode. In the second operation mode, the amount of moisture adsorbed on the desiccant block 23 is larger than the amount of moisture adsorbed when the actual relative humidity of the intake air is equal to the reference relative humidity. The operation time in the second operation mode is set to a time shorter than the preset reference operation time in the second operation mode.
また、例えば、その相対湿度が予め記憶された基準相対湿度と比較して低い場合には、第一運転モードにおいて、デシカントブロック23から脱着される水分の量が、実際の吸込空気の相対湿度が基準相対湿度と等しい場合における脱着される水分の量と比較して多くなるため、第一運転モードの運転時間を予め設定された第一運転モードの基準運転時間と比較して短い時間に、設定する。また、第二運転モードにおいて、デシカントブロック23に吸着される水分の量が、実際の吸込空気の相対湿度が基準相対湿度と等しい場合における吸着される水分の量と比較して少なくなるため、第二運転モードの運転時間を予め設定された第二運転モードの基準運転時間と比較して長い時間に、設定する。
Further, for example, when the relative humidity is lower than the reference relative humidity stored in advance, the amount of moisture desorbed from the desiccant block 23 in the first operation mode is the actual relative humidity of the intake air. Since the amount of moisture to be desorbed in the case of being equal to the reference relative humidity is increased, the operation time of the first operation mode is set to a short time compared to the preset reference operation time of the first operation mode. To do. In the second operation mode, the amount of moisture adsorbed on the desiccant block 23 is smaller than the amount of moisture adsorbed when the actual relative humidity of the intake air is equal to the reference relative humidity. The operation time in the second operation mode is set to a longer time than the preset reference operation time in the second operation mode.
そして、更に、空気調和装置100では、第二運転モードへの切換時、又は、第二運転モードの実行時に、制御装置90の温度判定部91が、温湿度センサ81の検出信号に基づいて、吸込空気の温度が予め設定された基準温度以下であるか否かを判定する。そして、制御装置90の温度判定部91において、吸込空気の温度が予め設定された基準温度以下であると判定されると、その直後、又は、設定された待機時間経過後に、制御装置90の第三運転モード設定部92が、除霜動作を第三運転モードに移行させる。第三運転モードは、第一熱交換器13の表面温度が、第二運転モードにおける第一熱交換器13の表面温度と比較して高い状態で、デシカントブロック23に水分を吸着させる、運転モードである。待機時間は、第三運転モード設定部92において記憶又は演算された、第一熱交換器13に着霜に伴う目詰まりが生じるまでの時間である。待機時間は、吸込空気の温度に応じた異なる時間に設定されてもよい。つまり、待機時間は、吸込空気の温度が低い程、短い時間に設定されるとよい。第三運転モードが継続されて、デシカントブロック23に適正な量の水分が吸着されると、制御装置90は、四方弁12の流路を切り換えて、第一運転モードに移行する。
以下に、第三運転モードの動作について説明する。 Further, in theair conditioner 100, the temperature determination unit 91 of the control device 90 is based on the detection signal of the temperature / humidity sensor 81 when switching to the second operation mode or when executing the second operation mode. It is determined whether or not the temperature of the intake air is equal to or lower than a preset reference temperature. Then, when the temperature determination unit 91 of the control device 90 determines that the temperature of the intake air is equal to or lower than a preset reference temperature, immediately after that or after the set standby time has elapsed, The three operation mode setting unit 92 shifts the defrosting operation to the third operation mode. The third operation mode is an operation mode in which moisture is adsorbed to the desiccant block 23 in a state where the surface temperature of the first heat exchanger 13 is higher than the surface temperature of the first heat exchanger 13 in the second operation mode. It is. The standby time is the time until clogging due to frosting occurs in the first heat exchanger 13, which is stored or calculated in the third operation mode setting unit 92. The waiting time may be set to a different time according to the temperature of the intake air. That is, the standby time may be set to a shorter time as the temperature of the intake air is lower. When the third operation mode is continued and an appropriate amount of moisture is adsorbed to the desiccant block 23, the control device 90 switches the flow path of the four-way valve 12 and shifts to the first operation mode.
The operation in the third operation mode will be described below.
以下に、第三運転モードの動作について説明する。 Further, in the
The operation in the third operation mode will be described below.
(第三運転モードにおける冷凍サイクルの動作)
第三運転モードでは、第二運転モードにおいて、四方弁12の流路が、図1に点線で示される流路に切り換えられた状態で、圧縮機11が停止される。つまり、第三運転モードでは、冷媒循環回路Aの冷媒の循環が停止されることによって、第一熱交換器13が蒸発器として作用しなくなって、第一熱交換器13の表面温度が上昇し、また、第二熱交換器15が凝縮器として作用しなくなる。 (Operation of the refrigeration cycle in the third operation mode)
In the third operation mode, in the second operation mode, thecompressor 11 is stopped in a state where the flow path of the four-way valve 12 is switched to the flow path indicated by the dotted line in FIG. That is, in the third operation mode, the circulation of the refrigerant in the refrigerant circuit A is stopped, so that the first heat exchanger 13 does not function as an evaporator, and the surface temperature of the first heat exchanger 13 increases. In addition, the second heat exchanger 15 does not function as a condenser.
