JP2007178106A - Cooling device - Google Patents

Cooling device Download PDF

Info

Publication number
JP2007178106A
JP2007178106A JP2005380089A JP2005380089A JP2007178106A JP 2007178106 A JP2007178106 A JP 2007178106A JP 2005380089 A JP2005380089 A JP 2005380089A JP 2005380089 A JP2005380089 A JP 2005380089A JP 2007178106 A JP2007178106 A JP 2007178106A
Authority
JP
Japan
Prior art keywords
compressor
reference value
indoor
heat exchanger
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005380089A
Other languages
Japanese (ja)
Other versions
JP4614209B2 (en
Inventor
Satoshi Tatara
聡 多田良
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2005380089A priority Critical patent/JP4614209B2/en
Publication of JP2007178106A publication Critical patent/JP2007178106A/en
Application granted granted Critical
Publication of JP4614209B2 publication Critical patent/JP4614209B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To reduce frequent starts and stops of a compressor by improving control of a defrosting operation. <P>SOLUTION: This cooling device 1 has a refrigerating cycle configurated by connecting an outdoor unit 2 having the compressor 6 and an outdoor heat exchanger 7 and an indoor unit 3 having an electronic expansion valve 9 and an indoor heat exchanger 10, to piping for circulating a refrigerant, and comprises an off-cycle defrosting control means performing a defrosting operation of the indoor heat exchanger 10 by stopping the compressor 6 on the basis of a refrigerant temperature of the indoor heat exchanger 10. The off-cycle defrosting control means 18 performs the defrosting operation under a condition that a run length of the compressor after starting the cooling operation or after the execution of last defrosting operation is over a first reference value, or an integrated operation time of the compressor is over a second reference value. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、冷却装置に係り、特に、室内熱交換器を除霜運転するオフサイクル除霜機能を備えた冷却装置に関する。   The present invention relates to a cooling device, and more particularly to a cooling device having an off-cycle defrosting function for performing a defrosting operation on an indoor heat exchanger.

冷却装置は、圧縮機、室外熱交換器などを備えた室外ユニットと、電子膨張弁、室内熱交換器などを備えた室内ユニットを配管で接続して、冷媒を循環させることにより冷凍サイクルを形成している。このような冷却装置として、冷却運転時に、室内熱交換器を除霜運転するオフサイクル除霜制御機能を備えた冷却装置が知られている。オフサイクル除霜制御は、室内熱交換器の冷媒温度が所定の温度に低下したときに、圧縮機を停止させるとともに室内側ファンを所定のモードで回転させて、室内熱交換器の除霜運転を行う。また、除霜運転を作動させると圧縮機を所定時間(例えば、3分間)停止させ、その後、室内熱交換器の冷媒温度が所定の温度(例えば、12℃)まで上昇すると、圧縮機を再始動させて冷却運転を開始する。このように、定められた条件下で圧縮機の停止と始動を繰り返すことにより、冷却運転を行いながら、かつ、室内空気中に含まれる水分が霜となって室内熱交換器の配管に付着することを防止している。   The cooling device connects an outdoor unit equipped with a compressor, an outdoor heat exchanger, etc., and an indoor unit equipped with an electronic expansion valve, an indoor heat exchanger, etc. by piping, and forms a refrigeration cycle by circulating refrigerant. is doing. As such a cooling device, a cooling device having an off-cycle defrosting control function for performing a defrosting operation on an indoor heat exchanger during a cooling operation is known. Off-cycle defrost control is a defrosting operation of the indoor heat exchanger by stopping the compressor and rotating the indoor fan in a predetermined mode when the refrigerant temperature of the indoor heat exchanger has decreased to a predetermined temperature. I do. Further, when the defrosting operation is activated, the compressor is stopped for a predetermined time (for example, 3 minutes), and then when the refrigerant temperature of the indoor heat exchanger rises to a predetermined temperature (for example, 12 ° C.), the compressor is restarted. Start the cooling operation. In this way, by repeating the stop and start of the compressor under the defined conditions, the moisture contained in the indoor air becomes frost and adheres to the piping of the indoor heat exchanger while performing the cooling operation. To prevent that.

また、特許文献1では、圧縮機の頻繁な発停を抑制するため、圧縮機が停止した回数をカウントして、そのカウント値に基づいて圧縮機を再始動させる室内熱交換器の温度の基準値を変更することが記載されている。つまり、圧縮機の停止回数が増えれば、圧縮機を再始動させる室内熱交換器の温度の基準値を高い値に変更して、圧縮機を再始動しにくくしている。これによれば、圧縮機の頻繁な発停を抑制することができるとされている。   Moreover, in patent document 1, in order to suppress the frequent start / stop of a compressor, the frequency | count of the frequency | count that the compressor stopped was counted, and the reference | standard of the temperature of the indoor heat exchanger which restarts a compressor based on the count value It is described that the value is changed. That is, if the number of stoppages of the compressor increases, the reference value of the temperature of the indoor heat exchanger that restarts the compressor is changed to a high value, making it difficult to restart the compressor. According to this, frequent start / stop of the compressor can be suppressed.