第三運転モードでは、第二運転モードにおいて、四方弁12の流路が、図1に点線で示される流路に切り換えられた状態で、圧縮機11が停止される。つまり、第三運転モードでは、冷媒循環回路Aの冷媒の循環が停止されることによって、第一熱交換器13が蒸発器として作用しなくなって、第一熱交換器13の表面温度が上昇し、また、第二熱交換器15が凝縮器として作用しなくなる。 (Operation of the refrigeration cycle in the third operation mode)
In the third operation mode, in the second operation mode, the
(第三運転モードにおける空気の動作)
第三運転モードでは、第二運転モードにおけるファン24の駆動が、継続される。そのため、空気調和装置100の周囲の空気は、第一熱交換器13を通過した後、デシカントブロック23に流入して、デシカントブロック23に水分が吸着されて、除湿される。デシカントブロック23から流出した空気は、その後、第二熱交換器15を通過して、ファン24に流入し、吹出口5から空気調和装置100の外側に排出される。 (Air operation in the third operation mode)
In the third operation mode, driving of thefan 24 in the second operation mode is continued. Therefore, the air around the air conditioner 100 passes through the first heat exchanger 13, then flows into the desiccant block 23, and moisture is adsorbed by the desiccant block 23 to be dehumidified. The air that has flowed out of the desiccant block 23 then passes through the second heat exchanger 15, flows into the fan 24, and is discharged from the air outlet 5 to the outside of the air conditioner 100.
第三運転モードでは、第二運転モードにおけるファン24の駆動が、継続される。そのため、空気調和装置100の周囲の空気は、第一熱交換器13を通過した後、デシカントブロック23に流入して、デシカントブロック23に水分が吸着されて、除湿される。デシカントブロック23から流出した空気は、その後、第二熱交換器15を通過して、ファン24に流入し、吹出口5から空気調和装置100の外側に排出される。 (Air operation in the third operation mode)
In the third operation mode, driving of the
<デシカント材>
図4は、実施の形態1に係る空気調和装置の、デシカント材の吸着特性を説明するための図である。なお、図4では、縦軸を水分の平衡吸着率、横軸を空気の相対湿度としている。また、図4では、デシカント材がシリカゲル又はゼオライトである場合の吸着特性を、Dで示している。また、図4では、デシカント材が、孔質ケイ素材料であり、1.5nm程度の細孔が多数形成されたメソポーラスシリカである場合の吸着特性を、Eで示している。また、図4では、デシカント材が高分子系吸着材である場合の吸着特性を、Fで示している。 <Desicant material>
FIG. 4 is a diagram for explaining adsorption characteristics of a desiccant material in the air-conditioning apparatus according toEmbodiment 1. In FIG. 4, the vertical axis represents the equilibrium adsorption rate of moisture, and the horizontal axis represents the relative humidity of air. In FIG. 4, D represents the adsorption characteristic when the desiccant material is silica gel or zeolite. In FIG. 4, E represents the adsorption characteristic when the desiccant material is a porous silicon material and mesoporous silica having a large number of pores of about 1.5 nm. In FIG. 4, F represents the adsorption characteristic when the desiccant material is a polymer adsorbent.
図4は、実施の形態1に係る空気調和装置の、デシカント材の吸着特性を説明するための図である。なお、図4では、縦軸を水分の平衡吸着率、横軸を空気の相対湿度としている。また、図4では、デシカント材がシリカゲル又はゼオライトである場合の吸着特性を、Dで示している。また、図4では、デシカント材が、孔質ケイ素材料であり、1.5nm程度の細孔が多数形成されたメソポーラスシリカである場合の吸着特性を、Eで示している。また、図4では、デシカント材が高分子系吸着材である場合の吸着特性を、Fで示している。 <Desicant material>
FIG. 4 is a diagram for explaining adsorption characteristics of a desiccant material in the air-conditioning apparatus according to
図4に示されるように、メソポーラスシリカは、相対湿度が約30%~40%の範囲において、相対湿度に対する平衡吸着率の変化率である傾斜が、30%未満の範囲、又は、40%を超える範囲における傾斜と比較して大きいものである。また、高分子系吸着材は、相対湿度が高い範囲において、平衡吸着率が際立って高い。デシカントブロック23のデシカント材は、図中のD、E、Fのうちのいずれであってもよい。デシカントブロック23のデシカント材が、図中のE、Fである場合には、デシカントブロック23のデシカント材が、図中のDである場合と比較して、脱着時の相対湿度を低くする必要性が抑制され、第一運転モードにおいて第一熱交換器13が凝縮器として作用する際に、第一熱交換器13を通過した空気を用いて、デシカントブロック23の脱着を行うことが可能となる。図中のDである場合には、場合によっては、補助ヒータ(図示せず)が必要となる。
As shown in FIG. 4, in the case of mesoporous silica, in the relative humidity range of about 30% to 40%, the slope, which is the rate of change of the equilibrium adsorption rate relative to the relative humidity, is less than 30% or 40%. It is large compared to the slope in the exceeding range. In addition, the polymer adsorbent has a markedly high equilibrium adsorption rate in a range where the relative humidity is high. The desiccant material of the desiccant block 23 may be any of D, E, and F in the figure. When the desiccant material of the desiccant block 23 is E or F in the figure, it is necessary to lower the relative humidity during desorption compared to the case where the desiccant material of the desiccant block 23 is D in the figure When the first heat exchanger 13 acts as a condenser in the first operation mode, the desiccant block 23 can be desorbed using the air that has passed through the first heat exchanger 13. . In the case of D in the figure, an auxiliary heater (not shown) is required depending on the case.
<空気調和装置の作用>
以下に、実施の形態1に係る空気調和装置の作用について説明する。
空気調和装置100では、風路Bに、第一熱交換器13、デシカントブロック23、及び、第二熱交換器15が、ほぼ直列に配設された状態で、第一運転モードと第二運転モードとが切り換えられることによって、空調空間の除湿が行われる。そのため、デシカントブロック23の吸着作用に、冷媒循環回路Aでの冷却作用と加熱作用とが組み合わされることによって、除湿量が増加することとなって、除湿性能が向上され、また、比較的除湿が困難な低温環境下においても、高い除湿性能が確保される。 <Operation of air conditioner>
Below, the effect | action of the air conditioning apparatus which concerns onEmbodiment 1 is demonstrated.
In theair conditioner 100, the first operation mode and the second operation are performed in the state where the first heat exchanger 13, the desiccant block 23, and the second heat exchanger 15 are arranged in series in the air passage B. By switching between modes, the air-conditioned space is dehumidified. Therefore, by combining the adsorption action of the desiccant block 23 with the cooling action and the heating action in the refrigerant circuit A, the amount of dehumidification increases, the dehumidification performance is improved, and the dehumidification is relatively reduced. High dehumidification performance is ensured even in difficult low-temperature environments.
以下に、実施の形態1に係る空気調和装置の作用について説明する。
空気調和装置100では、風路Bに、第一熱交換器13、デシカントブロック23、及び、第二熱交換器15が、ほぼ直列に配設された状態で、第一運転モードと第二運転モードとが切り換えられることによって、空調空間の除湿が行われる。そのため、デシカントブロック23の吸着作用に、冷媒循環回路Aでの冷却作用と加熱作用とが組み合わされることによって、除湿量が増加することとなって、除湿性能が向上され、また、比較的除湿が困難な低温環境下においても、高い除湿性能が確保される。 <Operation of air conditioner>
Below, the effect | action of the air conditioning apparatus which concerns on
In the
特に、第二運転モードでは、冷凍サイクルの冷却作用によって行われる除湿、つまり第一熱交換器13で行われる除湿に、デシカントブロック23で行われる除湿が、加えられるため、除湿性能が向上され、また、比較的除湿が困難な低温環境下においても、高い除湿性能が確保される。
In particular, in the second operation mode, dehumidification performed by the desiccant block 23 is added to dehumidification performed by the cooling action of the refrigeration cycle, that is, dehumidification performed by the first heat exchanger 13, and thus dehumidification performance is improved. Moreover, high dehumidification performance is ensured even in a low temperature environment where dehumidification is relatively difficult.
また、第二運転モードにおいて、冷凍サイクルの冷却作用によって行われる除湿、つまり第一熱交換器13で行われる除湿に、デシカントブロック23で行われる除湿が、加えられない場合には、風路Bを流れる空気の温度が約10℃以下であると、第一熱交換器13に着霜が生じるため、霜取り運転の頻度が増加して、除湿能力が極端に低下してしまう。一方、冷凍サイクルの冷却作用によって行われる除湿、つまり第一熱交換器13で行われる除湿に、デシカントブロック23で行われる除湿が、加えられる場合には、風路Bを流れる空気の温度が約10℃以下である場合でも、デシカントブロック23で行われる除湿分だけ、第一熱交換器13で行われる除湿を抑制することが可能となって、霜取り運転の頻度が増加して、除湿能力が極端に低下してしまうことを回避することが可能となる。
In the second operation mode, if the dehumidification performed by the desiccant block 23 is not added to the dehumidification performed by the cooling action of the refrigeration cycle, that is, the dehumidification performed by the first heat exchanger 13, the air path B If the temperature of the air flowing through the air is about 10 ° C. or less, frost formation occurs in the first heat exchanger 13, so the frequency of defrosting operation increases, and the dehumidification capacity extremely decreases. On the other hand, when the dehumidification performed by the desiccant block 23 is added to the dehumidification performed by the cooling action of the refrigeration cycle, that is, the dehumidification performed by the first heat exchanger 13, the temperature of the air flowing through the air passage B is about Even if it is 10 degrees C or less, it becomes possible to suppress the dehumidification performed in the 1st heat exchanger 13 only by the dehumidification performed in the desiccant block 23, the frequency of a defrosting operation increases, and dehumidification capability is carried out. It is possible to avoid the extreme decrease.
また、冷凍サイクルの冷却作用によって行われる除湿、つまり第一熱交換器13で行われる除湿に、デシカントブロック23で行われる除湿が、加えられない場合には、風路Bを流れる空気を、40%程度以下の相対湿度にすることが困難であった。一方、空気調和装置100では、第二運転モードにおいて、デシカントブロック23で行われる除湿が、加えられ、更に、風路Bを流れる空気が第二熱交換器15で加熱されるため、風路Bを流れる空気を、図3に示されるg点の状態、つまり、高温で且つ絶対湿度が低い状態にして、20%程度以下の相対湿度にすることが可能である。20%程度以下の相対湿度の空気は、乾燥用途に好適である。例えば、このような空気が、洗濯物等の被乾燥物に直接当てられると、被乾燥物の乾燥が格段促進されるため、空気調和装置100の乾燥機能が向上されることとなる。
Further, when the dehumidification performed by the desiccant block 23 is not added to the dehumidification performed by the cooling action of the refrigeration cycle, that is, the dehumidification performed by the first heat exchanger 13, the air flowing through the air path B is It was difficult to make the relative humidity below about%. On the other hand, in the air conditioner 100, in the second operation mode, dehumidification performed in the desiccant block 23 is added, and further, the air flowing through the air passage B is heated by the second heat exchanger 15, so that the air passage B It is possible to make the air flowing through the state of point g shown in FIG. 3, that is, in a state of high temperature and low absolute humidity, and a relative humidity of about 20% or less. Air having a relative humidity of about 20% or less is suitable for drying applications. For example, when such air is directly applied to an object to be dried such as laundry, drying of the object to be dried is greatly accelerated, so that the drying function of the air conditioner 100 is improved.
また、空気調和装置100では、第一運転モードと第二運転モードとで、共通の風路Bが用いられるため、空気調和装置100が大型化されることが抑制されて、除湿性能が向上されつつ、コスト性能が向上される。また、空気調和装置100の筐体1内の風路構造が複雑化されることが抑制されて、除湿性能が向上されつつ、保守性能が向上される。
Moreover, in the air conditioning apparatus 100, since the common wind path B is used by the 1st operation mode and the 2nd operation mode, it is suppressed that the air conditioning apparatus 100 enlarges, and dehumidification performance is improved. However, cost performance is improved. Moreover, it is suppressed that the air path structure in the housing | casing 1 of the air conditioning apparatus 100 is complicated, a maintenance performance is improved, improving a dehumidification performance.