特開2000−297958号公報JP 2000-297958 A

しかしながら、特許文献1に記載の技術では、圧縮機の頻繁な発停を十分に抑制できない場合がある。すなわち、圧縮機を再始動させる際の条件については考慮されているが、圧縮機を停止させる際の条件については考慮されていない。例えば、圧縮機始動時に一時的に室内熱交換器の冷媒温度が急激に低下することがある。このような一時的な冷媒温度の低下にもかかわらず除霜運転が作動してしまい、本来不要な圧縮機の発停が多く行われてしまうことがある。   However, the technique described in Patent Document 1 may not sufficiently suppress frequent start / stop of the compressor. That is, conditions for restarting the compressor are taken into account, but conditions for stopping the compressor are not taken into consideration. For example, the refrigerant temperature of the indoor heat exchanger may suddenly drop temporarily when the compressor is started. In spite of such a temporary decrease in the refrigerant temperature, the defrosting operation is activated, and the compressor that is originally unnecessary may be frequently started and stopped.

本発明は、除霜運転の制御を改善して、圧縮機の頻繁な発停を抑制することを課題とする。   An object of the present invention is to improve the control of the defrosting operation and suppress frequent start / stop of the compressor.

上記課題を解決するため、本発明の冷却装置は、冷媒を循環する配管に、圧縮機と室外熱交換器とを有する室外ユニット及び電子膨張弁と室内熱交換器とを有する室内ユニットを接続して冷凍サイクルを形成してなり、室内熱交換器の冷媒温度に基づいて圧縮機を停止して室内熱交換器を除霜運転するオフサイクル除霜制御手段を備えた冷却装置において、オフサイクル除霜制御手段は、冷却運転開始後又は前回の除霜運転実行後の圧縮機の連続運転時間が第1の基準値を越えたことと、圧縮機の積算運転時間が第2の基準値を越えたことのいずれか一方を条件として除霜運転を行うことを特徴とする。   In order to solve the above-mentioned problems, the cooling device of the present invention connects an outdoor unit having a compressor and an outdoor heat exchanger and an indoor unit having an electronic expansion valve and an indoor heat exchanger to piping for circulating the refrigerant. In a cooling device comprising an off-cycle defrost control means for forming a refrigeration cycle and stopping the compressor based on the refrigerant temperature of the indoor heat exchanger to defrost the indoor heat exchanger. The frost control means determines that the continuous operation time of the compressor after the start of the cooling operation or the execution of the previous defrosting operation exceeds the first reference value, and the cumulative operation time of the compressor exceeds the second reference value. The defrosting operation is performed under any one of the above conditions.

すなわち、室内熱交換器の冷媒温度は、圧縮機始動直後は急激に低下し、その後徐々に上昇して一定の温度に安定するので、冷媒温度が安定するまでの間は除霜運転を作動させないようにする。つまり、室内熱交換器の冷媒温度が安定するまでの間は、たとえ、冷媒温度が除霜運転を開始する条件温度を満たしたとしても除霜運転は作動しないので、本来不要な除霜運転の作動を抑制することができる。これにより、圧縮機の頻繁な発停を抑制することができる。   That is, the refrigerant temperature of the indoor heat exchanger decreases rapidly immediately after the compressor starts, and then gradually increases and stabilizes at a constant temperature. Therefore, the defrosting operation is not operated until the refrigerant temperature is stabilized. Like that. That is, until the refrigerant temperature of the indoor heat exchanger is stabilized, the defrosting operation does not operate even if the refrigerant temperature satisfies the condition temperature for starting the defrosting operation. The operation can be suppressed. Thereby, frequent start / stop of the compressor can be suppressed.

この場合において、オフサイクル除霜制御手段は、室内設定温度に基づいて第1の基準値と第2の基準値を設定する基準値設定手段を有し、基準値設定手段は、室内設定温度が低くなるにつれて、第1の基準値と第2の基準値を大きく設定することが望ましい。これによれば、例えば、低温倉庫用冷却装置などでは、室内設定温度が低いため圧縮機始動直後の冷媒温度の急激な低下は発生しやすくなり、温度が安定するまでに要する時間も長くなるが、これに対応して除霜運転を作動させる条件である第1の基準値と第2の基準値を大きくすることができる。したがって、室内設定温度が異なる様々な環境に対応して、安定して本来不要な除霜運転の作動を抑制することができ、圧縮機の頻繁な発停を抑制することができる。   In this case, the off-cycle defrosting control unit includes a reference value setting unit that sets the first reference value and the second reference value based on the indoor set temperature, and the reference value setting unit has an indoor set temperature of It is desirable to set the first reference value and the second reference value larger as the value becomes lower. According to this, for example, in a cooling device for a low-temperature warehouse, since the indoor set temperature is low, a rapid decrease in the refrigerant temperature immediately after starting the compressor is likely to occur, and the time required for the temperature to stabilize becomes longer. Correspondingly, the first reference value and the second reference value, which are conditions for operating the defrosting operation, can be increased. Therefore, in response to various environments with different indoor set temperatures, it is possible to stably suppress the operation of the defrosting operation which is originally unnecessary, and to suppress frequent start / stop of the compressor.

また、基準値設定手段は、圧縮機が始動する毎に室内設定温度に基づいて第1の基準値と第2の基準値を設定することが望ましい。これによれば、例えば、冷却運転中に室内設定温度が変更されたとしても、圧縮機が始動する毎に、室内設定温度に対応して除霜運転を作動させる条件である第1の基準値と第2の基準値を設定変更できる。したがって、安定して、本来不要な除霜運転の作動を抑制して、圧縮機の頻繁な発停を抑制することができる。この場合において、第1の基準値と第2の基準値の設定変更は、上述した圧縮機が始動する毎に行うことに代えて、あらかじめ設定された時間毎に行うこともできる。   Moreover, it is desirable that the reference value setting means sets the first reference value and the second reference value based on the indoor set temperature every time the compressor is started. According to this, for example, even if the indoor set temperature is changed during the cooling operation, the first reference value which is a condition for operating the defrosting operation corresponding to the indoor set temperature every time the compressor is started. And the second reference value can be changed. Therefore, the operation | movement of the defrost operation which is originally unnecessary can be suppressed stably, and the frequent start / stop of a compressor can be suppressed. In this case, the setting change of the first reference value and the second reference value can be performed every preset time instead of being performed every time the above-described compressor is started.

本発明によれば、除霜運転の制御を改善して、圧縮機の頻繁な発停を抑制することができる。   ADVANTAGE OF THE INVENTION According to this invention, the control of a defrost operation can be improved and the frequent start / stop of a compressor can be suppressed.

以下、本発明を適用してなる冷却装置の実施形態を、図1〜図4を用いて説明する。なお、本実施形態は、低温倉庫用冷却装置に本発明を適用した場合を例示するものである。図1は、本実施形態の冷却装置の構成を示す図である。図1に示すように、冷却装置1は、室外ユニット2と、室内ユニット3と、これらを環状に接続するガス側接続配管4及び液側接続配管5で構成されている。   Hereinafter, an embodiment of a cooling device to which the present invention is applied will be described with reference to FIGS. In addition, this embodiment illustrates the case where this invention is applied to the cooling device for low temperature warehouses. FIG. 1 is a diagram showing the configuration of the cooling device of the present embodiment. As shown in FIG. 1, the cooling device 1 includes an outdoor unit 2, an indoor unit 3, and a gas side connection pipe 4 and a liquid side connection pipe 5 that connect these in an annular shape.

室外ユニット2は、圧縮機6と、室外熱交換器7と、これらとガス側接続配管4及び液側接続配管5を接続して冷媒を循環させる室外配管8で構成されている。   The outdoor unit 2 includes a compressor 6, an outdoor heat exchanger 7, and an outdoor pipe 8 that connects the gas side connection pipe 4 and the liquid side connection pipe 5 to circulate the refrigerant.

室内ユニット3は、電子膨張弁9と、室内熱交換器10と、これらとガス側接続配管4及び液側接続配管5を接続して冷媒を循環させる室内配管11で構成されている。また、室内熱交換器10の近傍には、室内熱交換器10に室内空気を送風する室内送風機12が設けられており、室内熱交換器10の入口側と出口側の配管には、それぞれ液側冷媒温度センサ13とガス側冷媒温度センサ14が設けられている。さらに、室内ユニット3には、室内の温度を検出する室内温度センサ16と、室内設定温度を保持する室内設定温度保持器17と、オフサイクル除霜制御装置18が設けられている。オフサイクル除霜制御装置18は、圧縮機6、室内送風機12、液側冷媒温度センサ13、ガス側冷媒温度センサ14、室内温度センサ16、室内設定温度保持器17とそれぞれ信号線を介して接続されている。   The indoor unit 3 includes an electronic expansion valve 9, an indoor heat exchanger 10, and an indoor pipe 11 that connects the gas side connection pipe 4 and the liquid side connection pipe 5 to circulate the refrigerant. In addition, an indoor fan 12 that blows indoor air to the indoor heat exchanger 10 is provided in the vicinity of the indoor heat exchanger 10, and the pipes on the inlet side and the outlet side of the indoor heat exchanger 10 are respectively provided with liquids. A side refrigerant temperature sensor 13 and a gas side refrigerant temperature sensor 14 are provided. Furthermore, the indoor unit 3 is provided with an indoor temperature sensor 16 that detects the indoor temperature, an indoor set temperature holder 17 that holds the indoor set temperature, and an off-cycle defrost control device 18. The off-cycle defrost control device 18 is connected to the compressor 6, the indoor fan 12, the liquid side refrigerant temperature sensor 13, the gas side refrigerant temperature sensor 14, the indoor temperature sensor 16, and the indoor set temperature holder 17 through signal lines. Has been.