また、空気調和装置100では、第二運転モードへの切換時、又は、第二運転モードの実行時に、制御装置90の温度判定部91において、吸込空気の温度が予め設定された基準温度以下であると判定されると、その直後、又は、設定された待機時間経過後に、制御装置90の第三運転モード設定部92が、圧縮機11を停止させる。そのため、空気調和装置100内に吸い込まれる空気の温度が低い状態で、第二運転モードが行われることによって、第一熱交換器13に着霜が生じてしまうことが抑制されて、冷凍サイクルの冷却作用によって行われる除湿での除湿量が長期に亘って確保され、また、冷凍サイクルの運転効率が向上される。
Further, in the air conditioner 100, the temperature of the intake air is equal to or lower than a preset reference temperature in the temperature determination unit 91 of the control device 90 when switching to the second operation mode or when executing the second operation mode. If it is determined that there is, the third operation mode setting unit 92 of the control device 90 stops the compressor 11 immediately after that or after the set standby time has elapsed. Therefore, when the second operation mode is performed in a state where the temperature of the air sucked into the air conditioning apparatus 100 is low, frost formation on the first heat exchanger 13 is suppressed, and the refrigeration cycle. The amount of dehumidification in the dehumidification performed by the cooling action is ensured over a long period of time, and the operation efficiency of the refrigeration cycle is improved.
つまり、空気調和装置100が、第二運転モードにおいて、デシカントブロック23と、その上流側に配設された第一熱交換器13と、によって除湿を行うものであるが故に可能となる、除湿性能及び運転効率の更なる向上が、吸込空気の温度が予め設定された基準温度以下であると判定される場合に、圧縮機11を停止させる、第三運転モード設定部92によって、既設の機器を活用しつつ、実現される。
That is, dehumidification performance that is possible because the air conditioner 100 performs dehumidification by the desiccant block 23 and the first heat exchanger 13 disposed on the upstream side in the second operation mode. When the temperature of the intake air is determined to be equal to or lower than a preset reference temperature, the third operation mode setting unit 92 that stops the compressor 11 causes the existing equipment to be Realized while utilizing.
実施の形態2.
実施の形態2に係る空気調和装置について説明する。
なお、実施の形態1と重複又は類似する説明は、適宜簡略化又は省略している。
<空気調和装置の除湿動作>
以下に、実施の形態2に係る空気調和装置の除湿動作について説明する。Embodiment 2. FIG.
An air conditioner according toEmbodiment 2 will be described.
Note that description overlapping or similar to that inEmbodiment 1 is appropriately simplified or omitted.
<Dehumidifying operation of air conditioner>
Below, the dehumidification operation | movement of the air conditioning apparatus which concerns onEmbodiment 2 is demonstrated.
実施の形態2に係る空気調和装置について説明する。
なお、実施の形態1と重複又は類似する説明は、適宜簡略化又は省略している。
<空気調和装置の除湿動作>
以下に、実施の形態2に係る空気調和装置の除湿動作について説明する。
An air conditioner according to
Note that description overlapping or similar to that in
<Dehumidifying operation of air conditioner>
Below, the dehumidification operation | movement of the air conditioning apparatus which concerns on
空気調和装置100では、第二運転モードへの切換時、又は、第二運転モードの実行時に、制御装置90の温度判定部91が、温湿度センサ81の検出信号に基づいて、吸込空気の温度が予め設定された基準温度以下であるか否かを判定する。そして、制御装置90の温度判定部91において、吸込空気の温度が予め設定された基準温度以下であると判定されると、その直後、又は、設定された待機時間経過後に、制御装置90の第三運転モード設定部92が、除霜動作を第三運転モードに移行させる。第三運転モードは、第一熱交換器13の表面温度が、第二運転モードにおける第一熱交換器13の表面温度と比較して高い状態で、デシカントブロック23に水分を吸着させる、運転モードである。待機時間は、第三運転モード設定部92において記憶又は演算された、第一熱交換器13に着霜に伴う目詰まりが生じるまでの時間である。待機時間は、吸込空気の温度に応じた異なる時間に設定されてもよい。つまり、待機時間は、吸込空気の温度が低い程、短い時間に設定されるとよい。第三運転モードが継続されて、デシカントブロック23に適正な量の水分が吸着されると、制御装置90は、四方弁12の流路を切り換えて、第一運転モードに移行する。
以下に、第三運転モードの動作について説明する。 In theair conditioning apparatus 100, the temperature determination unit 91 of the control device 90 is based on the detection signal of the temperature / humidity sensor 81 when switching to the second operation mode or when executing the second operation mode. Is less than or equal to a preset reference temperature. Then, when the temperature determination unit 91 of the control device 90 determines that the temperature of the intake air is equal to or lower than a preset reference temperature, immediately after that or after the set standby time has elapsed, The three operation mode setting unit 92 shifts the defrosting operation to the third operation mode. The third operation mode is an operation mode in which moisture is adsorbed to the desiccant block 23 in a state where the surface temperature of the first heat exchanger 13 is higher than the surface temperature of the first heat exchanger 13 in the second operation mode. It is. The standby time is the time until clogging due to frosting occurs in the first heat exchanger 13, which is stored or calculated in the third operation mode setting unit 92. The waiting time may be set to a different time according to the temperature of the intake air. That is, the standby time may be set to a shorter time as the temperature of the intake air is lower. When the third operation mode is continued and an appropriate amount of moisture is adsorbed to the desiccant block 23, the control device 90 switches the flow path of the four-way valve 12 and shifts to the first operation mode.
The operation in the third operation mode will be described below.