次に、本発明の特徴部であるオフサイクル除霜制御装置18の詳細を図2、図3を用いて説明する。図2は、オフサイクル除霜制御装置18の内部構成を示す図である。図2に示すように、オフサイクル除霜制御装置18は、オフサイクル除霜制御に必要な基準値T1〜T8を格納する基準値テーブル22と、冷却運転開始後又は前回の除霜運転実行後の圧縮機の連続運転時間及び積算運転時間を格納する連続時間カウンタ23及び積算時間カウンタ24と、演算処理装置25で構成されている。演算処理装置25は、圧縮機6の運転状況情報に基づいて連続時間カウンタ23と積算運転時間カウンタ24に格納する値を更新する。また、室内設定温度保持器17で保持されている室内設定温度に基づいて基準値テーブル22の基準値T1及びT2を更新する。そして、上述した運転状況情報、室内設定温度の他、液側冷媒温度センサ13で計測された室内熱交換器10の入口側の冷媒温度、ガス側冷媒温度センサ14で計測された室内熱交換器10の出口側の冷媒温度、室内温度センサ16で計測された室内温度、基準値テーブル22に格納されている値、連続時間カウンタ23と積算運転時間カウンタ24に格納されている値などを入力し、これらの情報に基づいて、圧縮機6の運転/停止制御指令及び室内送風機12の回転数制御指令を出力する。   Next, the details of the off-cycle defrost control device 18 which is a characteristic part of the present invention will be described with reference to FIGS. FIG. 2 is a diagram illustrating an internal configuration of the off-cycle defrost control device 18. As shown in FIG. 2, the off-cycle defrost control device 18 includes a reference value table 22 that stores reference values T1 to T8 necessary for off-cycle defrost control, and after the start of the cooling operation or after the previous defrost operation. The continuous time counter 23 and the accumulated time counter 24 for storing the continuous operation time and the accumulated operation time of the compressor of FIG. The arithmetic processing unit 25 updates the values stored in the continuous time counter 23 and the integrated operation time counter 24 based on the operation status information of the compressor 6. Further, the reference values T1 and T2 of the reference value table 22 are updated based on the indoor set temperature held by the indoor set temperature holder 17. In addition to the above-described operation status information and indoor set temperature, the refrigerant temperature on the inlet side of the indoor heat exchanger 10 measured by the liquid side refrigerant temperature sensor 13 and the indoor heat exchanger measured by the gas side refrigerant temperature sensor 14 10 refrigerant temperature at the outlet side, room temperature measured by the room temperature sensor 16, values stored in the reference value table 22, values stored in the continuous time counter 23 and the integrated operation time counter 24, etc. Based on these pieces of information, an operation / stop control command for the compressor 6 and a rotation speed control command for the indoor fan 12 are output.

図3は、オフサイクル演算処理装置25によって実行されるオフサイクル除霜制御の動作をフローチャートで示した図である。図示しない冷却運転の開始スイッチが操作されると、圧縮機6が始動して冷却運転が開始される。そして、室内設定温度保持器17で保持されている室内設定温度に基づいて、基準時間T1、T2(分)が自動的に設定される(S0)。ここで、基準時間T1,T2の値は、図4に示すように、室内設定温度が低くなればなるほど大きくなり、かつT1<T2の関係を保って設定される。より具体的には、T1は、圧縮機6を始動した後室内熱交換器の冷媒温度が急激に低下して安定していない1〜10分のような短時間であってはならないので、十分に冷媒温度が安定する例えば15分と設定される。T2はそれよりも大きな値で例えば30分と設定される。また、以下の処理で用いられる基準値T3〜T8には、あらかじめ適切な値が設定されている。   FIG. 3 is a flowchart showing the off-cycle defrosting control operation performed by the off-cycle arithmetic processing unit 25. When a cooling operation start switch (not shown) is operated, the compressor 6 is started and the cooling operation is started. Based on the indoor set temperature held by the indoor set temperature holder 17, the reference times T1 and T2 (minutes) are automatically set (S0). Here, as shown in FIG. 4, the values of the reference times T1 and T2 become larger as the indoor set temperature becomes lower, and are set while maintaining the relationship of T1 <T2. More specifically, T1 should not be a short time such as 1 to 10 minutes when the refrigerant temperature of the indoor heat exchanger suddenly decreases and is not stable after the compressor 6 is started. For example, it is set to 15 minutes when the refrigerant temperature is stabilized. T2 is set to a larger value, for example, 30 minutes. In addition, appropriate values are set in advance for the reference values T3 to T8 used in the following processing.

次に、圧縮機6の連続運転時間又は積算運転時間がそれぞれ基準時間T1又はT2(分)を経過しているか否かを判断する(S1)。連続運転時間と積算運転時間のどちらも基準時間を経過していない場合は、冷却運転を継続してS0の処理に戻される。どちらか一方でも基準時間を経過した場合は、室内熱交換器10の液側又はガス側の冷媒温度が基準温度T3(℃)未満か否を判断する(S2)。ここで基準温度T3は0℃前後とするのが好ましい。室内熱交換器10の液側とガス側の冷媒温度のどちらか一方が基準温度未満になるまで、S2の処理を繰り返す。どちらか一方が基準温度未満となったら、その状態を基準時間T4(分)間連続して保持しているか否かを判断する(S3)。S3は、冷媒温度が安定して低下しているか否かを確認するための処理である。上述したS1〜S3が本実施形態による除霜運転の作動条件となる。室内熱交換器10の液側又はガス側の冷媒温度が、基準時間T4(分)間連続して基準温度T3(℃)未満を保持しなかった場合は、S2の処理に戻される。保持した場合は、演算処理装置25の制御指令に基づき、室内送風機12の送風量を除霜運転用の設定風量に切り替える(S4)。そして、圧縮機6を停止させる(S5)。つまり、この状態で除霜運転が作動したことになる。ここで、室内送風機12の設定風量は、図示しないリモコンスイッチからの操作によって設定することも可能である。   Next, it is determined whether the continuous operation time or the accumulated operation time of the compressor 6 has passed the reference time T1 or T2 (minutes), respectively (S1). If neither the continuous operation time nor the accumulated operation time has passed the reference time, the cooling operation is continued and the process returns to S0. When the reference time has elapsed in either one, it is determined whether or not the refrigerant temperature on the liquid side or gas side of the indoor heat exchanger 10 is lower than the reference temperature T3 (° C.) (S2). Here, the reference temperature T3 is preferably about 0 ° C. The process of S2 is repeated until one of the refrigerant temperature on the liquid side or the gas side of the indoor heat exchanger 10 becomes lower than the reference temperature. When either one becomes lower than the reference temperature, it is determined whether or not the state is continuously maintained for the reference time T4 (min) (S3). S3 is a process for confirming whether or not the refrigerant temperature has stably decreased. The above-described S1 to S3 are the operating conditions of the defrosting operation according to the present embodiment. When the refrigerant temperature on the liquid side or the gas side of the indoor heat exchanger 10 does not keep the temperature below the reference temperature T3 (° C.) continuously for the reference time T4 (minutes), the process returns to S2. If held, based on the control command of the arithmetic processing unit 25, the air volume of the indoor fan 12 is switched to the set air volume for the defrosting operation (S4). Then, the compressor 6 is stopped (S5). That is, the defrosting operation is activated in this state. Here, the set air volume of the indoor fan 12 can also be set by an operation from a remote control switch (not shown).