以下に、第三運転モードの動作について説明する。 In the
The operation in the third operation mode will be described below.
(第三運転モードにおける冷凍サイクルの動作)
第三運転モードでは、第二運転モードにおいて、四方弁12の流路が、図1に点線で示される流路に切り換えられた状態で、膨張弁14の開度が大きくされる。つまり、第三運転モードでは、第一熱交換器13での冷媒の蒸発温度が上昇される。なお、第三運転モードにおいて、圧縮機11の回転数が低下されて、第一熱交換器13での冷媒の蒸発温度が上昇されてもよい。膨張弁14の開度の変化量及び圧縮機11の回転数の変化量が、吸込空気の温度に応じた異なる変化量であってもよい。つまり、膨張弁14の開度は、吸込空気の温度が低い程、大きい開度に設定されるとよい。また、圧縮機11の回転数は、吸込空気の温度が低い程、低い回転数に設定されるとよい。 (Operation of the refrigeration cycle in the third operation mode)
In the third operation mode, in the second operation mode, the opening degree of theexpansion valve 14 is increased in a state where the flow path of the four-way valve 12 is switched to the flow path indicated by the dotted line in FIG. That is, in the third operation mode, the refrigerant evaporation temperature in the first heat exchanger 13 is increased. In the third operation mode, the rotation speed of the compressor 11 may be decreased, and the evaporation temperature of the refrigerant in the first heat exchanger 13 may be increased. The change amount of the opening degree of the expansion valve 14 and the change amount of the rotation speed of the compressor 11 may be different change amounts according to the temperature of the intake air. That is, the opening degree of the expansion valve 14 is preferably set to a larger opening degree as the temperature of the intake air is lower. Moreover, the rotation speed of the compressor 11 is good to be set to a low rotation speed, so that the temperature of suction air is low.
第三運転モードでは、第二運転モードにおいて、四方弁12の流路が、図1に点線で示される流路に切り換えられた状態で、膨張弁14の開度が大きくされる。つまり、第三運転モードでは、第一熱交換器13での冷媒の蒸発温度が上昇される。なお、第三運転モードにおいて、圧縮機11の回転数が低下されて、第一熱交換器13での冷媒の蒸発温度が上昇されてもよい。膨張弁14の開度の変化量及び圧縮機11の回転数の変化量が、吸込空気の温度に応じた異なる変化量であってもよい。つまり、膨張弁14の開度は、吸込空気の温度が低い程、大きい開度に設定されるとよい。また、圧縮機11の回転数は、吸込空気の温度が低い程、低い回転数に設定されるとよい。 (Operation of the refrigeration cycle in the third operation mode)
In the third operation mode, in the second operation mode, the opening degree of the
(第三運転モードにおける空気の動作)
第三運転モードでは、第二運転モードにおけるファン24の駆動が、継続される。そのため、空気調和装置100の周囲の空気は、第一熱交換器13で除湿された後、デシカントブロック23に流入して、デシカントブロック23に水分が吸着されて、更に除湿される。デシカントブロック23から流出した空気は、その後、第二熱交換器15で加熱されて、ファン24に流入し、吹出口5から空気調和装置100の外側に排出される。 (Air operation in the third operation mode)
In the third operation mode, driving of thefan 24 in the second operation mode is continued. Therefore, the air around the air conditioner 100 is dehumidified by the first heat exchanger 13, then flows into the desiccant block 23, moisture is adsorbed by the desiccant block 23, and further dehumidified. The air flowing out from the desiccant block 23 is then heated by the second heat exchanger 15, flows into the fan 24, and is discharged from the air outlet 5 to the outside of the air conditioner 100.
第三運転モードでは、第二運転モードにおけるファン24の駆動が、継続される。そのため、空気調和装置100の周囲の空気は、第一熱交換器13で除湿された後、デシカントブロック23に流入して、デシカントブロック23に水分が吸着されて、更に除湿される。デシカントブロック23から流出した空気は、その後、第二熱交換器15で加熱されて、ファン24に流入し、吹出口5から空気調和装置100の外側に排出される。 (Air operation in the third operation mode)
In the third operation mode, driving of the
<空気調和装置の作用>
以下に、実施の形態2に係る空気調和装置の作用について説明する。
空気調和装置100では、第二運転モードへの切換時、又は、第二運転モードの実行時に、制御装置90の温度判定部91において、吸込空気の温度が予め設定された基準温度以下であると判定されると、その直後、又は、設定された待機時間経過後に、制御装置90の第三運転モード設定部92が、第一熱交換器13での冷媒の蒸発温度を上昇させる。そのため、空気調和装置100内に吸い込まれる空気の温度が低い状態で、第二運転モードが行われることによって、第一熱交換器13に着霜が生じてしまうことが抑制されて、冷凍サイクルの冷却作用によって行われる除湿での除湿量が長期に亘って確保され、また、冷凍サイクルの運転効率が向上される。 <Operation of air conditioner>
Below, the effect | action of the air conditioning apparatus which concerns onEmbodiment 2 is demonstrated.
In theair conditioner 100, the temperature of the intake air is equal to or lower than a preset reference temperature in the temperature determination unit 91 of the control device 90 when switching to the second operation mode or when executing the second operation mode. If it determines, immediately after that or after the set standby time elapses, the third operation mode setting unit 92 of the control device 90 increases the evaporation temperature of the refrigerant in the first heat exchanger 13. Therefore, when the second operation mode is performed in a state where the temperature of the air sucked into the air conditioning apparatus 100 is low, frost formation on the first heat exchanger 13 is suppressed, and the refrigeration cycle. The amount of dehumidification in the dehumidification performed by the cooling action is ensured over a long period, and the operation efficiency of the refrigeration cycle is improved.