次に、除霜運転が作動した状態が基準時間T5(分)を経過しているか否かを判断する(S6)。つまり、S6は圧縮機6が停止した後すぐに始動することによって破損する恐れがあることなどを考慮したものであり、強制的に圧縮機6をT5(分)間停止させて圧縮機6を保護するための処理である。停止時間T5(分)は例えば3分程度とすればよい。圧縮機6の停止時間が基準時間T5(分)を経過したら、室内熱交換器10の液側又はガス側の冷媒温度が基準温度T6(℃)以上か否を判断する(S7)。T6(℃)は、例えば10℃程度に設定するのが好ましい。室内熱交換器10の液側又はガス側の冷媒温度のどちらか一方が基準温度T6(℃)以上になるまでS7の処理を繰り返し、どちらか一方がT6(℃)以上になると、T6(℃)未満である他方側の冷媒温度が基準温度T7(℃)以上か否かを判断する(S8)。T7(℃)は、除霜運転が作動する条件となるT3(℃)+2℃以上が望ましく、例えば4℃程度とするとよい。他方側の冷媒温度が基温度T7(℃)未満の場合は、S7の処理に戻される。他方側の冷媒温度が基準温度T7(℃)以上となったら、室内温度が室内設定温度+T8(℃)以上か否かを判断する(S9)。S9は、冷却装置1の消費電力を抑制するために設けられた処理である。つまり、室内温度が室内設定温度+T8℃に上昇するまでの間は、圧縮機6を停止したままにすることによって消費電力を抑制することができる。また、T8は、消費電力の抑制を促進したい場合に大きな値を設定し、室内設定温度に対する室内温度を厳しく管理したい場合は0℃とすることも可能である。室内温度が室内設定温度+T8(℃)未満の場合は、S7の処理に戻される。室内温度が室内設定温度+T8以上となると、冷却運転を再開して再びS0の処理に戻る。上述したS7〜S9が本発明における除霜運転の解除条件となる。   Next, it is determined whether or not the state where the defrosting operation is activated has passed the reference time T5 (minutes) (S6). That is, S6 considers that there is a possibility that the compressor 6 may be damaged by starting immediately after the compressor 6 is stopped, and the compressor 6 is forcibly stopped for T5 (minutes). It is a process for protection. The stop time T5 (min) may be about 3 minutes, for example. If the stop time of the compressor 6 has passed the reference time T5 (minutes), it is determined whether or not the refrigerant temperature on the liquid side or gas side of the indoor heat exchanger 10 is equal to or higher than the reference temperature T6 (° C.) (S7). T6 (° C.) is preferably set to about 10 ° C., for example. The process of S7 is repeated until either one of the refrigerant temperature on the liquid side or the gas side of the indoor heat exchanger 10 becomes equal to or higher than the reference temperature T6 (° C), and when either one becomes equal to or higher than T6 (° C), T6 (° C It is determined whether or not the refrigerant temperature on the other side that is less than the reference temperature T7 (° C.) or higher (S8). T7 (° C.) is desirably T3 (° C.) + 2 ° C. or higher, which is a condition for operating the defrosting operation, and is preferably about 4 ° C., for example. When the refrigerant temperature on the other side is lower than the base temperature T7 (° C.), the process returns to S7. When the refrigerant temperature on the other side becomes equal to or higher than the reference temperature T7 (° C.), it is determined whether or not the room temperature is equal to or higher than the indoor set temperature + T8 (° C.) (S9). S9 is a process provided to suppress the power consumption of the cooling device 1. That is, power consumption can be suppressed by keeping the compressor 6 stopped until the room temperature rises to the indoor set temperature + T8 ° C. In addition, T8 can be set to a large value when it is desired to promote suppression of power consumption, and can be set to 0 ° C. when it is desired to strictly manage the room temperature with respect to the indoor set temperature. If the room temperature is less than the room set temperature + T8 (° C.), the process returns to S7. When the room temperature becomes equal to or higher than the room set temperature + T8, the cooling operation is resumed and the process returns to S0 again. S7-S9 mentioned above becomes the cancellation | release conditions of the defrost operation in this invention.

以上に述べたようなオフサイクル除霜制御によれば、例えば、圧縮機6の始動時に室内熱交換器10の冷媒温度が一時的に低下したとしても、S1の処理によって、圧縮機6の連続運転時間又は積算運転時間が基準時間T1又はT2を経過していない限り除霜運転は作動しない。これにより、圧縮機6は停止せず冷却運転を継続するので、圧縮機の頻繁な発停を抑制することができる。また、室内設定温度に依存して圧縮機6の始動時における室内熱交換器10の冷媒温度の低下及び冷媒温度が安定するまでに要する時間は変化するが、これに対応して基準時間T1及びT2の値が設定されるので、室内設定温度が異なる様々な環境に対応して、安定して圧縮機の頻繁な発停を抑制することができる。   According to the off-cycle defrost control as described above, for example, even if the refrigerant temperature of the indoor heat exchanger 10 temporarily decreases when the compressor 6 is started, the compressor 6 is continuously operated by the process of S1. The defrosting operation does not operate unless the operation time or the accumulated operation time has passed the reference time T1 or T2. Thereby, since the compressor 6 continues the cooling operation without stopping, frequent start / stop of the compressor can be suppressed. Further, depending on the indoor set temperature, the time required for the refrigerant temperature of the indoor heat exchanger 10 to decrease and the refrigerant temperature to stabilize at the start of the compressor 6 changes. Since the value of T2 is set, it is possible to stably suppress frequent start / stop of the compressor corresponding to various environments having different indoor set temperatures.

なお、本実施形態は、低温倉庫用冷却装置に本発明を適用した場合を例示したが、これに限らず、例えば対人用の空気調和機などの除霜制御でも、T1〜T8を用途にあわせて適宜選択することで、本発明の効果を奏することが可能である。   In addition, although this embodiment illustrated the case where this invention is applied to the cooling device for low-temperature warehouses, it is not restricted to this, For example, T1-T8 is matched with a use also in defrost control, such as a personal air conditioner. Thus, the effects of the present invention can be achieved.

本実施形態の冷却装置の構成を示す図である。It is a figure which shows the structure of the cooling device of this embodiment. オフサイクル除霜制御装置の内部構成を示す図である。It is a figure which shows the internal structure of an off cycle defrost control apparatus. オフサイクル除霜制御の動作をフローチャートで示した図である。It is the figure which showed the operation | movement of off cycle defrost control with the flowchart. 室内設定温度と基準時間T1,T2の関係を示す図である。It is a figure which shows the relationship between indoor preset temperature and reference time T1, T2.