以下に、実施の形態2に係る空気調和装置の作用について説明する。
空気調和装置100では、第二運転モードへの切換時、又は、第二運転モードの実行時に、制御装置90の温度判定部91において、吸込空気の温度が予め設定された基準温度以下であると判定されると、その直後、又は、設定された待機時間経過後に、制御装置90の第三運転モード設定部92が、第一熱交換器13での冷媒の蒸発温度を上昇させる。そのため、空気調和装置100内に吸い込まれる空気の温度が低い状態で、第二運転モードが行われることによって、第一熱交換器13に着霜が生じてしまうことが抑制されて、冷凍サイクルの冷却作用によって行われる除湿での除湿量が長期に亘って確保され、また、冷凍サイクルの運転効率が向上される。 <Operation of air conditioner>
Below, the effect | action of the air conditioning apparatus which concerns on
In the
つまり、空気調和装置100が、第二運転モードにおいて、デシカントブロック23と、その上流側に配設された第一熱交換器13と、によって除湿を行うものであるが故に可能となる、除湿性能及び運転効率の更なる向上が、吸込空気の温度が予め設定された基準温度以下であると判定される場合に、第一熱交換器13での冷媒の蒸発温度を上昇させる、第三運転モード設定部92によって、既設の機器を活用しつつ、実現される。
That is, dehumidification performance that is possible because the air conditioner 100 performs dehumidification by the desiccant block 23 and the first heat exchanger 13 disposed on the upstream side in the second operation mode. And the third operation mode in which the further improvement of the operation efficiency increases the evaporation temperature of the refrigerant in the first heat exchanger 13 when it is determined that the temperature of the intake air is equal to or lower than a preset reference temperature. The setting unit 92 is realized while utilizing existing equipment.
以上、実施の形態1及び実施の形態2について説明したが、本発明は各実施の形態の説明に限定されない。例えば、各実施の形態の全部又は一部、各変形例等を組み合わせることも可能である。
As mentioned above, although Embodiment 1 and Embodiment 2 were demonstrated, this invention is not limited to description of each embodiment. For example, it is possible to combine all or a part of each embodiment, each modification, and the like.
1 筐体、2 風路室、3 機械室、4 吸込口、5 吹出口、6 点検窓、7 蓋、11 圧縮機、12 四方弁、13 第一熱交換器、14 膨張弁、15 第二熱交換器、21 ドレンパン、22 風路形成板、23 デシカントブロック、24 ファン、81 温湿度センサ、90 制御装置、91 温度判定部、92 第三運転モード設定部、100 空気調和装置、A 冷媒循環回路、B 風路。
1 housing, 2 air channel room, 3 machine room, 4 inlet, 5 outlet, 6 inspection window, 7 lid, 11 compressor, 12 four-way valve, 13 first heat exchanger, 14 expansion valve, 15 second Heat exchanger, 21 Drain pan, 22 Air path forming plate, 23 Desiccant block, 24 Fan, 81 Temperature / humidity sensor, 90 Control device, 91 Temperature determination unit, 92 Third operation mode setting unit, 100 Air conditioner, A Refrigerant circulation Circuit, B wind path.
Claims (9)
- 圧縮機、流路切換装置、第一熱交換器、減圧装置、及び、第二熱交換器が、配管で順次接続された冷媒循環回路と、
前記第一熱交換器と前記第二熱交換器との間に配設されたデシカント材と、
前記第一熱交換器、前記デシカント材、及び、前記第二熱交換器の順に通過する気流を生じさせる送風装置と、
前記気流の温度を検出する温度検出手段と、
前記流路切換装置を制御して、前記第一熱交換器を凝縮器又は放熱器として作用させると共に、前記第二熱交換器を蒸発器として作用させて、前記デシカント材に保持された水分を脱着させる第一運転モードと、前記第一熱交換器を蒸発器として作用させると共に、前記第二熱交換器を凝縮器又は放熱器として作用させて、前記デシカント材に水分を吸着させる第二運転モードと、を切り換える制御装置と、を備え、
前記制御装置は、
前記温度検出手段で検出される前記気流の温度が、低いか高いかを判定する温度判定手段と、
前記温度判定手段で前記気流の温度が低いと判定される場合に、前記第一熱交換器の表面温度が、前記第二運転モードにおける前記第一熱交換器の表面温度と比較して高い状態で、前記デシカント材に水分を吸着させる、第三運転モードに移行させる第三運転モード設定手段と、を有する、空気調和装置。 A refrigerant circulation circuit in which a compressor, a flow path switching device, a first heat exchanger, a decompression device, and a second heat exchanger are sequentially connected by piping;
A desiccant material disposed between the first heat exchanger and the second heat exchanger;
An air blower that generates an airflow that passes in the order of the first heat exchanger, the desiccant material, and the second heat exchanger;
Temperature detecting means for detecting the temperature of the airflow;
By controlling the flow path switching device, the first heat exchanger acts as a condenser or a radiator, and the second heat exchanger acts as an evaporator, so that the moisture held in the desiccant material is reduced. A first operation mode to be desorbed and a second operation in which the first heat exchanger acts as an evaporator and the second heat exchanger acts as a condenser or a radiator to adsorb moisture to the desiccant material. A control device for switching between modes,
The controller is
Temperature determining means for determining whether the temperature of the airflow detected by the temperature detecting means is low or high;
When the temperature determining means determines that the temperature of the airflow is low, the surface temperature of the first heat exchanger is higher than the surface temperature of the first heat exchanger in the second operation mode. An air conditioner comprising: a third operation mode setting means for causing the desiccant material to adsorb moisture and shifting to a third operation mode. - 前記制御装置は、前記第三運転モードにおいて、前記圧縮機を停止させる、請求項1に記載の空気調和装置。 The air conditioner according to claim 1, wherein the control device stops the compressor in the third operation mode.
- 前記制御装置は、前記第三運転モードにおいて、前記第一熱交換器での冷媒の蒸発温度を、前記第二運転モードにおける前記第一熱交換器での冷媒の蒸発温度と比較して、高くする、請求項1に記載の空気調和装置。 In the third operation mode, the control device is configured such that the refrigerant evaporation temperature in the first heat exchanger is higher than the refrigerant evaporation temperature in the first heat exchanger in the second operation mode. The air conditioning apparatus according to claim 1.
- 前記制御装置は、前記第三運転モードにおいて、前記減圧装置の減圧量を、前記第二運転モードにおける前記減圧装置の減圧量と比較して、小さくする、請求項3に記載の空気調和装置。 The air conditioner according to claim 3, wherein the control device makes the pressure reduction amount of the pressure reduction device smaller than the pressure reduction amount of the pressure reduction device in the second operation mode in the third operation mode.
- 前記制御装置は、前記第三運転モードにおいて、前記圧縮機の回転数を、前記第二運転モードにおける前記圧縮機の回転数と比較して、低くする、請求項3又は4に記載の空気調和装置。 5. The air conditioner according to claim 3, wherein the control device lowers the rotation speed of the compressor in the third operation mode as compared with the rotation speed of the compressor in the second operation mode. apparatus.
- 前記第三運転モード設定手段は、前記第二運転モードへの切換時又は前記第二運転モードの実行時に、前記温度判定手段で前記気流の温度が低いと判定されると、その直後に、前記第三運転モードに移行させる、請求項1~5のいずれか一項に記載の空気調和装置。 When the temperature determining unit determines that the temperature of the airflow is low at the time of switching to the second operation mode or executing the second operation mode, the third operation mode setting unit immediately The air conditioner according to any one of claims 1 to 5, wherein the air conditioner is shifted to a third operation mode.
- 前記第三運転モード設定手段は、
前記第三運転モードに移行するまでの待機時間を記憶又は演算し、
前記第二運転モードへの切換時又は前記第二運転モードの実行時に、前記温度判定手段で前記気流の温度が低いと判定されると、前記待機時間が経過した後に、前記第三運転モードに移行させる、請求項1~5のいずれか一項に記載の空気調和装置。 The third operation mode setting means includes
Store or calculate the waiting time until the third operation mode is shifted,
When the temperature determination means determines that the temperature of the airflow is low when switching to the second operation mode or when executing the second operation mode, the third operation mode is entered after the standby time has elapsed. The air conditioner according to any one of claims 1 to 5, wherein the air conditioner is shifted. - 前記冷媒循環回路を循環する冷媒は、R410A冷媒、HFC冷媒、HC冷媒、HFO冷媒、又は、自然冷媒を含む、請求項1~7のいずれか一項に記載の空気調和装置。 The air conditioner according to any one of claims 1 to 7, wherein the refrigerant circulating in the refrigerant circuit includes R410A refrigerant, HFC refrigerant, HC refrigerant, HFO refrigerant, or natural refrigerant.
- 圧縮機、流路切換装置、第一熱交換器、減圧装置、及び、第二熱交換器が、配管で順次接続された冷媒循環回路と、
前記第一熱交換器と前記第二熱交換器との間に配設されたデシカント材と、
前記第一熱交換器、前記デシカント材、及び、前記第二熱交換器の順に通過する気流を生じさせる送風装置と、
前記気流の温度を検出する温度検出手段と、を備え、
前記流路切換装置を用いて、前記第一熱交換器を凝縮器又は放熱器として作用させると共に、前記第二熱交換器を蒸発器として作用させて、前記デシカント材に保持された水分を脱着させる第一運転モードと、前記第一熱交換器を蒸発器として作用させると共に、前記第二熱交換器を凝縮器又は放熱器として作用させて、前記デシカント材に水分を吸着させる第二運転モードと、を切り換える、空気調和装置の制御方法であって、
前記温度検出手段で検出される前記気流の温度が、低いか高いかを判定し、
前記気流の温度が低いと判定される場合に、前記第一熱交換器の表面温度が、前記第二運転モードにおける前記第一熱交換器の表面温度と比較して高い状態で、前記デシカント材に水分を吸着させる、第三運転モードに移行する、空気調和装置の制御方法。 A refrigerant circulation circuit in which a compressor, a flow path switching device, a first heat exchanger, a decompression device, and a second heat exchanger are sequentially connected by piping;
A desiccant material disposed between the first heat exchanger and the second heat exchanger;
An air blower that generates an airflow that passes in the order of the first heat exchanger, the desiccant material, and the second heat exchanger;
Temperature detecting means for detecting the temperature of the airflow,
Using the flow path switching device, the first heat exchanger acts as a condenser or a radiator, and the second heat exchanger acts as an evaporator to desorb moisture held in the desiccant material. A first operation mode that allows the first heat exchanger to act as an evaporator, and a second operation mode in which the second heat exchanger acts as a condenser or a radiator to adsorb moisture to the desiccant material. And a method of controlling the air conditioner,
Determining whether the temperature of the airflow detected by the temperature detecting means is low or high,
When it is determined that the temperature of the airflow is low, the desiccant material is in a state where the surface temperature of the first heat exchanger is higher than the surface temperature of the first heat exchanger in the second operation mode. The control method of the air conditioner which transfers to the 3rd operation mode which makes water adsorb | suck to the air.