符号の説明Explanation of symbols

1 冷却装置
2 室外ユニット
3 室内ユニット
4 ガス側接続配管
5 液側接続配管
6 圧縮機
7 室外熱交換器
8 室外配管
9 電子膨張弁
10 室内熱交換器
11 室内配管
13 液側冷媒温度センサ
14 ガス側冷媒温度センサ
17 室内設定温度保持器
18 オフサイクル除霜制御装置
DESCRIPTION OF SYMBOLS 1 Cooling device 2 Outdoor unit 3 Indoor unit 4 Gas side connection piping 5 Liquid side connection piping 6 Compressor 7 Outdoor heat exchanger 8 Outdoor piping 9 Electronic expansion valve 10 Indoor heat exchanger 11 Indoor piping 13 Liquid side refrigerant temperature sensor 14 Gas Side refrigerant temperature sensor 17 Indoor set temperature retainer 18 Off-cycle defrost control device

Claims (5)

冷媒を循環する配管に、圧縮機と室外熱交換器とを有する室外ユニット及び電子膨張弁と室内熱交換器とを有する室内ユニットを接続して冷凍サイクルを形成してなり、前記室内熱交換器の冷媒温度に基づいて前記圧縮機を停止して前記室内熱交換器を除霜運転するオフサイクル除霜制御手段を備えた冷却装置において、
前記オフサイクル除霜制御手段は、冷却運転開始後又は前回の前記除霜運転実行後の前記圧縮機の連続運転時間が第1の基準値を越えたことと、前記圧縮機の積算運転時間が第2の基準値を越えたことのいずれか一方を条件として前記除霜運転を行うことを特徴とする冷却装置。
An indoor unit having a compressor and an outdoor heat exchanger and an indoor unit having an electronic expansion valve and an indoor heat exchanger are connected to a pipe for circulating the refrigerant to form a refrigeration cycle. In the cooling device comprising an off-cycle defrost control means for defrosting the indoor heat exchanger by stopping the compressor based on the refrigerant temperature of
The off-cycle defrosting control means determines that the continuous operation time of the compressor after the start of the cooling operation or after the previous execution of the defrosting operation has exceeded the first reference value, and the accumulated operation time of the compressor. The cooling device, wherein the defrosting operation is performed on the condition that either one of the second reference values is exceeded.
前記オフサイクル除霜制御手段は、室内設定温度に基づいて前記第1の基準値と前記第2の基準値を設定する基準値設定手段を有することを特徴とする請求項1に記載の冷却装置。 2. The cooling device according to claim 1, wherein the off-cycle defrosting control unit includes a reference value setting unit that sets the first reference value and the second reference value based on an indoor set temperature. . 前記基準値設定手段は、前記室内設定温度が低くなるにつれて、前記第1の基準値と前記第2の基準値を大きく設定することを特徴とする請求項2に記載の冷却装置。 The cooling apparatus according to claim 2, wherein the reference value setting means sets the first reference value and the second reference value to be larger as the indoor set temperature is lower. 前記基準値設定手段は、前記圧縮機が始動する毎に前記室内設定温度に基づいて前記第1の基準値と前記第2の基準値を設定することを特徴とする請求項3に記載の冷却装置。 4. The cooling according to claim 3, wherein the reference value setting unit sets the first reference value and the second reference value based on the indoor set temperature every time the compressor is started. 5. apparatus. 前記基準値設定手段は、設定時間毎に前記室内設定温度に基づいて前記第1の基準値と前記第2の基準値を設定することを特徴とする請求項3に記載の冷却装置。
The cooling apparatus according to claim 3, wherein the reference value setting unit sets the first reference value and the second reference value based on the indoor set temperature for each set time.
JP2005380089A 2005-12-28 2005-12-28 Cooling system Expired - Fee Related JP4614209B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005380089A JP4614209B2 (en) 2005-12-28 2005-12-28 Cooling system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005380089A JP4614209B2 (en) 2005-12-28 2005-12-28 Cooling system

Publications (2)

Publication Number Publication Date
JP2007178106A true JP2007178106A (en) 2007-07-12
JP4614209B2 JP4614209B2 (en) 2011-01-19

Family

ID=38303468

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005380089A Expired - Fee Related JP4614209B2 (en) 2005-12-28 2005-12-28 Cooling system

Country Status (1)

Country Link
JP (1) JP4614209B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013057441A (en) * 2011-09-08 2013-03-28 Panasonic Corp Refrigerator
CN106801976A (en) * 2017-01-06 2017-06-06 海信(广东)空调有限公司 A kind of air-conditioner defrosting method
CN107238176A (en) * 2017-06-13 2017-10-10 广东美的制冷设备有限公司 The control method and air conditioner of air conditioner
CN110631194A (en) * 2018-06-25 2019-12-31 青岛海尔空调器有限总公司 Defrosting control method and device for air conditioner
CN110726227A (en) * 2019-10-28 2020-01-24 广东美的暖通设备有限公司 Defrosting control method, device and system for fresh air fan system
CN111023523A (en) * 2019-12-26 2020-04-17 广州华凌制冷设备有限公司 Air conditioner control method and device, air conditioner and storage medium
WO2022195727A1 (en) * 2021-03-16 2022-09-22 三菱電機株式会社 Heat source machine for refrigeration apparatus and refrigeration apparatus equipped with same
JP7295318B1 (en) 2022-09-20 2023-06-20 日立ジョンソンコントロールズ空調株式会社 air conditioner
WO2024024018A1 (en) * 2022-07-28 2024-02-01 三菱電機株式会社 Refrigerator