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2014/054030 WO2015125251A1 (en) | 2014-02-20 | 2014-02-20 | Air-conditioning device and method for controlling air-conditioning device |
JP2016503835A JP6141508B2 (en) | 2014-02-20 | 2014-02-20 | Air conditioner and control method of air conditioner |
CN201480072923.6A CN105940269B (en) | 2014-02-20 | 2014-02-20 | Air conditioner and control method for air conditioner |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2014/054030 WO2015125251A1 (en) | 2014-02-20 | 2014-02-20 | Air-conditioning device and method for controlling air-conditioning device |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2015125251A1 true WO2015125251A1 (en) | 2015-08-27 |
Family
ID=53877786
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2014/054030 WO2015125251A1 (en) | 2014-02-20 | 2014-02-20 | Air-conditioning device and method for controlling air-conditioning device |
Country Status (3)
Country | Link |
---|---|
JP (1) | JP6141508B2 (en) |
CN (1) | CN105940269B (en) |
WO (1) | WO2015125251A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN117515673A (en) * | 2023-12-29 | 2024-02-06 | 珠海格力电器股份有限公司 | Mobile air conditioner and control method thereof |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109724213B (en) * | 2018-12-13 | 2020-11-03 | 青岛海尔空调器有限总公司 | Air conditioner and control method thereof |
JPWO2020161783A1 (en) * | 2019-02-05 | 2021-09-09 | 三菱電機株式会社 | Air conditioner |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4887438A (en) * | 1989-02-27 | 1989-12-19 | Milton Meckler | Desiccant assisted air conditioner |
JPH1073286A (en) * | 1996-04-12 | 1998-03-17 | Matsushita Electric Ind Co Ltd | Ventilating and dehumidifying device |
JP2002022245A (en) * | 2000-07-13 | 2002-01-23 | Daikin Ind Ltd | Air conditioning system |
US20050050906A1 (en) * | 2001-02-28 | 2005-03-10 | Munters Corporation | Desiccant refrigerant dehumidifier systems |
JP2010071587A (en) * | 2008-09-19 | 2010-04-02 | East Japan Railway Co | Air conditioning system |
JP2011190989A (en) * | 2010-03-15 | 2011-09-29 | Shin Nippon Air Technol Co Ltd | Method for controlling dew point temperature of low dew point chamber, and dehumidification system |
JP2012037216A (en) * | 2010-08-05 | 2012-02-23 | Sanyo Electric Co Ltd | Air conditioner |
JP2013228152A (en) * | 2012-04-26 | 2013-11-07 | Mitsubishi Electric Corp | Air conditioner |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4591355B2 (en) * | 2006-01-13 | 2010-12-01 | 株式会社日立プラントテクノロジー | Dehumidification air conditioning system |
JP5062216B2 (en) * | 2009-04-28 | 2012-10-31 | 三菱電機株式会社 | Air conditioner |
US9234667B2 (en) * | 2010-12-02 | 2016-01-12 | Mitsubishi Electric Corporation | Dehumidifying system |
JP5452565B2 (en) * | 2011-10-27 | 2014-03-26 | 三菱電機株式会社 | Dehumidifier |
-
2014
- 2014-02-20 WO PCT/JP2014/054030 patent/WO2015125251A1/en active Application Filing
- 2014-02-20 JP JP2016503835A patent/JP6141508B2/en active Active
- 2014-02-20 CN CN201480072923.6A patent/CN105940269B/en active Active
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4887438A (en) * | 1989-02-27 | 1989-12-19 | Milton Meckler | Desiccant assisted air conditioner |
JPH1073286A (en) * | 1996-04-12 | 1998-03-17 | Matsushita Electric Ind Co Ltd | Ventilating and dehumidifying device |
JP2002022245A (en) * | 2000-07-13 | 2002-01-23 | Daikin Ind Ltd | Air conditioning system |
US20050050906A1 (en) * | 2001-02-28 | 2005-03-10 | Munters Corporation | Desiccant refrigerant dehumidifier systems |
JP2010071587A (en) * | 2008-09-19 | 2010-04-02 | East Japan Railway Co | Air conditioning system |
JP2011190989A (en) * | 2010-03-15 | 2011-09-29 | Shin Nippon Air Technol Co Ltd | Method for controlling dew point temperature of low dew point chamber, and dehumidification system |
JP2012037216A (en) * | 2010-08-05 | 2012-02-23 | Sanyo Electric Co Ltd | Air conditioner |
JP2013228152A (en) * | 2012-04-26 | 2013-11-07 | Mitsubishi Electric Corp | Air conditioner |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN117515673A (en) * | 2023-12-29 | 2024-02-06 | 珠海格力电器股份有限公司 | Mobile air conditioner and control method thereof |
CN117515673B (en) * | 2023-12-29 | 2024-03-22 | 珠海格力电器股份有限公司 | Mobile air conditioner and control method thereof |
Also Published As
Publication number | Publication date |
---|---|
JP6141508B2 (en) | 2017-06-07 |
CN105940269B (en) | 2019-02-15 |
CN105940269A (en) | 2016-09-14 |
JPWO2015125251A1 (en) | 2017-03-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI528001B (en) | Dehumidification device | |
TWI532957B (en) | Dehumidification device | |
JP5822931B2 (en) | Humidity control apparatus, air conditioning system, and control method of humidity control apparatus | |
JP5854917B2 (en) | Air conditioner | |
US20130239814A1 (en) | Dehumidifying system | |
JP6138336B2 (en) | Air conditioner and control method of air conditioner | |
AU2013387943B2 (en) | Dehumidifier | |
WO2016046982A1 (en) | Dehumidifying device | |
JP6108928B2 (en) | Air conditioner | |
JP5854916B2 (en) | Air conditioner | |
JP6138335B2 (en) | Air conditioner | |
JP5542777B2 (en) | Air conditioner | |
JP6141508B2 (en) | Air conditioner and control method of air conditioner | |
JP6037926B2 (en) | Air conditioner | |
JP6611826B2 (en) | Dehumidifier | |
JP2014210223A (en) | Air conditioner | |
JP7126611B2 (en) | air conditioner | |
JP7233538B2 (en) | air conditioner | |
JP2017101917A (en) | Air conditioner |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 14882960 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2016503835 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 14882960 Country of ref document: EP Kind code of ref document: A1 |