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0375476A (en) * 1989-08-18 1991-03-29 Matsushita Refrig Co Ltd Defrost controller
JPH04217763A (en) * 1990-12-18 1992-08-07 Daikin Ind Ltd Freezing device
JPH06249566A (en) * 1993-02-24 1994-09-06 Sanyo Electric Co Ltd Defrosting control device for refrigerator
JPH0828930A (en) * 1994-07-20 1996-02-02 Fujitsu General Ltd Air conditioner
JPH08303924A (en) * 1995-05-12 1996-11-22 Toshiba Corp Defrosting control device for refrigerator
JP2003065638A (en) * 2001-08-28 2003-03-05 Hitachi Ltd Air conditioner
JP2005300049A (en) * 2004-04-13 2005-10-27 Sanyo Electric Co Ltd Defrosting control device for direct cooling type refrigerator

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0375476A (en) * 1989-08-18 1991-03-29 Matsushita Refrig Co Ltd Defrost controller
JPH04217763A (en) * 1990-12-18 1992-08-07 Daikin Ind Ltd Freezing device
JPH06249566A (en) * 1993-02-24 1994-09-06 Sanyo Electric Co Ltd Defrosting control device for refrigerator
JPH0828930A (en) * 1994-07-20 1996-02-02 Fujitsu General Ltd Air conditioner
JPH08303924A (en) * 1995-05-12 1996-11-22 Toshiba Corp Defrosting control device for refrigerator
JP2003065638A (en) * 2001-08-28 2003-03-05 Hitachi Ltd Air conditioner
JP2005300049A (en) * 2004-04-13 2005-10-27 Sanyo Electric Co Ltd Defrosting control device for direct cooling type refrigerator

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013057441A (en) * 2011-09-08 2013-03-28 Panasonic Corp Refrigerator
CN106801976A (en) * 2017-01-06 2017-06-06 海信(广东)空调有限公司 A kind of air-conditioner defrosting method
CN107238176A (en) * 2017-06-13 2017-10-10 广东美的制冷设备有限公司 The control method and air conditioner of air conditioner
CN110631194A (en) * 2018-06-25 2019-12-31 青岛海尔空调器有限总公司 Defrosting control method and device for air conditioner
CN110726227A (en) * 2019-10-28 2020-01-24 广东美的暖通设备有限公司 Defrosting control method, device and system for fresh air fan system
CN111023523A (en) * 2019-12-26 2020-04-17 广州华凌制冷设备有限公司 Air conditioner control method and device, air conditioner and storage medium
WO2022195727A1 (en) * 2021-03-16 2022-09-22 三菱電機株式会社 Heat source machine for refrigeration apparatus and refrigeration apparatus equipped with same
WO2024024018A1 (en) * 2022-07-28 2024-02-01 三菱電機株式会社 Refrigerator
JP7295318B1 (en) 2022-09-20 2023-06-20 日立ジョンソンコントロールズ空調株式会社 air conditioner

Also Published As

Publication number Publication date
JP4614209B2 (en) 2011-01-19

Similar Documents

Publication Publication Date Title
JP4614209B2 (en) Cooling system
US10054347B2 (en) Air conditioner
US10197317B2 (en) Air conditioner with outdoor unit compressor driven at controllable activation rotational speed
JP2010078272A (en) Air-conditioning and refrigerating system
CN111023515B (en) Air conditioner, refrigeration control method of air conditioner and storage medium
JP5492625B2 (en) Air conditioner
JP6033416B2 (en) Air conditioner
JP2009085463A (en) Air conditioner
JP2006138632A (en) Refrigerator
JP5900463B2 (en) Air conditioning system
JP2009121789A (en) Air conditioner
CN112074692B (en) Air conditioner
JPH10246525A (en) Air conditioner
JP2004003721A (en) Operation control method of air conditioner
JP2007298218A (en) Refrigerating device
JP5381749B2 (en) Refrigeration cycle equipment
JP2004233015A (en) Air conditioner
JP5954995B2 (en) Air conditioner
JP2004053207A (en) Air conditioner and frost preventing method for indoor heat exchanger of air conditioner
JP2007187376A (en) Air conditioner
CN114719397B (en) Control method of air conditioner
JP2005300056A (en) Refrigeration cycle system
JPH10246518A (en) Air conditioner
JPH10288426A (en) Refrigerator
JP2004183982A (en) Control device of air conditioner

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080111

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20080619

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20080826

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091119

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100316

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100514

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100921

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101012

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131029

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees